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Abstract

The Ohta-Kawasaki density functional theory of diblock copolymers gives rise to a nonlocal
free boundary problem. Under a proper condition between the block composition fraction and
the nonlocal interaction parameter, a pattern of a single droplet is proved to exist in a general
planar domain. A smaller parameter range is identified where the droplet solution is stable.
The droplet is a set which is close to a round disc. The boundary of the droplet satisfies an
equation that involves the curvature of the boundary and a quantity that depends nonlocally
on the whole pattern. The location of the droplet is determined by the regular part of a Green’s
function of the domain. This droplet pattern describes one cylinder in space in the cylindrical
phase of diblock copolymer morphology.
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Abbreviated title. Single droplet pattern.

1 Introduction

A diblock copolymer melt is a soft material, characterized by fluid-like disorder on the molecular
scale and a high degree of order at a longer length scale. A molecule in a diblock copolymer is a linear
sub-chain of A-monomers grafted covalently to another sub-chain of B-monomers. Because of the
repulsion between the unlike monomers, the different type sub-chains tend to segregate, but as they
are chemically bonded in chain molecules, segregation of sub-chains cannot lead to a macroscopic
phase separation. Only a local micro-phase separation occurs: micro-domains rich in A monomers
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and micro-domains rich in B monomers emerge as a result. These micro-domains form patterns that
are known as morphology phases. Various phases, including lamellar, cylindrical, spherical, gyroid,
have been observed in experiments.

Powerful methods in statistical physics have made it possible to derive a macroscopic model for
monomer density fields from a microscopic model based on chain molecule formation and monomer
interaction. A self consistent field theory (SCFT, see Helfand [13], Helfand and Wasserman [14, 15,
16], Hong and Noolandi [17, 18]) was developed, which was followed naturally by a density functional
theory (DFT, see Ohta and Kawasaki [27]).

However there is generic criticism (see Bates and Fredrickson [4]) about the existing theoretical
techniques of free energy minimization in the physics literature. They proceed by assuming a periodic
structure, computing its free energy and then comparing that free energy to the free energy of other
candidate test fields, (see, for instance, Matsen and Schick [21]). These test fields in general do not
satisfy the Euler-Lagrange equation of the free energy.

In this paper we rigorously study the cylindrical phase of the diblock copolymer morphology by
constructing an exact analytic solution that models one cylinder in a block copolymer melt. We
identify two parameter ranges, one for the existence of a cylinder and one for the stability of the
cylinder. The cross section of the cylinder is proved to be approximately a small, round disc. The
location of this disc is determined by the geometry of the copolymer sample via a Green’s function.

Consider a two dimensional bounded and sufficiently smooth domain D, which is a cross section of
a diblock copolymer melt and perpendicular to a cylinder in the melt. The A-monomers occupy the
subset E and the B-monomers occupy the compliment D\ E. The interface between the A-monomer
regions and B-monomer regions is dp E, which is the part of the boundary of E that is in D. Denote
the Lebesgue measure of F by |F| and set xg to be the characteristic function of E, i.e. xg(z) =1
ifx € E,and xg(x) =0if x € D\E. Let a be the block composition fraction, i.e. the number of
the A-monomers divided by the number of all the A- and B- monomers in a polymer chain. Given
a fixed number a € (0, 1) we look for a subset E of D and a number A such that dpE is a smooth
curve, or a union of several smooth curves, |E| = a|D|, and at every point on OpE,

H(9pE) +7(=8) " (xz —a) = A (L1)

Here H(OpE) is the curvature of OpF viewed from E and < is a given positive parameter. The
expression (—A)~!(yg — a) is the solution v of the problem

—Av=xg—ain D, 0,v =0 on the boundary of D, v =0

where the bar over a function is the average of the function over its domain, i.e.

U= |él/Dv(:U) dzx.

Because (—A)™! is a nonlocal operator, the free boundary problem (1.1) is nonlocal.
The equation (1.1) is the Euler-Lagrange equation of the following variational problem.

IE) = 1Dxel(D) + § [ 1-8) (e - ) (12)
D

The admissible set ¥ of the functional J is the collection of all measurable subsets of D of measure
a|D| and of finite perimeter, i.e.

