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Abstract

The Ohta-Kawasaki density functional theory of diblock copolymers gives rise to a nonlocal

free boundary problem. Under a proper condition between the block composition fraction and

the nonlocal interaction parameter, a pattern of a single droplet is proved to exist in a general

planar domain. A smaller parameter range is identified where the droplet solution is stable.

The droplet is a set which is close to a round disc. The boundary of the droplet satisfies an

equation that involves the curvature of the boundary and a quantity that depends nonlocally

on the whole pattern. The location of the droplet is determined by the regular part of a Green’s

function of the domain. This droplet pattern describes one cylinder in space in the cylindrical

phase of diblock copolymer morphology.
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1 Introduction

A diblock copolymer melt is a soft material, characterized by fluid-like disorder on the molecular
scale and a high degree of order at a longer length scale. A molecule in a diblock copolymer is a linear
sub-chain of A-monomers grafted covalently to another sub-chain of B-monomers. Because of the
repulsion between the unlike monomers, the different type sub-chains tend to segregate, but as they
are chemically bonded in chain molecules, segregation of sub-chains cannot lead to a macroscopic
phase separation. Only a local micro-phase separation occurs: micro-domains rich in A monomers
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‡Supported in part by NSF grant DMS-0509725.
§Supported in part by an Earmarked Grant of RGC of Hong Kong.

1



and micro-domains rich in B monomers emerge as a result. These micro-domains form patterns that
are known as morphology phases. Various phases, including lamellar, cylindrical, spherical, gyroid,
have been observed in experiments.

Powerful methods in statistical physics have made it possible to derive a macroscopic model for
monomer density fields from a microscopic model based on chain molecule formation and monomer
interaction. A self consistent field theory (SCFT, see Helfand [13], Helfand and Wasserman [14, 15,
16], Hong and Noolandi [17, 18]) was developed, which was followed naturally by a density functional
theory (DFT, see Ohta and Kawasaki [27]).

However there is generic criticism (see Bates and Fredrickson [4]) about the existing theoretical
techniques of free energy minimization in the physics literature. They proceed by assuming a periodic
structure, computing its free energy and then comparing that free energy to the free energy of other
candidate test fields, (see, for instance, Matsen and Schick [21]). These test fields in general do not
satisfy the Euler-Lagrange equation of the free energy.

In this paper we rigorously study the cylindrical phase of the diblock copolymer morphology by
constructing an exact analytic solution that models one cylinder in a block copolymer melt. We
identify two parameter ranges, one for the existence of a cylinder and one for the stability of the
cylinder. The cross section of the cylinder is proved to be approximately a small, round disc. The
location of this disc is determined by the geometry of the copolymer sample via a Green’s function.

Consider a two dimensional bounded and sufficiently smooth domain D, which is a cross section of
a diblock copolymer melt and perpendicular to a cylinder in the melt. The A-monomers occupy the
subset E and the B-monomers occupy the compliment D\E. The interface between the A-monomer
regions and B-monomer regions is ∂DE, which is the part of the boundary of E that is in D. Denote
the Lebesgue measure of E by |E| and set χE to be the characteristic function of E, i.e. χE(x) = 1
if x ∈ E, and χE(x) = 0 if x ∈ D\E. Let a be the block composition fraction, i.e. the number of
the A-monomers divided by the number of all the A- and B- monomers in a polymer chain. Given
a fixed number a ∈ (0, 1) we look for a subset E of D and a number λ such that ∂DE is a smooth
curve, or a union of several smooth curves, |E| = a|D|, and at every point on ∂DE,

H(∂DE) + γ(−∆)−1(χE − a) = λ. (1.1)

Here H(∂DE) is the curvature of ∂DE viewed from E and γ is a given positive parameter. The
expression (−∆)−1(χE − a) is the solution v of the problem

−∆v = χE − a in D, ∂νv = 0 on the boundary of D, v = 0

where the bar over a function is the average of the function over its domain, i.e.

v =
1

|D|

∫

D

v(x) dx.

Because (−∆)−1 is a nonlocal operator, the free boundary problem (1.1) is nonlocal.
The equation (1.1) is the Euler-Lagrange equation of the following variational problem.

J(E) = |DχE |(D) +
γ

2

∫

D

|(−∆)−1/2(χE − a)|2 dx. (1.2)

The admissible set Σ of the functional J is the collection of all measurable subsets of D of measure
a|D| and of finite perimeter, i.e.

Σ = {E ⊂ D : E is Lebesgue measurable, |E| = a|D|, χE ∈ BV (D)}. (1.3)
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Here BV (D) is the space of functions of bounded variation on D. The nonlocal integral operator
(−∆)−1 is defined by solving

−∆v = q in D, ∂νv = 0 on the boundary of D, v = 0

for q ∈ L2(D), q = 0. Then (−∆)−1/2 is the positive square root of (−∆)−1. There are two
parameters in (1.2): a and γ.

Since χE ∈ BV (D), we view DχE , the derivative of χE , as a vector valued, signed measure, and
let |DχE | be the positive total variation measure of DχE . The first term in (1.2), |DχE |(D), is the
|DχE | measure of the entire domain D. When ∂DE is a smooth curve, or a union of smooth curves,
|DχE |(D) is just the length of ∂DE. The constant λ in (1.1) comes as a Lagrange multiplier from
the constraint |E| = a|D|.

Nishiura and Ohnishi [25] formulated the Ohta-Kawasaki theory on a bounded domain as a
singularly perturbed variational problem with a nonlocal term and also identified the free boundary
problem (1.1). Ren and Wei [30] showed that (1.2) is a Γ-limit of the singularly perturbed variational
problem. See the last section for more discussion on the Ohta-Kawasaki theory and Γ-convergence.

Since then much work has been done to these problems. The lamellar phase is studied in Ren
and Wei [30, 32, 33, 37, 38], Fife and Hilhorst [12], Chen and Oshita [5], and Choksi and Sternberg
[9]. The work of Müller [24] is related to the lamellar phase in the case a = 1/2, as observed in
[25]. Radially symmetric bubble and ring patterns are studied in Ren and Wei [31, 36, 39]. A
triblock copolymer is studied in Ren and Wei [35]. Teramoto and Nishiura [41] studied the gyroid
phase numerically. Mathematically strict derivations of the density functional theories for diblock
copolymers, triblock copolymers and polymer blends are given in Choksi and Ren [7, 8], and Ren
and Wei [34]. Also see Ohnishi and Nishiura [26], Ohnishi et al [26], and Choksi [6].

An explicit solution is easily found when the domain D itself is a disc and E a concentric disc
of smaller radius. On a general domain Oshita [28] proved that for any a ∈ (0, 1), there is γ0 such
that if γ < γ0, (1.1) admits a solution of measure a|D|, which is close to a disc. The bound γ0 for γ
depends on a.

The cylindrical phase occurs in a diblock copolymer melt only if a is relatively close to 0 (or
close to 1) and γ is sufficiently large. Then the A-monomers (or B-monomers respectively) form
parallel cylinders in a sample and the B-monomers (or A-monomers respectively) occupy the rest of
the sample. If we look at a cross section, then the A-monomers form a number of droplets in a two
dimensional region. Unfortunately Oshita’s result does not cover this parameter range.

In this paper we prove a stronger result that contains Oshita’s as a special case, and also covers
the relevant parameter range for the cylindrical phase of diblock copolymer morphology.

We look for a solution which is close to a disc in a general domain, i.e. a single droplet pattern.
Set ρ > 0 so that

πρ2 = a|D|. (1.4)

From now on ρ replaces a as one of the two parameters of the problem. We need a crucial gap
condition. Given any ǫ > 0 assume that ρ, γ satisfy

|γρ3 − 2n(n + 1)| > ǫn2, for all n = 2, 3, 4, ... (1.5)

Under (1.5), a gap condition, there exists δ > 0 such that a single droplet solution exists if

γρ4 < δ (1.6)
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The situation studied by Oshita, i.e. ρ is fixed and γ is sufficiently small depending on ρ, is a
special case included in our study. This is because for any ǫ, when ρ is fixed, one may take γ to be
sufficiently small so that both (1.5) and (1.6) hold. Our result also allows ρ to be small and γ to
be large, as long as (1.5) and (1.6) hold. The latter is the situation for a diblock copolymer in the
cylindrical phase.

When intervals around 2n(n + 1), n = 2, 3, ..., in (1.5) are deleted, the width of the intervals,
2ǫn2, grows as n becomes large. At some point an interval will include nearby members in the
sequence 2n(n + 1). When this happens, γρ3 can not be placed above such 2n(n + 1). This implies
that there exists C > 0 depending on ǫ such that

γρ3 < C. (1.7)

Whether the solution found here is stable depends on how (1.5) is satisfied. It is stable, if

γρ3 − 2n(n + 1) < −ǫn2, for all n ≥ 2, (1.8)

Otherwise the solution is unstable. The solution found by Oshita satisfies (1.8) and hence is stable.
Although ρ may not be small, one needs to impose an upper bound, as in [28]. Let

G(x, y) =
1

2π
log

1

|x − y| + R(x, y) (1.9)

be the Green’s function of −∆ with the Neumann boundary condition. In this paper the Green’s
function G satisfies

−∆xG(x, y) = δ(x − y) − 1

|D| in D, ∂ν(x)G(x, y) = 0 on ∂D, G(·, y) = 0 for every y ∈ D. (1.10)

Here ∆x is the Laplacian with respect to the x-variable of G and ∂ν(x) is the outward normal

derivative at x ∈ ∂D. The function R is the regular part of G. Let R̃(x) = R(x, x). Since R̃(x)
tends to ∞ as x tends to ∂D, R̃ has a at least global minimum in D. The distance from any global
minimum of R̃ to the boundary of D must be strictly greater than ρ, i.e.

