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1. Introduction

The importance of van der Waals (vdW) interactions in the 
structure, stability and function of molecules and materials can 
hardly be overemphasized [1–6]. Ubiquitous in nature, vdW 
interactions span a vast array of physically relevant distances, 
ranging from just a few Ångström to several nanometers  
[7–9], with recent experiments suggesting that vdW forces can 

even be signi�cantly longer-ranged [10]. These non-bonded 
interactions are largely responsible for the formation of the 
gas-phase benzene dimer at low temperatures, the stabiliza-
tion required for the formation of molecular crystals, and the 
binding of molecules to proteins and DNA inside living cells. 
In addition, vdW interactions play a central role in the �elds of 
supramolecular chemistry and nano-materials, in which non-
covalent binding is essential for structure and functionality.
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Abstract

This work reviews the increasing evidence that many-body van der Waals (vdW) or dispersion 
interactions play a crucial role in the structure, stability and function of a wide variety of systems 
in biology, chemistry and physics. Starting with the exact expression for the electron correlation 
energy provided by the adiabatic connection �uctuation–dissipation theorem, we derive both 
pairwise and many-body interatomic methods for computing the long-range dispersion energy 
by considering a model system of coupled quantum harmonic oscillators within the random-
phase approximation. By coupling this approach to density functional theory, the resulting 
many-body dispersion (MBD) method provides an accurate and ef�cient scheme for computing 
the frequency-dependent polarizability and many-body vdW energy in molecules and materials 
with a �nite electronic gap. A select collection of applications are presented that ascertain the 
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(the S22 and S66 benchmark databases), intramolecular (conformational energies of alanine 
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electrodynamic response screening and beyond-pairwise many-body vdW interactions—both 
captured at the MBD level of theory—play a quantitative, and sometimes even qualitative, role 
in describing the properties considered herein. This work is then concluded with an in-depth 
discussion of the challenges that remain in the future development of reliable (accurate and 
ef�cient) methods for treating many-body vdW interactions in complex materials and provides a 
roadmap for navigating many of the research avenues that are yet to be explored.
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In order to enable rational predictions and design of molecu-
lar and condensed-matter materials, including the interfaces 
between them, a reliable �rst-principles method is required that 
can describe vdW interactions both accurately and ef�ciently. 
However, forming an accurate description of vdW interactions 
is extremely challenging, since the vdW dispersion energy arises 
from the correlated motion of electrons and must be described 
by quantum mechanics. The rapid increase in computational 
power coupled with recent advances in the development of theo-
retical models for describing vdW interactions have allowed us 
to achieve so-called ‘chemical accuracy’ for binding between 
small organic molecules. However, the lack of accurate and ef�-
cient methods for treating large and complex systems hinders 
truly quantitative predictions of the properties and functions of 
technologically and biologically relevant materials.

In this topical review, we are mainly concerned with meth-
ods for describing long-range vdW interactions in the con-
text of density functional theory (DFT). Therefore, we will 
not discuss the subtle effects that become important for mac-
roscopic systems, such as relativistic retardation and effects 
of �nite temperature. We refer the readers interested in this 
subject to standard textbooks [1, 2] and existing literature, 
e.g., references [11–13]. We remark that retardation and �nite 
temperature effects will have to be eventually incorporated 
into microscopic approaches to vdW interactions to achieve a 
seamless link to macroscopic systems.

Many encouraging approaches have been proposed in 
recent years for approximate inclusion of long-range pairwise 
dispersion interactions in DFT [14–23]. Despite such signi�-
cant progress in the �eld of modeling vdW interactions, many 
questions still remain and further development is required 
before a universally applicable method emerges. For instance, 
pairwise interatomic vdW methods are frequently employed 
to describe organic molecules adsorbed on inorganic sur-
faces [24–27], ignoring the relatively strong electrodynamic 
response screening present within bulk materials. On the �ip 
side of the coin, the popular non-local vdW-DF functionals 
[28–30] utilize a homogeneous dielectric approximation for 
the polarizability, which is not expected to be accurate for 
molecules. Despite this fact, interaction energies between 
small organic molecules computed with such functionals turn 
out to be reasonably accurate. Understanding the physical rea-
sons as to why these different approaches ‘yield good results’ 
outside of their expected domains of applicability is central to 
the development of more robust approximations.

Interatomic pairwise dispersion approaches based on the 
standard C6/R6 summation formula were popularized by the 
DFT-D method of Grimme [16] and are now among the most 
widely used methods [15, 18, 19] for including the disper-
sion energy in DFT. Despite their simplicity, these pairwise-
additive models provide remarkable accuracy when applied 
to small molecular systems, especially when accurate disper-
sion coef�cients (C6) are employed for the atoms in molecules  
[31, 32]. Only recently have efforts been focused on going 
beyond the pairwise treatment of vdW contributions; for 
example, the importance of the non-additive three-body 
interatomic Axilrod–Teller–Muto term [33–35] was assessed, 
as well as the role of non-local screening in solids [36] and 

molecules adsorbed on surfaces [37]. Furthermore, an ef�-
cient and accurate interatomic many-body dispersion (MBD) 
approach has recently been proposed [38], which demon-
strated that a many-body description of vdW interactions is 
essential for extended molecules and molecular solids, and 
that the in�uence of many-body vdW interactions can already 
become signi�cant when considering the binding between 
relatively small organic molecules [38, 39].

In this work, we present a derivation of the pairwise and 
many-body interatomic dispersion energy for a model system 
comprised of isotropic polarizable dipoles from the adiabatic 
connection �uctuation–dissipation (ACFD) formula, which is 
an exact expression for the exchange–correlation energy. We 
distinguish and discuss two types of interatomic many-body 
contribution to the dispersion energy, which stem from beyond-
pairwise non-additive interactions and self-consistent electrody-
namic response screening. By using the ACFD formula we gain a 
deeper understanding of the approximations made in interatomic 
approaches, in particular the DFT+MBD method [38], providing 
a powerful formalism for the further development of accurate and 
ef�cient methods for computing the vdW dispersion energy.

Applications of the DFT+MBD method are presented for a 
wide variety of systems with �nite electronic gaps, including 
benchmark databases of intermolecular interactions, the stabil-
ity of extended and globular conformations of alanine tetrapep-
tide, the binding in the ‘buckyball catcher’ supramolecular host 
guest complex, and the cohesive energy of several oligoacene 
molecular crystals. For all of these cases, the role of the beyond-
pairwise non-additive vdW interactions and electrodynamic 
response screening captured at the DFT+MBD level of theory 
is critically assessed and shown to contribute in a quantitative, 
and sometimes even qualitative, fashion. We conclude with a 
discussion of the challenges that remain in the future develop-
ment of accurate and ef�cient methods for treating many-body 
vdW interactions in materials of increasing complexity.

As the modeling of vdW interactions is currently a very 
active �eld of research, it is impossible to cover all of the 
important developments in this article. For more information, 
we refer interested readers to the Ψk highlight [40] and review 
article [41] by Dobson and Gould, which discuss several dif-
ferent approaches for computing dispersion interactions; to 
the recent review by Klimes and Michaelides on dispersion 
methods within DFT [42]; and to the webpage for the recent 
vdW@CECAM workshop that brought together many of the 
key players in the development and application of vdW-inclu-
sive �rst-principles methods [43].

2. Theory

The adiabatic connection �uctuation–dissipation (ACFD) 
theorem provides a general and exact expression for the 
exchange–correlation energy [44, 45], thereby allowing for 
the calculation of the dispersion energy in a seamless and 
accurate fashion which naturally incorporates higher-order 
many-body effects. In this section, we explore the use of the 
ACFD theoretical framework as a basis for the understand-
ing and development of interatomic pairwise and many-body 
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dispersion methods. Beginning with a brief review of the 
ACFD correlation energy within the random-phase approxi-
mation (RPA), we then consider the ACFD-RPA correlation 
energy for a model system comprised of quantum harmonic 
oscillators (QHO) interacting via the dipole–dipole interac-
tion potential. We derive the well-known C6/R6 interatomic 
pairwise summation formula from the second-order expan-
sion of the ACFD-RPA correlation energy for this collection 
of N QHOs, each of which is characterized by an isotropic fre-
quency-dependent point dipole polarizability. We then extend 
our treatment to account for spatially-distributed dipole 
polarizabilities and derive the corresponding Coulomb and 
dipole–dipole interaction potentials that naturally attenuate 
short-range interactions, thereby avoiding the near-�eld diver-
gence associated with interacting point dipoles. By mapping 
the atoms in a molecular system of interest to this collection of 
QHOs, we then demonstrate how the Dyson-like self- consistent 
screening (SCS) equation of classical electrodynamics can be 
utilized to obtain the non-local response function as well as 
accurate molecular and atomic frequency-dependent dipole 
polarizabilities, all of which re�ect the anisotropy arising 
from the underlying topology of the chemical environment as 
well as collective polarization and depolarization effects. This 
section is then concluded with a discussion of the DFT+MBD 
method, which is de�ned by the coupling of standard DFT 
functionals with the Hamiltonian corresponding to the afore-
mentioned model system of QHOs utilizing a range-separated 
Coulomb (and dipole–dipole interaction) potential, allowing 
us to treat the full range of exchange and correlation effects in 
molecular systems of interest.

