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Abstract

A rigorous reduction of the many-body wave scattering problem to
solving a linear algebraic system is given bypassing solving the usual system
of integral equation. The limiting case of infinitely many small particles
embedded into a medium is considered and the limiting equation for the
field in the medium is derived. The impedance boundary conditions are
imposed on the boundaries of small bodies. The case of Neumann boundary
conditions (acoustically hard particles) is also considered. Applications
to creating materials with a desired refraction coefficient are given. It
is proved that by embedding suitable number of small particles per unit
volume of the original material with suitable boundary impedances one
can create a new material with any desired refraction coefficient. The
governing equation is a scalar Helmholtz equation, which one obtains by
Fourier transforming the wave equation.

1 Introduction

This paper can be considered as a continuation of [15], but it is essentially self-
contained. It uses some of the ideas and results from [10], [8], [11], [16], [17].
Applications of our theory to creating materials with desired refraction coeffi-
cient are discussed in [12], [13], [14], [18]. Wave scattering by small bodies is
a classical branch of science: it was originated by Rayleigh in 1871. In [3] one
finds a discussion of wave scattering by a small particle. In [2] there is a review
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of the low frequency scattering theory and formulas for scattering by small balls
and ellipsoids are given. In [10] the theory is developed for small bodies of arbi-
trary shapes: explicit analytical formulas are given for calculating capacitances
of the conductors of arbitrary shapes, electric and magnetic polarizability tensors
for homogeneous bodies of arbitrary shapes, and for S−matrix for acoustic and
electromagnetic (EM) wave scattering by small bodies of arbitrary shapes with
any desired accuracy ([19], [10]). In [15] the many-body scattering problem was
reduced to solving linear algebraic systems bypassing the usual study of a system
of integral equations. In this paper we apply the approach proposed in [15] and
study the limiting behavior of the scattering solution when the number of small
bodies tends to infinity in such a way that the characteristic size a of the small
particles is related to their number M so that M = O( 1

a
) in Theorem 2, and

M = O( 1
a3 ) in Theorem 3. Sufficient conditions for convergence of the scattering

solution in this limiting process are given. We prove that these conditions are, in
some sense, also necessary for convergence. The limit of the scattering solution
is a function, which satisfies some differential or integral-differential equations.
These equations describe the behavior of the wave field in the new medium,
obtained in the limit.

There is a large literature on the calculation of the effective dielectric permit-
tivity and magnetic permeability of the composite materials (Maxwell-Garnett
and Bruggeman recipes and their numerous versions, see [22], [5]). In the lit-
erature mostly a uniform random distribution of the inclusions is assumed and
the resulting homogenized medium is described by effective constant dielectric
permittivity and magnetic permeability, which can be tensors. In this work the
propagation and scattering of scalar waves are discussed, and the ”homogenized”
medium is described not by a constant refraction coefficient, but by a refraction
coefficient which is a function of spatial variables.

In [4] boundary value problems were studied for positive operators for the
Dirichlet boundary conditions in domains which are obtained from some domain
by extracting many small bodies from it. We study in this paper the scatter-
ing problem in similar domains, but our operator is not positive and we use
impedance boundary conditions. The methods in [4] do not seem to be appicable
to our problem by the above reasons. Our assumptions lead to new physical
phenomena. For example, the new material, created by embedding many small
particles according to the recipe, given in Theorem 2, allows one to get a re-
fraction coefficient with any desired real and imaginary parts, so that a desired
absorption of energy in this material can be obtained.

Let us formulate the problem. Consider first a bounded domain D ⊂ R3

filled with a material with a known refraction coefficient n2
0(x). The governing

equation is:
L0u0 :=

(
∇2 + k2n2

0(x)
)
u0 = 0 in R3. (1.1)

We assume that n2
0(x) = 1 in D′ = R3\D, k = const > 0, and n2

0 =
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maxx∈D |n2
0(x)| < ∞. The operator L0 can be written as a Schrödinger oper-

ator:
L0 = ∇2 + k2 − q0(x), q0(x) := k2[1− n2

0(x)], (1.2)

and q0 = 0 in D′. One has

n2
0(x) = 1− k−2q0(x),

so there is a one-to-one correspondence between n2
0(x) and q0(x). If n2

0(x) is
known, then one knows the scattering solution:

L0u0 = 0 in R3,

u0(x) = eikα·x + A0(β, α)
eikr

r
+ o

(1

r

)
, r = |x| → ∞, β :=

x

r
. (1.3)

The coefficient A0(β, α) is called the scattering amplitude, the unit vector α ∈ S2

is given, α is the direction of the incident plane wave eikα·x, S2 is the unit sphere
in R3, β ∈ S2 is the direction of the scattered wave, k > 0 is a wave number,
which we assume fixed throughout the paper. By this reason we do not show the
k-dependence of A and u0.

Let G(x, y) be the resolvent kernel of L0 satisfying the radiation condition (or
the limiting absorption principle):

L0G(x, y) = −δ(x− y) in R3. (1.4)

This function G(x, y) is known because q0(x) is known.
Consider now the scattering problem for many small bodies Dm embedded in

D, 1 ≤ m ≤ M :

L0uM = 0 in R3\
M⋃

m=1

Dm, (1.5)

uM = u0 + AM(β, α)
eikr

r
+ o

(1

r

)
, r = |x| → ∞,

x

r
= β, (1.6)

∂uM

∂N
= ζmuM on Sm := ∂Dm, 1 ≤ m ≤ M, (1.7)

where u0 is the solution ot the scattering problem (1.3). Here N is the normal
to Sm pointing out of Dm, ζm is a complex number, the boundary impedance,
Im ζm ≤ 0, Sm is uniformly C1,λ with respect to m, 1 ≤ m ≤ M . By C1,λ surface
we mean the surface with local equation x3 = f(x1, x2), where f ∈ C1,λ, λ > 0.
We assume throughout this paper that

n0ka � 1, d � a, (1.8)

where

a =
1

2
max

m
diamDm, d = min

m6=j
dist(Dm, Dj). (1.9)
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By Vm := |Dm| the volume of Dm is denoted, and by |Sm| the surface area of Sm

is denoted.
One can prove (see Section 3) that problem (1.5) – (1.7) has at most one

solution if Im ζm ≤ 0, 1 ≤ m ≤ M , and Im q0(x) ≤ 0.
We look for the solution to problem (1.5) – (1.7) of the form

uM(x) = u0(x) +
M∑

m=1

∫
Sm

G(x, s)σm(s)ds, (1.10)

where σm should be found from the boundary conditions (1.7). For any σm the
function (1.10) solves equation (1.5) and satisfies condition (1.6):

AM(β, α) =
1

4π

M∑
m=1

∫
Sm

u0(s,−β)σm(s)ds. (1.11)

Formula (1.11) follows from (1.6), (1.10) and the Ramm’s lemma ([9], formulas
(5.1.31), (5.1.36)):

G(x, y) =
eik|x|

4π|x|
u0(y, α) + o

( 1

|x|

)
, |x| → ∞,

x

|x|
= −α, (1.12)

where u0(x, α) is the scattering solution. A similar formula was proved earlier in
[7], p. 46, for the resolvent kernel of the Laplacian in the exterior of a bounded
obstacle, (and even earlier, in [6], for some unbounded obstacles). The scattering
amplitude for problem (1.5) – (1.7) is

A(β, α) = A0(β, α) + AM(β, α), (1.13)

where A0 is defined in (1.3) and Am is defined in (1.6). If ka is sufficiently
small, then k2 is not a Dirichlet eigenvalue of the operator ∇2 − q0(x) in Dm,
1 ≤ m ≤ M . If

Im ζm ≤ 0, 1 ≤ m ≤ M ; Im q0(x) ≤ 0, (1.14)

then the unique solution to problem (1.5) – (1.7) can be found in the form (1.10).

Theorem 1 Assume (1.8) and (1.14). Then problem (1.5) – (1.7) has a solution
of the form (1.10) and this is the unique solution of the problem (1.5) –(1.7).

Proof of Theorem 1 is given in Section 3.
Let

g(x, y) :=
eik|x−y|

4π|x− y|
, g0(x, y) :=

1

4π|x− y|
. (1.15)

Note that

G(x, y) = g(x, y)−
∫

D

g(x, z)q0(z)G(z, y)dz. (1.16)

We need two lemmas.
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Lemma 1 If
|t− x| ≤ a, |x− y| ≥ d � a, (1.17)

then

|g(t, y)− g(x, y)| ≤ c
( a

d2
+

ka

d

)
, (1.18)

where c > 0 stands for various positive constants independent of a and d.

Lemma 2 If (1.17) holds, then

|G(t, y)−G(x, y)| ≤ c
( a

d2
+

ka

d

)
. (1.19)

These lemmas are proved in Section 3.
We denote by D̃ an arbitrary subdomain of D independent of a, by

Na(D̃) := N (D̃) :=
∑

Dm⊂D̃

1

the number of particles (small bodies) in D̃, and assume that the small particle
Dm shrinks to a point x ∈ D as a → 0. Since in the limiting process dependence
on m disappear, we denote the limiting point x without giving it any subindex.
The functions h(x), Imh ≤ 0, and N(x) ≥ 0 in Theorem 2 are arbitrary continu-
ous functions which we can choose as we wish. They do not depend on a. They
determine the refraction coefficient of the new material, created by embedding
small particles, as a → 0. We assume for simplicity that

|Sm| = c1a
2, Jm = c2a

3, Vm = c3a
3, M = O(a−1), d = O(a1/3),

where cj, j = 1, 2, 3, are positive constants, independent of a, |Sm| is the surface
area of the boundary of m−th body, Vm is its volume, and Jm :=

∫
Sm

∫
Sm

dsdt
|s−t| ,

where ds and dt are surface area elements, and s, t are points on Sm. These
assumptions are not repated in the formulation of Theorem 2.

Let us formulate our results under simplifying but physically reasonable as-
sumptions (see [21]).