Y. ={F C D: E is Lebesgue measurable, |E|=a|D|, xg € BV(D)}. (1.3)



Here BV(D) is the space of functions of bounded variation on D. The nonlocal integral operator
(—A)~! is defined by solving

—Av =¢qin D, d,v =0 on the boundary of D,7 =0

for ¢ € L?(D), § = 0. Then (—A)~/2 is the positive square root of (—A)~!. There are two
parameters in (1.2): @ and 7.

Since xg € BV(D), we view Dxg, the derivative of x g, as a vector valued, signed measure, and
let |Dx | be the positive total variation measure of Dxg. The first term in (1.2), |Dxg|(D), is the
|Dx | measure of the entire domain D. When dp E is a smooth curve, or a union of smooth curves,
|Dxg|(D) is just the length of dpE. The constant A in (1.1) comes as a Lagrange multiplier from
the constraint |E| = a|D|.

Nishiura and Ohnishi [25] formulated the Ohta-Kawasaki theory on a bounded domain as a
singularly perturbed variational problem with a nonlocal term and also identified the free boundary
problem (1.1). Ren and Wei [30] showed that (1.2) is a I'-limit of the singularly perturbed variational
problem. See the last section for more discussion on the Ohta-Kawasaki theory and I'-convergence.

Since then much work has been done to these problems. The lamellar phase is studied in Ren
and Wei [30, 32, 33, 37, 38], Fife and Hilhorst [12], Chen and Oshita [5], and Choksi and Sternberg
[9]. The work of Miiller [24] is related to the lamellar phase in the case a = 1/2, as observed in
[25]. Radially symmetric bubble and ring patterns are studied in Ren and Wei [31, 36, 39]. A
triblock copolymer is studied in Ren and Wei [35]. Teramoto and Nishiura [41] studied the gyroid
phase numerically. Mathematically strict derivations of the density functional theories for diblock
copolymers, triblock copolymers and polymer blends are given in Choksi and Ren [7, 8], and Ren
and Wei [34]. Also see Ohnishi and Nishiura [26], Ohnishi et al [26], and Choksi [6].

An explicit solution is easily found when the domain D itself is a disc and E a concentric disc
of smaller radius. On a general domain Oshita [28] proved that for any a € (0, 1), there is vg such
that if v < 79, (1.1) admits a solution of measure a|D|, which is close to a disc. The bound ~q for
depends on a.

The cylindrical phase occurs in a diblock copolymer melt only if a is relatively close to 0 (or
close to 1) and ~ is sufficiently large. Then the A-monomers (or B-monomers respectively) form
parallel cylinders in a sample and the B-monomers (or A-monomers respectively) occupy the rest of
the sample. If we look at a cross section, then the A-monomers form a number of droplets in a two
dimensional region. Unfortunately Oshita’s result does not cover this parameter range.

In this paper we prove a stronger result that contains Oshita’s as a special case, and also covers
the relevant parameter range for the cylindrical phase of diblock copolymer morphology.

We look for a solution which is close to a disc in a general domain, i.e. a single droplet pattern.
Set p > 0 so that

7p? = a|D|. (1.4)

From now on p replaces a as one of the two parameters of the problem. We need a crucial gap
condition. Given any € > 0 assume that p, v satisfy

|vp® —2n(n 4+ 1)| > en?, for all n =2,3,4, ... (1.5)
Under (1.5), a gap condition, there exists ¢ > 0 such that a single droplet solution exists if

ot <6 (1.6)



The situation studied by Oshita, i.e. p is fixed and + is sufficiently small depending on p, is a
special case included in our study. This is because for any e, when p is fixed, one may take v to be
sufficiently small so that both (1.5) and (1.6) hold. Our result also allows p to be small and v to
be large, as long as (1.5) and (1.6) hold. The latter is the situation for a diblock copolymer in the
cylindrical phase.