2.1. The ACFD-RPA correlation energy expression

For a system of nuclei and electrons, the ACFD theorem  
provides us with an exact expression for the exchange–
correlation energy in terms of the density–density response 
function χ(r, r′, iω) [44, 45], which measures the electronic 
response of the system at a point r due to a frequency-depen-
dent electric �eld perturbation at a point r′. Since the focus 
of this work is on dispersion interactions, which are quantum 
mechanical phenomena due to the instantaneous (dynamical) 
correlation between electrons, we begin with the ACFD for-
mula for the correlation energy only (Hartree atomic units are 
assumed throughout):

∫

∫
π

ω

λ χ ω χ ω

= −

× ′ − ′ ′λ

∞
E

vTr r r r r r r

1

2
d

d [( ( , , i ) ( , , i )) ( , )].

c
0

0

1

0

 

(1)

In this expression, χ0(r, r′, iω) is the bare or non-interacting 
response function, χλ(r, r′, iω) is the interacting response func-
tion at Coulomb coupling strength λ, v(r, r′) =  |r−r′|−1 is the 
Coulomb potential and Tr denotes the spatial trace operator (or 
six-dimensional integration) over the variables r and r′.

Within the ACFD formalism, the adiabatic connection 
between a reference non-interacting system (de�ned at 
λ = 0) and the fully interacting system (with λ = 1), yields 

the correlation energy of the system of interest, which con-
tains the many-body dispersion energy as well as other 
electron correlation effects. The interacting response func-
tion, χλ, is de�ned self-consistently via the Dyson-like 
screening equation, χ χ χ λ χ= + +λ λ λv f( )0 0

xc , which con-
tains ω′

λ
f r r( , , i )xc , the exchange-correlation kernel, an 

unknown quantity which must be approximated in prac-
tice. Neglecting the explicit dependence of 

λ
f xc on the cou-

pling constant allows for analytic integration over λ in the 
ACFD correlation energy expression in equation (1), and 
forms the basis for the most widely employed approxima-
tion for 

λ
f xc, namely the random-phase approximation (RPA)  

[46, 47]. In what follows, we utilize the RPA, wherein =
λ
f 0
xc ,  

which has been shown to yield reliable results for a wide 
variety of molecules and extended systems [48–65]. The 
ACFD-RPA correlation energy expression can be written as 
a power series expansion in χ0v, following elimination of χλ 
using the Dyson equation and analytical integration over λ  
(see equation (1)) [66, 67]:

∫ ∑
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(2)

Using the Adler–Wiser formalism [68, 69], correlation 
energy calculations based on the ACFD and ACFD-RPA for-
mulae in equations (1) and (2), respectively, are most often 
based on a reference bare response function computed using 
the set of single-particle occupied and virtual orbitals {ϕi} 
with corresponding energies {ϵi} and occupation numbers 
{fi} determined from semi-local DFT, Hartree-Fock or hybrid 
self-consistent �eld calculations, i.e.,

∑χ ω
ϕ ϕ ϕ ϕ

ω
′ = −

* ′ * ′

ϵ −ϵ +
f fr r

r r r r
( , , i ) ( )

( ) ( ) ( ) ( )

i
.

ij

i j

i i j j

i j
0

 

(3)

Since the reference bare response function is not uniquely 
de�ned and response functions computed in this manner 
are computationally demanding (in terms of both construc-
tion and storage), it can be argued that such functions do not 
necessarily provide the ideal starting point for computing the 
ACFD correlation energy. In this work, we directly address 
these issues by positing an alternative framework for comput-
ing the bare or non-interacting response function based on a 
model system of QHOs—a scheme which is computationally 
ef�cient while also providing a vastly improved starting point 
for computing the long-range many-body dispersion energy 
for non-metallic systems.

Here we remind the reader that the ACFD-RPA expres-
sion is an approximation to the exact correlation energy, and 
the choice of χ0, the reference bare response function, is not 
only the subject of this work but also the focus of current 
research in the �eld of DFT-based RPA theory. Moreover, we 
note in passing that this expression for the ACFD-RPA cor-
relation energy is also not unique—for instance, the ACFD-
RPA correlation energy can equivalently be written in terms of 
the fully interacting response function, i.e., through a power 
series expansion in χ1v. For a more detailed review of the RPA 
approach for computing the correlation energy, see [40, 63, 
65, 70] and references therein.
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2.2. Derivation of the long-range interatomic pairwise 

 dispersion energy

We now apply the ACFD-RPA approach to compute the cor-
relation energy for a model system comprised of a collec-
tion of interacting QHOs. In doing so, we will �rst derive the 
standard C6/R6 interatomic pairwise summation formula for 
a system of two QHOs as the second-order expansion of the 
ACFD-RPA correlation energy within the dipole approxima-
tion. We will then demonstrate the validity of this formula 
for an arbitrary collection of N QHOs, providing a quantum 
mechanical derivation of the long-range interatomic pairwise 
summation formula that is customarily utilized for computing 
the dispersion energy.

To evaluate the ACFD-RPA correlation energy expres-
sion in equation (2), we �rst need the bare or non-interacting 
response function for this collection of QHOs, which can be 
assembled as a direct sum over the individual QHO response 
functions, χ0(r, r′, iω) = χ0,p(r, r′, iω) ⊕ χ0,q(r, r′, iω) ⊕ ···. 
For a QHO located at position vector Rp = {xp, yp, zp} and 
characterized by an isotropic frequency-dependent point 
dipole polarizability, αp(iω), the individual QHO response 
function takes on the following form [70]:

χ ω α ω δ δ′ ′= − ∇ − ∇ −⊗ ′r r r R r R( , , i ) (i ) ( ) ( ),p p p pr r0,
3 3

 (4)

in which δ3(r − r′) is the three-dimensional Dirac delta func-
tion and ⊗ is the tensor (outer) product. An important point 
to note here is the stark contrast between this bare response 
function, which is constructed from completely localized (and 
thereby non-overlapping) individual QHO response functions, 
and the typical bare response function assembled using the 
aforementioned Adler–Wiser formalism (see equation (3)), 
which is constructed from the occupied and virtual molecu-

lar orbitals obtained from an underlying self-consistent �eld 
calculation and is therefore a relatively delocalized object by 
construction.

For the moment, we will assume that the QHOs are sepa-
rated by a suf�ciently large distance, allowing us to use the bare 
dipole–dipole interaction potential to describe the interoscilla-
tor couplings, a condition that will be relaxed when the general 
case is considered in the next section. This dipole–dipole inter-
action potential between oscillators p and q is straightforwardly 
obtained from the bare Coulomb potential, vpq = |Rp − Rq|−1, via

⎧
⎨
⎩

=
∇ ∇ ≠

=

⊗
T

v p q

p q

if

0 if

R R

pq
pqp q

 

(5)

and is therefore a 3 × 3 second-rank tensor with components 
given by

T
δ

= −

−R R R

R

3
,pq

ab a b pq ab

pq

2

5

 
(6)

in which a and b represent the coordinates {x, y, z} in the 
Cartesian reference frame, Ra and Rb are the respective com-
ponents of the interoscillator distance Rpq, and δab is the stan-
dard Kronecker delta.

With the individual QHO response functions and the dipole–
dipole interaction tensor as de�ned above, we now consider the 

quantity χ0v in the ACFD-RPA correlation energy expression 
in equation (2), which can now be represented in matrix form 
as the product AT. Here, A is a diagonal 3N × 3N matrix with 
−αp(iω) values on the 3 × 3 diagonal atomic subblocks, repre-
senting the bare or non-interacting response function for the 
collection of N QHOs. The dipole–dipole interaction matrix T 
is a 3N × 3N matrix comprised of the 3 × 3 blocks of the Tpq 
tensor as de�ned in equations (5) and (6).

For a system composed of two QHOs separated by a dis-
tance R = |Rp − Rq| along the z-axis and characterized by iso-
tropic point dipole polarizabilities αp(iω) and αq(iω), the AT 
matrix takes on the following form:

⎛
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⎜
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 (7)

With the above matrix as input, the second-order (n = 2) 
term of the ACFD-RPA correlation energy expression in equa-
tion (2) yields the following energy expression for a collection 
of N = 2 QHOs:

∫
π

ω α ω α ω= −

= − =

∞
TE

C

R
N

Tr
1

2
d (i ) (i ) [( ) ]

( 2)

c p q pq

pq

,RPA-QHO
(2)

0

2

6

6

 (8)

where we have used the fact that T = RTr[( ) ] 6 /pq pq
2 6  and the 

Casimir–Polder integral

∫
π

ω α ω α ω=
∞

C
3

d (i ) (i )pq
p q6

0 
(9)

to determine the C pq
6  dispersion coef�cient from the corre-

sponding pair of frequency-dependent point dipole polariz-
abilities. The above equation is nothing more than the familiar 
expression for the long-range dispersion interaction between 
two spherical atoms.