ρ < min{|x − y| : y ∈ ∂D, x ∈ D, R̃(x) = min
z∈D

R̃(z)}. (1.11)

The main result of this paper is the following.

Theorem 1.1 For any ǫ > 0 there exists δ > 0 such that when ρ and γ satisfy (1.5) and (1.6),
(1.1) admits a solution of a single droplet pattern. Moreover

1. the radius of the droplet is ρ + O(γρ5);

2. the center of the droplet is near a global minimum of R̃ in D;

3. if (1.5) is satisfied and

γρ3 − 2n(n + 1) < −ǫn2, for all n ≥ 2,

then the droplet solution is stable;
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4. if (1.5) is satisfied and

ǫn2 < γρ3 − 2n(n + 1), and γρ3 − 2(n + 1)(n + 2) < −ǫ(n + 1)2

for some n ≥ 2, then the droplet solution is unstable.

Therefore in order to have a solution, we take γρ3 to be of order O(1), make sure that γρ3 stays
away from the sequence 2n(n + 1), n = 2, 3, 4, ..., and make γρ4 small. To have a stable solution we
simply take

γρ3 < 12 − 4ǫ and γρ4 ≪ 1. (1.12)

The theorem is proved by a variant of the Lyapunov-Schmidt reduction procedure. In Section 2
we construct a family of approximate solutions of round discs parametrized by their centers. They
form a two dimensional manifold. In Section 3 we perturb each disc a bit to find a set which solves
(1.1) up to translation in a subspace approximately normal to the manifold. These perturbed discs
form a new manifold that consists of solutions of (1.1) modulo translation. In this step we use
a fixed point argument, for which the linearization of (1.1) at each approximate solution must be
analyzed and the second Fréchet derivative computed. The obstacle to the invertibility of the linear
operator is an oscillation phenomenon, i.e. oscillation of the boundary of the perturbed disc. The
gap condition (1.5) ensures that oscillation does not happen. In Section 4 a particular perturbed disc
in the new manifold is found, which solves (1.1) exactly. The location of this particular perturbed
disc is determined by minimizing J on the new manifold. To show that the minimizer is indeed an
exact solution of (1.1), we use a tricky re-parametrization argument.

The main difficulty in this approach for the wide parameter range (1.6) lies in the analysis of
the nonlocal part of (1.1), such as the proofs of Lemmas 3.1 and 3.3. It involves a singular integral
operator similar to the Hilbert transform. In the case that γ is small, studied in [28], one does not
need these sharp estimates. Only when ρ is small, it is crucial to carry out estimates to such extend.

The gap condition (1.5) suggests bifurcations to non-circular shapes, when γρ3 becomes close
to 2n(n + 1). Gap conditions have appeared before in constructing layered solutions for singularly
perturbed problems. See Malchiodi and Montenegro [20], del Pino, Kowalczyk and Wei [11], Pacard
and Ritoré [29], and the references therein.

Denote by S1 the interval [0, 2π] with 0 and 2π identified. The L2 space on S1 is L2(S1). The
inner product in L2(S1) is denoted by 〈·, ·〉. Let {u1, u2, ...}⊥ be the closed subspace of L2(S1) whose
elements are perpendicular to u1, u2, .... The L2 norm is denoted by ‖ · ‖L2 , and the L∞ norm by
‖ · ‖L∞ . The Sobolev W 2,k space is denoted by Hk(S1) where k ≥ 1 is an integer. The W 2,k norm
is denoted by ‖ · ‖Hk .

We use C to denote a positive constant which is independent of a, ρ, γ, and the points ξ in U ,
where U is a subset of D given in Section 2. C can only depend on D and ǫ. The value of C may
change from place to place.

The complex eiθ is written instead of (cos θ, sin θ) for a simpler notation even though no complex
structure is assumed on R2. The reader will see things like eiθ · x which is simply the inner product
of two real vectors eiθ and x.

From now on we assume that ǫ > 0 is given and (1.5) is satisfied.
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2 Approximate solutions

Let U be an open neighborhood of the set {x ∈ D : R̃(x) = miny∈D R̃(y)}. The last set consists of

the global minima of R̃ and is compact. By taking U to be sufficiently close to {x ∈ D : R̃(x) =
miny∈D R̃(y)} we assume that the closure of U , U , is also a subset of D.

For each ξ ∈ U let
Bξ = {x ∈ D : |x − ξ| < ρ} (2.1)

be an approximate solution which is a disc of radius ρ and centered at ξ. Because of (1.11) by taking
U to be sufficiently close to {x ∈ D : R̃(x) = miny∈D R̃(y)} we have Bξ ⊂ D for all ξ ∈ U .

A perturbed disc Eφ is characterized by a 2π periodic function φ(θ) so that

Eφ = {ξ + αeiθ : θ ∈ [0, 2π], α ∈ [0,
√

ρ2 + φ(θ))}, (2.2)

and the boundary of the perturbed disc Eφ is a curve parametrized by θ: ξ +
√

ρ2 + φ(θ)eiθ. We
will restrict the size of φ so that ρ2 + φ is always positive. Moreover it is always assumed that

∫ 2π

0

φ(θ) dθ = 0. (2.3)

This ensures that the size of Eφ remains a|D|:

|Eφ| =

∫ 2π

0

∫ √
ρ2+φ(θ)

0

r drdθ =

∫ 2π

0

ρ2 + φ(θ)

2
dθ = πρ2 = a|D|

The arc-length of ∂DEφ can be expressed as

|DχEφ
|(D) =

∫ 2π

0

√
ρ2 + φ(θ) +

(φ′(θ))2

4(ρ2 + φ(θ))
dθ (2.4)

The nonlocal part of J in (1.2) may be written in terms of φ as

γ

2

∫

D

|(−∆)−1/2(χEφ
− a)|2 dx =

γ

2

∫

Eφ

∫

Eφ

G(x, y) dxdy

=
γ

2

∫ 2π

0

dθ

∫ √
ρ2+φ(θ)

0

dr

∫ 2π

0

dω

∫ √
ρ2+φ(ω)

0

dt G(ξ + reiθ, ξ + teiω)rt. (2.5)

In terms of φ the curvature at a point on ∂DEφ corresponding to θ is

H(φ)(θ) =
ρ2 + φ(θ) + 3(φ′(θ))2

4(ρ2+φ(θ)) −
φ′′(θ)

2

(ρ2 + φ(θ) + (φ′(θ))2

4(ρ2+φ(θ)) )
3/2

(2.6)

The nonlocal part in (1.1) may be written as

γ(−∆)−1(χEφ
− a)(θ)

= γ

∫

Eφ

G(ξ +
√

ρ2 + φ(θ)eiθ, y) dy
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= γ

∫ 2π

0

∫ √
ρ2+φ(ω)

0

G(ξ +
√

ρ2 + φ(θ)eiθ, ξ + teiω)t dtdω

= −γ log ρ

2π
|Eφ| −

γ

2π

∫ 2π

0

∫ √
ρ2+φ(ω)

0

log |
√

1 +
φ(θ)

ρ2
eiθ − teiω

ρ
|t dtdω

+γ

∫ 2π

0

∫ √
ρ2+φ(ω)

0

R(ξ +
√

ρ2 + φ(θ)eiθ, ξ + teiω)t dtdω (2.7)

The first term in (2.7) is only a constant. The second and the third terms are defined to be

A(φ) = −γρ2

2π

∫ 2π

0

∫ √
1+φ(ω)/ρ2

0

log |
√

1 +
φ(θ)

ρ2
eiθ − seiω|s dsdω (2.8)

Bξ(φ) = γ

∫ 2π

0

∫ √
ρ2+φ(ω)

0

R(ξ +
√

ρ2 + φ(θ)eiθ, ξ + teiω)t dtdω (2.9)

Note that the operators H and A are independent of ξ while the operator Bξ does depend on ξ.

Remark 2.1 The expressions (2.6) and (2.7) may be obtained by calculating the variations of (2.4)
and (2.5) with respect to φ. Then there will be an extra 1

2 in front of both (2.6) and (2.7).

Let Sξ be the operator that appears on the left side of (1.1) projected to {1}⊥, i.e.

Sξ(φ) = H(φ) + A(φ) + Bξ(φ) + λξ(φ) (2.10)

Here λξ(φ) ∈ R is a number so chosen that

Sξ(φ) :=
1

2π

∫ 2π

0

Sξ(φ) dθ = 0. (2.11)

The subscript ξ indicates that Sξ depends on ξ, because Bξ (and consequently λξ) does. Eφ is a
solution of (1.1) if and only if

Sξ(φ) = 0. (2.12)

The first Fréchet derivative of Sξ is given by

H′(φ)(u) = H1(φ)u + H2(φ)u′ + H3(φ)u′′ (2.13)

A′(φ)(u)(θ) = − γ

4π

∫ 2π

0

u(ω) log |
√

1 +
φ(θ)

ρ2
eiθ −

√
1 +

φ(ω)

ρ2
eiω| dω −

γu(θ)

4π
√

1 + φ(θ)/ρ2

∫ 2π

0

∫ √
1+φ(ω)/ρ2

0

(
√

1 + φ(θ)
ρ2 eiθ − seiω) · eiθ

|
√

1 + φ(θ)
ρ2 eiθ − seiω|2

s dsdω.(2.14)

B′
ξ(φ)(u)(θ) =

γ

2

∫ 2π

0

u(ω)R(ξ +
√

ρ2 + φ(θ)eiθ, ξ +
√

ρ2 + φ(ω)eiω) dω

+
γu(θ)

2
√

ρ2 + φ(θ)

∫

Eφ

∇R(ξ +
√

ρ2 + φ(θ)eiθ, y) · eiθ dy. (2.15)
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The derivative of the operator λξ is so chosen that

S′
ξ(φ) = H′(φ) + A′(φ) + B′

ξ(φ) + λ′
ξ(φ), S′

ξ(φ)(u) = 0. (2.16)

We have abused the notations a bit in (2.13). The operator H is also viewed as a function of φ, φ′

and φ′′, i.e.