When intervals around 2n(n + 1), n = 2,3, ..., in (1.5) are deleted, the width of the intervals,
2en?, grows as n becomes large. At some point an interval will include nearby members in the
sequence 2n(n + 1). When this happens, vyp® can not be placed above such 2n(n + 1). This implies
that there exists C' > 0 depending on € such that

vp® < C. (1.7)
Whether the solution found here is stable depends on how (1.5) is satisfied. It is stable, if
vp® = 2n(n+1) < —en?, for all n > 2, (1.8)

Otherwise the solution is unstable. The solution found by Oshita satisfies (1.8) and hence is stable.
Although p may not be small, one needs to impose an upper bound, as in [28]. Let

G(z,y) = 1 log b + R(x,y) (1.9)

2 7|z —y

be the Green’s function of —A with the Neumann boundary condition. In this paper the Green’s
function G satisfies

—A,G(z,y) =d0(x —y) — in D, 0,;)G(x,y) =00n 0D, G(-,y)=0 forevery y € D. (1.10)

1
D]
Here A, is the Laplacian with respect to the z-variable of G' and d,(,) is the outward normal

derivative at x € dD. The function R is the regular part of G. Let R(z) = R(z,z). Since R(x)
tends to co as z tends to 9D, R has a at least global minimum in D. The distance from any global
minimum of R to the boundary of D must be strictly greater than p, i.e.

p<min{|lz —y|: y€dD, z €D, R(z)= I%IBR(Z)} (1.11)
z

The main result of this paper is the following.

Theorem 1.1 For any € > 0 there exists § > 0 such that when p and v satisfy (1.5) and (1.6),
(1.1) admits a solution of a single droplet pattern. Moreover

1. the radius of the droplet is p + O(vp°);
2. the center of the droplet is near a global minimum of R in D;
3. if (1.5) is satisfied and
2 = 2n(n +1) < —en?, for all n > 2,

then the droplet solution is stable;



4. if (1.5) is satisfied and
en? < yp® —2n(n+1), and vp* —2(n +1)(n +2) < —e(n + 1)?

for some n > 2, then the droplet solution is unstable.

Therefore in order to have a solution, we take vp3 to be of order O(1), make sure that ~vp* stays
away from the sequence 2n(n + 1), n = 2,3,4, ..., and make vp* small. To have a stable solution we
simply take

vp® <12 —4e and p* < 1. (1.12)

The theorem is proved by a variant of the Lyapunov-Schmidt reduction procedure. In Section 2
we construct a family of approximate solutions of round discs parametrized by their centers. They
form a two dimensional manifold. In Section 3 we perturb each disc a bit to find a set which solves
(1.1) up to translation in a subspace approximately normal to the manifold. These perturbed discs
form a new manifold that consists of solutions of (1.1) modulo translation. In this step we use
a fixed point argument, for which the linearization of (1.1) at each approximate solution must be
analyzed and the second Fréchet derivative computed. The obstacle to the invertibility of the linear
operator is an oscillation phenomenon, i.e. oscillation of the boundary of the perturbed disc. The
gap condition (1.5) ensures that oscillation does not happen. In Section 4 a particular perturbed disc
in the new manifold is found, which solves (1.1) exactly. The location of this particular perturbed
disc is determined by minimizing J on the new manifold. To show that the minimizer is indeed an
exact solution of (1.1), we use a tricky re-parametrization argument.

The main difficulty in this approach for the wide parameter range (1.6) lies in the analysis of
the nonlocal part of (1.1), such as the proofs of Lemmas 3.1 and 3.3. It involves a singular integral
operator similar to the Hilbert transform. In the case that + is small, studied in [28], one does not
need these sharp estimates. Only when p is small, it is crucial to carry out estimates to such extend.

The gap condition (1.5) suggests bifurcations to non-circular shapes, when vp® becomes close
to 2n(n + 1). Gap conditions have appeared before in constructing layered solutions for singularly
perturbed problems. See Malchiodi and Montenegro [20], del Pino, Kowalczyk and Wei [11], Pacard
and Ritoré [29], and the references therein.

Denote by S? the interval [0,27] with 0 and 27 identified. The L? space on St is L?(S'). The
inner product in L2(S') is denoted by (-,-). Let {u1, us, ...} be the closed subspace of L2(S*) whose
elements are perpendicular to uy, ug, .... The L? norm is denoted by || - ||z2, and the L> norm by
| - |- The Sobolev W2* space is denoted by H*(S') where k > 1 is an integer. The W2* norm
is denoted by || - || g»-

We use C' to denote a positive constant which is independent of a, p, 7, and the points £ in U,
where U is a subset of D given in Section 2. C' can only depend on D and e. The value of C' may
change from place to place.