To demonstrate the validity of this formula for an arbi-
trary collection of N QHOs, one needs to consider the action 
of the spatial trace operator in equation (2) on the general 
3N × 3N AT matrix. As seen above, the second-order term 
in the ACFD-RPA correlation energy expansion requires 
the trace of the square of the AT matrix, for which the n-th 
diagonal element is simply the scalar product between the 
corresponding n-th column and n-th row of AT. As such, 
the overall trace corresponds to an accumulated sum of the 
diagonal elements contained in the smaller T( )pq

2 subblocks 
∀  p, q, each weighted by the product αp(iω)αq(iω). Since 
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T = RTr[( ) ] 6 /pq pq
2 6  for any subblock Tpq, regardless of the 

geometry of the oscillator assembly, the second-order expan-
sion of equation (2) reduces to the following energy expres-
sion for a collection of N ⩾ 3 QHOs:

∑= − ≥
≠

E
C

R
N

1

2
( 3)c

p q

pq

pq
,RPA-QHO
(2) 6

6

 
(10)

following the repeated use of the Casimir–Polder integral in 
equation (9) to determine the set of interoscillator dispersion 
coef�cients. The reader will notice that this expression is the 
standard interatomic pairwise summation formula utilized by 
methods such as DFT-D to compute the dispersion energy cor-
responding to a collection of N atoms.

Although the second-order expansion of the ACFD-
RPA correlation energy in equation (2) yields the familiar 
interatomic pairwise expression for the dispersion energy 
given by equation (10), the former equation is more general 
and provides a powerful formalism for the development of 
approximate methods for computing the dispersion energy 
in molecular systems of interest. For one, the ACFD-RPA 
correlation energy expression allows for the explicit utiliza-
tion of the tensor form of the frequency-dependent dipole 
polarizability, enabling a fully anisotropic treatment of the 
dispersion energy. In this regard, anisotropy in the polariz-
ability has been found to play a non-negligible role in the 
accurate description of intermolecular dispersion inter-
actions [71, 72]. In the next two sections, we extend our 
model by considering QHOs characterized by spatially 
distributed (instead of point) dipole polarizabilities and 
describe a method for capturing the anisotropy in the fre-
quency-dependent dipole polarizability based on the solu-
tion of the self-consistent Dyson-like screening equation of 
classical electrodynamics. Secondly, the use of the untrun-
cated ACFD-RPA correlation energy expression allows for 
the explicit inclusion of the higher-order (n > 2) energetic 
contributions that arise naturally in the power series expan-
sion of χ0v. These terms include two distinct energetic con-
tributions: the beyond-pairwise (non-additive) many-body 
interactions (to Nth order) and the higher-order electrody-
namic response screening [73] (to in�nite order). The �rst 
example of the beyond-pairwise many-body interactions 
is captured in the third-order expansion of the ACFD-RPA 
correlation energy (for a system with N ⩾ 3), which is the 
so-called Axilrod–Teller–Muto triple-dipole term [74]. The 
higher-order response screening is most easily illustrated by 
considering a system composed of two QHOs p and q and 
expanding equation (2):

⎛

⎝
⎜

⎞

⎠
⎟

∫
π

ω

α ω α ω

α ω α ω

= −

+ + … =

∞
E

R

R
N

1

2
d

6 (i ) (i )

9 (i ) (i )
( 2)

p q

pq

p q

pq

c,RPA-QHO
0

6

2 2

12

 (11)
in which the second-order term corresponds to the ‘standard’ 
C6/R6 pairwise dispersion interaction and the higher-order 
terms (which only survive with even powers of n) correspond 

to the electrodynamic screening of the polarizability of atom 
p by the presence of atom q and vice versa. In section 2.5, 
we extend our above treatment and describe a method that 
accurately and ef�ciently accounts for both beyond-pairwise 
non-additive many-body and higher-order electrodynamic 
response screening contributions to the dispersion energy for 
an arbitrary system of N QHOs.

2.3. Extension to spatially distributed dipole polarizabilities

In the previous section, we assumed that the QHOs were sepa-
rated by a suf�ciently large distance which allowed us to describe 
the interactions between them using the bare dipole–dipole inter-
action potential, a condition that will now be relaxed in order 
to consider the general case, in which QHOs can be separated 
by typical chemical bond distances. We remind the reader that 
in the limit of �uctuating point dipoles, the interaction between 
QHOs diverges when the interoscillator distances become rela-
tively close (i.e., the so-called ‘polarization catastrophe’).

The most straightforward way to avoid this near-field 
divergence is to account for interoscillator overlap effects 
by extending our treatment to spatially distributed fre-
quency-dependent polarizabilities in the model system 
of QHOs. In fact, this extension to spatially distributed 
frequency-dependent dipole polarizabilities can actually 
be derived from first principles by utilizing fundamental 
quantum mechanics, i.e., the solutions of the Schrödinger 
equation for the QHO. To proceed, we first note that 
the ground-state (singly-occupied) QHO wavefunction, 
ψ r( )0

QHO , is a spherical Gaussian function, and hence the 
corresponding ground-state QHO charge density is also 
a spherical Gaussian function (via the Gaussian product 
theorem), i.e.,

ψ
σ

π σ
= | | =

−
n r r

r
( ) ( )

exp[ /2 ]
,0

QHO
0
QHO 2

2 2

3/2 3
 

(12)

in which σ represents the width or spread of the spherical 
Gaussian function. The corresponding Coulomb interaction 
between two spherical Gaussian charge distributions associ-
ated with oscillators p and q can then be derived as [75]

σ

=v
R

R

erf[ / ]
,pq

pq pq

pq 
(13)

in which σ σ σ= +pq p q
2 2 , is an effective width obtained from 

the Gaussian widths of oscillators p and q (see equation 
(12)), that essentially determines the correlation length of 
this interaction potential. Since the dipole polarizability 
relates the response of a dipole moment to an applied electric 
�eld, the σ parameters physically correspond to the spatial 
spread of the local dipole moment distribution centered on a 
given oscillator. In fact, these Gaussian widths are directly 
related to the polarizability in classical electrodynamics 
[76] and can be derived from the dipole self-energy (i.e., the 
zero-distance limit of the dipole–dipole interaction poten-
tial derived below in equation (14)) as σ π α= ( 2 / / 3)p p

1/3
.

From equation (13), we now proceed to derive the cor-
responding dipole–dipole interaction tensor between two 
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QHOs p and q from this Coulomb potential, which takes on 
the following form after straightforward algebra (see equa-
tions (5) and (13)):

⎛

⎝
⎜

⎞

⎠
⎟

δ

σ
π σ

σ

π σ
σ

= ∇ ∇ = −
−

× − −

+ −

⊗T v
R R R

R

R
R

R

R R

R
R

3

erf[ / ]
2

exp[ ( / ) ]

4
exp[ ( / ) ].

pq
ab

pq
a b pq ab

pq

pq pq
pq

pq
pq pq

a b

pq pq
pq pq

R R

2

5

2

3 2
2

p q

 (14)

We note that the above expression describes a dipole–dipole 
interaction potential that (i) attenuates the interaction between 
oscillators at short distances in comparison to the bare dipole–
dipole interaction potential, converging to a �nite value even 
in the zero-distance limit, and (ii) becomes equivalent to the 
bare dipole–dipole interaction potential for large interoscilla-
tor distances. Hence, the use of this dipole–dipole interaction 
potential for an arbitrary collection of QHOs (now described 
by spatially distributed frequency-dependent dipole polariz-
abilities) not only allows us to avoid the near-�eld divergence 
that plagues the short-range, but also provides us with the 
simultaneous ability to correctly describe the long-range elec-
trodynamic response as described in the next section.

2.4. Electrodynamic response screening and  

polarizability anisotropy

Neglecting retardation effects due to the �nite speed of light, 
the long-range dispersion energy between two atoms in vacuo 
originates from the electrodynamic interaction of ‘atomic’ 
dipolar �uctuations. However, when an atom is embedded in a 
condensed phase (or in a suf�ciently large molecule), the cor-
responding dipolar �uctuations signi�cantly differ from the free 
atom case, and in fact, this difference originates from both the 
local chemical environment surrounding the atom (decaying 
exponentially via the radial extent of the atomic density) and the 
long-range electrodynamic interactions with the more distant 
�uctuating dipoles (decaying via a ∼1/R3 power law). In other 
words, each atom located inside a molecule or material experi-
ences a dynamic internal electric �eld created by both the local 
and non-local �uctuations associated with the surrounding atoms. 
Depending on the underlying topology of the chemical environ-
ment, this �uctuating internal electric �eld can give rise to either 
polarization or depolarization effects, and is largely responsible 
for the anisotropy in the molecular polarizability tensor [77, 78]. 
Therefore, it is essential to include the environmental screening 
effects arising from both the short- and long-range in accurate 
�rst-principles calculations of the dispersion energy.

To proceed, we now map the atoms in a given molecular 
system of interest to the model system of QHOs discussed 
in the previous sections. In what follows, each atom p in the 
molecular system will be represented by a single QHO char-
acterized by a position vector Rp = {xp, yp, zp} and a corre-
sponding frequency-dependent dipole polarizability, αp(iω).