H(φ, φ′, φ′′) =
ρ2 + φ + 3(φ′)2

4(ρ2+φ) −
φ′′

2

(ρ2 + φ + (φ′)2

4(ρ2+φ) )
3/2

.

The derivatives of H with respect to φ, φ′ and φ′′ are denoted by H1, H2 and H3 respectively.

Lemma 2.2 ‖Sξ(0)‖L∞ = O(γρ3).

Proof. Compute v = (−∆)−1(χBξ
− a). Define

P (x) =

{
− |x|2

4 + ρ2

4 − ρ2

2 log ρ, if |x| < ρ

−ρ2

2 log |x|, if |x| ≥ ρ
.

Then −∆P (· − ξ) = χBξ
. Write v = P (· − ξ) + Q(·, ξ). Clearly

−∆Q(x, ξ) = −a, ∂ν(x)Q(x, ξ) = ∂ν
ρ2

2
log |x − ξ| on ∂D, Q(·, ξ) = −P (| · −ξ|).

Here the Laplacian ∆ and the outward normal derivative ∂ν(x) are taken with respect to x. Note
that the Green’s function G satisfies the equation (1.10). Recall that the regular part of the Green
function G is denoted by R. Then one sees that Q(x, ξ) and πρ2R(x, ξ) satisfy the same equation
and the same boundary condition. Therefore they can differ only by a constant. This constant is
Q(·, ξ) − πρ2R(·, ξ). But v = G(·, ξ) = 0 implies that this constant is also equal to

−ρ2

2
log | · −ξ| − P (· − ξ) =

πρ4

8|D| .

Hence

Q(x, ξ) = πρ2R(x, ξ) +
πρ4

8|D| . (2.17)

Therefore at each ξ + ρeiθ,

H(0)(θ) + γ(−∆)−1(χBξ
− a)(θ) =

1

ρ
+ γv(ξ + ρeiθ)

=
1

ρ
+ γ[−ρ2 log ρ

2
+ πρ2R(ξ + ρeiθ, ξ) +

πρ4

8|D| ]

=
1

ρ
+ γ[−ρ2 log ρ

2
+ πρ2R(ξ, ξ) +

πρ4

8|D| ] + O(γρ3)

Note that on the last line every term except O(γρ3) is independent of θ. Since H(0)+γ(−∆)−1(χBξ
−

a) and Sξ(0) also differ by a constant only,

Sξ(0) = H(0)+γ(−∆)−1(χBξ
−a)+

γ log ρ

2π
|Bξ|+λξ(0) =

1

ρ
+γ[πρ2R(ξ, ξ)+

πρ4

8|D| ]+λξ(0)+O(γρ3).
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If we integrate Sξ(0) with respect to θ over [0, 2π], then Sξ(0) = 0 implies that

1

ρ
+ γ[πρ2R(ξ, ξ) +

πρ4

8|D| ] + λξ(0) = O(γρ3).

Hence Sξ(0) = O(γρ3).

Lemma 2.3 J(Bξ) = 2πρ +
π2γρ4

2
[
− log ρ

2π
+

1

8π
+ R̃(ξ) +

ρ2

4|D| ].

Proof. Let v = (−∆)−1(χBξ
− a) = P (· − ξ) + Q(·, ξ) as in the proof of Lemma 2.2. The local

part of J(Bξ) is just the arc length
2πρ. (2.18)

The nonlocal part of J(Bξ) is

γ

2

∫

D

|(−∆)−1/2(χBξ
− a)|2 dx

=
γ

2

∫

D

(χBξ
− a)v(x) dx =

γ

2

∫

D

χBξ
v(x) dx =

γ

2

∫

Bξ

v(x) dx

=
γ

2
[

∫

B0

P (x) dx +

∫

Bξ

Q(x, ξ) dx] (2.19)

From the definition of P one finds that
∫

B0

P (x) dx =
πρ4

8
− πρ4 log ρ

2
. (2.20)

For the integral of Q, note that, since ∆Q(·, ξ) = a, Q(x, ξ) − a
4 |x − ξ|2 is harmonic in x. By the

Mean Value Theorem for harmonic functions
∫

Bξ

Q(x, ξ) dx =

∫

Bξ

(Q(x, ξ) − a

4
|x − ξ|2) dx +

∫

Bξ

a

4
|x − ξ|2 dx

= πρ2Q(ξ, ξ) +
π2ρ6

8|D| = π2ρ4R(ξ, ξ) +
π2ρ6

4|D| (2.21)

The lemma then follows from (2.18), (2.19), (2.20) and (2.21).

3 Reduction to two dimensions

One views Sξ as a nonlinear operator from H2(S1) ∩ {1}⊥ to L2(S1) ∩ {1}⊥. In this section it will
be proved that, for each ξ ∈ U , a function ϕ(·, ξ) exists such that ϕ(·, ξ) ⊥ cos θ, ϕ(·, ξ) ⊥ sin θ and

Sξ(ϕ(·, ξ))(θ) = A1,ξ cos θ + A2,ξ sin θ (3.1)

for some A1,ξ, A2,ξ ∈ R. The equation (3.1) is written as

ΠSξ(ϕ(·, ξ)) = 0 (3.2)
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where Π is the orthogonal projection operator from L2(S1) ∩ {1}⊥ to L2(S1) ∩ {1, cos θ, sin θ}⊥.
Roughly speaking the functions cos θ and sin θ correspond to translations in space. By solving

(3.2) we are solving (1.1) modulo translation. In the next section we will find a particular ξ, say ζ,
such that A1,ζ = A2,ζ = 0, i.e. Sζ(ϕ(·, ζ)) = 0. This means that by finding ϕ in this section one
reduces the original problem (1.1) to a problem of finding a ζ in a two dimensional set U .

Let Lξ be the linearized operator of Sξ at φ = 0, i.e.

Lξ(u) = S′
ξ(0)(u). (3.3)

Lξ maps from H2(S1) ∩ {1}⊥ to L2(S1) ∩ {1}⊥. Expand Sξ(φ) as

Sξ(φ) = Sξ(0) + Lξ(φ) + Nξ(φ) (3.4)

where Nξ is a higher order term defined by (3.4). Rewrite (3.2) in a fixed point form:

φ = −(ΠLξ)
−1(ΠSξ(0) + ΠNξ(φ)) (3.5)

Before solving (3.5), one must estimate the linear operator ΠLξ.

Lemma 3.1 Let γ and ρ satisfy the gap condition (1.5).

1. There exists C > 0 independent of ξ, ρ and γ such that

‖u‖L2 ≤ Cρ3‖ΠLξ(u)‖L2

for all u ∈ H2(S1) ∩ {1, cos θ, sin θ}⊥.

2. If (1.8) is satisfied, then
‖u‖2

L2 ≤ Cρ3〈ΠLξ(u), u〉.

3. The operator ΠLξ is invertible from H2(S1)∩ {1, cos θ, sin θ}⊥ onto L2(S1)∩ {1, cos θ, sin θ}⊥
and there exists C > 0 independent of ξ, ρ and γ such that

‖u‖H2 ≤ Cρ3‖ΠLξ(u)‖L2

for all u ∈ H2(S1) ∩ {1, cos θ, sin θ}⊥.

4. Under (1.8), Part 2 can be improved to

‖u‖2
H1 ≤ Cρ3〈ΠLξ(u), u〉.

Proof. Without the loss of generality assume that ξ = 0 and set B = Bξ, L = Lξ, etc, in this
proof.

The derivative of H + A at 0 is calculated in Appendix A. Denote it by L1, which is

L1(u) = (H′(0) + A′(0))(u) (3.6)

= − 1

2ρ3
(u′′ + u) − γ

8π

∫ 2π

0

u(ω) log(1 − cos(θ − ω)) dω − γu

4
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Note that ΠL1 = L1 on H2(S1)∩{1, cos θ, sin θ}⊥ because L1 maps from H2(S1)∩{1, cos θ, sin θ}⊥
to L2(S1) ∩ {1, cos θ, sin θ}⊥.

The Fourier coefficients of log(1 − cos(θ)) is given by

∫ 2π

0

log(1 − cos θ)e−inθ dθ = −2π

|n| , |n| ≥ 1. (3.7)

Because u ⊥ 1, the n = 0 coefficient is not needed. The formula (3.7) is equivalent to the well known
formula

− log |2 sin(
θ

2
)| =

∞∑

n=1

cos nθ

n
.