The complex e is written instead of (cos#,sin @) for a simpler notation even though no complex
structure is assumed on R?. The reader will see things like ¢*? - 2 which is simply the inner product
of two real vectors ¥ and z.

From now on we assume that ¢ > 0 is given and (1.5) is satisfied.



2 Approximate solutions

Let U be an open neighborhood of the set {z € D : R(z) = minyep R(y)}. The last set consists of
the global minima of R and is compact. By taking U to be sufficiently close to {z € D : R(z) =
min,ep R(y)} we assume that the closure of U, U, is also a subset of D.
For each € € U let
Be={zxeD:|z—-¢ <p} (2.1)

be an approximate solution which is a disc of radius p and centered at £. Because of (1.11) by taking
U to be sufficiently close to {x € D : R(x) = minyep R(y)} we have B¢ C D for all £ € U.
A perturbed disc Ey is characterized by a 27 periodic function ¢(6) so that

Ey={¢+ae”:0€0,2n], a€[0,v/p*+ ¢(0))}, (2.2)

and the boundary of the perturbed disc Ey is a curve parametrized by 6: & 4+ +/p? + (0)e?. We
will restrict the size of ¢ so that p? + ¢ is always positive. Moreover it is always assumed that

" #(9)df = 0. (2.3)
0

This ensures that the size of Ey remains a|D]:

27 v p2+¢(0) 27 92 9
\E¢|:/ / rdrd@z/ %d’()dezmﬂza\p\
0 0 0

The arc-length of dp Ey can be expressed as

o (rb’( ))?
|Dxg, |(D / \/ + o0 EEPO) de (2.4)

The nonlocal part of J in (1.2) may be written in terms of ¢ as

/ [(— 1/2 XE fa)|2d9:f / / (z,y) dzdy
Ey JEy

N I = | |
/ d@/ dr/ dw/ dt G(€ +re® &+ te™)rt. (2.5)

2

In terms of ¢ the curvature at a point on OpEy corresponding to 6 is

3 ¢/ 2] 2 (z)// /]
P+ 00 + ooy ~ “2-
2 (@'(0))* \3/2
(p* +6(0) + qzrg(ay)”
The nonlocal part in (1.1) may be written as
Y(=8)" (xp, — a)(0)

= ’Y/E G(E+Vp?+ ¢(0)e?,y) dy

H(9)(0) =



2 /PP (W)
= v/ / ’ G(E+ P2+ d(0)e? € + te™)t dtdw
0

] 21 /P2 +o(w el
= ’Yng |f—/ / log\ 1+ e—\tdtdw
p

27 2+¢(w ] )
—I—'y/ / R(€+/p2 + ¢(0)e? € + te™ )t dtdw (2.7)
o Jo

The first term in (2.7) is only a constant. The second and the third terms are defined to be

2 21 pn/1+¢(w)/p? , ,
Al¢) = —72&/ / log[{/1+ (bp(g)ew — se"|s dsdw (2.8)
™ Jo 0

21 /P (@) ‘ ‘
Be(¢) = ~ /O /0 R(E+ /P2 + d(0)e”, € + te'™ )t dtdw (2.9)

Note that the operators H and A are independent of { while the operator B¢ does depend on .

Remark 2.1 The expressions (2.6) and (2.7) may be obtained by calculating the variations of (2.4)
and (2.5) with respect to ¢. Then there will be an extra 1 in front of both (2.6) and (2.7).

Let S¢ be the operator that appears on the left side of (1.1) projected to {1}, i.e

Se(9) = H(9) + A(d) + Be(9) + Ae(9) (2.10)

Here A\¢(¢) € R is a number so chosen that

5e(9) = ;W/ " Se(@)db = 0. (2.11)

The subscript ¢ indicates that S¢ depends on &, because B¢ (and consequently \¢) does. Ey is a
solution of (1.1) if and only if

Se(¢) = 0. (2.12)
The first Fréchet derivative of S¢ is given by
H ($)(uw) = Hi(d)u+ Ha(d)u' + Ha( (2.13)
2m
A@wo) = | log\/1+ —\/1+¢’<‘;>ew|dw_
47 1,