Theorem 2 Assume that

lim
a→0

xm∈Dm,xm→x

ζmJm

4π|Sm|
= h(x), (1.20)

and for any subdomain D̃ ⊂ D the following relation holds:

lim
a→0

aNa(D̃) =

∫
D̃

N(x)dx. (1.21)
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Under these assumptions there exists the limit:

lim
M→∞

uM(x) = u(x) := u(x, α). (1.22)

This u(x) solves the equations:

u(x) = u0(x)−
∫

D

G(x, y) p(y) u(y)dy, (1.23)

and
Lu := [∇2 + k2 − q(x)]u = 0 in R3, (1.24)

where the potential q is of the form:

q(x) = q0(x) + p(x), p(x) =
4πc2

1 N(x)h(x)

c2[1 + h(x)]
, (1.25)

and u satisfies the radiation condition:

u = eikα·x + A(β, α)
eikr

r
+ o

(1

r

)
, r = |x| → ∞, (1.26)

where

A(β, α) = A0(β, α)− 1

4π

∫
D

u0(y,−β)p(y)u(y, α)dy, (1.27)

and u0(y,−β) is the scattering solution defined in (1.3).

Theorem 3 Assume that ζm = 0, 1 ≤ m ≤ M , and the following limits exist:

lim
a→0

∑
Dm⊂D̃

Vmβ
(m)
pj =

∫
D̃

βpj(y)ν(y)dy, (1.28)

lim
a→0

∑
Dm⊂D̃

Vm =

∫
D̃

ν(y)dy, (1.29)

where D̃ ⊂ D are arbitrary, independent of a, the functions ν(y) ≥ 0 and βpj(y)

are continuous in D, and β
(m)
pj is the magnetic polarizability tensor of the body

Dm, defined in (2.38)-(2.39), see below.
Then the function uM(x), defined in (1.10), tends to the limit:

lim
M→∞

uM(x) = U(x) = U(x, α), (1.30)

and U(x) solves the equation:

U(x) = u0(x) +

∫
D

G(x, y)∆U(y)ν(y)dy −
3∑

p,j=1

∫
D

∂G(x, y)

∂yp

∂U(y)

∂yj

βpj(y)ν(y)dy.

(1.31)
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If all the small particles are balls of radius a > 0, then

Vm =
4πa3

3
, |Sm| = 4πa2, Jm = 16π2a3,

∫
Sm

dt

4π|s− t|
= a, s ∈ Sm.

In this case ∫
Sm

dt

|s− t|
=

1

|Sm|

∫
Sm

∫
Sm

dtds

4π|s− t|
,

that is, the mean value of the integral
∫

Sm

dt
|s−t| on the surface Sm equals to this

integral. If Sm is not a sphere, this mean value is an approximate value of the
above integral.

Note that under the assumptions of Theorem 2 one has M = O(a−1), while
under the assumptions of Theorem 3 one has M = O(a−3) (see formula (2.50) be-
low). Therefore, one needs many more particles to deal with the Neumann bound-
ary condition, that is, with acoustically hard particles, than with the impedance
boundary condition with large boundary impedance ζ = O(a−1). We discuss at
the end of Section 4 in more detail the question concerning the compatibility
of the assumption (1.8), namely d � a, and the existence of the limits (1.28)
and (1.29). It will be shown that the assumption d � a is compatible with the
existence of the limit (1.29) only if ν(y) is sufficiently small, and in this case the
existence of the limit (1.28) is also compatible with the assumption d � a.

In Section 2 Theorems 2 and 3 are proved. In Section 3 Theorem 1 and
Lemmas 1, 2 are proved. In Section 4 some examples are given, the significance
of the compatibility of the assumptions d � a and (1.21), (1.28) – (1.29) is
discussed, and a possible application of our results to creating materials with
a desired refraction coefficient is described. In Section 5 some estimates of the
effective field are given. These estimates imply the convergence of this field as
a → 0. The results of Section 5 are used in the proof of Theorem 2.

2 Proof of Theorem 2

Let us look for the solution to problem (1.5) – (1.7) of the form:

uM = u0(x) +
M∑

m=1

∫
Sm

G(x, s)σm(s)ds, (2.1)

where G(x, y) is the resolvent kernel of L0, see (1.4), and σm are arbitrary func-
tions at the moment. For any σm the function (2.1) solves equation (1.5) and
satisfies the radiation condition (1.6). Since problem (1.5) – (1.7) has at most
one solution, the function (2.1) is the unique solution to (1.5) – (1.7) provided
that σm are chosen so that the boundary conditions (1.7) are satisfied. Since
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diam Dm, 1 ≤ m ≤ M , are small, let us write (2.1) as

uM = u0(x) +
M∑

m=1

G(x, xm)Qm +
M∑

m=1

∫
Sm

[G(x, s)−G(x, xm)]σm(s)ds, (2.2)

where xm ∈ Dm is a point inside Dm and

Qm :=

∫
Sm

σm(s)ds. (2.3)

The choice of xm ∈ Dm is arbitrary because diam Dm ≤ 2a is small. We will
prove that Qm 6= 0, give an analytic formula for Qm (formula (2.20) below), and
approximate the field uM in (2.2) by the expression:

uM = u0(x) +
M∑

m=1

G(x, xm)Qm.

The error of this approximate formula is of order max(a
d
, ka), see estimate (2.7)

below. Therefore this error tends to zero as a → 0 since d = O(a1/3). Let us
estimate the term

Em :=

∫
Sm

[G(x, s)−G(x, xm)]σm(s)ds. (2.4)

By the inequality (1.19) one gets

|Em| ≤ c
( a

d2
+

ka

d

)
|Qm|, |x− xm| ≥ d � a. (2.5)

We will prove below that Qm = O(a), see formula (2.20), and, since |G(x, xm)| ≤
cd−1 if |x− xm| ≥ d > 0, one has:∣∣∣G(x, xm)Qm

∣∣∣ = O
(a

d

)
. (2.6)

Let us prove that under our assumptions the term Em is much smaller than O(a
d
).

Using again inequality (1.19), one gets:

|Em| ≤ c(ad−2 + kad−1)O(a).

Therefore,

|Em| ≤ O(
a2

d2
+ ka

a

d
) � O(

a

d
), (2.7)

because ka � 1 and a � d by assumption. So, our claim is verified. Moreover,

M∑
m=1

|Em| �
M∑

m=1

|G(x, xm)Qm|
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if |x− xm| ≥ d � a, because M = O( 1
a
).

To find Qm, we use the boundary condition (1.7). Let us write u(x) := uM(x)
in a neighborhood of Sj as

uM(x) := ue(x) +

∫
Sj

G(x, s)σj(s)ds, |x− xj| ≤ 2a, (2.8)

where ue is the effective field acting on the j−th small particle from outside:

ue(x) := uM(x)−
∫

Sj

G(x, s)σj(s)ds = u0(x)+
∑
m6=j

G(x, xm)Qm+O(
a

d
), |x−xj| ≤ 2a,

(2.9)
and ue(x) := uM(x), minm |x− xm| ≥ d.

We neglect the error term O(a
d
) in what follows. From (2.8) and (1.7) one

gets:

0 = ueN(s)− ζjue(s) +
Ajσj − σj

2
− ζjTjσj, s ∈ Sj, (2.10)

where ueN(s) is the normal derivative of ue at the point s ∈ Sj. One can rewrite
this equation as:

σj = Ajσj − 2ζjTjσj − 2ζjue(s) + 2ueN(s).

Here the operators Aj and Tj are defined as follows:

Tjσj :=

∫
Sj

G(s, t)σj(t)dt '
∫

Sj

σj(t)dt

4π|s− t|
, (2.11)

Ajσj := 2

∫
Sj

∂G(s, t)

∂Ns

σj(t)dt ' 2

∫
Sj

∂

∂Ns

1

4π|s− t|
σj(t)dt := Aσj, (2.12)

and we have used the following approximations:

G(x, y) = g0(x, y)[1 + O(|x− y|)], |x− y| → 0; g0(x, y) :=
1

4π|x− y|
,

(2.13)

∂G(x, y)

∂yp

=
∂g0

∂yp

[
1 + O

(
|x− y|2

∣∣ln |x− y|
∣∣)], |x− y| → 0. (2.14)

Note that (see [10], p. 96, formula (7.21)):∫
Sj

Ajσjds = −
∫

Sj

σjds. (2.15)

Indeed,∫
Sj

ds

∫
Sj

∂

∂Ns

1

2π|s− t|
σj(t)dt =∈ tSj

dtσj(t)

∫
Sj

ds
∂

∂Ns

1

2π|s− t|
= −

∫
Sj

σj(t)dt.
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The integral ∫
Sj

∂

∂Ns

1

2π|s− t|
ds = −1, t ∈ Sj,

is well known in potential theory for surfaces Sj ∈ C1,λ.
Integrating (2.10) over Sj, using formula (2.15), and the divergence theorem,

one gets:

Qj = −ζjue(xj)|Sj| − ζj

∫
Sj

ds

∫
Sj

σj(t)dt

4π|s− t|
+

∫
Dj

∆uedy. (2.16)

The function ue(y) is smooth, so∫
Dj

∆ue(y)dy = Vj∆ue(xj)[1 + o(1)], a → 0, (2.17)

where Vj = |Dj| is the volume of Dj and we have used the smallness of the
diameter of Dj, that is, the smallness of a.

Let us write∫
Sj

ds

∫
Sj

σj(t)dt

4π|s− t|
=

∫
Sj

dt σj(t)

∫
Sj

ds

4π|s− t|

= Qj
1

Sj

∫
Sj

dt

∫
Sj

ds

4π|s− t|
=

QjJj

4π|Sj|
, Jj :=

∫
Sj

∫
Sj

ds dt

|s− t|
. (2.18)

Here we approximated the continuous on Sj function
∫

Sj

ds
|s−t| by its mean value

1
|Sj |

∫
Sj

dt
∫

Sj

ds
|s−t| .