(See Tolstov [42, Page 93], e.g.)
In the Fourier space, L1 is diagonalized and written as

L̂1(u)(n) = û(n)[
n2 − 1

2ρ3
− γ(

1

4
− 1

4|n| )], |n| = 1, 2, 3, ..., (3.8)

where

û(n) =

∫ 2π

0

u(θ)e−inθ dθ

is the n-th Fourier coefficient of u.
The eigen pairs, in H2(S1) ∩ {1}⊥, are

λn =
n2 − 1

2ρ3
− γ(n − 1)

4n
, en = cos nθ, sin nθ; n = 1, 2, ... (3.9)

In this lemma the operator ΠL’s domain is perpendicular to cos θ and sin θ, so we discard the eigen
pair λ1 and e1 = cos θ, sin θ. The gap condition (1.5) ensures that, with n ≥ 2,

|λn| >
ǫ(n − 1)n

4ρ3
≥ ǫ

2ρ3
, (3.10)

which implies
‖u‖L2 ≤ Cρ3‖L1(u)‖L2 , (3.11)

for all u ∈ H2(S1) ∩ {1, cos θ, sin θ}⊥. Under the condition (1.8)

λn >
ǫ

2ρ3
, (3.12)

which implies
‖u‖2

L2 ≤ Cρ3〈Π(L1(u), u〉. (3.13)

Moreover the gap condition also asserts that

|λn|
n2

>
ǫ(n − 1)n

4n2ρ3
≥ ǫ

8ρ3
, (3.14)

which implies that
‖u′′‖L2 ≤ Cρ3‖L1(u)‖L2 .
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Consequently
‖u‖H2 ≤ Cρ3‖L1(u)‖L2 . (3.15)

To estimate B′(0) note from (2.15) that

B′(0)(u) =
γ

2

∫ 2π

0

u(ω)R(ξ + ρeiθ, ξ + ρeiω) dω +
γu(θ)

2ρ

∫

B

∇R(ξ + ρeiθ, y) · eiθ dy (3.16)

where B is the ball centered at ξ of radius ρ. For the first part we write it as

γ

2

∫ 2π

0

u(ω)R(ξ + ρeiθ, ξ + ρeiω) dω =
γ

2

∫ 2π

0

u(ω)(R(ξ + ρeiθ, ξ + ρeiω) − R(ξ, ξ)) dω

since
∫ 2π

0
u(ω) dω = 0. And by the smoothness of R, we find

‖R(ξ + ρeiθ, ξ + ρeiω) − R(ξ, ξ)‖L∞ = O(ρ),

and consequently
‖B′(0)(u)‖L2 ≤ Cγρ‖u‖L2 . (3.17)

The last part λ′(0) of L maps u ∈ H2(S1) ∩ {1, cos θ, sin θ}⊥ into R. Therefore

〈Πλ′(0)(u), u〉 = λ′(0)(u)

∫ 2π

0

u dθ = 0. (3.18)

Since
B′(0)(u) + λ′(0)(u) = 0,

by (3.17)
|λ′(0)(u)| ≤ Cγρ‖u‖L2 . (3.19)

When γρ4 is sufficiently small (3.11), (3.17) and (3.19) imply that

‖ΠL(u)‖L2 ≥ ‖L1(u)‖L2 − ‖(B′(0) + λ′(0))(u)‖L2

≥ C

ρ3
‖u‖L2 − Cγρ‖u‖L2 ≥ C

ρ3
‖u‖L2

This proves Part 1 of the Lemma.
If (1.8) holds we derive from (3.13), (3.17) and (3.18) that

〈ΠL(u), u〉 ≥ C

ρ3
‖u‖2

L2 − Cγρ‖u‖2
L2 ≥ C

ρ3
‖u‖2

L2 .

This proves Part 2.
Part 1 ensures that ΠL is one-to-one from H2(S1)∩{1, cos θ, sin θ}⊥ to L2(S1)∩{1, cos θ, sin θ}⊥.

Since ΠL is self-adjoint and hence closed, (3) also ensures that the range of ΠL is closed. The Closed
Range Theorem (See Yosida [44, Page 205], e.g.) then implies that ΠL is onto.

To prove Part 3 set ΠL(u) = g. There exist c1, c2 ∈ R such that

L1(u) + B′(0)(u) + λ′(0)(u) + c1 cos θ + c2 sin θ = g. (3.20)
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If we multiply (3.20) by cos θ and integrate, then

〈B′(0)u, cos θ〉 + c1‖ cos θ‖2
L2 = 0

from which we derive, with the help of (3.17), that

|c1| ≤ Cγρ‖u‖L2 . (3.21)

Similarly we have
|c2| ≤ Cγρ‖u‖L2 . (3.22)

Therefore by (3.15), (3.17), (3.19), (3.21), (3.22) and Part 1,

‖u‖H2 ≤ Cρ3‖L1(u)‖L2

≤ Cρ3‖g − B′(0)(u) − λ′(0)(u) − c1 cos θ − c2 sin θ‖L2

≤ Cρ3(‖g‖L2 + γρ‖u‖L2)

≤ Cρ3(‖g‖L2 + Cγρ4‖ΠL(u)‖L2)

≤ Cρ3‖g‖L2

which proves Part 3 of the lemma.
To show Part 4 under (1.8), let

u(θ) =

∞∑

|n|=2

û(n)
einθ

2π

be the Fourier series of u. Then (1.8) asserts that

λn

n2
>

ǫ(n − 1)

4ρ3n
(3.23)

which implies that

〈L1(u), u〉 = 〈
∞∑

|n|=2

λ|n|û(n)
einθ

2π
,

∞∑

|n|=2

û(n)
einθ

2π
〉

=
∞∑

|n|=2

λ|n||û(n)|2
2π

≥ C

ρ3

∞∑

|n|=2

n2|û(n)|2

≥ C

ρ3
‖u‖2

H1 .

Finally by (3.17),

〈ΠL(u), u〉 = 〈L(u), u〉 = 〈L1(u), u〉 + 〈B′(0)u, u〉 ≥ C

ρ3
‖u‖2

H1 − Cγρ‖u‖2
L2 ≥ C

ρ3
‖u‖2

H1 .

We also estimate the second Fréchet derivative of Sξ = H + A + Bξ + λξ.

Lemma 3.2 There exists c > 0 such that if ‖φ‖H2 ≤ cρ2, the following holds.
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1. ‖H′′(φ)(u, v)‖L2 ≤ C

ρ5
‖u‖H2‖v‖H2 .

2. ‖A′′(φ)(u, v)‖L2 ≤ Cγ

ρ2
‖u‖H1‖v‖H1 .

3. ‖B′′
ξ (φ)(u, v)‖L2 ≤ Cγ

ρ
‖u‖H1‖v‖H1 .

4. |λ′′
ξ (φ)(u, v)| ≤ (

C

ρ5
+

Cγ

ρ2
)‖u‖H2‖v‖H2 .

Proof. Note that by taking c small, we keep ρ2 + φ positive, so Eφ is a perturbed disc.
H may be better understood after re-scaling. Introduce

Φ =
φ

ρ2
, Φ′ =

φ′

ρ2
, Φ′′ =

φ′′

ρ2
,

and
H̃(Φ,Φ′,Φ′′) = ρH(φ, φ′, φ′′).

Then

H̃(Φ,Φ′,Φ′′) =
1 + Φ + 3(Φ′)2

4(1+Φ) − Φ′′

2

(1 + Φ + (Φ′)2

4(1+Φ) )
3/2

does not involve ρ. With a small c in the condition ‖φ‖H2 ≤ cρ2, ‖Φ‖H2 becomes small compared
to 1. With H̃1(Φ), H̃2(Φ), and H̃3(Φ) denoting the derivatives of H(Φ,Φ′,Φ′′) with respect to its
three arguments, the second Fréchet derivative of H̃ is

H̃ ′′(Φ,Φ′,Φ′′)(u, v)

= H̃11(Φ)uv + H̃22(Φ)u′v′ + H̃12(Φ)(u′v + uv′) + H̃23(Φ)(u′v′′ + u′′v′) + H̃31(u
′′v + uv′′)

Note that we do not have u′′v′′ on the right side since H̃33 = 0. Because of this absence, the Sobolev
Embedding Theorem implies

‖H̃ ′′(Φ)(u, v)‖L2 ≤ C‖u‖H2‖v‖H2

In terms of H and φ,

‖H′′(φ)(u, v)‖L2 ≤ C

ρ5
‖u‖H2‖v‖H2 (3.24)

This proves Part 1.
To prove Part 2, let us again set Φ = φ

ρ2 and introduce

A(Φ)(θ) =

∫ 2π

0

∫ √
1+Φ(ω)

0

log |
√

1 + Φ(θ)eiθ − seiω|s dsdω. (3.25)

Then

A(φ) = −ρ2γ

2π
A(Φ) (3.26)

14



The change from φ and A to Φ and A scales away ρ. The first Fréchet derivative of A is given by

A′(Φ)(u)(θ) =
1

2

∫ 2π

0

u(ω) log |
√

1 + Φ(θ)eiθ −
√

1 + Φ(ω)eiω| dω

+
u(θ)

2
√

1 + Φ(θ)

∫ 2π

0

∫ √
1+Φ(ω)

0

(
√

1 + Φ(θ)eiθ − seiω) · eiθ

|
√

1 + Φ(θ)eiθ − seiω|2
s dsdω (3.27)

The second Fréchet derivative of A is

A′′(Φ)(u, v) = A1(Φ)(u, v) + A2(Φ)(u, v) + A3(Φ)(u, v) + A4(Φ)(u, v) + A5(Φ)(u, v) (3.28)

where

A1(Φ)(u, v) =
v(θ)eiθ

4
√

1 + Φ(θ)
·
∫ 2π

0

K(θ, ω)u(ω) dω

A2(Φ)(u, v) =
u(θ)eiθ

4
√

1 + Φ(θ)
·
∫ 2π

0

K(θ, ω)v(ω) dω

A3(Φ)(u, v) = −1

4

∫ 2π

0

K(θ, ω) · u(ω)v(ω)eiθ

√
1 + Φ(ω)

dω

A4(Φ)(u, v) =
u(θ)v(θ)

4(1 + Φ(θ))

∫

EΦ

|
√

1 + Φ(θ)eiθ − y|2 − 2(
√

1 + Φ(θ) − eiθ · y)2

|
√

1 + Φ(θ)eiθ − y|4
dy

A5(Φ)(u, v) = − u(θ)v(θ)

4(1 + Φ(θ))3/2

∫ 2π

0

∫ √
1+Φ(ω)

0

(
√

1 + Φ(θ)eiθ − seiω) · eiθ

|
√

1 + Φ(θ)eiθ − seiω|2
s dsdω.