27 Vits@)/e? (/14 ¢( Je — se@) . e
/ / sdsdw.(2.14)
47T\/1+¢ /p ‘ 1+¢9)629_861w|2

2
BUo)w)®) = 3 /0 w(W)R(E+ /P2 + 6(0)e™, € + Vo7 + d(w)e™) dw

2
_ul®) T ) o
T row e, VHES ViR +6(0)cy) - ¢ dy. (2.15)



The derivative of the operator A¢ is so chosen that

Se(¢) = H'(9) + A'(9) + Be(¢) + \e(9), SE(9)(u) = 0. (2.16)
We have abused the notations a bit in (2.13). The operator H is also viewed as a function of ¢, ¢’
and ¢ i.e. . |
ooy = O
0+ 1)
The derivatives of H with respect to ¢, ¢’ and ¢ are denoted by Hi, Hz and Hs respectively.

Lemma 2.2 [|S¢(0)||r~ = O(yp?).
Proof. Compute v = (=A)~*(xp, — a). Define
lz1> | o> _ p? .
P(x) = —?+I—7logp, if |[2| < p
2 log a], i |z] > o

Then —AP(- — &) = xB,. Write v = P(- — &) + Q(,§). Clearly

2
7AQ(:E7£) = —aq, 81/(;8)Q(x,£) = au% IOg |£L’ - €| on aDa Q(7§) = 7P(| : 7£|)

Here the Laplacian A and the outward normal derivative 0,(,) are taken with respect to z. Note
that the Green’s function G satisfies the equation (1.10). Recall that the regular part of the Green
function G is denoted by R. Then one sees that Q(z,&) and mp?R(x,€) satisfy the same equation
and the same boundary condition. Therefore they can differ only by a constant. This constant is
Q(-, &) — P R(-,€). But v = G(-, &) = 0 implies that this constant is also equal to

P pt
-G - P9 = g5
Hence
Q(x,€) = mp*R(x,€) + % (2.17)
Therefore at each & + pew,
H(0)(0) +v(=A) Hxp, —a)(B) = % + yv(€ + pe?)

_ 1 p’logp ” mp
= ;ﬂ[— 5+ R(E+ pe, €) + 8\D\]
_ 1 p*log p ot
= - ’7[*72 ’R(¢, f)+m]+0( %)

Note that on the last line every term except O(vp?) is independent of 6. Since H(0)+~(—A) "' (x5, —
a) and S¢(0) also differ by a constant only,

4

557

Sg<o>=H<o>+v<—A>-1<XBg—a>+” 22L | Bel +2¢(0) = %ww R(£,6)+ ~22] 4 A¢(0) + O(7p%).



If we integrate S¢(0) with respect to 6 over [0, 27], then S¢(0) = 0 implies that

1 +A[mp2R(E, €) + mp! ]+ Ae(0) = O(vp?)
— T 5 ol = ’
o e
Hence S¢(0) = O(vp®). o
m2yp? —logp 1 R P’
Lemma 2.3 J(B¢) = 2mp + B [ o +§+R(£)+m]'

Proof. Let v = (=A)"!(x, —a) = P(- — &) + Q(-,€) as in the proof of Lemma 2.2. The local
part of J(B¢) is just the arc length
27p. (2.18)

The nonlocal part of J(B) is
b _A)-L2 —a)2d
L N I
D

= 2 [ = 7 [ xwowan = 1 [ e

:1[

5 P(z)dz + Q(x, &) dz] (2.19)
Bo Be

From the definition of P one finds that

4

41
/ Pla)ds = 7= _ TP o8P, (2.20)
Bo 8 2

For the integral of @, note that, since AQ(-,&) = a, Q(z,§) — 4|z — £|? is harmonic in . By the
Mean Value Theorem for harmonic functions

Qo) = [ (@@= flo-Pdor [ Glo-ede
3 3
2.6 2.6

QGG + g = T REO + T

Be

(2.21)

The lemma then follows from (2.18), (2.19), (2.20) and (2.21).