If Sj is a sphere of radius a, then∫
|s|=a

ds

|s− t|
= 4πa, |t| = a, (2.19)

so in this case equation (2.18) is exact.
From (2.16) – (2.18) one finds a formula for Qj:

Qj = − ζj|Sj|
1 +

ζjJj

4π|Sj |

ue(xj). (2.20)

We neglected the term Vj ∆ue(xj) = O(a3) which is much smaller than |ζj| |Sj| =
O(a) as a → 0, because |Sj| = O(a2) and |ζj| = O( 1

a
). The quantity Jj = O(a3).

Therefore
ζjJj

4π|Sj | = O(1). We choose

ζj =
H(xj)

a
, (2.21)
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where H(x) is a continuous function in D, which we can choose as we wish subject
to the condition Im H ≤ 0, because Im ζj ≤ 0.

If the small particles are all of the same shape and size, then

|Sj| = c1a
2, Jj = c2a

3,

where c1, c2 > 0 are some constants independent of j, 1 ≤ j ≤ M .
Then

ζjJj

4π|Sj|
=

H(xj)c2

4πc1

:= h(xj), (2.22)

and
ζj|Sj| = H(xj)c1a. (2.23)

Formulas (2.2), (2.20), (2.22) and (2.23) imply:

uM(x) = u0(x)−
M∑

m=1

G(x, xm)
4πc2

1c
−1
2 h(xm)a

1 + h(xm)
uM(xm), (2.24)

where |x − xm| ≥ d � a, and we replaced ue(xm) by uM(xm) because their
difference (see (2.9)) is of order O(a

d
) � 1. Indeed

|uM(x)− ue(x)| ≤
∫

Sj

|G(x, s)| |σj(s)|ds ≤ c

d
|Qj| ≤ c̃

a

d
, |x− xj| ≥ d � a,

(2.25)
where c, c̃ > 0 are some constants independent of a.

If the assumption (1.21) holds, then

lim
a→0

M∑
m=1

G(x, xm)
4πc2

1c
−1
2 h(xm)

1 + h(xm)
uM(xm)a =

∫
D

G(x, y)
4πc2

1c
−1
2 h(y)

1 + h(y)
u(y)N(y)dy.

(2.26)
To pass to the limit in (2.26) one uses lemmas 5 and 6 of Section 5 and the
following lemma.

Lemma 3 Assume that xm ∈ Dm, diam Dm ≤ 2a, f is a continuous function in
D with a possible exception of a point y0 in a neighborhood of which it is absolutely
integrable, for example, it admits an estimate |f(y)| ≤ c

|y−y0|b , b < 3, and assume
that

lim
a→0

a
∑

Dm⊂D̃

1 =

∫
D̃

N(x)dx ∀D̃ ⊂ D (2.27)

for any subdomain D̃ ⊂ D, where N(x) is a continuous function. Then there
exists the limit

lim
a→0

M∑
m=1

f(ym)a =

∫
D

f(y)N(y)dy. (2.28)
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Remark 1 In our case f(y) = G(x, y)
4πc21h(y)

c2[1+h(y)]
uM(y) and (2.27) is the assump-

tion (1.21).

Proof of Lemma 3 Let D =
⋃P

p=1 ∆p, where ∆p and ∆q do not intersect

each other, ∆p is the closure of the domain ∆p, and limP→∞ maxp diam ∆p = 0.
Choose any point y(p) ∈ ∆p and note that

sup
ym∈Dm, Dm⊂∆p

|f(y(p))− f(ym)| < εp → 0 as diam ∆p → 0. (2.29)

Therefore

lim
a→0

M∑
m=1

f(ym)a = lim
a→0

P∑
p=1

a
∑

Dm⊂∆p

f(ym) =
P∑

p=1

[f(y(p)) + O(εp)] · lim
a→0

a
∑

Dm⊂∆p

1

=
P∑

p=1

[f(y(p)) + O(εp)]

∫
∆p

N(y)dy

=
P∑

p=1

[f(y(p)) + O(εp)] · [N(y(p)) + O(ε′p)] |∆p|, (2.30)

where limP→∞ maxp |ε′p| = 0. Let P →∞ in (2.30). Then

lim
P→∞

P∑
p=1

[f(y(p)) + O(εp)] [N(y(p)) + O(ε′p)] |∆p| =
∫

D

f(y)N(y)dy. (2.31)

In the above argument we assumed that f is continuous in D. If f has an
integrable singularity at a point x0, then we choose a ball B(x0, δε) centered
at x0 of radius δε such that sup0<δ<δε

∫
B(x0,δ)

|f(y)|dy < ε, where ε > 0 is an

arbitrary small fixed number. Then

sup
0<δ<δε

∫
B(x0,δ)

|f(y)| |N(y)| dy < cε,

where c = maxy∈D |N(y)| > 0 is a constant independent of ε. Now we apply the
above argument to the region D\B(x0, δ), where f is continuous and get:

lim
a→0

M∑
m=1

ym 6∈B(x0,δ)

f(ym)a =

∫
D\B(x0,δ)

f(y)N(y)dy. (2.32)

The left side of (2.28) in the case of f having integrable singularity at the point
x0 and continuous in D\x0 is understood as the limit of the expression on the
left of (2.32) as δ → 0. This yields (2.28). Lemma 3 is proved.
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Passing to the limit M →∞, or a → 0, in equation (2.24) and using Lemma
3, one gets

u(x) = u0(x)−
∫

D

G(x, y) p(y) u(y)dy,

p(y) =
4πc2

1

c2

h(y)N(y)

1 + h(y)
.

Applying the operator L0 = ∇2 + k2− q0(x) to this equation and using (1.3) and
(1.4), one obtains equation (1.24). Formulas (1.26) and (1.27) follow from the
above equation and from formula (1.12).

This concludes the proof of Theorem 2.

Remark 2 It is possible (and not difficult) to generalize Theorem 2 to the case
of particles with different shapes. Since this does not lead to an essentially
new result, we do not go into detail. In [10], [19] and [8] one can find analytical
formulas for the S−matrix for wave scattering by small bodies of arbitrary shapes.

Proof of Theorem 3.
Now we assume ζm = 0, 1 ≤ m ≤ M , which means that all the small particles

are acoustically hard. In this case equation (2.10) takes the form

σj = Ajσj + 2ueN
(s), s ∈ Sj, 1 ≤ j ≤ M, (2.33)

where

ue(x) := u0(x) +
∑
m6=j

∫
Sm

G(x, s)σm(s)ds. (2.34)

We cannot use approximation (2.2) because the quantity Qm now is of the same
order of magnitude as the integral

∫
Sm

[G(x, s)−G(x, xm)] σm(s)ds, or even smaller
than this integral. This is established below. While under the assumptions of
Theorem 2 we had Qm = O(a), now, under the assumptions of Theorem 3, we
have Qm = O(k2a3), which is a much smaller quantity than O(a) because ka � 1.
To estimate the order of magnitude of Qm, we integrate (2.33) over Sj and use
(2.15). The result is:

Qj =

∫
Sj

ueN
ds =

∫
Dj

∆ue dx ' ∆ue(xj)Vj, (2.35)

where Vj is the volume of Dj, and we have used the assumption d � a. This
assumption allows one to claim that ue(x) is practically constant in the domain
Dj in the absence of j-th particle. Differentiation with respect to x brings a
factor k. Since we assume that k > 0 is fixed, this factor is not important for
our argument, but to make the dimensionality of the term Vj∆ue clear, we may

14



write Vj∆ue = O(k2a3). This quantity has dimensionality of length since ka is
dimensionless.

We now prove that the term Em :=
∫

Sm
[G(x, s) − G(x, xm)]σm(s)ds, which

was neglected under the assumptions of Theorem 2, because it was much smaller
than |G(x, xm)Qm|, is now, under the assumption ζm = 0, 1 ≤ m ≤ M , of the
same order of magnitude as |G(x, xm)Qm|, namely O(k2a3d−1), or even larger.
We have∫

Sm

[G(x, s)−G(x, xm)]σm(s)ds

=

∫
Sm

∇yG(x, y)|y=xm
· (s− xm) σm(s)ds, |x− xm| ≥ d � a, (2.36)

where we have used the assumption |x− xm| � a and kept the main term in the
Taylor’s expansion of the function G(x, s)−G(x, xm).

Recall, that ∫
Sm

(s− xm)p σm(s)ds = −Vm β
(m)
pj

∂ue(y)

∂yj

∣∣∣
y=xm

, (2.37)

where one sums up over index j = 1, 2, 3, β
(m)
pj is the magnetic polarizability

tensor defined in [10], (p.55, formulas (5.13)-(5.15) and p.62, formula (5.62)),
and (s− xm)p is the p-th component of the vector s− xm.

Namely, if
σ = Aσ − 2Nj, (2.38)

then ∫
S

sp σ(s)ds = V βpj , (2.39)

where V is the volume of the body with boundary S, Nj is the j-th component
of the exterior unit normal N to S, the role of the point xm from equation (2.37)
is played by the origin, which is located inside S, and the role of Sm is played by
S. Equation (2.33) with j = m can be written as

σm = Amσm − 2Nj

(
−∂ue(y)

∂yj

∣∣∣
y=xm

)
, (2.40)

where one sums up over j (but not over m). Compare (2.40) and (2.38) and get
(2.37).

Formulas for the tensor βpj = αpj(γ)
∣∣∣
γ=−1

for bodies of arbitrary shapes were

derived in [10], p.55, formula (5.15), so one may consider the tensor βpj known
for bodies of arbitrary shapes. In the cited formula αpj(γ) is the polarizability
tensor of a dielectric body with a constant dielectric permittivity εi and S is
the surface of this body. The parameter γ = εi−εe

εi+εe
, where εe is the dielectric
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permittivity of the surrounding medium. The case γ = −1 occurs when εi = 0.
This is the case, for example, in the problem of calculation the magnetic dipole
moment of a superconductor placed in a homogeneous magnetic field: in the
superconductor the magnetic induction vector B = 0, which means that the
magnetic permeability µi of such body is zero, µi = 0, see [3]. That is why the
tensor βpj is called magnetic polarizability tensor in [10].