To account for the local chemical environment, we uti-
lize the Tkatchenko–Schef�er (TS) scheme [31] for the 

frequency-dependent dipole polarizability, which retains the 
�rst term in the Padé series [79] for αp(iω), i.e.,

α ω

α

ω ω

=

+

(i )
1 ( / )

,p

p

p

0

2

 
(15)

in which the static dipole polarizability, α α= n r[ ( )]p p
0 0 ,  

and the effective (or characteristic) excitation frequency, 
ωp = ωp[n(r)], are de�ned as functionals of the ground-state 
electron density, obtained from an initial self-consistent 
quantum mechanical calculation using either semi-local or 
hybrid DFT [80]—methods that can accurately treat electro-
statics, induction, exchange-repulsion and local hybridization 
effects, but lack the ability to describe long-range dispersion 
interactions [81].

Assuming that the system (whether it be an individual mol-
ecule, a collection of molecules or even condensed matter), 
has a �nite electronic gap and can therefore be divided into 
effective atomic fragments, the Hirshfeld [82], or stockholder, 
partitioning of the total electron density, n(r), into atomic elec-
tron densities, np(r), is then utilized to account for the local 
chemical environment surrounding each atom. By exploiting 
the proportionality between volume and polarizability [83], 
the Hirshfeld volume of an ‘atom-in-a-molecule,’ Vp[n(r)], 
can then be utilized to compute α n r[ ( )]p

0  by appropriately 
scaling highly accurate reference free atom data, as follows:

⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
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∫
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[ ( )] d ( )
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p

p

p
0

free

0,free

3

3 free

0,free

 
(16)

in which the free-atom volume, Vp
free, was obtained from the 

free-atom electron density, npfree, and αp
0,free is the reference 

free-atom static dipole polarizability (which can be taken 
from either experimental data or high-level quantum chemical 
calculations).

Since the free-atom parameters are referenced to highly 
accurate reference data, short-range quantum mechanical 
exchange-correlation effects are accounted for in these quan-
tities by construction. In fact, the frequency-dependent dipole 
polarizabilties de�ned in this manner (cf equations (15) and 
(16)) yield C6 coef�cients that are accurate to 5.5% when 
compared to reference experimental values for an exten-
sive database of atomic and (small) molecular dimers [31]. 
Nevertheless, this parameterization of the frequency-depend-
ent dipole polarizability clearly lacks the aforementioned 
long-range electrodynamic screening that extends beyond 
the range of the exponentially decaying atomic densities, and 
these effects must be accounted for self-consistently within 
this system of �uctuating QHOs.

To capture the long-range electrodynamic response screen-
ing and anisotropy effects, we self-consistently solve the 
Dyson-like screening equation utilizing the dipole–dipole 
interaction tensor derived above in equation (14) which 
accounts for spatially-distributed frequency-dependent polar-
izabilities, thereby improving upon our initial description of 
the bare response function corresponding to this collection 
of QHOs. To proceed forward, we recall that this initial bare 
response function, χ0, was constructed as a direct sum over 
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the individual oscillator response functions given in equation 
(4), i.e., χ0 = χ0,p ⊕ χ0,q ⊕ …, which now correspond to QHOs 
characterized by isotropic frequency-dependent dipole polariz-
abilities parameterized using the TS de�nitions for α n r[ ( )]p

0  
(presented above) and ωp[n(r)]. Therefore, the real-space matrix 
representation of χ0 is diagonal, and as a result, the correspond-
ing self-consistent Dyson-like screening (SCS) equation is 
separable and can be recast as the following non-homogeneous 
system of linear equations for a given frequency ω:

∑α ω α ω α ω α ω= − = …
≠

T p N(i ) (i ) (i ) (i ) 1, 2, , .p p p

q p

N

pq q

 (17)

In equation (17), the complexity associated with integrating 
over spatial variables r and r′ has been absorbed into Tpq,  
the 3  ×  3 block of the dipole–dipole interaction tensor in 
equation (14), which facilitates the use of overlapping spa-
tially distributed frequency-dependent dipole polarizabili-
ties by eliminating the issues associated with the near-�eld 
divergence. The set of α ω(i )p  are the unknowns in the SCS 
equations and physically correspond to frequency-dependent 
dipole polarizabilities that account for both short-range (via 
the TS scheme) and long-range (via the solution of the SCS 
equations) electrodynamic response screening effects arising 
from the chemical environment. The solution of equation (17) 
with input polarizabilities computed at the TS level will be 
referred to as TS+SCS throughout the remainder of this work.

The SCS equations can be solved in matrix form at dis-
cretized frequencies, ω (chosen from the roots of the Gauss–
Legendre numerical integration scheme), via inversion of the 
3N × 3N Hermitian A matrix, which contains the inverse of 
the atomic frequency-dependent dipole polarizability tensors, 
α ω

− (i )p
1 , along the diagonal 3 × 3 atomic subblocks, and the 

dipole–dipole interaction tensor, pqT , in each of the corre-
sponding 3 × 3 non-diagonal subblocks. Inversion of the A 
matrix yields the screened (dense) non-local polarizability 
matrix, B , or equivalently speaking, the corresponding inter-

acting response function, χ1, for our model system of QHOs. 
From this screened polarizability matrix, one can obtain the 
screened molecular polarizability tensor by internally con-
tracting over all atomic subblocks,

∑α = B ,

pq

N

pq

 

(18)

and the screened set of atomic polarizability tensors by partial 
internal contraction,

∑α = B .p

q

N

pq

 
(19)

Utilizing the SCS procedure, these quantities are computed 
in a fully self-consistent manner and respectively provide 
the induced dipole moments of the molecule and individ-
ual atoms resulting from the internal electric �eld (i.e., the 
 electric �eld due to the presence of the atoms in the molecu-
lar system of interest). In addition to these screened molecu-
lar and atomic frequency-dependent dipole polarizabilities, 

the set of screened characteristic frequencies, ωp, are also 
obtained during solution of the SCS equations as described 
in reference [38].

2.5. The many-body dispersion energy: the  

DFT+MBD method

To compute the full many-body dispersion (MBD) energy, we 
directly solve the Schrödinger equation for this set of �uctu-
ating and interacting QHOs (representing the N atoms in a 
given molecular system of interest) within the dipole approxi-
mation. The corresponding Hamiltonian for this model system 
is given by [84–90]:

T∑ ∑ ∑ μ μω μ ω ω α α= − ∇ + +μ

= = >

H
1

2

1

2
,

p

N

p

N

p p

p q

N

p q p q p pq q

1

2

1

2 2 0 0
p

 (20)
in which each QHO p is characterized by a screened static 
dipole polarizability, αp

0, and screened excitation frequency, 
ωp, computed at the TS+SCS level of theory (via solution 
of the SCS equations in equation (17)), an oscillator mass, 

α ω=
−m ( )p p p

0 2 1, and μ ξ= mp p p, which is de�ned in terms 
of ξp, the displacement of a given QHO from its equilibrium 
position. The �rst two terms in this Hamiltonian correspond to 
the single-particle kinetic and potential energy, respectively, 
while the last term describes the coupling between QHOs 
via the dipole–dipole interaction tensor = ∇ ∇⊗T v( )pq pqR Rp q

, 
where vpq will be de�ned below).

For a model system of QHOs coupled within the dipole 
approximation, we have in fact proven the equivalence [91] 
between the full interaction energy obtained from the diago-
nalization of the Hamiltonian in equation (20) and the cor-
responding ACFD-RPA correlation energy expression in 
equation (2). Hence, the full ACFD-RPA correlation energy 
for this model system of QHOs can be obtained by taking the 
difference between the zero-point energies [92, 93] derived 
from the coupled and uncoupled QHO frequencies, i.e.,

∑ ∑λ ω= − =
= =

E E
1

2

3

2
p

N

p

p

N

pMBD

1

3

1

c,RPA-QHO

 
(21)

in which λp are the Hamiltonian matrix eigenvalues, i.e., due to 
the bilinear nature of the interaction potential in equation (20), 
these eigenvalues simply correspond to the classical normal 
modes in this model system of QHOs. As such, the full ACFD-
RPA correlation energy for this model system of QHOs can be 
ef�ciently computed by diagonalizing this 3N × 3N Hamiltonian 
matrix, thereby enabling treatment of molecular systems con-
taining thousands of atoms on a single processor—this is in stark 
contrast to the computationally expensive methods traditionally 
utilized for computing the ACFD-RPA correlation energy based 
on the Adler–Wiser bare response function (cf equation (3)).

Although the MBD energy is part of the long-range correla-
tion energy, the full correlation energy in general also includes 
other contributions. In order to construct an electronic struc-
ture method that treats the full range of exchange and correla-
tion effects, we need to couple the MBD energy for our model 
system of QHOs in equation (21) to an approximate semi-local 
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DFT functional. Instead of utilizing an ad hoc damping func-
tion, as typically employed in interatomic pairwise approaches, 
the coupling of MBD to an underlying functional (DFT+MBD) 
is achieved via the following range-separated Coulomb poten-
tial [94, 95], which suppresses the short-range interactions that 
are already captured at the DFT level,

= − −

β( )v R R R1 exp( ( / ) ) / ,pq pq pq pq
vdW

 
(22)

where β is a range-separation parameter that controls how 
quickly vpq reaches the long-range 1/Rpq asymptote, and 

= +R R Rpq p q
vdW vdW vdW are the screened vdW radii as de�ned 

in [31, 38]. The value of this range-separation parameter, β, 
is obtained from global optimization of the total DFT+MBD 
energy on the S22 test set, a widely employed benchmark data-
base of noncovalent intermolecular interactions [96, 97]. For the 
PBE [98] and PBE0 [99, 100] functionals, the optimized values 
of the β parameter were found as 2.56 and 2.53, respectively.