3 Reduction to two dimensions

One views S as a nonlinear operator from H?(S) N {1}+ to L?(S1) N {1}+. In this section it will
be proved that, for each £ € U, a function (-, &) exists such that ¢(-,€) L cosf, ¢(-,£) L sinf and

Se((+€))(8) = Ar¢cos 0+ Agesin® (3.1)
for some A; ¢, Ao ¢ € R. The equation (3.1) is written as

IS¢ (o(+,€)) = 0 (3.2)



where II is the orthogonal projection operator from L2(S1) N {1}+ to L2(S') N {1,cos®,sin6}+.
Roughly speaking the functions cos @ and siné correspond to translations in space. By solving
(3.2) we are solving (1.1) modulo translation. In the next section we will find a particular &, say (,
such that Ay = Ay ¢ =0, i.e. S¢(p(-,¢)) = 0. This means that by finding ¢ in this section one
reduces the original problem (1.1) to a problem of finding a ¢ in a two dimensional set U.
Let L¢ be the linearized operator of S¢ at ¢ =0, i.e.

Le(u) = SL(0)(u). (53
L¢ maps from H2(S1) N {1}* to L2(S1) N {1}, Expand S¢(¢) as
Se(¢) = Se(0) + Le(9) + Ne() (3-4)

where N¢ is a higher order term defined by (3.4). Rewrite (3.2) in a fixed point form:
¢ = —(IL¢) ™" (TLS¢(0) + IINe(9)) (3.5)
Before solving (3.5), one must estimate the linear operator ITL.
Lemma 3.1 Let v and p satisfy the gap condition (1.5).
1. There exists C > 0 independent of £, p and v such that
lull 22 < Cp*|[TLg (u)]| 2
for all u € H?(S') N {1,cosf,sinf}+.

2. If (1.8) is satisfied, then
[ull2 < Cp*(ILg(u), u).

3. The operator 1 L¢ is invertible from H?(S') N {1,cos6,sin 0} onto L2(S*) N {1,cosf,sinf}+
and there exists C' > 0 independent of £, p and v such that

lull g2 < Cp?|[ILLe (u)] 2
for all uw € H?(S'Y) N {1,cos®,sind}.
4. Under (1.8), Part 2 can be improved to

[l < Cp®(ILg(w), u).

Proof. Without the loss of generality assume that & = 0 and set B = Be, L = Lg, etc, in this
proof.
The derivative of H 4+ A at 0 is calculated in Appendix A. Denote it by L, which is

Li(u) = (H'(0) +A'(0))(u) (3.6)
2 U
= —%pg(u”—i—u)—%/o u(w)log(l—cos(@—w))dw—’yz

10



Note that IIL; = Ly on H2(S') N {1,cos,sin@}+ because L; maps from H2(S')N{1,cosf,sin}+
to L?(S') N {1,cos,sinO}+.
The Fourier coefficients of log(1 — cos(#)) is given by

27
- 2
/ log(1 — cos D)= df = — 2" || > 1. (3.7)
0 In]
Because u L 1, the n = 0 coefficient is not needed. The formula (3.7) is equivalent to the well known
formula
0 > cosnb
—log [2sin(=)| = .
os 2sin() = 3]

(See Tolstov [42, Page 93], e.g.)
In the Fourier space, L; is diagonalized and written as

L)) = 30t —a(E = ), el =1,2,3 (39)
1\u =u 2p3 '74 4|7’L‘ 9 9 Ly Dy eeey
where )
u(n) :/ u(f)e™™"? dp
0
is the n-th Fourier coefficient of w.
The eigen pairs, in H2(S') N {1}+, are
21 -1
Ap = n — v(n ), en = cosnb, sinnf; n=1,2,... (3.9)

203 4n

In this lemma the operator IIL’s domain is perpendicular to cos @ and sin 6, so we discard the eigen
pair A\; and e; = cosf, sinf. The gap condition (1.5) ensures that, with n > 2,

e(n—1)n €
|An| > BV IRy (3.10)
which implies
lullze < CP*| La(w)| 2, (3.11)

for all u € H2(S') N {1,cosf,sinf}+. Under the condition (1.8)

€

An > 53, 3.12
> 5 (3.12)
which implies
[ullF2 < Cp*(T(La (u), u). (3.13)
Moreover the gap condition also asserts that
Dol cln—Un € (3.14)

n2 4n?2 p3 8 p3 ’

which implies that
[u”|lz2 < CpP|| Ly (w)]| 2

11



Consequently
[ull 2 < Cp*|| Ly ()] 22 (3.15)

