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Recently, Randall and Sundrum proposed a static solution to the Einstein equations
in 5 spacetime dimensions with two 3-branes located at the fixed points of S1/Z2 to solve
the hierarchy problem. We extend the solution and construct static and also inflationary
solutions to the Einstein equations in 5 spacetime dimensions, one of which is compactified
on S1, with any number of 3-branes whose locations are taken to be arbitrary. We discuss
how the hierarchy problem can be explained in our model.

1. Introduction Recently, Randall and Sundrum 1) proposed a new interesting
mechanism with a single small extra dimension for solving the hierarchy problem
between the Planck scale and the weak scale. A key ingredient of this mechanism
is that the metric is not factorizable and that the 4-dimensional metric is multiplied
by a warp factor which is a rapidly changing function of the extra dimension. They
explicitly constructed such a solution to the Einstein equations in 5 spacetime di-
mensions, one of which is compactified on S1/Z2, with two 3-branes located at the
fixed points of S1/Z2. For a solution to exist, it is crucial to take into account the
effect of the branes on the bulk gravitational metric.

In the Randall-Sundrum model, the number of 3-branes is 2 and the locations
are taken to be the fixed points of S1/Z2. Although this setup is motivated by recent
developments in string and M-theory, 2) it would be of interest to construct new solu-
tions to the 5-dimensional Einstein equations with many 3-branes. In this paper, we
explicitly construct solutions with an arbitrary number of 3-branes which are put at
arbitrary positions in the direction of the extra dimension. Our motivation for this
is threefold. First, it is known that any number of parallel D-branes can be put at
arbitrary positions and that the gauge dynamics depend on the distances of multiple
D-branes. Thus, it is physically meaningful to construct solutions corresponding to
many 3-branes put at arbitrary positions. Second, many-brane configurations could
explain other hierarchy problems, such as the fermion mass hierarchy. The origi-

∗) E-mail: hatanaka@phys.sci.kobe-u.ac.jp
∗∗) E-mail: sakamoto@phys.sci.kobe-u.ac.jp

∗∗∗) E-mail: motoi@yukawa.kyoto-u.ac.jp
†) E-mail: takenaga@ibmth.df.unipi.it

D
ow

nloaded from
 https://academ

ic.oup.com
/ptp/article/102/6/1213/1923741 by guest on 21 August 2022



1214 Letters Vol. 102, No. 6

nal Randall-Sundrum model gives a solution to the hierarchy problem between the
Planck scale and the weak scale, but it does not solve other hierarchy problems.
In recent works on large extra dimensions, 3) various mechanisms to solve hierarchy
problems have been proposed. Some of the authors have pointed out that multiple
3-branes could account for the fermion mass hierarchy. 4) In this scenario, the mass
hierarchy crucially depends on the distances between 3-branes. Thus, again, it is in-
teresting to consider multiple 3-brane configurations with various distances between
3-branes. Third, in any higher-dimensional model, stabilizing extra dimensions is,
in general, hard to achieve. In Ref. 5) a mechanism for stabilizing extra dimensions
with multiple branes is proposed.

This paper is organized as follows. In 2, we construct static solutions to the
Einstein equations in 5 spacetime dimensions with any number of 3-branes put at
arbitrary positions. In 3, we discuss the hierarchical structure of our model. In 4,
we extend the static solutions found in 2 to inflationary solutions. Conclusions are
given in 5.
2. Many-brane configurations In the Randall-Sundrum model, the orbifold fixed
points of S1/Z2 have been taken as the locations of two 3-branes. Since we would
like to consider any number of 3-branes whose locations are taken to be arbitrary,
we here take a circle S1, rather than S1/Z2, as the compactification of an extra
dimension.∗) The coordinate φ for the extra dimension is taken to extend from 0 to
2π with the identification of (xµ, φ = 0) with (xµ, φ = 2π).

Let us consider N parallel 3-brane configurations in 5 spacetime dimensions.
The i-th 3-brane may be characterized by the location φi and the brane tension Vi

(i = 1, 2, · · · , N). We arrange the locations of the 3-branes such that 0 = φ1 < φ2 <
· · · < φN < 2π. We have here taken the location φ1 of the first 3-brane to be the
origin of S1 for convenience. Since the 5-dimensional spacetime is divided into N
domains by N 3-branes, each domain sandwiched between the i-th and the (i+1)-th
3-branes can have a different 5-dimensional cosmological constant Λi.∗∗) Thus, the
action we start with is given by ∗∗∗)

S = Sgravity +
N∑

i=1

Si,

Sgravity =
∫
d4x

∫ 2π

0
dφ

√−G
{

2M3R−
N∑

i=1

Λi [θ(φ− φi) − θ(φ− φi+1)]

}
,

Si =
∫
d4x

√
−g(i) {Li − Vi} , (1)

where φN+1 ≡ 2π and θ(φ) denotes the Heaviside step function defined such that
θ(φ) = 1 for φ ≥ 0 and θ(φ) = 0 for φ < 0. The quantity Si is the 4-dimensional

∗) Solutions for S1/Z2 may be obtained from those for S1 by imposing the Z2-symmetry.
∗∗) Solutions to the Einstein equations with even numbers of 3-branes are constructed in Ref. 6),

in which the Λi have been taken to be identical for all i. Solutions similar to ours, which describe

multiple intersecting branes, are given in Ref. 7).
∗∗∗) For the conventions, see the original paper of Randall-Sundrum. 1)
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i-th 3-brane action, and the contribution from the Lagrangian Li will be ignored in
the following analysis.