From (2.36) and (2.37) it follows that∫
Sm

[
G(x, s)−G(x, xm)

]
σm(s)ds = −∂G(x, y)

∂yp

∣∣∣
y=xm

∂ue(y)

∂yj

∣∣∣
y=xm

Vmβ
(m)
pj ,

(2.41)
where one sums up over the repeated indices p, j, but nor over m. The quantity on
the right of (2.41) is of the order O(k2a3d−1) if kd ≥ 1, that is, of the same order
as |G(x, xm)Qm|, provided that |x−xm| ≥ d � a, and it is of the order O(ka3d−2)

if kd < 1. Indeed, β
(m)
pj = O(1), Vm = O(a3), and

∣∣∇yG(x, y)
∣∣ ≤ c max

(
k
d
, 1

d2

)
.

Let us prove the estimate∣∣∇yG(x, y)
∣∣ ≤ c max

(k

d
,

1

d2

)
for |x− y| ≥ d � a,

where c > 0 is a constant independent of d.
We have

G(x, y) = g(x, y)−
∫

D

g(x, z)q0(z)G(z, y)dz := g − T G,

where T is compact as an operator in Lp(D), p ≥ 1, under our assumptions,
namely, D ⊂ R3 is a bounded domain, q0(x) is a bounded piecewise-continuous
function. From this equation we get

∇yG(x, y) = ∇yg(x, y)− T ∇yG.

Clearly,

∇yg(x, y) = g(x, y)
(
ik − 1

|x− y|

) y − x

|x− y|
,

so

|∇yg(x, y)| ≤ 2 max
( k

4πd
,

1

4πd2

)
=

1

2π
max

(k

d
,

1

d2

)
, |x− y| ≥ d > 0.

Thus

|∇yG(x, y)| ≤ |∇yg(x, y)|
[
1+c

∫
D

1

|x− z|
|∇yG(z, y)|dz

|x− y|2

|ik|x− y| − 1|
]

:= |∇yg|(1+cI),

where

I :=

∫
D

|∇yG(z, x)| dz

|x− z|
|x− y|2√

1 + k2|x− y|2
≤ c

∫
D

dz

|z − y|2|x− z|
|x− y|2√
1 + k2d2

.
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One has ∫
D

dz

|z − y|2|x− z|
≤ c

∣∣ ln |x− y|
∣∣, x, y ∈ D c = c(D),

and
sup

x,y∈D
| ln |x− y|

∣∣|x− y|2 ≤ c,

where c = c(D) is a constant. Therefore

I ≤ c√
1 + k2d2

≤ c,

and

|∇yG(x, y)| ≤ c max
(k

d
,

1

d2

) 1√
1 + k2d2

≤ c max
(k

d
,

1

d2

)
,

as claimed.
If k

d
≥ 1

d2 , i.e. kd ≥ 1, then |∇yG(x, y)| ≤ ck
d
, |x− y| ≥ d > 0.

If k
d

< 1
d2 , i.e. kd < 1, then |∇yG(x, y)| ≤ c

d2 , |x− y| ≥ d > 0.

Therefore, the right side of (2.41) is O
(

k2a3

d

)
if kd ≥ 1, in which case it is of

the same order as the term G(x, xm)Qm. If kd < 1, then the right side of (2.41) is
O

(
ka3

d2

)
, in which case it may become larger than the term G(x, xm)Qm because

the ratio ka3

d2 /k2a3

d
= 1

kd
> 1 provided that kd < 1.

Writing the field (2.1) in the form

uM(x) = u0(x)+
M∑

m=1

G(x, xm)Qm +
M∑

m=1

∫
Sm

[
G(x, s)−G(x, xm)

]
σm(s)ds (2.42)

and using formulas (2.35) and (2.41), one gets:

uM(x) = u0(x)+
M∑

m=1

G(x, xm)∆ue(xm) Vm−
M∑

m=1

∂G(x, xm)

∂yp

∂ue(xm)

∂yj

Vmβ
(m)
pj (xm),

(2.43)
and over the repeated indices p, j one sums up.

Let a → 0, M →∞. We want to give sufficient conditions for passing to this
limit in (2.43).

Lemma 4 Assume that for any subdomain D̃ ⊂ D the following limits exist:

lim
a→0

∑
Dm⊂D̃

Vmβ
(m)
pj (xm) =

∫
D̃

βpj(y) ν(y)dy, (2.44)

lim
a→0

∑
Dm⊂D̃

Vm =

∫
D̃

ν(y)dy. (2.45)
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Then the limiting form of equation (2.43) is:

U(x) = u0(x) +

∫
D

G(x, y) ∆U(y) ν(y)dy

−
∫

D

∂G(x, y)

∂yp

∂U(y)

∂yj

βpj(y) ν(y)dy, (2.46)

where one sums up over the repeated indices p, j.

Remark 3 If one assumes that ν(y) vanishes near the boundary S of D and
integrates the last integral in (2.46) by parts, one gets

U(x) = u0(x) +

∫
D

G(x, y)
{

∆U(y)ν(y) +
3∑

p,j=1

∂

∂yp

(∂U(y)

∂yj

βpj(y) ν(y)
)}

dy.

(2.47)
Applying the operator L0 to both sides of (2.47) and using (1.4) one gets:

L0U + ν(y)∆U(x) +
3∑

p,j=1

∂

∂yp

(∂U(y)

∂yj

βpj(y) ν(y)
)

= 0. (2.47’)

Remark 4 If all the small particles are identical, then Vm = c3a
3, where the

positive constant c3 does not depend on m, and β
(m)
pj = βpj. Then

lim
a→0

∑
Dm⊂D̃

Vm = lim
a→0

[
c3a

3
∑

Dm⊂D̃

1
]

= lim
a→0

[c3a
3N (D̃)], (2.48)

where N (D̃) is the number of small particles in the domain D̃. For the limit
(2.48) to exist it is sufficient that

N (D̃) =

∫
D̃

ν(y)dy

c3a3
, (2.49)

where ν(y) ≥ 0 is a continuous function, and the limit in (2.48) is equal to∫
D̃

ν(y)dy.

One can write (2.49), with |D̃| = dy, y ∈ D̃, as

N(y)dy =
ν(y)

c3a3
dy, (2.50)

where N(y) is defined by the above formula. In contrast to Theorem 2, where
M = O( 1

a
), we now have M = O( 1

a3 ).
Similarly,

lim
a→0

∑
Dm⊂D̃

Vmβ
(m)
pj (xj) = lim

a→0
[c3a

3 βpj N (D̃)] = βpj

∫
D̃

ν(y)dy. (2.51)
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We gave in this Remark some practically realizable sufficient conditions for the
existence of the limits (2.44) and (2.45).

Let us verify that if the limits (2.44) – (2.45) exist, then the limit of the right
side of equation (2.43) exists, and, denoting this limit by

U(x) = lim
a→0

uM(x),

one obtains the limiting form of equation (2.43):

U(x) = u0(x) +

∫
D

G(x, y) ∆U(y) ν(y)dy

−
∫

D

3∑
p,j=1

∂G(x, y)

∂yp

∂U(y)

∂yj

βpj(y) ν(y)dy, (2.52)

which is equation (2.46).
We took into account that

lim
a→0

ue(x) = U(x).

This is so because, as a → 0, the input of a single particle into the field U(x)
tends to zero.

Let us verify the existence of the limit of the right side of equation (2.43). We
use, as in the proof of Lemma 3, a representation of D of the form D =

⋃P
p=1 ∆p,

and assume that
lim

P→∞
max

1≤p≤P
diam ∆p = 0. (2.53)

Then

lim
a→0

M∑
m=1

G(x, ym)∆ue(xm)Vm

=
P∑

p=1

lim
a→0

∑
Dm⊂∆p

G(x, xm)∆ue(xm)Vm

=
P∑

p=1

G(x, y(p)) ∆ue(y
(p))(1 + εp) lim

a→0

∑
Dm⊂∆p

Vm

=
P∑

p=1

G(x, y(p)) ∆ue(y
(p))(1 + εp) ν(y(p))(1 + ε′p)|∆p|, (2.54)

where
lim

P→∞
max

p
(|εp|+ |ε′p|) = 0. (2.55)
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Let P →∞ in (2.54) and use (2.55) to get

lim
P→∞

P∑
p=1

G(x, y(p)) ∆ue(y
(p)) ν(y(p)) |∆p| (1 + εp + ε′p + εpε

′
p)

=

∫
D

G(x, y) ∆U(y) ν(y)dy. (2.56)

We have replaced ue(y
(p)) in the limit P →∞ by U(y), because

U(y)− ue(y) =

∫
Sm

G(y, t) σ(t)dt = o(1) as a → 0, |y− xm| ≥ d � a. (2.57)

From (2.56) and (2.54) one gets:

lim
a→0

M∑
m=1

G(x, xm) ∆ue(xm)Vm =

∫
D

G(x, y) ∆U(y) ν(y)dy. (2.58)

The singular points x = y ∈ D of G(x, y) are treated as in the proof of Theorem
2.

The function |G(x, y)| ≤ c|x− y|−1 as |x− y| → 0, so |G(x, y)| ∈ L1(D) as a
function of y for any x ∈ D.

Similar arguments, applied to the last sum in (2.43), lead to the formula

lim
a→0

M∑
m=1

∂G(x, xm)

∂yp

∂ue(xm)

∂yj

Vm β
(m)
pj (xm) =

∫
D

∂G(x, y)

∂yp

∂U
∂yj

βpj(y) ν(y)dy,

(2.59)
where one sums up over the repeated indices p, j.

Theorem 3 is proved.