Finally, we remark that our choice of using the screened 
αp

0 and ωp parameters as inputs in equation (20) is not unique, 
which is nothing more than a restatement of the fact that the 
choice of the reference bare response function in the ACFD 
formula for the correlation energy is not uniquely de�ned. Our 
experience with this choice for the reference bare response 
function is quite extensive (see sections 3 and 4 for an over-
view of some of the systems considered) and seems to indicate 
that the current choice is a good starting point for comput-
ing the long-range many-body dispersion energy in molecular 
systems of interest. However, there is one theoretical draw-
back associated with the present method that is worth men-
tioning: by using the screened αp

0 and ωp parameters as inputs 
and diagonalizing the Hamiltonian in equation (20), the MBD 
method does not fully utilize the information contained in 
the non-local polarizability matrix obtained after the solu-
tion of equation (17). The use of this non-local information 
requires an interaction potential that couples the collective 
QHO modes and matches the underlying DFT functional. We 
are actively investigating alternatives which are certainly pos-
sible from the viewpoint of the ACFD formula that incorpo-
rate the improvements discussed in section 5, which we hope 
will allow us to treat the full spectrum of molecular systems 
of interest on an equal footing, ranging from small gas-phase 
molecules to complex materials of biological and nano-tech-
nological importance.

3. Applications: the role of self-consistent 

 electrodynamic screening in molecular 

polarizabilities

The simplest possible model for the polarizability of molecules 
and solids consists of a sum over effective hybridized polariz-
able atoms, as given by equation (15). This model can be very 
effective in reproducing accurately known isotropic molecular 
polarizabilities and isotropic C6 coef�cients. For example, the 
TS method uses a localized atom-based model and yields an 
accuracy of ≈14% for the isotropic polarizabilities of more 
than 200  molecules [101] and 5.5% for the C6 coef�cients 
in 1225 cases [31]. However, one has to recognize that the 

polarizability measures the response of a dipole moment to 
an applied electric �eld. Since both the dipole moment and 
the electric �eld are vector quantities, the dipole polarizability 
is evidently anisotropic and should be described by a second-
rank tensor. Hence, the rather simpli�ed additive model fails 
to correctly capture the anisotropy in the molecular polariz-
ability [3]. Within the framework of electronic structure calcu-
lations, the static polarizability can be computed as the second 
derivative of the total energy with respect to an applied electric 
�eld. An alternative, but equivalent formulation for computing 
the polarizability is based on the fact that the single-particle 
orbitals in a molecule are electrodynamically coupled. The 
solution of the coupling equations leads to the many-electron 
frequency-dependent polarizability of the full system.

The TS+SCS method introduced above in equation (17) 
is based on such an electrodynamic interaction model. Upon 
obtaining effective isotropic parameters for atoms in a mol-
ecule or a solid from the ground-state electron density, the 
non-local polarizability tensor is determined from the solution 
of a system of dipole–dipole coupling equations. The dipole–
dipole coupling between atoms naturally introduces anisotropy 
in the molecular polarizability, even if one starts with purely 
isotropic atomic polarizabilities (see �gure 1). We now illus-
trate the importance of electrodynamic screening for three dif-
ferent cases: small and medium-sized molecules, a linear chain 
of H2 molecules, and silicon clusters of increasing size.

3.1. Small and medium-sized molecules

Table 1 shows the three components of the molecular static 
polarizability, αxx0 , αyy0 , and αzz0 , along with the isotropic static 
polarizability, α

iso
0 , for a database of 18 molecules [78]. The 

calculation of the electron density was carried out using the 
PBE exchange–correlation functional [98], however using a 

Figure 1. Illustration of the geometry and the anisotropy in the 
atomic TS+SCS polarizabilities of the C60@C60H28 buckyball 
catcher complex. The atomic polarizability tensors are visualized as 
ellipsoids [102].
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different functional would lead to a negligible change in the 
results [31]. The TS atomic partitioning of the polarizabil-
ity integrated in different directions yields a mean absolute 
error of 13.2% for the isotropic molecular polarizability, and a 
much larger error of 76.3% for the fractional anisotropy (FA), 
de�ned as

α α α α α α

α α α

=
− + − + −

+ +

FA
1

2

( ) ( ) ( )

( ) ( ) ( )
.

xx yy xx zz yy zz

xx yy zz

0 0 2 0 0 2 0 0 2

0 2 0 2 0 2

 
(23)

Upon including screening effects using the TS+SCS model 
(equation (17)), the isotropic polarizability is improved to 
9.1%, and, more importantly, the accuracy of FA is improved 
by a factor of two to 33.5%. We believe that a substantial 
part of the remaining error stems from the isotropic input to 
the SCS model. Using the full electron density anisotropy at 
the TS level requires a substantial extension of the TS+SCS 
model, which is work that is currently in progress. We note 
that for the calculation of the vdW energy, what matters is the 
integration of the polarizability over imaginary frequencies,  
α(iω), hence the error in the static polarizability is less signi�-
cant when computing the vdW energy.

For a pair of atoms or molecules A and B, the C AB
6  coef-

�cient determines their long-range vdW interaction energy. 
One of the main achievements of the TS method consists 
of an essentially �rst-principles model to determine the C AB

6  
coef�cients with an accuracy of 5.5% for a broad variety of 
small and medium-sized molecules (1225 C AB

6  coef�cients). 
The performance of the TS method is shown in �gure 2, where 
a remarkable correlation can be seen with reliable C AB

6  values 

computed from the experimental dipole–oscillator strength 
distributions (see [119] for a detailed analysis). The reason 
behind such good performance is that SCS effects beyond 
semilocal hybridization largely average out when comput-
ing C6 coef�cients for small molecules. In fact, the TS+SCS 
method yields an accuracy of 6.3% for the aforementioned 
1225 C6 coef�cients and its performance is also shown in 
�gure 2. We attribute the slight increase of the error with 
respect to TS as stemming from the approximation of the 
dipole moment distribution by a single isotropic QHO. The 
largest errors of TS+SCS are found for linear alkane chains, 
where the anisotropy along the chain is overestimated. Full 
tensor formulation of the input TS polarizabilities is under 
way and preliminary results indicate that the molecular ani-
sotropy is improved.

3.2. A linear chain of H2 molecules

We further illustrate the importance of SCS effects with the 
example of the linear (H2)3 chain, consisting of three H2 
dimers with alternating bond lengths (bond length of 2 Bohr 
inside the dimer and 3 Bohr between the dimers). An accu-
rate calculation of the polarizability of such hydrogen dimer 
chains is considered to be a signi�cant challenge for elec-
tronic structure theory [103]. We have calculated the reference 
frequency-dependent polarizability for (H2)3 using the linear-
response coupled-cluster method (LR-CCSD) as implemented 
in the NWChem code [104, 105]. The LR-CCSD method is a 
state-of-the-art approach for computing static and frequency-
dependent molecular polarizabilities, and it yields results that 

Table 1. The isotropic polarizability αiso
0 , along with its three components αxx

0 , αyy
0  and αzz

0 (in Bohr3) for a database of molecules with experimen-
tal data taken from [78]. The z axis is taken along the principal molecular axis in the case of non-symmetric molecules. The mean absolute rela-
tive error (MARE) for the components corresponds to the error in the fractional anisotropy (see text). The results are reported for the TS method 
(with anisotropy computed from the Hirshfeld partitioning, where the r3 operator is partitioned as (xx+yy+zz) r, and the TS+SCS method.

Experiment TS TS+SCS

Molecule
αiso

0
αxx

0
αyy

0
αzz

0
αiso

0
αxx

0
αyy

0
αzz

0
αiso

0
αxx

0
αyy

0
αzz

0

H2 5.33 4.86 4.86 6.28 4.61 4.57 4.63 4.63 3.98 3.15 3.15 5.64
N2 11.88 9.79 9.79 16.06 12.59 12.02 12.02 13.73 11.24 8.79 8.79 16.14
O2 10.80 8.17 8.17 15.86 10.03 10.02 10.02 10.06 9.86 7.61 7.61 14.36
CO 13.16 11.00 11.00 17.55 14.62 13.80 13.80 16.27 13.21 10.76 10.76 18.13
ethane 30.23 26.86 26.86 37.05 33.72 33.18 33.18 34.79 31.86 28.78 28.79 38.02
propanea 43.05 38.74 38.74 51.69 49.04 47.68 48.88 50.55 46.66 39.75 42.79 57.43
cyclopentane 61.75 56.69 61.88 66.67 74.56 72.49 75.56 75.63 68.49 57.54 73.95 73.98
cyclohexane 74.23 63.30 79.70 79.70 90.59 88.36 91.70 91.70 83.27 67.91 90.96 90.96
dimethylether 35.36 29.63 33.34 43.05 39.24 38.53 39.47 39.70 37.82 32.11 32.70 48.66
P-dioxaneb 58.04 47.24 63.43 63.43 70.50 69.68 70.17 71.64 65.76 53.12 67.20 76.97
methanol 22.40 17.88 21.80 27.60 24.44 23.99 24.61 24.72 23.11 19.96 21.44 27.92
ethanol 34.28 30.37 33.61 38.87 39.71 38.73 39.15 41.23 37.64 32.33 37.28 43.29
formaldehydeb 16.53 12.35 18.63 18.63 19.06 17.09 19.54 20.55 18.09 11.42 18.86 24.00
acetoneb 43.12 29.83 49.74 49.74 49.07 45.80 50.22 51.18 48.05 35.41 49.90 58.83
acetonitrile 30.23 25.98 25.98 38.74 32.51 31.17 31.17 35.19 32.82 23.62 23.62 51.22
(CH3)3CCN 64.72 60.94 60.94 72.27 79.13 78.16 78.16 81.07 77.09 70.65 70.65 89.98
methane 17.68 17.68 17.68 17.68 18.90 18.90 18.90 18.90 17.39 17.39 17.39 17.39
benzene 69.70 45.10 82.00 82.00 75.29 71.82 77.02 77.03 71.95 33.02 91.41 91.42