The 5-dimensional Einstein equations for the above action are

√−G
(
RMN − 1

2
GMNR

)
= − 1

4M3


 N∑

i=1

Λi [θ(φ− φi) − θ(φ− φi+1)]
√−GGMN

+
N∑

i=1

Vi

√
−g(i)g(i)

µνδ
µ
Mδν

Nδ(φ− φi)


. (2)

Here we solve the equations using the metric

ds2 = e−2σ(φ)ηµνdx
µdxν + r2

cdφ
2, (3)

taken from Ref. 1). Later we attempt to find solutions describing inflating 3-branes
in 5 spacetime dimensions.

With this form of the metric, the Einstein equations (2) reduce to

(σ′(φ))2 = − r2
c

24M3

N∑
i=1

Λi[θ(φ− φi) − θ(φ− φi+1)], (4)

σ′′(φ) =
rc

12M3

N∑
i=1

Vi δ(φ− φi). (5)

It is not difficult to show that the solution to the above equations has the form

σ(φ) = (λ1 − 0)(φ− φ1)θ(φ− φ1) + (λ2 − λ1)(φ− φ2)θ(φ− φ2)
+ · · · + (λN − λN−1)(φ− φN )θ(φ− φN ), (6)

where the additive integration constant, which is not physically relevant, has been
chosen for later convenience. Since σ(φ) is a function on S1, it has to be periodic,
i.e. σ(2π) = σ(0). This leads to the constraint

N∑
i=1

λi(φi+1 − φi) = 0. (7)

The first equation (4) requires

λi =

√
−Λir2

c

24M3
or −

√
−Λir2

c

24M3
. (i = 1, 2, · · · , N) (8)

We note that every Λi should be negative for the solution to make sense, as pointed
out in Ref. 1). This requirement can, however, be relaxed for inflating solutions, as
we see below. The second equation (5) requires that the 5-dimensional cosmological
constants and the brane tensions be related as

Virc

12M3
= λi − λi−1, (i = 1, 2, · · · , N) (9)
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with λ0 ≡ λN .∗)
Although we have given the exact analytical expression for σ(φ), it may be

instructive to determine this geometrically. The solution (6) turns out to be depicted
as follows: First, specify distinct N points φi which correspond to the locations of
N 3-branes and choose the values of σ(φi) at φ = φi appropriately. The entire φ-
dependence of σ(φ) can then be obtained by connecting two adjacent points σ(φi)
and σ(φi+1) for i = 1, 2, · · · , N by straight lines. In general, each line will be bent at
φ = φi. The slope of the line in the region of φi ≤ φ < φi+1 corresponds to λi, which
is related to Λi through Eq. (8). The difference between the slopes of the adjacent
lines at φ = φi is proportional to the brane tension Vi. Although the solution σ(φ)
can completely be specified by 2N parameters φi and σ(φi) (i = 1, 2, · · · , N), two
of them are not physically relevant. An additive constant to σ(φ) can be absorbed
into an overall constant rescaling of xµ, and an overall shift of φi has no physical
consequence.
3. Hierarchical structure Here we discuss the hierarchical structure of the solution
derived in 2. To this end, the mass scale of all the parameters (Λi, Vi,M and rc) in
the fundamental theory is assumed to be of order the Planck scale.

As mentioned in 2, σ(φ) is specified by φi and σ(φi). Without loss of generality,
we can assume that σ(φi) ≥ σ(φ1) = 0. As was done in Ref. 1), we can derive the
4-dimensional effective theory by performing the φ integral. It turns out that the
square of the Planck mass on every 3-brane has the same value, i.e.,

M2
Pl = M3rc

∫ 2π

0
dφ e−2σ(φ)

= M3rc

[(
1

2λ1
− 1

2λN

)
+

N∑
i=2

(
1

2λi
− 1

2λi−1

)
e−2σ(φi)

]
. (10)

This relation is consistent with the assumption that M and rc are of order the Planck
scale if the λi are of order 1 and σ(φi) 
 1 for i = 2, 3, · · · , N .