The set EΦ is a shifted and re-scaled version of Eφ:

EΦ = {t
√

1 + Φ(θ) : θ ∈ [0, 2π], t ∈ [0, 1)}. (3.29)

The kernel K is

K(θ, ω) =

√
1 + Φ(θ)eiθ −

√
1 + Φ(ω)eiω

|
√

1 + Φ(θ)eiθ −
√

1 + Φ(ω)eiω|2
(3.30)

Here we encounter a singular integral operator

K(u)(θ) =

∫ 2π

0

K(θ, ω)u(ω) dω (3.31)

since the singularity of K(θ, ω) is of the type θ−ω
|θ−ω|2 . This operator is very much like the Hilbert

transform. To define the operator properly, we first write

K(u)(θ) =

∫ 2π

0

K(θ, ω)(u(ω) − u(θ)) dω + u(θ)

∫ 2π

0

K(θ, ω) dω. (3.32)

For u ∈ H2(S1) ⊂ H1(S1), u is Hölder continuous. Hence

|u(ω) − u(θ)| ≤ |ω − θ|α‖u‖Cα
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for some α ∈ (0, 1). Therefore

|K(θ, ω)(u(ω) − u(θ))| ≤ C|ω − θ|−1+α‖u‖Cα ,

and the first term in (3.32) is convergent. Here ‖u‖α is the Cα norm of u. The second term is
defined by its principal part:

∫ 2π

0

K(θ, ω) dω = lim
ǫ→0

∫

|ω−θ|>ǫ

K(θ, ω) dω.

The limit converges due to the cancellation effect for ω before and after θ. We have derived

‖K(u)‖L∞ ≤ C‖u‖Cα ≤ C‖u‖H1 . (3.33)

We can now estimate A1, A2 and A3. By (3.33)

‖A1(Φ)(u, v)‖L2 ≤ C‖u‖H1‖v‖L2 (3.34)

Similarly
‖A2(Φ)(u, v)‖L2 ≤ C‖u‖L2‖v‖H1 . (3.35)

For A3 we have
‖A3(Φ)(u, v)‖L∞ ≤ C‖uv‖Cα ≤ C‖u‖H1‖v‖H1 . (3.36)

We now turn to A4. The integral

∫

EΦ

|
√

1 + Φ(θ)eiθ − y|2 − 2(
√

1 + Φ(θ) − eiθ · y)2

|
√

1 + Φ(θ)eiθ − y|4
dy

is a convergent improper integral defined by its principal part. It is uniformly bounded with respect
to θ. In the case of Φ equal to 0, it may be explicitly computed. (See Appendix B.) Therefore

‖A4(Φ)(u, v)‖L∞ ≤ C‖u‖H1‖v‖H1 (3.37)

For A5, because of the mild singularity, we easily find

‖A5(Φ)(u, v)‖L∞ ≤ C‖u‖H1‖v‖H1 . (3.38)

Following (3.34), (3.35), (3.36), (3.37) and (3.38) we obtain

‖A′′(Φ)(u, v)‖L2 ≤ C‖u‖H1‖v‖H1 , (3.39)

and by (3.26) we have

‖A′′(φ)(u, v)‖L2 ≤ Cγ

ρ2
‖u‖H1‖v‖H1 ,

proving Part 2.
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The kernel R in Bξ is a smooth function. Calculations show that

B′′
ξ (φ)(u, v) =

γv(θ)

4
√

ρ2 + φ(θ)

∫ 2π

0

u(ω)∇1R(ξ +
√

ρ2 + φ(θ)eiθ, ξ +
√

ρ2 + φ(ω)eiω) · eiθ dω

+
γu(θ)

4
√

ρ2 + φ(θ)

∫ 2π

0

v(ω)∇1R(ξ +
√

ρ2 + φ(θ)eiθ, ξ +
√

ρ2 + φ(ω)eiω) · eiθ dω

+
γ

4

∫ 2π

0

u(ω)v(ω)√
ρ2 + φ(ω)

∇2R(ξ +
√

ρ2 + φ(θ)eiθ, ξ +
√

ρ2 + φ(ω)eiω) · eiω dω

+
γu(θ)v(θ)

4(ρ2 + φ(θ))

∫

Eφ

(D2
1R(ξ +

√
ρ2 + φ(θ), y)eiθ · eiθ) dy

− γu(θ)v(θ)

4(ρ2 + φ(θ))3/2

∫

Eφ

∇1R(ξ +
√

ρ2 + φ(θ)eiθ, y) · eiθ dy

where ∇1 and ∇2 refer to the derivatives of R with respect to its first and second arguments
respectively. D2

1R is the second derivative matrix of R with respect to the first argument of R. Part
3 is now proved easily.

Part 4 follows from Parts 1-3 and the fact that

0 = S′′
ξ (φ)(u, v) = H′′(φ)(u, v) + A′′(φ)(u, v) + B′′

ξ (φ)(u, v) + λ′′
ξ (φ)(u, v).

Lemma 3.3 There exists ϕ = ϕ(θ, ξ) such that for every ξ ∈ U , ϕ(·, ξ) ∈ H2(S1)∩{1, cos θ, sin θ}⊥
solves (3.5) and ‖ϕ(·, ξ)‖H2 ≤ cγρ6 where c is a sufficiently large constant independent of ξ, ρ and
γ.

Proof. For simplicity we again assume that ξ = 0 and set Bξ = B, Lξ = L, etc. Recall the fixed
point setting (3.5). To use the Contraction Mapping Principle, let

T (φ) = −(ΠL)−1(ΠS(0) + ΠN(φ)) (3.40)

be an operator defined on

D(T ) = {φ ∈ H2(S1) ∩ {1, cos θ, sin θ}⊥ : ‖φ‖H2 ≤ cρ6γ} (3.41)

where the constant c is sufficiently large which will be made more transparent later.
It is clear from Lemmas 2.2 and 3.1 that

‖(ΠL)−1ΠS(0)‖H2 ≤ Cγρ6. (3.42)

More difficult is the estimation of N(φ). We decompose N(φ) into three parts. The first is

N1(φ) = H(φ) − 1

ρ
+

1

2ρ3
(φ′′ + φ) = H(φ) −H(0) −H′(0)(φ) (3.43)

which is H(φ) minus its linear approximation at φ equal to 0. Lemma 3.2, Part 1, shows that

‖N1(φ)‖L2 ≤ C

ρ5
‖φ‖2

H2 . (3.44)
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The second part of N , which we denote by N2, is A(φ) + B(φ) minus its linear approximation, i.e.

N2(φ) = A(φ) −A(0) −A′(0)(φ) + B(φ) − B(0) − B′(0)(φ). (3.45)

Lemma 3.2, Parts 2 and 3, implies that

‖N2(φ)‖L2 ≤ Cγ

ρ2
‖φ‖2

H1 (3.46)

The third part of N , which is denoted by N3, merely gives a constant so that

N(φ) = N1(φ) + N2(φ) + N3(φ) = 0.