To estimate B’(0) note from (2.15) that

2m ) , 0 . .
B = [ u@R(E+pe g+ pe) do+ fo | VRE sty (36)

where B is the ball centered at £ of radius p. For the first part we write it as

2m 2m
3[R oo gt ey do = T [ u@)(R(E+ e+ pe) - R(E) s

since fo% u(w) dw = 0. And by the smoothness of R, we find

IR(E + pe’®, & + pe') = R(&, €)= = O(p),

and consequently
1B'(0)(w)[lz2 < Cypllul| 2. (3.17)

The last part \'(0) of L maps u € H2(S*) N {1,cosf,sinf}* into R. Therefore

(TIV(0) (1), 1) = A'(0)(u) /O " wdo = 0. (3.18)
Since
B'(0)(u) + X'(0)(u) = 0,

by (3.17)
IN(0)(w)] < CypllullLe. (3.19)

When 7p? is sufficiently small (3.11), (3.17) and (3.19) imply that

V

IML(u)llzz = (| La(u)]lL2 = [I(B'(0) + A'(0))(w) | 2

c c
allllez = Cypllullez = Z5lulrs

%

This proves Part 1 of the Lemma.
If (1.8) holds we derive from (3.13), (3.17) and (3.18) that

C C
(L (u), u) = EIIUII%z = Cypllulze = EI\UII%»

This proves Part 2.

Part 1 ensures that IIL is one-to-one from H2(S)N{1,cos®,sinf}* to L2(S*)N{1,cosd,sinh}+.
Since IIL is self-adjoint and hence closed, (3) also ensures that the range of IIL is closed. The Closed
Range Theorem (See Yosida [44, Page 205], e.g.) then implies that IIL is onto.

To prove Part 3 set IIL(u) = g. There exist ¢1,c2 € R such that

Ly (u) + B'(0)(u) + N (0)(u) + ¢1 cos + casinf = g. (3.20)

12



If we multiply (3.20) by cos 6 and integrate, then
(B'(0)u,cos ) + c1]| cos |2, =0
from which we derive, with the help of (3.17), that
le1| < Cpllul 2.

Similarly we have
lea] < Cpllul] 2.

Therefore by (3.15), (3.17), (3.19), (3.21), (3.22) and Part 1,

[l 22 Cp?[[La(w)l|

Cr*(llgll e + vpllullr2)
Co*(llgllzz + Cyp* |ITIL(u)| £2)
Cp’llgl >

ININ AN IA A

which proves Part 3 of the lemma.
To show Part 4 under (1.8), let

inf

u(@) = Y a(n)*

2
|n|=2

be the Fourier series of u. Then (1.8) asserts that

An S e(n—1)
n?2 4p%n
which implies that
0 einﬂ > einﬂ
L = u(n)— u
(L) = (3 NS, D amS)
|n|=2 |n|=2
= )\|n||ﬁ(n)‘2 C « 2|~ 2
= ) Lz ;Z”W(””
In|=2 |n|=2
C
> EHUH%{L

Finally by (3.17),

% Q

(IML(w), u) = (L(u),u) = (L1 (u),u) + (B'(0)u, u) > p

We also estimate the second Fréchet derivative of Se = H + A + Be + A¢.

Lemma 3.2 There exists ¢ > 0 such that if ||¢|| gz < cp?, the following holds.

13

Cp?llg — B'(0)(u) — N (0)(u) — ¢1 cos @ — cosin 0|2

(3.21)

(3.22)

(3.23)

C
ullFe = Cypllulli> > EIIUIIE‘&L O



, C
11" (@) (u, 0)llz> < ;IIUHHQIIUIIH%
, C
2. A" (9)(u, v)] L2 < *pJIIUHHIIIUIIHl-

Cy
3. [|BE (9)(u, )] L2 < 7IIUIIH1IIUIIH1-

c C
4 (@) (u,v)] < (E + pfg)\lulleHvlle-

Proof. Note that by taking c small, we keep p? + ¢ positive, so Ey is a perturbed disc.
‘H may be better understood after re-scaling. Introduce

¢ o O g

=20 =2 9o"=2
p? p? p?

and

H(2,2',0") = pH(¢, ¢, ¢").