In Section 4 we discuss the compatibility of the condition d � a and the
existence of the limit (1.29).

3 Auxiliary results

In this Section we prove Theorem 1 and Lemmas 1, 2.

Proof of Lemma 1 Let us start with the following observations:∣∣|t− y| − |x− y|
∣∣ ≤ |t− y − (x− y)| = |t− x| ≤ a, (3.1)

sup
−a≤s≤a

|eis − 1| ≤ a, (3.2)∣∣eik|t−y| − eik|x−y|∣∣ =
∣∣eik(|t−y|−|x−y|) − 1

∣∣ ≤ ka, (3.3)
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where the last inequality follows from (3.2).
One has∣∣g(t, y)− g(x, y)

∣∣ =

∣∣|x− y|eik|t−y| − |t− y|eik|x−y|
∣∣

|x− y||t− y|
≤

∣∣|x− y| − |t− y|
∣∣

|x− y||t− y|
+

+
|t− y|

∣∣eik|t−y| − eik|x−y|

|x− y||t− y|
(3.4)

≤ a

|x− y||t− y|
+

ka

|x− y|
≤ a

d2(1− a
d
)

+
ka

d
≤ O

( a

d2

)
+

ka

d
.

Lemma 1 is proved.

Proof of Lemma 2 Let us start with the equation:

G(x, y) = g(x, y)−
∫

D

g(x, z)q0(z)G(z, y)dz, (3.5)

where q0 is defined in (1.2). From (3.5) one gets:∣∣G(t, y)−G(x, y)
∣∣ ≤

∣∣g(t, y)− g(x, y)
∣∣ +

∣∣ ∫
D

[g(t, z)− g(x, z)]q0(z)G(z, y)dz
∣∣

≤ O
( a

d2
) +

ka

d
+ c

∫
D

|g(t, z)− g(x, z)| dz

|z − y|
. (3.6)

Here we have used Lemma 1 and the estimates

sup
z∈D

|q0(z)| ≤ c4, |G(z, y)| ≤ c5|z − y|−1, (3.7)

where c4, c5 > 0 are some constants.
Let us estimate the integral

I :=

∫
D

|g(t, z)− g(x, z)| dz

|z − y|

=

∫
|x−z|≥ d

4
,z∈D

|g(t, z)− g(x, z)|dz

|z − y|
+

∫
|x−z|≤ d

4
,z∈D

|g(t, z)− g(x, z)|dz

|z − y|
:= I1 + I2. (3.8)

By Lemma 1, which is applied to I1 with d replaced by d
4
, one gets

I1 ≤ c
( a

d2
+

ka

d

) ∫
|x−z|≥ d

4

dz

|z − y|
≤ c1

( a

d2
+

ka

d

)
. (3.9)

Here and below we do not write z ∈ D under the integration sign to simplify the
notations.
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Let us estimate I2:

I2 ≤
1

4π

∫
|x−z|≤ d

4

∣∣eik|t−z||x− z| − eik|x−z||t− z|
∣∣

|z − y||t− z||x− z|
dz. (3.10)

One has∣∣eik|t−z||x− z| − |t− z|eik|x−z|∣∣ ≤
∣∣|x− z| − |t− z|

∣∣ + |t− z|
∣∣eik|t−z| − eik|x−z|∣∣

≤ |x− t|+ |t− z|k
∣∣|t− z| − |x− z|

∣∣ (3.11)

≤ |x− t|+ k|t− z||t− x|.

Thus, with |x− y| ≥ d � a and |t− x| ≤ a, one has:

I2 ≤ 1

4π

∫
|x−z|≤ d

4

(|x− t|+ k|t− z||t− x|)
|z − y||t− z||x− z|

dz

≤ |t− x|
4π

( ∫
|x−z|≤ d

4

dz

|z − y||t− z||x− z|
+ k

∫
|x−z|≤ d

4

dz

|z − y||x− z|

)
≤ ca

( 1

d2
+

k

d

)
. (3.12)

From (3.9) and (3.12) the estimate (1.19) follows. Lemma 2 is proved.

Proof of Theorem 1 Let us first prove that if conditions (1.14) hold, then
problem (1.5) – (1.7) has at most one solution. It is sufficient to prove that the
homogeneous problem

(∇2 + k2 − q0)u = 0 in R3 \
M⋃

m=1

Dm, (3.13)

∂u

∂r
− iku = o(

1

r
), u = O(

1

r
), r = |x| → ∞, (3.14)

uN = ζmu on Sm, 1 ≤ m ≤ M, (3.15)

has only the trivial solution if conditions (1.14) hold.
Taking complex conjugate of (3.13) – (3.15) one gets:

(
∇2 + k2 − q0(x)

)
u = 0 in R3 \

M⋃
m=1

Dm, (3.16)

∂u

∂r
+ iku = o

(1

r

)
, u = O

(1

r

)
, r = |x| → ∞, (3.17)

uN = ζmu on Sm, 1 ≤ m ≤ M. (3.18)

Multiply (3.13) by u, (3.16) by u, subtract from the first equation the second
one, and integrate over the region (R3 \

⋃M
m=1 Dm) ∩BR := DR, where BR is the
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ball centered at the origin of radius R. Using Green’s formula, one gets:

0 =

∫
DR

[u∇2u− u∇2u− (q0 − q0)|u|2]dx

= −2i

∫
DR

Im q0(x)|u|2dx +

∫
|x|=R

(
u
∂u

∂r
− u

∂u

∂r

)
ds

−
M∑

m=1

∫
Sm

(
u

∂u

∂N
− u

∂u

∂N

)
ds. (3.19)

Using (3.17) and (3.18) one rewrites (3.19) as follows:

0 = −2i

∫
DR

Im q0(x)|u|2dx + 2ik

∫
|x|=R

|u|2ds + o(1)− 2i
M∑

m=1

∫
Sm

Im ξm|u|2ds.

(3.20)
Letting R →∞, taking into account that q0(x) = 0 in D′ = R3 \D, and one gets:

0 ≤
∫

D\
SM

m=1 Dm

Im q0(x)|u|2dx +
M∑

m=1

∫
Sm

Im ζm|u|2ds− k lim sup
R→∞

∫
|x|=R

|u|2ds.

(3.21)
Since all the terms on the right side of this relation are non-positive by the
assumptions (1.14), it follows that

lim sup
R→∞

∫
|x|=R

|u|2ds = 0.

This implies that u = 0 (see, [9], p. 231).
Thus, uniqueness of the solution to problem (1.5) – 1.7 is proved.
Let us prove the existence of the solution to (1.5) – (1.7) of the form (1.10).

The existence of the solution of the form (1.10) will be established if one proves
the existence of σm, 1 ≤ m ≤ M , such that boundary condition (1.7) is satisfied:

ueN − ζjue +
Ajσj − σj

2
− ζjTjσj = 0, 1 ≤ j ≤ M. (3.22)

Here ue, which depends on j, is defined by the formula:

ue := u−
∫

Sj

G(x, s)σj(s)ds = u0 +
∑
m6=j

∫
Sm

G(x, s)σm(s)ds. (3.23)

Under our assumptions Sm ∈ C1,λ uniformly with respect to m. Therefore equa-
tion (3.22) is of Fredholm type in the space L2(

⋃M
m=1 Sm). The corresponding

homogeneous equation, i.e., the equation with u0 = 0, cannot have a nontrivial
solution because such a solution would generate by formula (1.10) with u0 = 0 a
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function uM(x) =
∑M

m=1

∫
Sm

G(x, s)σm(s)ds, which would solve the homogeneous
problem (1.5) – (1.7). We have already proved that such a function has to be zero
in R3 \

⋃M
m=1 Dm. Thus, uM |Sm

= 0, 1 ≤ m ≤ M , and uM solves the problem:

L0uM = 0 in Dm, uM |Sm
= 0, 1 ≤ m ≤ M. (3.24)

If diam Dm ≤ 2a is sufficiently small, then problem (3.24) has only the trivial
solution for every m, 1 ≤ m ≤ M . Therefore uM = 0 in Dm and in R3\

⋃M
m=1 Dm.

Therefore, by the formula for the jumps of the normal derivatives of the single
layer potential,

∂u+
M

∂N |Sm

− ∂u−M
∂N |Sm

= σm,

we conclude that σm = 0, 1 ≤ m ≤ M . This implies the existence of the solution
to problem (1.5) – (1.7) of the form (1.10).

Theorem 1 is proved.

Let us return to the assumptions of Theorem 2, namely,

ζm = O(
1

a
), aN (∆b(y)) = N(y)|∆b(y)|(1 + o(1)),

where ∆b(y) is a cube, centered at the point y with the side b > 0, and o(1) is
related to the limiting process b → 0.

Under these assumptions let us establish an estimate for the function vM :=
uM−u0, which is uniform with respect to M →∞, or a → 0. From this estimate
it follows that vM converges, as a → 0, in L2(R3, (1 + |x|)−1−γ), where γ > 0 is
an arbitrary fixed constant. The function vM satisfies the radiation condition at
infinity. The function u0 ∈ H2

loc(R3) solves the equation L0u0 = 0 in R3.
Let De := R3 \ ∪M

m=1Dm and S ′ := ∪M
m=1Sm. Let

||v|| :=
( ∫

De

|v(x)|2(1 + |x|)−1−γdx
)1/2

, |||v||| =
M∑

m=1

( ∫
Sm

(|vN |2 + |v|2)ds
)1/2

.

The estimate we wish to prove is:

||vM || ≤ c|||u0|||. (3.25)

Here and below c > 0 stand for various constants independent of a. Inequality
similar to (3.25) was used in [20], where a theorem, I have called ”Modified
Rayleigh Conjecture”, is proved.