It follows that

|N3(φ)| ≤ C

ρ5
‖φ‖2

H2 +
Cγ

ρ2
‖φ‖2

H1 . (3.47)

Therefore we deduce, from (3.44), (3.46), (3.47) and with the help of Lemma 3.1, that

‖N(φ)‖L2 ≤ C

ρ5
‖φ‖2

H2 +
Cγ

ρ2
‖φ‖2

H1 (3.48)

‖(ΠL)−1ΠN(φ)‖H2 ≤ C

ρ2
‖φ‖2

H2 + Cγρ‖φ‖2
H1 (3.49)

Using (1.7), (3.42), (3.41), and (3.49) we find

‖T (φ)‖H2 ≤ Cγρ6 + Cc2γ2ρ10 + Cc2γ3ρ13 ≤ cγρ6

if c is sufficiently large and γρ4 sufficiently small. Therefore T is a map from D(T ) into itself.
Finally we show that T is a contraction. Let φ1, φ2 ∈ D(T ). To estimate N1(φ1) − N1(φ2) we

proceed as in the proof of Lemma 3.2, Part 1. Let Φ1 = φ1

ρ2 and Φ2 = φ2

ρ2 . Then, writing H̃(Φ1) for

H̃(Φ1,Φ
′
1,Φ

′′
1) for simplicity, we find

ρ|N1(φ1) − N1(φ2)|
= |H̃(Φ1) − H̃(Φ2) − H̃1(0)(Φ1 − Φ2) − H̃2(0)(Φ′

1 − Φ′
2) − H̃3(0)(Φ′′

1 − Φ′′
2)|

= |H̃1(Φ2)(Φ1 − Φ2) + H̃2(Φ2)(Φ
′
1 − Φ′

2) + H̃3(Φ2)(Φ
′′
1 − Φ′′

2)

+
1

2
H̃11(tΦ1 − (1 − t)Φ2)(Φ1 − Φ2)

2 +
1

2
H̃22(tΦ1 − (1 − t)Φ2)(Φ

′
1 − Φ′

2)
2

+H̃12(tΦ1 − (1 − t)Φ2)(Φ1 − Φ2)(Φ
′
1 − Φ′

2) + H̃23(tΦ1 − (1 − t)Φ2)(Φ
′
1 − Φ′

2)(Φ
′′
1 − Φ′′

2)

+H̃31(tΦ1 − (1 − t)Φ2)(Φ
′′
1 − Φ′′

2)(Φ1 − Φ2)

−H̃1(0)(Φ1 − Φ2) − H̃2(0)(Φ′
1 − Φ′

2) − H̃3(0)(Φ′′
1 − Φ′′

2)|
≤ C[(|Φ1| + |Φ2|)|Φ1 − Φ2| + (|Φ′

1| + |Φ′
2|)|Φ′

1 − Φ′
2|

+(|Φ1| + |Φ2|)|Φ′
1 − Φ′

2| + (|Φ′
1| + |Φ′

2|)|Φ1 − Φ2|
+(|Φ′

1| + |Φ′
2|)|Φ′′

1 − Φ′′
2 | + (|Φ′′

1 | + |Φ′′
2 |)|Φ′

1 − Φ′
2|

+(|Φ′′
1 | + |Φ′′

2 |)|Φ1 − Φ2| + (|Φ1| + |Φ2|)|Φ′′
1 − Φ′′

2 |].
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Since there is no (|Φ′′
1 |+ |Φ′′

2 |)|Φ′′
1 −Φ′′

2 | term, by the Sobolev Embedding Theorem we deduce, after
returning to φ1 and φ2,

‖N1(φ1) − N1(φ2)‖L2 ≤ C

ρ5
(‖φ1‖H2 + ‖φ‖H2)‖φ1 − φ2‖H2 ≤ Cγρ‖φ1 − φ2‖H2 . (3.50)

For N2 we note that

N2(φ1) − N2(φ2) = A(φ1) −A(φ2) −A′(0)(φ1 − φ2) + B(φ1) − B(φ2) − B′(0)(φ1 − φ2). (3.51)

Therefore using Lemma 3.2, Part 2, we obtain

‖A(φ1) −A(φ2) −A′(0)(φ1 − φ2)‖L2

≤ ‖A′(φ2)(φ1 − φ2) −A′(0)(φ1 − φ2)‖L2 +
Cγ

ρ2
‖φ1 − φ2‖2

H1

≤ Cγ

ρ2
‖φ2‖H1‖φ1 − φ2‖H1 +

Cγ

ρ2
‖φ1 − φ2‖2

H1

≤ Cγ

ρ2
(‖φ1‖H1 + ‖φ2‖H1)‖φ1 − φ2‖H1 .

Similarly using Lemma 3.2, Part 3, we deduce

‖B(φ1) − B(φ2) − B′(0)(φ1 − φ2)‖L2 ≤ Cγ

ρ
(‖φ1‖H1 + ‖φ2‖H1)‖φ1 − φ2‖H1 .

From (3.51) we conclude that

‖N2(φ1) − N2(φ2)‖L2 ≤ Cγ

ρ2
(‖φ1‖H1 + ‖φ2‖H1)‖φ1 − φ2‖H1 ≤ Cγ2ρ4‖φ1 − φ2‖H1 (3.52)

We also have
‖N3(φ1) − N3(φ2)‖L2 ≤ C(γρ + γ2ρ4)‖φ1 − φ2‖H2 . (3.53)

Hence, following (3.50), (3.52), and (3.53), we find that

‖T (φ1) − T (φ2)‖H2 ≤ C(γρ4 + γ2ρ7)‖φ1 − φ2‖H2 , (3.54)

i.e. that T is a contraction map if γρ4 is sufficiently small, with the help of (1.7). A fixed point ϕ
is found.

Since ϕ satisfies ‖φ‖H2 ≤ cγρ6, by taking δ small we see that cγρ4 is small and hence ρ2 + ϕ
remains positive. Eϕ is a perturbed disc.

4 Existence

We prove Theorem 1.1 in this section. From Lemma 3.3 we know that for every ξ = (ξ1, ξ2) ∈ U
there exists ϕ(·, ξ) ∈ H2(S1) ∩ {1, sin θ, cos θ}⊥ such that ΠSξ(ϕ(·, ξ)) = 0, i.e. (3.1) holds. In this
section we find a particular ξ, denoted by ζ, in U such that Sζ(ϕ(·, ζ)) = 0.

But first we state a result regarding the linearization of Sξ at ϕ(·, ξ). Denote the linearized

operator by L̃ξ. We have the following analog to Lemma 3.1.
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Lemma 4.1 Let Π be the same projection operator to L2(S1) ∩ {1, cos θ, sin θ}⊥.

1. There exists C > 0 such that for all u ∈ H2(S1) ∩ {1, cos θ, sin θ}⊥

‖u‖H2 ≤ Cρ3‖ΠL̃ξ(u)‖L2

2. If (1.8) holds,
‖u‖2

H1 ≤ Cρ3〈ΠL̃ξ(u), u〉.

Proof. In this proof we again assume, without the loss of generality, that ξ = 0, and write L, L̃
for Lξ, L̃ξ, etc.

By Lemma 3.1, Part 3, Lemma 3.2, (1.7), and the fact ‖ϕ‖H2 = O(γρ6), we deduce

‖ΠL̃(u)‖L2 ≥ ‖ΠL(u)‖L2 − ‖Π(L̃ − L)(u)‖L2

≥ C

ρ3
‖u‖H2 − (

C

ρ5
+

Cγ

ρ2
)‖ϕ‖H2‖u‖H2

≥ C

ρ3
‖u‖H2 − C(γρ + γ2ρ4)‖u‖H2

≥ C

ρ3
‖u‖H2

when γρ4 is small.
Write L̃ = H′(ϕ) + A′(ϕ) + B′(ϕ) + λ′

ξ(ϕ). Let

Q(ϕ,ϕ′) = 2

√
ρ2 + ϕ +

(ϕ′)2

4(ρ2 + ϕ)
. (4.1)

Then

〈H′(ϕ)(u), u〉 =

∫ 2π

0

[Q11(ϕ,ϕ′)u2 + 2Q12(ϕ,ϕ′)uu′ + Q22(ϕ,ϕ′)(u′)2] dθ.

and a similar expression holds for L if we replace ϕ and ϕ′ by 0 in the last formula. Here Q11 is the
second derivative with respect to the first argument of Q, etc. With ‖ϕ‖H2 = O(γρ6) calculations
show that

|〈(H′′(ϕ) −H′(0))u, u〉| ≤ |
∫ 2π

0

(Q11(ϕ,ϕ′) − Q11(0, 0))u2 dθ|

+|
∫ 2π

0

2(Q12(ϕ,ϕ′) − Q12(0, 0))uu′ dθ|

+|
∫ 2π

0

(Q22(ϕ,ϕ′) − Q22(0, 0))(u′)2 dθ|

≤ Cγρ‖u‖2
L2 + Cγρ‖u‖L2‖u′‖L2 + Cγρ‖u′‖2

L2

≤ Cγρ‖u‖2
H1 (4.2)

Lemma 3.2, Parts 2 and 3, and the fact ‖ϕ‖H2 = O(γρ6) show that

‖(A′(ϕ) + B′(ϕ) −A′(0) − B′(0))u‖L2 ≤ Cγ2ρ4‖u‖H1 . (4.3)
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Finally we combine Lemma 3.1, Part 4, (4.2), (4.3) and (1.7) to deduce that

〈ΠL̃(u), u〉 = 〈ΠL(u), u〉 + 〈Π(L̃ − L)u, u〉 ≥ C

ρ3
‖u‖2

H1 − Cγρ‖u‖2
H1 − Cγ2ρ4‖u‖2

H1 ≥ C

ρ3
‖u‖2

H1 ,

proving the lemma.

One consequence of this lemma is an estimate of ∂ϕ
∂ξj

.

Lemma 4.2 For each ξ ∈ U , ϕ satisfies ‖ ∂ϕ

∂ξj
‖H2 = O(γρ5), j = 1, 2.

Proof. We prove this lemma by the Implicit Function Theorem. Differentiating ΠSξ(ϕ) with
respect to ξj finds that

0 =
∂ΠSξ(ϕ)

∂ξj

= ΠL̃ξ(
∂ϕ

∂ξj
) + Πγ

∫

Eϕ

[
∂R(ξ +

√
ρ2 + ϕ(θ)eiθ, y)

∂xj
+

∂R(ξ +
√

ρ2 + ϕ(θ)eiθ, y)

∂yj
] dy

−γ

∫

Eϕ

[
∂R(ξ +

√
ρ2 + ϕ(θ)eiθ, y)

∂xj
+

∂R(ξ +
√

ρ2 + ϕ(θ)eiθ, y)

∂yj
] dy

where R = R(x, y). It is clear that

‖
∫

Eϕ

[
∂R(ξ +

√
ρ2 + ϕ(θ)eiθ, y)

∂xj
+

∂R(ξ +
√

ρ2 + ϕ(θ)eiθ, y)

∂yj
] dy‖L2 = O(ρ2),

and

‖
∫

Eϕ

[
∂R(ξ +

√
ρ2 + ϕ(θ)eiθ, y)

∂xj
+

∂R(ξ +
√

ρ2 + ϕ(θ)eiθ, y)

∂yj
] dy‖L2 = O(ρ2).