MARE — — 13.2% 76.3% 9.1% 33.5%

a The experimental values from [78] do not distinguish between αxx
0  and αyy

0  components, while �rst-principles calculations lead to visible differences 
in these components of the polarizability.
b The experimental values from [78] do not distinguish between αyy

0  and αzz
0 components, while �rst-principles calculations lead to visible differences 

in these components of the polarizability.
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agree to ≈3% when compared to reliable experimental values. 
The results for the isotropic and anisotropic C6 coef�cients for 
this chain at the TS, TS+SCS, and LR-CCSD levels of theory 
are shown in table 2. The TS method yields a vanishingly 
small anisotropy in the C6 coef�cients since it only accounts 
for the local environment. On the contrary, TS+SCS correctly 
captures the dipole alignment (polarization) along the (H2)3 
chain, leading to a signi�cant anisotropy that is in fair agree-
ment with the reference LR-CCSD values. Also, the isotropic 
C6 coef�cient is noticeably improved when using the TS+SCS 
approach in comparison to TS.

3.3. Silicon clusters

We have shown that the TS+SCS method can rather effec-
tively describe both anisotropy and polarization effects in 
molecules. We now illustrate that it can also treat depolariza-
tion in clusters and solids with the example of hydrogen-sat-
urated silicon clusters of increasing size. The cluster–cluster 
C6 coef�cients are shown in �gure 3. The reference values 
correspond to the TDLDA calculations of S. Botti et al [106]. 
We measured the accuracy of TDLDA using the experimen-
tally derived C6 coef�cient for the SiH4 molecule [107] and 
the C6

Si-Si coef�cient in the silicon bulk determined from the 
Clausius–Mossotti equation with the experimental dielec-
tric function. For the SiH4 molecule, TDLDA yields a 13% 
overestimation and this error is further reduced to 3% for the 
silicon bulk. Therefore, we deem the TDLDA C6 coef�cients 
as good references for the larger silicon clusters. For smaller 
clusters, the TS values are in good agreement with experiment 
and TDLDA as expected. However, the error in the TS method 
increases progressively with the cluster size. For the largest 
Si172H120 cluster, the TS approach yields an overestimation of 
27%. TS+SCS leads to an overall depolarization for the larger 
clusters, decreasing the error signi�cantly in comparison to 

TDLDA. The depolarization effect is even larger for the Si 
bulk. The TS scheme yields an overestimation of 68% in the 
C6

Si-Si coef�cient in comparison to the value derived from the 
experimental dielectric function, while the TS + SCS approach 
reduces the overestimation to just 8%.

4. Applications: performance of the  

DFT+MBD method

Having established the accuracy of the TS+SCS method for 
computing the vdW coef�cients for a wide variety of sys-
tems from molecules to solids, we now assess the perfor-
mance of the DFT+MBD method based on the TS+SCS input  
(see section 2.5) for a broad variety of molecular systems. The 
cases studied herein include the binding energies of molecular 
dimers, conformational energetics of extended and globular 
alanine tetrapeptide, binding in the supramolecular host-guest 
buckyball catcher complex, as well as cohesion in molecular 
crystals composed of oligoacenes. The all-electron numeric 
atom-centered orbital code FHI-aims [108] was utilized for 
the DFT calculations discussed in this work.

4.1. Intermolecular interactions: the S22 and S66 databases

In order to assess the performance of the DFT+MBD method, 
we �rst study the S22 database of intermolecular interac-
tions [96], a widely used benchmark database for which reli-
able binding energies have been calculated using high-level 
quantum chemical methods [96, 97]. In particular, we use 
the recent basis-set extrapolated CCSD(T) binding energies 
calculated by Takatani et al [97]. These binding energies are 
presumed to have an accuracy of ≈0.1 kcal mol−1 (1% relative 
error), and this level of accuracy is required for an unbiased 
assessment of approximate approaches for treating dispersion 
interactions.

Figure 4 shows the performance of the DFT+MBD method 
on the S22 database when used with the standard semilocal 
PBE [98] functional and the hybrid PBE0 [99, 100] functional 
which includes 25% Hartree–Fock exchange. The inclusion 
of the many-body vdW energy leads to a remarkable improve-
ment in accuracy compared to the PBE+TS-vdW method 
[31]. The largest improvement when using the MBD energy 
over the pairwise TS-vdW energy is observed for the methane 
dimer and the parallel-displaced benzene dimer. We note that 
the methane dimer is bound by only 0.53 kcal mol−1 at the 
CCSD(T) level of theory, and the MBD energy reduces the 

Table 2. Anisotropic (C6,⊥, C6,‖) and isotropic (C6,iso) C6 
 coef�cients for the linear (H2)3 chain using the TS and TS+SCS 
methods. The C6,⊥ and C6,‖ coef�cients are de�ned with respect 
to the principal axis of the linear (H2)3 chain. Reference linear-
response coupled-cluster (LR-CCSD) results are also shown. All 
values are in Hartree·Bohr6.

C6,⊥ C6,‖ C6,iso

TS 166 161 165
TS+SCS 89 692 223
LR-CCSD 115 638 238

Figure 2. Isotropic C6 coef�cients for a database of 50 atoms 
and molecules (1225 data points) computed with the TS and 
TS+SCS methods, compared with reliable dipole oscillator strength 
distribution values obtained from experimental measurements [31].
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binding by 0.19 kcal mol−1 with respect to TS-vdW, explain-
ing the large reduction in error for system 8 (methane dimer) 
observed in �gure 4. This reduction does not come mainly from 
the many-body dispersion energy, rather it is due to a more 
physical de�nition of the short-range interactions in the MBD 
method arising from a range-separated Coulomb potential 
[38]. Taking the second-order expansion of the MBD energy, 
which yields a strictly pairwise energy, leads to a change of 
only 0.05 kcal mol−1 [91] compared to the full MBD energy. 
This simple test illustrates that the main difference between 
PBE+TS-vdW and PBE+MBD for the methane dimer stems 
from the different way of treating the short-range disper-
sion interactions. In addition, the inclusion of Hartree–Fock 
exchange in the PBE0 functional allows for a better descrip-
tion of permanent electrostatic moments and static polariz-
abilities for molecules, and leads to slightly improved binding 
energies (mean absolute relative error (MARE) of 4.1%) 
when compared to the semilocal PBE functional (MARE of 
5.4%). We note that there are two systems in the S22 data-
base for which the relative PBE0+MBD error exceeds 10% 
when compared to the CCSD(T) binding energies: pyrazine 
dimer (system 12) and ethene-ethyne (system 16). We attrib-
ute this �nding to the remaining inaccuracy in the anisotropy 
for the molecular polarizabilities computed with the TS+SCS 
method. This issue will be analyzed in more detail for the case 
of the buckyball catcher complex below.

To put the performance of the DFT+MBD method in the 
context of other currently available approaches, we show the 
MARE on the S22 database for a variety of state-of-the-art 
methods in table 3 and in �gure 5. The number of adjusta-
ble parameters employed for the dispersion energy in every 
method is also enumerated in table 3.

Recently, Hobza’s group has signi�cantly revised and 
extended the S22 database to include a broader variety of 
molecules and intermolecular interactions. The result of this 
effort is the so-called S66 database, composed of 66 molecu-
lar dimers [110]. The reference binding energies for the S66 
database have been computed at the CCSD(T) level of theory 
employing medium-size basis sets, with an expected accuracy 

of ≈2–3% from the basis set limit. In order to cover non-equi-
librium geometries, CCSD(T) binding energies have also been 
computed for 8 different intermolecular separations, rang-
ing from a factor of 0.9 to 2.0 of the equilibrium distances. 
Therefore, the so-called S66x8 database contains binding ener-
gies for a total of 528 complexes computed at the CCSD(T) 
level of theory. The performance of the PBE0+MBD approach 
on the S66 database is comparable to the S22 results presented 
above. For equilibrium geometries in the S66 database, the 
mean absolute error (MAE) and MARE of the PBE0+MBD 
method are 0.38 kcal mol−1 and 6.1%, respectively. When all 
528 equilibrium and non-equilibrium complexes are taken into 
account, the calculated MAE and MARE are 0.37 kcal mol−1 
and 8.5%, respectively. The increase in the MARE stems from 
the S66(0.9x) and S66(0.95x) complexes with shorter-than-
equilibrium interaction distances, where consistent under-
binding can be observed. This is a well-known weakness of 
all dispersion-inclusive DFT methods, with errors increas-
ing when considering shorter distances, since the dispersion 
energy contribution for such distances becomes very small. 
This observed underbinding can also be explained by the need 
to include higher multipoles in the vdW energy expression.