Let us outline the proof of inequality (3.25).
Step 1. If M = O( 1

a
), then the right side of (3.25) is bounded as a → 0.
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Indeed, the number of small particles is M = O( 1
a
) and u0 is H2

loc(R3), so that
u0 and u0N are bounded in L2(Sm) uniformly with respect to m, 1 ≤ m ≤ M .
Thus,

|||u0||| ≤
c

a
max

1≤m≤M

( ∫
Sm

(|u0N |2 + |u0|2)ds
)1/2

≤ c

a
|Sm|1/2 ≤ c,

where c > 0 stand for various constants independent of a.
Step 2. If the inequality (3.25) is false, then there is a sequence u

(n)
0 , |||u(n)

0 ||| =
1, such that ||v(n)

M || := ||v(n)|| ≥ n.

Define w(n) := v(n)

||v(n)|| . Then

||w(n)|| = 1. (3.26)

From the weak compactness of bounded sets in L2, it follows, that one may select
a subsequence, denoted again w(n), such that w(n) converges weakly in L2

loc(De)
to a function w. The function w(n) solves the problem:

L0w
(n) = 0 in De,

w
(n)
N − ζmw(n) = (ζmu

(n)
0 − u

(n)
0N)/||v(n)|| on Sm, 1 ≤ m ≤ M, (3.27)

and w(n) satisfies the radiation condition.
It follows from (3.27) that ||∇2w(n)|| < c, so ||w(n)||H2

loc(De) < c, where H2
loc(De)

is the Sobolev space (see, for example, book [1], where the theory of these spaces is
presented). Thus, one may assume, using the compactness of the embedding from
H2

loc into L2
loc, that w(n) converges to w strongly in L2

loc(De). This and equation
(3.27) imply that w(n) converges to w strongly in H2

loc(De), so that w solves
equation (3.27), satisfies the radiation condition and the homogeneous boundary
condition (3.27), that is, wN − ζmw = 0 on Sm. Therefore, by already proved
uniqueness theorem (see the proof of Theorem 1), we conclude that w = 0. The

terms u
(n)
0 /||v(n)|| and u

(n)
0N/||v(n)|| tend to zero as n → ∞, because ||v(n)|| > n.

Therefore, the limiting function w satisfies the homogeneous boundary condition
wN = ζmw on Sm, 1 ≤ m ≤ M .

Let us prove that |w(n)(x)| < c
|x| , |x| > R, where R > 0 is sufficiently large

and c > 0 does not depend on n.
For w(n) one has a representation by the Green formula in the region |x| > R,

where R > 0 is large enough, so that the ball BR := {x : |x| < R} contains D.
Namely

w(n)(x) =

∫
|s|=R

(w(n)
r g(x, s)− gr(x, s)w(n))ds, |x| > R, (3.28)

where the derivatives with respect to r are the derivatives along the normal to
the sphere SR := {s : |s| = R}, and g is defined in (1.15). It follows from (3.28)
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that |w(n)(x)| < c
|x| for |x| > R, where c > 0 is a constant independent of n,

because local converegence in H2 implies that the L2(SR)-norms of w(n) and of

w
(n)
r are bounded uniformly with respect to n.

Therefore
lim

n→∞
||w(n) − w|| = 0, (3.29)

because on compact sets limn→∞ ||w(n) − w||H2
loc(De) = 0, and near infinity the

inequality |w(n)(x)| < c
|x| implies that∫

{x:|x|>R}
|w(n)(x)|2(1 + |x|)−1−γdx = O(R−γ) → 0, R →∞,

so that (3.29) holds. Because of the uniqueness of the limit, not only a subse-
quence of w(n) but the sequence itself converges to w as n →∞.

This leads to a contradiction, because w = 0 and (3.26) together with (3.29)
imply ||w|| = 1.

This contradiction proves inequality (3.25).
From inequality (3.25) and Step 1 one concludes that that uM contains a

weakly convergent in L2
loc(De) subsequence. By the arguments, similar to the

given above, this subsequence converges in L2(R3, (1 + |x|)−1−γ). Its limit solves
equation (1.24).

The relation M = O( 1
a
) plays an important role in our proof of Theorem 2

and in Step 1 in the above argument.

4 Application to creating smart materials

Let us ask the following question: can one make a material with a desired re-
fraction coefficient n2(x) in a bounded domain D ⊂ R3, filled by a material with
a known refraction coefficient n2

0(x), for example n2
0(x) = n2

0 = const in D, by
embedding into D a number of small particles, each of which is defined by its
shape and its boundary impedance?

We give an affirmative answer to this question. Moreover, we give explicit
formulas for the number of small particles of characteristic size a to be embedded
in the domain D around a point x ∈ ∆, where ∆ ⊂ D is a small cube, centered
at x, with a side b � a, and for the boundary impedances ζm of these particles
(see Theorem 2). Specifically, given the original refraction coefficient n2

0(x) in D,
and the desired refraction coefficient n2(x), we calculate q(x) = k2− k2n2(x) and
q0(x) = k2− k2n2

0(x), and then calculate p(x) = q(x)− q0(x) = k2[n2(x)−n2
0(x)].

Then we find (non-uniquely) three functions: N(x) ≥ 0, a real-valued function
h1(x), and a non-positive function h2(x). Define h(x) := h1(x)+ih2(x). How does
one find these functions is explained below. If N(x) and h(x) = h1(x) + ih2(x)
are found, then the boundary impedance ζ(x) is defined by formula (4.2) (see
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below) and the number of particles in any small cube ∆ ⊂ D is found by the
formula (1.21):

N (∆) =
1

a

∫
∆

N(x)dx,

where a is the size of one particle.
Consider first the particles satisfying the assumptions of Theorem 2. More

specifically, suppose that all the particles are balls of the same radius a. In this
case

|Sm| = 4πa2, V =
4π

3
a3, Jm =

∫
|s|=a

∫
|t|=a

ds dt

|s− t|
= 16π2a3,

so

c1 = 4π, c2 = 16π2, c3 =
4π

3
,

4πc2
1

c2

= 4π,

and formula (1.25) yields

p(x) =
4πN(x) h(x)

1 + h(x)
, (4.1)

where h(x) is defined by the choice of the boundary impedances by formula (1.20):

ζ(x) =
h(x)

a
, (4.2)

and N(x) is defined by formula (1.21).
If the original refraction coefficient is n2

0(x), then the corresponding potential
is q0(x) = k2[1 − n2

0(x)] by formula (1.2). If the desired refraction coefficient in
D is n2(x), then the corresponding potential is q(x) = k2[1− n2(x)], so

p(x) = q(x)− q0(x) = k2[n2
0(x)− n2(x)]. (4.3)

To create a material with the desired refraction coefficient n2(x) it is sufficient
to choose N(x) and h(x) so that (4.1) holds with p(x) defined in (4.3). If the
new material with the refraction coefficient n2(x) has some absorption, that is,
Im n2(x) ≥ 0, and Im n2

0 = 0, then Im p(x) ≤ 0. Let us prove that any function
p(x) in D with Im p ≤ 0, can be obtained (in many ways, non-uniquely) by
formula (4.1) with some choices of a nonnegative function N(x) and a function
h(x) with Im h ≤ 0.

Let p(x) = p1(x) + ip2(x), p2(x) ≤ 0, and h(x) = h1(x) + ih2(x), h2(x) ≤ 0.
Assume that p(x) is given. Then (4.1) implies

p1 + ip2 = 4π
(h1 + ih2)(1 + h1 − ih2)

(1 + h1)2 + h2
2

N(x). (4.4)

Thus

p1 = 4π
h1 + h2

1 + h2
2

(1 + h1)2 + h2
2

N(x), p2 = 4π
h2

(1 + h1)2 + h2
2

N(x). (4.5)
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There are many choices of the three functions: N(x) ≥ 0, h2(x) ≤ 0 and a real-
valued function h1(x) such that relations (4.5) hold. For example, if p1 > 0 and
p2 6= 0, then one can choose

h1(x) = 0, h2(x) =
p1(x)

p2(x)
, N(x) =

p2
1(x) + p2

2(x)

4π p1(x)
. (4.6)

It is a simple matter to check that relations (4.5) hold with the choice (4.6).
Since one has three functions h1(x), h2(x) ≤ 0 and N(x) ≥ 0 to satisfy two
equations (4.5) with p2(x) ≤ 0, there are many ways to do this. A particular
choice of h(x) = h1(x) + ih2(x) and N(x) ≥ 0 yields the surface impedance

ζ(x) of the particles to be embedded around each point x ∈ D, ζ(x) = h(x)
a

by
formula (4.2), and the number of particles per unit volume around the point x,

namely, by formula (1.21) this number is N(x)
a

, so that the number of particles to

be embedded in the volume dx around point x is equal to N(x)
a

dx. The smallest
distance d between the embedded particles should satisfy the inequality d � a.
One may try to take practically d > 10a.

Example 1 Suppose that the elementary subdomain ∆p, used in the proof of
Lemma 3, is a cube with the side b � d, x ∈ ∆p. Let, for example b = 10−2cm,

d = 10−3cm, a = 10−5cm. Then there are
(

b
d

)3
= 103 small particles in ∆p

around a point x, the center of ∆p. The function N(x) in ∆p in this example

is found from the formula N(x)
a

b3 = 103 (use (1.21) with D̃ = ∆p), so N(x) =
10−5 · 103 · 106 = 104. The number of small particles, embedded in the cube
∆p around point x, the center of this cube, is 103 in this example. The relative
volume of these particles in ∆p is 103 · 4

3
π10−15 · 106 = 4.18 · 10−6, so it is quite

small, which is in full agreement with our theory.
The assumption (1.8), specifically, d � a, is compatible with the requirement

(1.21). Indeed, if one denotes by N (D̃) the left side of (1.21), then N (D̃) = O
(

1
a

)
for any D̃ ⊆ D.