With the help of Lemma 4.1 we deduce that

‖ ∂ϕ

∂ξj
‖H2 ≤ Cρ3ρ2γ = Cγρ5.

We now turn to solve Sξ(φ) = 0.

Lemma 4.3 J(Eϕ(·,ξ)) = J(Bξ) + O(γ2ρ9).

Proof. In this proof without the loss of generality we take ξ = 0. Expanding J(Eϕ) yields

J(Eϕ) = J(B) +
1

2

∫ 2π

0

S(0)ϕdθ +
1

4

∫ 2π

0

L(ϕ)ϕdθ + O(γ3ρ13) + O(γ4ρ16). (4.4)

The two error terms in (4.4) are obtained in the same way that (3.48) is derived.
On the other hand ΠSξ(ϕ) = 0 implies that

Π(S(0) + L(ϕ) + N(ϕ)) = 0
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where N is given in (3.4) and estimated in (3.48). We multiply the last equation by ϕ and integrate
to derive ∫ 2π

0

S(0)ϕdθ +

∫ 2π

0

L(ϕ)ϕdθ = O(γ3ρ13) + O(γ4ρ16).

We can now rewrite (4.4) as

J(Eϕ) = J(B) +
1

4

∫ 2π

0

S(0)ϕdθ + O(γ3ρ13) + O(γ4ρ16).

Lemma 2.2 implies that

J(Eϕ) = J(B) + O(γ2ρ9) + O(γ3ρ13) + O(γ4ρ16) = J(B) + O(γ2ρ9).

because of (1.6) and (1.7).
If we consider J(ϕ(·, ξ)) as a function of ξ, then Lemmas 2.3 and 4.3 imply that

J(Eϕ(·,ξ)) = 2πρ +
π2γρ4

2
[
− log ρ

2π
+

1

8π
+ R̃(ξ) +

ρ2

4|D| ] + O(γ2ρ9). (4.5)

Because of the definition of U , (1.6) and (4.5), there is ζ ∈ U such that J(Eϕ(·,ξ)) is minimized at

ξ = ζ. This ζ is close to a global minimum of R̃. We prove the existence of a solution in the next
lemma. It uses a tricky re-parametrization technique.

Lemma 4.4 At ξ = ζ, Sζ(ϕ(·, ζ)) = 0.

Proof. For ξ = (ξ1, ξ2) near ζ we re-parametrize ∂DEϕ(·,ξ). Let ζ be the center of a new polar
coordinates, ρ2 + ψ the new radius square and η the new angle. A point on ∂DEϕ(·,ξ) is described

as ζ +
√

ρ2 + ψeiη. It is related to the old polar coordinates via

ζ +
√

ρ2 + ψeiη = ξ +
√

ρ2 + ϕeiθ (4.6)

In the new coordinates Eϕ becomes Eψ. It is viewed as a perturbation of the disc centered at ζ with
radius ρ. The perturbation is described by ψ which is a function of η and ξ.

The main effect of the new coordinates is to “freeze” the center. The center of the new polar
system is ζ which is fixed while the center of the old polar system is ξ which varies in U .

We now consider the derivative of J(Eϕ(·,ξ)) = J(Eψ(·,ξ)) with respect to ξ. On one hand, at
ξ = ζ,

∂J(Eψ(·,ξ))

∂ξj
|ξ=ζ =

∂J(Eϕ(·,ξ))

∂ξj
|ξ=ζ = 0, j = 1, 2, (4.7)

since ζ is a minimum.
On the other hand calculations show that

∂J(Eψ(·,ξ))

∂ξj
=

1

2

∫ 2π

0

Sζ(ψ(·, ξ))(η)
∂ψ

∂ξj
dη. (4.8)

We emphasize that (4.8) is obtained under the re-parametrized coordinates, in which the dependence
of J(Eψ(·,ξ)) on ξ is only reflected in the dependence of ψ on ξ. Had we calculated in the original

22



coordinates, ξ would have appeared also in the nonlocal part of J through R(ξ+..., ξ+...). The result
would have been very different from (4.8). See the proof of Lemma 4.2 which involves differentiation
with respect to ξ in the original coordinates. In the derivation of (4.8) we have used the fact that∫ 2π

0
ψ dη = 0 which implies that

∫ 2π

0
∂ψ
∂ξj

dη = 0, so that
∫ 2π

0
λζ(ψ) ∂ψ

∂ξj
dη = 0 where λζ(ψ) is part of

Sζ(ψ) = H(ψ) + A(ψ) + Bζ(ψ) + λζ(ψ),

and we can reach the right side of (4.8). See Remark 2.1 for the coefficient 1
2 in (4.8).

The expression Sξ(φ) is invariant under re-parametrization, i.e.

Sξ(ϕ(·, ξ))(θ) = Sζ(ψ(·, ξ))(η). (4.9)

Now we return to the original coordinate system and integrate with respect to θ in (4.8). Then

∂J(Eψ(·,ξ))

∂ξj
=

1

2

∫ 2π

0

Sξ(ϕ(·, ξ))(θ)∂ψ(η(θ, ξ), ξ)

∂ξj

∂η

∂θ
dθ (4.10)

We recall that ψ and η are defined implicitly as functions of θ and ξ by (4.6). Let us agree that
ψ = ψ(η, ξ) is a function of η and ξ. Set Ψ(θ, ξ) = ψ(η(θ, ξ), ξ). Implicit differentiation shows that,
with the help of Lemmas 3.3 and 4.2,




∂η
∂θ

∂η
∂ξ1

∂η
∂ξ2

∂Ψ
∂θ

∂Ψ
∂ξ1

∂Ψ
∂ξ2


 = −




√
ρ2 + Ψsin η − cos η

2
√

ρ2+Ψ

−
√

ρ2 + Ψcos η − sin η

2
√

ρ2+Ψ




−1

×




cos θ

2
√

ρ2+ϕ

∂ϕ
∂θ −

√
ρ2 + ϕ sin θ 1 + cos θ

2
√

ρ2+ϕ

∂ϕ
∂ξ1

cos θ

2
√

ρ2+ϕ

∂ϕ
∂ξ2

sin θ

2
√

ρ2+ϕ

∂ϕ
∂θ +

√
ρ2 + ϕ cos θ sin θ

2
√

ρ2+ϕ

∂ϕ
∂ξ1

1 + sin θ

2
√

ρ2+ϕ

∂ϕ
∂ξ2




= 2

[
− sin η

2
√

ρ2+Ψ

cos η

2
√

ρ2+Ψ√
ρ2 + Ψcos η

√
ρ2 + Ψ sin η

]

×
[

−
√

ρ2 + ϕ sin θ + O(γρ5) 1 + O(γρ4) O(γρ4)√
ρ2 + ϕ cos θ + O(γρ5) O(γρ4) 1 + O(γρ4)

]

At ξ = ζ, η = θ, Ψ = ϕ and the above becomes




∂η
∂θ

∂η
∂ξ1

∂η
∂ξ2

∂Ψ
∂θ

∂Ψ
∂ξ1

∂Ψ
∂ξ2




ξ=ζ

=




1 + O(γρ4) − sin θ√
ρ2+ϕ

+ O(γρ3) cos θ√
ρ2+ϕ

+ O(γρ3)

O(γρ6) 2
√

ρ2 + ϕ cos θ + O(γρ5) 2
√

ρ2 + ϕ sin θ + O(γρ5)




(4.11)
We have found that at ξ = ζ,

∂Ψ

∂ξ1
|ξ=ζ = 2ρ cos θ + O(γρ5),

∂Ψ

∂ξ2
|ξ=ζ = 2ρ sin θ + O(γρ5). (4.12)
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To compute ∂ψ
∂ξj

, we invert η = η(ξ, θ) to express θ = Θ(η, ξ). Then

∂ψ

∂ξj
=

∂Ψ

∂ξj
+

∂Ψ

∂θ

∂Θ

∂ξj
.

At ξ = ζ, since

∂Ψ

∂θ
|ξ=ζ = O(γρ6),

∂Θ

∂ξj
|ξ=ζ = −

∂η
∂ξj

∂η
∂θ

= O(
1

ρ
), (4.13)

we deduce that
∂ψ

∂ξ1
|ξ=ζ = 2ρ cos θ + O(γρ5),

∂ψ

∂ξ2
|ξ=ζ = 2ρ sin θ + O(γρ5). (4.14)

Following (4.14) and the fact that ∂η
∂θ |ξ=ζ = 1 + O(ρ4γ) we find that (4.10) becomes

∂J(Eψ(·,ξ))

∂ξ1
|ξ=ζ =

1

2

∫ 2π

0

Sζ(ϕ)(2ρ cos θ + O(γρ5)) dθ,

∂J(Eψ(·,ξ))

∂ξ2
|ξ=ζ =

1

2

∫ 2π

0

Sζ(ϕ)(2ρ sin θ + O(γρ5)) dθ, (4.15)

Now we combine (3.1), (4.7) and (4.15) to derive that

A1,ζ

∫ 2π

0

cos θ(2ρ cos θ + O(γρ5)) dθ + A2,ζ

∫ 2π

0

sin θ(2ρ cos θ + O(γρ5)) dθ = 0

A1,ζ

∫ 2π

0

cos θ(2ρ sin θ + O(γρ5)) dθ + A2,ζ

∫ 2π

0

sin θ(2ρ sin θ + O(γρ5)) dθ = 0.