We conclude that the MBD energy beyond the TS pairwise 
approximation is not negligible even when studying the bind-
ing between rather small molecules. Empirical pairwise meth-
ods for the dispersion energy mimic some of the higher-order 
effects by adjusting suf�ciently �exible damping functions, 
but this strategy is prone to fail for different molecular con-
formations and for more complex molecular geometries. We 
illustrate one such case in the next subsection.

4.2. Intramolecular interactions: conformational energies of 

alanine tetrapeptide

The study of biomolecules in the gas phase corresponds to 
ideal ‘clean room’ conditions, and recent progress in experi-
mental gas-phase spectroscopy has yielded increasingly 

Figure 3. Cluster–cluster isotropic C6 coef�cients for hydrogen-
terminated silicon clusters of increasing size. The TDLDA results 
are from [106].

Figure 4. The performance of the PBE+TS-vdW method of 
Tkatchenko and Schef�er [31], PBE+MBD and PBE0+MBD on the 
S22 database of intermolecular interactions. The absolute relative 
error is reported to the basis-set converged CCSD(T) results of 
Takatani et al [97].
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re�ned vibrational spectra for peptide secondary structures 
[111–113]. Joint experimental and ab initio theoretical studies 
can now successfully determine the geometries of small gas-
phase peptides [114–116]. Polyalanine is a particularly good 
model system due to its high propensity to form helical struc-
tures [117], and its widespread use as a benchmark system for 
peptide stability in experiments and theory.

Here we assess the accuracy of the PBE0+MBD method 
for 27 conformations of alanine tetrapeptide (Ace-Ala3-
NMe, for brevity and consistency with previous biomo-
lecular literature called Ala4 here), for which benchmark 
CCSD(T) conformational energies were computed in refer-
ence [118], based on basis-set extrapolated values computed 
using Møller–Plesset second-order perturbation theory from 
references [119, 120] (the so-called MP2/CBS method). The 
Ala4 conformations range from a β-sheet-like fully extended 
structure to a globular (‘folded’) conformer. The wide vari-
ety of interactions present in peptides ranging from hydro-
gen bonds to dispersion and electrostatics makes an accurate 
prediction of the conformational hierarchy of these systems 
quite a daunting task for affordable electronic structure 
calculations. We illustrate the performance of PBE0+TS-
vdW and PBE0+MBD for Ala4 conformers in �gure 6. The 
PBE0+MBD method predicts a MAE of 0.29  kcal  mol−1 
with respect to the CCSD(T) reference, which is a signi�cant 
reduction from 0.52 kcal mol−1 for PBE0+TS-vdW. We �nd 
that the main effect of the MBD energy over the pairwise 
TS-vdW approximation is to stabilize the extended confor-
mations of Ala4, bringing their energies in to much better 
agreement with the reference CCSD(T) values. Furthermore, 
PBE0+MBD corrects all hierarchy ordering errors present at 
the PBE0+TS-vdW level of theory.

4.3. Supramolecular systems: the buckyball catcher

Supramolecular host-guest systems play an important role 
for a wide range of applications in chemistry and biology. 
The prediction of the stability of host-guest complexes repre-
sents a great challenge for �rst-principles calculations due to 
the interplay of a wide variety of covalent and non-covalent 

interactions in these systems. Here we assess the performance 
of the DFT+MBD method on the binding of the so-called 
‘buckyball catcher’ complex, C60@C60H28, shown in �gure 1. 
Since its synthesis [121], the buckyball catcher has become 
one of the most widely used benchmark systems for supra-
molecular chemistry. Recently a reliable binding energy of 
26 ± 2 kcal mol−1 has been determined for the C60@C60H28 
complex from large-scale diffusion Monte Carlo (DMC) cal-
culations [72]. This value is in excellent agreement with an 
extrapolated binding energy determined from the experimen-
tally measured binding af�nity [35]. It has to be mentioned 
that the extrapolation is done to ‘remove’ solvent and vibra-
tional contributions from the measured binding af�nities, 
therefore the extrapolation procedure contains uncontrollable 
approximations.

All pairwise-corrected dispersion-inclusive DFT calcula-
tions signi�cantly overestimate the stability of the buckyball 
catcher complex, anywhere from 9 to 17 kcal mol−1 [72]. The 
PBE+MBD method yields a binding energy of 36 kcal mol−1, 
improving the binding by 7  kcal  mol−1 compared to the 
PBE+TS-vdW method. The inclusion of exact exchange 
using the PBE0+MBD method leads to a negligible change 
in the binding energy. Therefore, the PBE0+MBD method 
overestimates the binding by at least 8 kcal mol−1 compared 
to the DMC and extrapolated experimental reference binding 
energies.

In order to understand the most likely origin of why the 
binding energy of C60@C60H28 complex is overestimated by 
PBE0+MBD, we show the projected polarizability tensors of 
the full complex resulting from the TS+SCS calculation in �gure 1. 
One can clearly see that the polarizability distribution is highly 
anisotropic, with an increasing anisotropy close to the linker 
moiety that connects the two corannulene molecules of the 
catcher complex. While the approximation of isotropic C6 coef-
�cients used in DFT+MBD becomes suf�cient as the distance 

Table 3. Performance of different methods on the S22 database of 
intermolecular interactions, measured in terms of the mean absolute 
relative error (MARE, in %). The errors are measured with respect 
to the basis-set extrapolated CCSD(T) calculations of Takatani et al 
[97]. The error is reported for hydrogen-bonded (H-B), dispersion-
bonded (D-B) and mixed (M-B) systems. The number of free 
adjustable parameters used in every approach is shown in the  
‘N. param.’ column.

Method H-B D-B M-B Overall N. param.

MP2 1.8 37.4 14.8 18.9 0
EX+cRPA 11.2 21.6 14.8 16.1 0
vdW-DF1 [29] 15.2 13.0 10.8 13.0 0
PBE0-D3(Grimme) [34] 8.4 15.5 12.7 12.3 >3
EX+cRPA+SE [62] 5.9 11.6 5.4 7.8 0
vdW-DF2 [29] 5.3 6.8 10.8 7.6 1
PBE0+TS-vdW [31, 32] 3.4 12.0 6.0 7.3 2
rPW86+cPBE+VV10 
[30, 109]

6.1 2.6 4.8 4.4 2

PBE0+MBD [38] 4.1 3.4 5.1 4.2 1
Figure 5. Performance of different methods on the S22 database of 
intermolecular interactions, measured in terms of the mean absolute 
relative error (MARE, in %). The errors are measured with respect 
to the basis-set extrapolated CCSD(T) calculations of Takatani et al 
[97]. Results are shown for MP2, EX+cRPA, EX+cRPA+SE [62], 
vdW-DF1 and vdW-DF2 [29], rPW86+cPBE+VV10 [30, 109], 
PBE0-D3 [34], PBE0+TS-vdW [31, 32] and PBE0+MBD [38].
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between the atoms is increased, at shorter interatomic distances 
the anisotropy plays a non-negligible role [71]. At present, there 
is no ef�cient method that can accurately account for the fully 
anisotropic dispersion energy at close interatomic distances. 
This statement applies to the widely employed interatomic dis-
persion energy methods, as well as the non-local density func-
tionals (e.g., different variants of the vdW-DF method [17]). 
Work is currently in progress to seamlessly include anisotropy 
in dispersion energy expressions [71, 91]. In this regard, the 
anisotropy in the atomic polarizabilities will change the vdW 
energy contribution in different directions. In the case of the 
C60@C60H28 complex, the polarizability of the C60H28 mole-
cule is highly anisotropic as shown in �gure 1. In the isotropic 
approximation, the dispersion energy between the C60 mol-
ecule and the corannulene moieties is therefore overestimated, 
because the polarization is arti�cially extended towards the 
C60 molecule. The fully anisotropic treatment of the disper-
sion energy is therefore likely to bring the binding energy 
closer to the DMC reference value.

4.4. Molecular crystals

The understanding and prediction of the structure and stability 
of molecular crystals is of paramount importance for a variety 
of applications, including pharmaceuticals, non-linear optics 
and hydrogen storage [122, 123]. The crystal structure predic-
tion blind tests conducted by the Cambridge Crystallographic 
Data Centre have shown steady progress toward theoretical 
structure prediction for molecular crystals [124]. However, 
the insuf�ciency of DFT with pairwise dispersion corrections 
for the reliable predictions of molecular crystals is well docu-
mented, see e.g., references [33, 125–127].