Let us assume that D̃ is a unit cube, and denote by N (D̃) the left side of
(1.21). The assumption d � a implies that the number N (D̃) of particles in
D̃ is O

(
1
d3

)
. These relations are compatible if and only if O

(
1
a

)
= O

(
1
d3

)
, i.e.,

d = O(a1/3). Therefore, it is possible to have a → 0, a
d
→ 0 and equation (1.21)

satisfied.
Let us discuss the new material properties, specifically, anisotropy, when

acoustically hard particles are embedded in the domain D, and the assumptions
of Theorem 3 are valid. The physical situation is now quite different from the
one in Theorem 2. From the physical point of view one can anticipate the drastic
difference because the wave scattering by one small acoustically soft particle of
the characteristic size a is isotropic and the scattering amplitude is of order a,
while the wave scattering by a small acoustically hard particle is anisotropic and
the corresponding scattering amplitude is of order k2a3, (see [10], chapter 7). We
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assume that ka � 1, say ka < 0.1, so that the quantity k2a3 = (ka)2a is 100
times less than a.

Example 2 Let us assume again that the small particles are all balls of the same
radius a. Then

Vm =
4

3
πa3, ν(y)|∆p| =

4

3
πa3N (∆p),

where N (∆p) is the number of small particles in a small cube ∆p centered at the

point y. If b is the size of the edge of the cube ∆p, then ν(y) = 4.18 a3

b3
N (∆p),

where 4.18 is an approximate value of 4π
3

. The magnetic polarizability tensor βpj

of a ball of radius a is βpj = −3
2
δpj, while the electric polarizability tensor of a

perfectly conducting ball is 3δij, where

δpj =

{
1, p = j,

0, p 6= j.

These values differ by the factor 4π from the values in [3] because we use the
formula ϕ = 1

4π|x| for the potential of a point charge, while in [3] this potential is
1
|x| . In our example βpj does not depend on m. Therefore the limit (1.28) exists

if the limit (1.29) exists. The limit (1.29) exists if and only if the following limit
exists:

4π

3
lim
a→0

a3
∑

Dm⊂D̃

1 =

∫
D̃

ν(y)dy, (4.7)

where ν(y) is the function defined in (1.29). Thus, in contrast to Example 1,
where N (∆p) = O

(
1
a

)
, we now have N (∆p) = O

(
1
a3

)
. The relative volume of the

small particles in Example 2 is not negligible and does not go to zero as a → 0,
in contrast to Example 1.

Let us discuss the compatibility of the condition d � a and the existence
of the limits (1.28) and (1.29). If the condition d � a is compatible with the
existence of the limit (1.29), then it is compatible with the existence of the limit
(1.28). If the limit (1.29) exists, then a3N(D̃) = O(1), so N(D̃) = O(a−3). On
the other hand, N(D̃) = O(d−3). These relations, in general, are not compatible
because d � a. Let us argue more precisely. Let D̃ = ∆p, where ∆p is a cube
with the edge of size b. Let us assume that the small particles in ∆p are identical
and their characteristic size is a. If (1.29) holds, where ν(y) is continuous, and
if b is small, then the right side of (1.29) equals to ν(y)b3, y ∈ ∆p = D̃. The left
side of (1.29) equals to c3a

3N(∆p), where V = c3a
3 is the volume of one particle,

c3 = 4π
3

if the particle is a ball of radius a. Thus N(∆p) = 1
c3

ν(y) b3

a3 . On the

other hand, N(∆p) = b3

d3 , provided that one assumes that the centers of the small
particles are at the uniform grid, so that there are b

d
centers on the segment of

length b. If 1
c3

ν(y) b3

a3 = b3

d3 , then a
d

=
(

ν(y)
c3

)1/3
. Therefore the condition d � a
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is satisfied only if
(

ν(y)
c3

)1/3 � 1, say
(

ν(y)
c3

)1/3 ≤ 0.1. The number c3 depends on
the shape of the particle. If the particles are balls of radius a, then c3 = 4.18.
Therefore ν(y) ≤ 4.10−3.

The conclusion is:
The condition d � a is compatible with the existence of the limit (1.29) only

if the function ν(y) in (1.29) is sufficiently small.
In general, equation (1.31) cannot be reduced to a local differential equation

for U(x). However, if ν(y) is small, one may use perturbation theory to study
equation (1.31). However, under an additional assumption, reasonable from the
physical point of view, one can reduce integral-differential equation (1.31) to a
differential equation. Namely, let us assume that ν(y) is a continuously differen-
tiable function in D which vanishes near the boundary S.

Under this assumption one can integrate by parts the last integral in (1.31)
and get:

U(x) = u0(x) +

∫
D

G(x, y)
[
∆U(y)ν(y) +

3∑
p,j=1

∂

∂yp

(∂U(y)

∂yj

βpj(y)ν(y)
)]

. (4.8)

Let us apply the operator L0 = ∇2 + k2 − q0(x) to (4.8) and use (1.4) to get:

[∇2 + k2 − q0(y)]U + ν(y)∇2U(x) +
3∑

p,j=1

∂

∂yp

(∂U(x)

∂y
βpj(y) ν(y)

)
= 0, (4.9)

where U(x) satisfies the radiation condition of the type (1.6). This is an elliptic
equation and the perturbation P of the operator L0 is:

PU := ν(x)∇2U(x) +
3∑

p,j=1

∂

∂yp

( ∂U
∂yj

βpj(y) ν(x)
)
. (4.10)

This perturbation is the sum of the terms with positive small coefficient ν(y) in
front of the second derivatives of U and a term with the first order derivatives of
U :

PU = ν(x)
[
∇2U(x) +

3∑
p,j=1

∂

∂xp

(∂U(x)

∂xj

βpj(x)
)]

+
3∑

p,j=1

∂U(x)

∂xj

βpj(x)
∂ν(x)

∂xp

.

(4.11)
If both ν(x) and ∇ν(x) are small, this equation can be studied by perturbation
methods. The physical effect on the properties of the new material, created
by embedding into D small acoustically hard particles, consists in appearing of
anisotropy in the new material: the propagation of waves is described by the
integral-differential equation (4.8) or (under the additional assumption on ν(y),
namely: ν(y) vanishes near the boundary S of D) by the differential equation
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(4.9) with variable coefficients in front of the senior (second order) derivatives
and the terms with the first order derivatives.

The role of the compatibility of the assumption d � a and of the assumption
(1.29) is quite important. Although passing to the limit a → 0, justified in the
proof of Theorem 3, is based on the assumptions (1.28) and (1.29), but without
the assumption d � a one cannot expect, in general, that the effective field ue(x),
acting on any single particle, is practically constant on the distances of the order
2a. This physical assumption is important for our theory.

From the mathematical point of view, if ν(x) is not sufficiently small, then the
existence of the unique solution to equation (4.8) or of the solution to equation
(4.9), satisfying the radiation condition, is not guaranteed.

If, on the other hand, the quantity

sup
x∈R3

(
|ν(x)|+ |∇ν(x)|

)
� 1,

that is, this quantity is sufficiently small, then one can argue that the norm of
the integral operator in (4.8) in L2(D) is small, so that equation (4.8) has a
unique solution in L2(D). This solution admits a natural extension to the whole
space R3 by the right side of (4.8) because ν(y) vanishes outside D. Since G(x, y)
satisfies the radiation condition, the solution to (4.8) also satisfies this condition.
Without the assumption that |ν(x)| + |∇ν(x)| is sufficiently small, one cannot
use the above argument.

With this assumption one may solve equation (4.8) by iterations and find in
this way an approximate solution to this equation. The first iteration yields the
following approximate solution to equation (4.8):

U(x) = u0(x) +

∫
D

G(x, y)
[
∆u0(y)ν(y) +

3∑
p,j=1

∂

∂yp

(∂u0(y)

∂yj

βpj(y) ν(y)
)]

dy.

(4.12)
Formula (4.12) gives the correction to the solution u0(x) of the unperturbed
scattering problem, i.e., the scattering problem in the absence of small bodies.
Since one has

∆u0 = −k2n2
0(x)u0,

(4.12) can be rewritten as:

U(x) = u0(x)− k2

∫
D

G(x, y)n2
0(y)u0(y)ν(y)dy

+

∫
D

G(x, y)
3∑

p,j=1

∂

∂yp

(∂u0(y)

∂yj

βpj(y)ν(y)
)
dy. (4.13)

In [4], Chapter 3, Section 3, the Neumann problem for the Helmholtz equation
with n2

0(x) = 1 was studied in the domain, similar to the one in equation (1.5)
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and it was proved under the assumptions used in [4], that the main term of the
asymptotics of the solution, as the relative volume of the particles tends to zero,
is the incident field, while the next term is proportional to this relative volume.

5 Convergence and compactness estimates

Here we prove that the function ue(x) converges in C(R3) to the limit u(x),
satisfying the integral equation

u(x) = u0(x)−
∫

D

G(x, y) p(y) u(y)dy,

where p(x) is defined in (1.25).
Let us outline the steps of our proof.

Step 1. Let ∆j be the cube with the side b � a
1
6 and center at the point y(j).

The union of the cubes ∆j, 0 ≤ j ≤ J , is a partition of D. Since a > 0 is small,
and d = O(a1/3), one has b � d.

Lemma 5 Assume

d = O(a1/3), σ = O
(1

a

)
, |Sm| = O(a2), N (∆j) = O

(b3

a

)
. (5.1)

Then

lim
b→0

lim
a→0

∑
xm∈∆0

x∈∆0, |x−xm|≥d

∫
Sm

G(x, s) σm(s)ds = 0. (5.2)

We denote by ε(a, b) the sum in (5.2).

Step 2. Let us write

uM(x) = u0(x) +
∑

xm 6∈∆0
x∈∆0

G(x, xm)Qm + ε(a, b) + η(a), (5.3)

where
lim
a→0

η(a) = 0, lim
b→0

lim
a→0

ε(a, b) = 0, (5.4)

and by (2.20),
Qm = −f(xm)aue(xm), (5.5)

where f(x) is a continuous function in D, f(xm) = const h(xm)
1+h(xm)

in (2.24). We

may replace uM(x) by ue(x) and neglect the terms ε(a, b) and η(a) in (5.3) because
of (5.4). Then (5.3) takes the form

ue(x) = u0(x)−
∑

xm 6∈∆0
x∈∆0

G(x, xm) f(xm) ue(xm)a. (5.6)
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We prove that, as a → 0, the set {ue} is uniformly bounded and equicontinuous
in the space C(R3), and uniformly small at infinity. This implies convergence, as
a → 0, in C(R3) of a subsequence, denoted {ue} again. The limit u(x) of this
subsequence satisfies equation (5.14) (see below), which has a unique solution in
C(R3). Thus, the whole set {ue} converges to u(x) as a → 0.