Writing the system in matrix form
[

2πρ + O(γρ5) O(γρ5)
O(γρ5) 2πρ + O(γρ5)

] [
A1,ζ

A2,ζ

]
=

[
0
0

]
(4.16)

we deduce, since (4.16) is non-singular when γρ4 is small, A1,ζ = A2,ζ = 0, proving the lemma.
We have proved the existence part of Theorem 1.1. Because ‖ϕ(·, ζ)‖H2 = O(ρ6γ), the approxi-

mate radius of the perturbed disc Eϕ(·,ζ) is

√
ρ2 + ϕ(θ, ζ) = ρ + O(γρ5), at each θ ∈ [0, 2π]. (4.17)

The center of the disc is ζ which is close to a minimum of R̃.
In this theorem a solution is termed stable if it is a local minimizer of J in the space

U × {φ : φ ∈ H1(S1), φ ⊥ 1, cos θ, sin θ}. (4.18)

Under the condition (1.8) Lemma 4.1, Part 2, shows that each ϕ(·, ξ) we found in Lemma 3.3 locally
minimizes J , with fixed ξ ∈ U , in {φ : φ ∈ H1(S1), φ ⊥ 1, cos θ, sin θ}. On the other hand ϕ(·, ζ)
minimizes J(Eϕ(·,ξ)) with respect to ξ. Hence ϕ(·, ζ) is a local minimizer of J in (4.18).

If (1.8) does not hold and (1.5) is satisfied with

ǫn2 < γρ3 − 2n(n + 1), and γρ3 − 2(n + 1)(n + 2) < −ǫ(n + 1)2
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for some n ≥ 2, then the eigenvalue λn of the operator L1 in the proof of Lemma 3.1 and its
corresponding eigen function cosnθ satisfy

λn < − C

ρ3
, 〈L1(cos nθ), cos nθ〉 < − C

ρ3
.

By (3.17) and (3.19), the last inequality implies that

〈Lζ(cos nθ), cos nθ〉 < − C

ρ3
.

Then by Lemma 3.2 and (4.2) in the proof of Lemma 4.1

〈L̃ζ(cos nθ), cos nθ〉 < − C

ρ3
.

Therefore the solution is unstable.

5 Discussion

The functional (1.2) was derived from the Ohta-Kawasaki density functional theory for diblock
copolymers in [30] as a Γ-limit. The density functional theory uses a function u on D to describe
the density of A-monomers and 1 − u to describe the density of B-monomers. The free energy of a
diblock copolymer is

I(u) =

∫

D

[
ǫ2

2
|∇u|2 + W (u) +

σ

2
|(−∆)−1/2(u − a)|2] dx (5.1)

where u is in
{u ∈ H1(D) : u = a}. (5.2)

The function W is a balanced double well potential such as W (u) = 1
4u2(1 − u)2. There are three

positive parameters in (5.1): ǫ, σ, and a, where ǫ is small and a is in (0, 1).
If we take σ to be of order ǫ, i.e. by setting

σ = ǫγ (5.3)

for some γ independent of ǫ. As ǫ tends to 0, the limiting problem of ǫ−1I turns out to be

J(E) = τ |DχE |(D) +
γ

2

∫

D

|(−∆)−1/2(χE − a)|2 dx (5.4)

which is the same as the J in (1.2) except for the additional constant τ here. This constant is known
as the surface tension and is given by

τ =

∫ 1

0

√
2W (q) dq. (5.5)

The functional (5.4) is defined on the same admissible set Σ, (1.3).
The theory of Γ-convergence was developed by De Giorgi [10], Modica and Mortola [23], Modica

[22], and Kohn and Sternberg [19]. It was proved that ǫ−1I Γ-converges to J in the following sense.
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Proposition 5.1 (Ren and Wei [30]) 1. For every family {uǫ} of functions in (5.2) satisfying
limǫ→0 uǫ = χE in L2(D),

lim inf
ǫ→0

ǫ−1I(uǫ) ≥ J(E);

2. For every E in Σ, there exists a family {uǫ} of functions in (5.2) such that limǫ→0 uǫ = χE in
L2(D), and

lim sup
ǫ→0

ǫ−1I(uǫ) ≤ J(E).

The relationship between I and J becomes more clear when a result of Kohn and Sternberg [19]
was used to show the following.

Proposition 5.2 (Ren and Wei [30]) Let δ > 0 and E ∈ Σ be an isolated local minimzer in the
sense that J(E) < J(F ) for all χF ∈ Bδ(χE) with F 6= E, where Bδ(χE) is the open ball of radius δ
centered at χE in L2(D). Then there exists ǫ0 > 0 such that for all ǫ < ǫ0 there exists uǫ ∈ Bδ/2(χE)
with I(uǫ) ≤ I(u) for all u ∈ Bδ/2(χE). In addition limǫ→0 ‖uǫ − χE‖L2(D) = 0.

Whether the existence of a stable solution Eϕ(·,ζ) to (1.1) in the sense of Theorem 1.1 implies the
existence of a local minimizer, close to χEϕ(·,ζ)

in L2(D), of I deserves further study. The stability
concept used in this paper is weaker than in [19] and [30], because a stable solution here is defined
as a local minimizer in a more restricted class of sets than in Proposition 5.2. Another problem
is that the stable solution found in this paper is not always isolated. If we take D to be a ring:
{x ∈ R2 : 1 < |x| < 2}, then by rotating one droplet solution we obtain a connected family of droplet
solutions, all having the same energy.

In Theorem 1.1 the center of the droplet is close to a global minimum of R̃. If η is a strict local
minimum of R̃, i.e. there exists a neighborhood N of η such that R̃(η) < R̃(ξ) for all ξ ∈ N , then
assuming the assumptions in Theorem 1.1, using the same reduction argument, we can show that
there is a droplet solution whose center is close to η. Moreover if η is a strict local maximum of R̃,
there is also a droplet solution whose center is close to η, although this droplet is always unstable.

In a forthcoming paper [40] we will show the existence of a multiple droplet pattern as a solution
to (1.1) in a general two dimensional region. In addition to the difficulties encountered here, we
must prevent a new phenomenon, pattern coarsening, from happening. Pattern coarsening means
that some droplets become larger and others become smaller and disappear. Pattern coarsening is
a central property in the Cahn-Hilliard problem, which is just (5.1) without the nonlocal term, i.e.
σ = 0 in (5.1). See Alikakos and Fusco [2] and Alikakos, Fusco and Karali [3] for more studies of
this phenomenon. We also point out that a single droplet solution also exists in the Cahn-Hilliard
problem (see Alikakos and Fusco [1] and Wei and Winter [43]), although it is always unstable.

To prevent pattern coarsening in the diblock copolymer problem, in [40] we impose a lower bound
on γ in addition to the conditions (1.5) and (1.12):

γ >
1 + ǫ

ρ3 log 1
ρ

. (5.6)

Here ρ is the average radius, i.e. ρ =
√

a|D|
Kπ where K ≥ 2 is the number of droplets. We see another

difference between our approach and the one by Oshita. The parameter range used by Oshita will
not yield a stable multiple droplet solution.
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A Appendix 1

The derivative of H at 0 is given by straight forward calculations from (2.13):

H′(0)(u) = − 1

ρ3
(u′′ + u). (A.1)

The derivative of A at 0 has two terms according to (2.14). The first is

− γ

8π

∫ 2π

0

u(ω) log(1 − cos(θ − ω)) dω.

The second is

−γu(θ)

4π

∫

B1(0)

(eiθ − y) · eiθ

|eiθ − y|2 dy

for which we calculate the integral. Here B1(0) is the unit ball. Let y = eiθ((1, 0) − z), and
z = reiβ . The disc B1(0) now becomes B1(1, 0), the disc centered at (1, 0) of radius 1. Its boundary
is parametrized in the polar coordinates by r = 2 cos β. Then we have

∫

B1(0)

(eiθ − y) · eiθ

|eiθ − y|2 dy =

∫

B1(1,0)

eiθz · eiθ

|z|2 dz =

∫ π/2

−π/2

∫ 2 cos β

0

cos β drdβ = π.

Then it follows that

A′(0)(u) = − γ

8π

∫ 2π

0

u(ω) log(1 − cos(θ − ω)) dω − γu

4
. (A.2)

B Appendix 2

We evaluate ∫

B1(0)

|eiθ − y|2 − 2(1 − eiθ · y)2

|eiθ − y|4 dy (B.1)

where B1(0) is the unit disc. Let y = eiθ((1, 0) − z), and z = reiβ . The disc B1(0) now becomes
B1(1, 0), the disc centered at (1, 0) of radius 1. Its boundary is parametrized in the polar coordinates
by r = 2 cos β. Then (B.1) becomes

∫

B1(1,0)

|z|2 − 2(eiθ · eiθz)2

|z|4 dz =

∫ 2

0

∫ arccos(r/2)

− arccos(r/2)

1 − 2 cos2 β

r
dβdr = −π

2
(B.2)

Note that the last integral must be in the dβdr order, otherwise it would be divergent.
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