To illustrate the role of MBD interactions in the stability of 
molecular crystals, we have studied a series of oligoacene crys-
tals from naphthalene to pentacene. We have recently shown 
that reliable structures of oligoacene crystals (2% accuracy 
compared to low-temperature x-ray data) can be obtained with 
PBE+TS-vdW calculations, while MBD interactions play only 
a minor role in determining the geometry of these molecular 

crystals [128]. However, the MBD energy plays a more signi�-
cant role for the lattice energies of oligoacene crystals. Table 4 
shows lattice energies at 0 K for naphthalene (2 benzene rings), 
anthracene (3 rings), tetracene (4 rings) and pentacene (5 rings) 
calculated using the PBE+TS-vdW and PBE+MBD methods, 
as well as a range of measured sublimation enthalpies extrap-
olated to 0 K. We have only taken those experimental values 
that are recommended as reliable after critical revision by the 
authors of reference [129], thus avoiding anomalously small 
or large sublimation enthalpies. Both naphthalene and anthra-
cene crystals have been carefully studied, and their sublimation 
enthalpies are well known with a spread of 0.05 and 0.12 eV per 
molecule, respectively. There are fewer measurements available 
for tetracene and pentacene, and for the latter the three available 
experimental values deviate by 0.55 eV per molecule.

For naphthalene, anthracene and tetracene, the 
PBE+MBD method decreases and improves the bind-
ing by about 0.1  eV (2.3  kcal  mol−1) per molecule when 
compared to PBE+TS-vdW. This is a notable improve-
ment, especially if viewed in the context of intermolecu-
lar interactions for the S22 and S66 databases. We remind 
the reader that the errors of PBE+TS-vdW and PBE+MBD 
for molecular dimers in the S22/S66 databases are well 
below 0.5 kcal mol−1. The much larger difference between 
the pairwise PBE+TS-vdW approach and the many-body 
PBE+MBD method for molecular crystals can be explained 
by the presence of signi�cant electrodynamic screening 
effects in extended systems, that are virtually absent in 
small molecules. We refer the reader to reference [128] for 
a detailed analysis of the importance of electrodynamic 
screening in molecular crystals.

The remaining slight overestimation of lattice energies in 
table 4 by PBE+MBD compared to the experimental range 
can be explained by the fact that the sublimation enthalpy is 
measured at �nite temperatures, where the crystal unit cell 
undergoes thermal expansion. When using the experimental 
unit cell at 295  K for naphthalene, the PBE+MBD method 
yields a lattice energy that is increased by 50 meV per mol-
ecule, which places it essentially within the experimental 
range reported in table 4. Finally, we studied the in�uence 
of exact exchange for oligoacene crystals, �nding that the 
PBE0+MBD method leads to an almost negligible difference 
when compared to PBE+MBD.

Our current work on a broad dataset of molecular crys-
tals and their polymorphs [130, 131] shows that beyond-
pairwise many-body vdW interactions can be even more 

Table 4. Lattice energies of oligoacene crystals including 
zero-point energy corrections (PBE+TS-vdW and PBE+MBD 
calculations were carried out using optimized PBE+TS-vdW 
geometries). The range of experimental (‘Exp.’) ‘lattice energies’ 
were taken from [129] and extrapolated to 0 K. All values are in units 
of eV per molecule.

PBE+TS-vdW PBE+MBD Exp.

naphthalene −0.950 −0.862 −0.803 to −0.752
anthracene −1.324 −1.206 −1.148 to −1.024
tetracene −1.666 −1.587 −1.525 to −1.299
pentacene −2.035 −2.018 −2.082 to −1.533

Figure 6. Performance of PBE0+TS-vdW and PBE0+MBD for the 
conformational energies of Ala4. The reference CCSD(T) energies 
are taken from [118].
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signi�cant than found here for oligoacene crystals. In par-
ticular, DFT+MBD leads to further improvement in the com-
puted crystal structures compared to DFT+TS-vdW and is 
able to account for the correct relative stabilities of polymor-
phic molecular crystals [131].

5. Remaining challenges

We have described a recently developed method for comput-
ing the many-body vdW dispersion energy based on a model 
response function corresponding to a collection of quan-
tum harmonic oscillators (QHO). The resulting DFT+MBD 
approach does not contain any adjustable parameters for the 
determination of the frequency-dependent polarizability, and 
uses a single range-separation parameter for the coupling 
between the long-range many-body vdW energy and a given 
DFT functional. We view the DFT+MBD model as a crucial 
�rst step in the development of a reliable (accurate and ef�-
cient) method for describing many-body vdW interactions in 
complex materials.

Currently, the DFT+MBD method essentially amounts to 
solving the ACFD-RPA correlation energy equation for a sys-
tem of localized screened QHOs in the dipole (long-range) 
approximation. There are several important extensions that 
can be accomplished within the ACFD framework that would 
allow us to go beyond the DFT+MBD method:

 1. Improving the anisotropic dipolar response. The 
TS+SCS method de�ned in equation (17) yields the full 
non-local interacting response matrix as a function of 
atomic positions r and r′. Currently, this information is 
not fully utilized in the DFT+MBD approach, since we 
use contracted isotropic TS+SCS atomic polarizabilities 
as input for the ACFD-RPA formula. In principle, the full 
response matrix can be used in the ACFD-RPA expres-
sion [132], however this requires a matching de�nition for 
the range-separated Coulomb potential. The interacting 
TS+SCS response matrix transforms the original atom-
based representation to an eigenvector representation for 
the coupled modes of the system. The Coulomb interac-
tion between the coupled modes needs to be extended 
from our current de�nition of range-separation that is 
based on atomic vdW radii.

 2. Going beyond the dipole approximation. The QHO 
model possesses a response to in�nite order in the 
multipole expansion. The current MBD method restricts 
the response to the dipole approximation, effectively 
allowing excitations only to the �rst excited state for every 
QHO due to the dipole selection rule. In principle, the full 
response function given by equation (3) can be computed 
for a system of QHOs up to an arbitrary energy cutoff for 
the excited states. This would allow us to treat multipole 
responses higher than dipole (quadrupole, octupole, etc.). 
The ACFD-RPA expression can still be utilized in this 
case, allowing us to compute dispersion interactions at 
shorter interatomic distances. It remains to be assessed 
whether or not this model will be useful, as a single QHO 
per atom might not be able to properly describe vdW 

interactions at shorter interatomic distances. However, in 
principle, our method can also be extended to represent 
every atom by several QHOs.

 3. Coupling between the long-range vdW energy and the 

DFT energy. The DFT+MBD method couples the long-
range vdW energy to the DFT energy by using a single 
range-separation parameter in the Coulomb potential. 
In order to improve this empirical component of the 
DFT+MBD method, the DFT functional has to be derived 
in the presence of the long-range vdW energy. To date, 
we have not used the fact that different functionals yield 
different results for the electron density tails; this infor-
mation can be useful for developing a functional in which 
the long-range vdW energy is seamlessly integrated with 
the semilocal exchange-correlation functional.

 4. Simultaneous description of localized and metallic 

states. Successful non-empirical DFT functionals are 
based on the local-density approximation (LDA) and con-
verge to the LDA in the homogeneous electron gas (HEG) 
limit. LDA is an exact functional for the HEG, hence it 
includes vdW interactions inside the HEG. Therefore, a 
seamless vdW functional should yield a vanishing cor-
rection for the HEG. This can easily be accomplished 
by letting the polarizability vanish for slowly-varying 
regions of the electron density, as done in the vdW-DF 
[28] and VV10 [109] approaches. However, real materials 
(transition metals, nanostructures, etc.) are more complex 
than the rather simpli�ed HEG model. In such systems, 
vdW interactions between ions are signi�cant and are 
screened by the itinerant metallic electrons [133]. State-
of-the-art vdW functionals do not correctly describe this 
complex situation. However, the DFT+MBD method can 
be extended to systems with localized and metallic states 
by introducing both localized and delocalized oscillators 
for every atom. The challenge consists of de�ning the 
oscillator parameters directly from the electron density 
and its gradient.

 5. Interatomic forces, geometry optimization and 

molecular dynamics. Currently, the DFT+MBD method 
only yields the total energy for a speci�ed geometry. In 
principle, geometry optimizations are possible by using 
the �nite difference approximation for the interatomic 
forces. This is, however, computationally expensive 
especially in the case of molecular dynamics. Work is 
in progress to derive an analytic expression for the inter-
atomic forces corresponding to the MBD energy [134]. 
Such development would allow for the routine applica-
tion of the DFT+MBD method in large-scale molecular 
dynamics simulations.

6. Conclusions

There is mounting evidence that many-body vdW interactions, 
beyond the standard pairwise approximation, play a crucial 
role in the structure, stability and function of a wide variety of 
systems of importance in biology, chemistry and physics. We 
have illustrated the importance of including many-body vdW 
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interactions when describing small molecular dimers, confor-
mational energies of peptides, binding in supramolecular sys-
tems, and cohesion in molecular crystals. We have presented 
a derivation of both the pairwise and many-body interatomic 
vdW dispersion energy for a model system of QHOs from 
the quantum-mechanical ACFD-RPA correlation energy 
expression. The ACFD formula provides us with a powerful 
framework for the understanding and future development of 
accurate and ef�cient electronic structure approaches.

The DFT+MBD method [38, 39] represents a �rst step 
towards the development of reliable methods for describing 
many-body vdW interactions in complex materials. In this 
work, we derived the MBD energy expression, discussed 
the approximations involved, and identi�ed the remaining 
challenges that need to be addressed in future work. Over 
the next few years, we anticipate extensive development of 
new dispersion energy methods that will address the truly 
collective many-body nature of these ubiquitous quantum-
mechanical forces.
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