Let us now give the details of these two steps.

Proof of Lemma 5 Write the sum in (5.2) as

Σ := Σ1 + Σ2 :=
∑

xm∈∆0

|xm−x|≥a1/6

+
∑

xm∈∆0

|xm−x|<a1/6

, (5.7)

where {∆j} is a partition of D into a union of nonintersecting cubes with side b
and center y(j), and ∆0 is the cube, containing point x. In the proof of Lemma 5
we only deal with this cube ∆0, and we assume the origin at the point x. Note
that a1/6 = O(d1/2) � d.

Let us estimate Σ2, taking x = 0 to be the origin:

lim
a→0

|Σ2| ≤ lim
a→0

c
∑

d≤|xm|<a1/6

∫
Sm

|σm(s)|ds

|s|

≤ ca2

a

∑
d≤d(i21+i22+i23)1/2≤a1/6

1

d
√

i21 + i22 + i23

≤ ca

a1/3

∫ a1/6

d

1

r2dr

r
= ca2/3(a−1/3 − 1) ≤ ca1/3 → 0, (5.8)

where c > 0 stands for various constants independent of a, and we have used the
assumption d = O(a1/3).

Let us estimate Σ1:

|Σ1| ≤ ca
∑

a1/6≤d(i21+i22+i22)1/2≤b

1

d(i21 + i22 + i23)
1/2

≤ ca

a1/3

∫ b

a1/3

a−1/6

r dr

= ca2/3
( b2

a2/3
− a−1/3

)
≤ cb2−→

b→0
0, b � a. (5.9)

From (5.8) and (5.9) Lemma 5 follows.

Lemma 6 If σm = O( 1
a
) and d = O(a1/3), then

a) sup
0<a<a0

sup
x∈D

|ue(x)| ≤ c, b) sup
0<a<a0

sup
x∈D

|ue(x+∆x)−ue(x)| −→
|∆x|→0

0, (5.10)
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Proof. Let us prove a):

∣∣∣ M∑
m=1

∫
Sm

G(x, s)σm ds
∣∣∣ ≤ ca

M∑
m=1

1

|x− xm|
≤ ca

∑
d≤rd≤L

1

d
√

i21 + i22 + i23

≤ ca

a1/3

∫ L/d

1

dr r = ca2/3
( L2

a2/3
− 1

)
≤ cL2, (5.11)

L = diam D, r =
√

i21 + i22 + i23. Thus, a) is proved.
Let us prove b):

∣∣∣ M∑
m=1

∫
Sm

[
G(x + ∆x)−G(x, s)

]
σm(s)dy

∣∣∣
≤ ca|∆x|

M∑
m=1

max
( 1

|x− xm|
,

1

|x− xm|2
)
≤ c|∆x|a

∑
1≤r≤L

d

1

d2(i21 + i22 + i23)

≤ c|∆x|a1/3

∫ L

a1/3

1

dr = c|∆x|L. (5.12)

Thus b) is proved.

Corollary 1 If σm = O( 1
a
) and d = O(a1/3), then the set {ue(x)}0<a<a0 contains

a convergent in C(D) subsequence:

lim
a→0

‖ue,a(x)− u(x)‖C(D) = 0. (5.13)

We will prove that u(x) := lima→0 ue(x) satisfies the equation

u(x) = u0(x)−
∫

D

G(x, y) p(y) u(y)dy, p(x) :=
4πh(x)

1 + h(x)
N(x). (5.14)

Equation (5.14) has a unique solution in C(D). Therefore every subsequence ue

converges to the same limit u(x). Thus, (5.13) holds for the set ue and not only
for its subsequence.

To prove that equation (5.13) has a unique solution, we note that if u0 = 0,
then the solution to (5.14) solves the Schrödinger equation[

∇2 + k2 − q(x)
]
u = 0 in R3, q := q0(x) + p(x), (5.15)

and satisfies the radiation condition. Since k2 > 0 and Im q ≤ 0, Theorem 1,
proved in Section 3, implies that u = 0.
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Let us derive equation (5.14) for the limit u(x) of ue(x) as a → 0. Taking the
origin at x, one gets:∑

xm 6∈∆0
x∈∆0

G(x, xm)f(xm)ue(xm)a

=
∑

∆j 6=∆0

G(x, y(j)) f(y(j)) ue(y
j)(1 + εj) a

∑
xm∈∆j

1

=
∑

∆j 6=∆0

G(x, y(j)) f(y(j)) ue(y
(j)) ue(y

(j))(1 + εj) aN (∆j)

=
∑

∆j 6=∆0

G(x, y(j)) f(y(j)) ue(y
(j))(1 + εj) N(y(j)) |∆j| . (5.16)

Here limb→0 maxj εj = 0 if ue(x) is continuous in D, because f(y), N(y) and
G(x, y) are continuous functions in D\∆0, G is integral in D, and we have used the
relation (1.21). For any fixed a the function ue(x), defined in (5.6), is continuous
in D. Thus, as maxj diam |∆j| → 0, the right side of (5.16) tends to the limit∫

D

G(x, y) f(y) N(y) u(y)dy,

being the Riemann sum for this integral, and u(x) = lima→0 ue(x), where the
limit can be understood as the limit in C(D)-norm.

Thus, we have proved that ζm = h(xm)
a

, σm = O( 1
a
), d = O(a1/3) and

N (∆) = 1
a

∫
∆

N(x)dx
[
1 + o(1)

]
as a → 0 imply (5.10), the existence of the

limit lima→0 ue(x) = u(x), and equation (5.14).
On the other hand, if (5.10) holds, and

ζm =
h(xm)

a
, d = O(a1/3), N (∆) =

1

a

∫
∆

N(x)dx
[
1 + o(1)

]
as a → 0,

then one can prove that σm = O( 1
a
).

Let us sketch this proof.

The function σ := σj, j = 1, 2, .....,M , solves the equation (2.10). Let us study
the asymptotics, as a → 0, of the solution to equation (2.10) assuming that

ueN
(s) and ue(s) are continuous functions on Sj, and ζj =

hj

a
. The choice of ζj

is in our hands, and we will see that the assumptions about ue are justified. The
equation is

σ = Aσ − 2ζTσ + 2ueN
(s)− 2ζue(s), ζ := ζj, A := Aj, T := Tj. (5.17)

Let ζ−1 := τ . We have:

Tσ = τ
(A− I)σ

2
+ τueN

− ue, τ → 0. (5.18)
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The operator T : H0 → H1 is an isomorphism if Sj is a sphere of a sufficiently
small radius. Here H` = H`(Sj) are the usual Sobolev spaces.

We wish to prove that the main term of the asymptotics of the solution to
(5.18) as τ → 0 is

σ0 = −T−1ue. (5.19)

Equation (5.19) implies σ0 = O( 1
a
). This can be seen from the following argument.

Equation ∫
Sj

σ0(t) dt

4π|s− t|
:= Tσ0 = −ue (5.20)

is the equation for the electrostatic charge density σ0 on the surface Sj of the
perfect conductor Dj, charged to the constant potential −ue. This potential can
be considered constant on Sj because 1

2
diam Sj ≤ a is very small. The total

charge Q0 :=
∫

Sj
σ0 ds = −Cue, where C = O(a) is the electric capacitance of

the conductor with the surface Sj. Since the surface area is O(a2) and
∫

Sj
σ0 ds =

O(a), it follows that σ0 = O( 1
a
). If Sj is a sphere of radius a, then σ0 = const =

−ue

a
. For an arbitrary smooth surface Sj, such that diam Sj ≤ 2a, diffeomorphic

to a sphere, the estimate σ0 = O( 1
a
) follows from the Hopf lemma (the strong

maximum principle), which guarantees that the surface charge density does not
vanish on Sj.

Finally, let us check that σ0 = −T−1ue is the main term of the asymptotics
of the solution σ to (5.18) as τ → 0.

The operator T , Tσ =
∫

Sj

σ(t) dt
4π|s−t| is selfadjoint and positive in H0 = L2(Sj).

The quadratic form (Tσ, σ) := (Tσ, σ)L2(Sj) defines an inner product, and the

corresponding norm is equivalent to the norm in H−1/2 := H−1/2(Sj) (see its
definition in [1]). Let σ0 := −T−1ue. Then equation (5.18) implies(

T (σ − σ0), σ − σ0) = −τ

2
‖σ − σ0‖2 − τ

2
(σ0, σ − σ0) + τ(ueN

, σ − σ0)

+
τ

2

(
(A− I)(σ − σ0), σ − σ0

)
+

τ

2

(
(A− I)σ0, σ − σ0

)
. (5.21)

If Sj is convex, then
(
(A− I)σ, σ

)
≤ 0. Therefore (5.21) implies

‖σ − σ0‖2
−1/2 ≤ cτ‖σ − σ0‖−1/2, (5.22)

where c > 0 is a constant independent of τ , c = c(σ0). As τ → 0, one gets from
(5.22) the inequality

‖σ − σ0‖−1/2 ≤ cτ, τ → 0. (5.23)

Thus, our claim is verified.
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One can prove that the norm in (5.23) can be replaced by the norm of
H`−0.5(Sj) provided that ue and ueN are sufficiently smooth, but we do not go
into detail.

The convexity of Sj is not necessary for our argument, it just simplifies it.
Our conclusions hold without this convexity assumption because A : H` → H`+1

for smooth Sj.
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