Now, the hierarchical structure of our model is obvious. Although the 4-
dimensional (effective) Newton constant is observed to be of order M−2

Pl for ev-
ery brane, the physical mass scales for the i-th brane will reduce by the warp fac-
tor e−σ(φi) from the fundamental parameters not far from the Planck scale. The
Randall-Sundrum scenario works well in our model, but we can obtain a variety of
the hierarchy between the Planck scale and physical mass scales, which is not seen in
the original Randall-Sundrum solution. Thus, in our model the hierarchy problem
may be explained as follows: The reason why the hierarchy between the TeV scale
and the Planck scale is observed in our world is merely that we happen to live on a
3-brane whose warp factor is of order 10−15.
4. Inflating 3-branes Here, we obtain solutions describing inflating 3-branes in 5
spacetime dimensions. To this end, we use the metric: 8), 9),∗∗)

ds2 = a(φ)2(−dt2 + v(t)2δijdxidxj) + r2
cdφ

2. (11)
∗) To obtain the relation for i = 1, we need to use the periodicity of σ(φ).

∗∗) Other parametrizations are also possible. For example, see Ref. 10).
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With this form of the metric, the Einstein equations (2) reduce to

v̈(t)
v(t)

=
(
v̇(t)
v(t)

)2

, (12)

(
a′(φ)
a(φ)

)2

=
r2
c

a(φ)2

(
v̇(t)
v(t)

)2

− r2
c

24M3

N∑
i=1

Λi[θ(φ− φi) − θ(φ− φi+1)], (13)

a′′(φ)
a(φ)

= − r2
c

24M3

[
N∑

i=1

Λi[θ(φ− φi) − θ(φ− φi+1)] +
2
rc

N∑
i=1

Viδ(φ− φi)

]
, (14)

where primes and dots denote derivatives with respect to φ and t, respectively. The
first equation (12) can easily be solved as

v(t) = v(0)eHt, (15)

where H corresponds to the expansion rate along a 3-brane after the coefficient of
dt2 is normalized to unity on the 3-brane.

Although we have not found a simple expression for a(φ), like Eq. (6), solutions
to the above equations turn out to be of the form

a(φ) = αie
ωiφ + βie

−ωiφ for φi ≤ φ < φi+1. (16)

Requiring that a(φ) be continuous at φ = φi (i = 1, 2, · · · , N) leads to ∗)

αNe
2πωN + βNe

−2πωN = α1 + β1,

αi−1e
ωi−1φi + βi−1e

−ωi−1φi = αie
ωiφi + βie

−ωiφi . (i = 2, 3, · · · , N) (17)

Substituting the expressions (15) and (16) into Eq. (13) leads to

(ωi)2 = − Λir
2
c

24M3
, (i = 1, 2, · · · , N) (18)

H2 =
Λiαiβi

6M3
. (i = 1, 2, · · · , N) (19)

It may be worth noting that the first relation (18) does not necessarily imply that Λi

is negative. Solutions may exist even when Λi > 0. In this case, ωi is purely imagi-
nary, and the exponential functions in Eq. (16) should be replaced by trigonometric
functions. Furthermore, even if H2 is negative, we would obtain physically mean-
ingful solutions by analytic continuation. 9) The last equation (14) can be satisfied
provided (

ωi +
Virc

12M3

)
αie

ωiφi −
(
ωi − Virc

12M3

)
βie

−ωiφi

= ωi−1αi−1e
ωi−1φi − ωi−1βi−1e

−ωi−1φi , (i = 1, 2, · · · , N) (20)

where ω0 ≡ ωN , α0 ≡ αN and β0 ≡ βN .
∗) The continuity condition at φ = φ1 = 0 implies that a(2π) = a(0).
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The above solutions for N = 1 and 2 (one and two 3-branes) are investigated
in Refs. 8) and 9). It, however, seems difficult to analyze the solutions for general
N thoroughly. We will not proceed further in this paper. Some of the physical
implications of our solutions may be found in Refs. 8) and 9).
5. Conclusion In this paper, we have found new solutions to the Einstein equa-
tions in 5 spacetime dimensions with many 3-branes. The original Randall-Sundrum
solution contains only two 3-branes whose locations are fixed at the orbifold fixed
points of S1/Z2, and is static. In our model, any number of parallel 3-branes can be
put at arbitrary locations in the direction of the 5th dimension, and the brane ten-
sions and the cosmological constants of the 5-dimensional bulks sandwiched between
the 3-branes can, in general, be taken to have different values, though they must
satisfy some fine tuning relations for solutions to exist. We have further succeeded
in extending the static solutions to the inflationary solutions, though our analysis is
far from complete. As in the Randall-Sundrum model, our model can give a solution
to the hierarchy problem between the Planck scale and the TeV scale. Although
the Randall-Sundrum model does not answer other hierarchy problems such as the
fermion mass hierarchy, the existence of multiple 3-branes in our model could offer
a mechanism to solve them. A final comment is that although the 5th dimension is
compactified on S1, our solutions will persist on a non-compact space. This can be
seen by simply ignoring the periodicity condition.
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work of M. T. was supported in part by the Japan Society for the Promotion of
Science. K. T. would like to thank the I. N. F. N. Sezione di Pisa for hospitality.
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