Then ()2
3 <I>/ <I>//
9 I - H’)2

does not involve p. With a small ¢ in the condition ||¢| g2 < ¢p?, [|®[| g2 becomes small compared
to 1. With H;(®), Hy(®), and H3(®) denoting the derivatives of H(®,®’, ®”) with respect to its
three arguments, the second Fréchet derivative of H is
H"(®,9',9")(u,v)
= Hy 1 (®)uv + Hop(P)u'v' + Hio(®)(u'v + uv') + Hag(®)(u/'v" 4+ u/v') + Hay (uv + uv”)
Note that we do not have u”v” on the right side since Hs3 = 0. Because of this absence, the Sobolev
Embedding Theorem implies

1" (@) (u,v)l| 22 < Cllullzz[v] 2

In terms of H and ¢,
C
IH"(6)(u, v) |2 < ;HUIIH2||UIIH2 (3.24)

This proves Part 1.
To prove Part 2, let us again set ® = ;% and introduce

27 \/m ) )
A(P)(0) = /0 /0 log [\/1+ ®(0)e? — se™|s dsdw. (3.25)

Then
A(¢) = -2 A(®) (3.26)



The change from ¢ and A to ¢ and A scales away p. The first Fréchet derivative of A is given by

A (@) (u)(0) = 1/07r Vog |/TF 3@ — /TF B(w)e™| dw

27 1+<I>(w /1 (0 iwy . 6
/ / + 2(6)e” — se ) ¢ sdsdw (3.27)
2\/1+<I> [v/1+ ®(0)e?? — seiw|?

The second Fréchet derivative of A is

A" (@) (u,v) = A1 (®)(u,v) + A2(P)(u, v) + A3(®)(u,v) + As(®P)(u, v) + A5(P®)(u,v) (3.28)

where

U(@)ew 27
A (P)(u,v) = —————- K0, w)u(w)d
(@) = e [ K@) de

u(f)e? 2
Ay (P)(u,v) = ———————" K0, w)v(w) dw
@) = TG [T Kw)

12 u(w)v(w)e®
A3(®)(u,v) = —- K(6 —_—
@) = g [ K. I

1 q) 10_ 2_2 1 P _ .10, )\2

A@) () = o 4 HOO 0y

1+(I) (0)) \\/1—|—<I> Jei? —yl4

Ju(6) /2”/ VIFRE) (TEB(B)e — se) - i
A5(®)(u,v) = sdsdw.
5(®)(u,v) 1+¢ 11+ 0(0))2 |\/1+Te%9—seW|2
The set Eg is a shifted and re-scaled version of Ey:
Eo ={t\/1+®(0) : 0 €[0,2n], t € [0,1)}. (3.29)
The kernel K is » ‘
1+ 2(0)e” — /1 + D w
K(0,w) = Y1+ 20 + Pw)e (3.30)

[v/1+ ®(0)e?? — /1 + ®(w)eiw |2
Here we encounter a singular integral operator

2
K(u)(0) = K0, w)u(w) dw (3.31)
0
i
transform. To define the operator properly, we first write

since the singularity of K(6,w) is of the type This operator is very much like the Hilbert

27 27
K(u)(0) = ; K(0,w)(u(w) —u()) dw + u(0) ; K(0,w) dw. (3.32)

For u € H?(S') c H*(SY), u is Holder continuous. Hence

lu(w) = u(0)] < |w = 0] ||ullc
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for some « € (0,1). Therefore
[K(0,w)(u(w) = u(®))] < Clw =07 lullce,

and the first term in (3.32) is convergent. Here ||u||, is the C® norm of u. The second term is
defined by its principal part:

2m
K(0,w)dw = lim K(0,w)dw.
0 e—0 jw—0]|>¢
The limit converges due to the cancellation effect for w before and after §. We have derived

1K ()]~ < Cllullce < Cllul|g: (3.33)

We can now estimate A, As and As. By (3.33)

[A1(@)(u, )] z2 < Cllullg o] L2 (3.34)
Similarly
[ A2(®)(u, )|z < Cllull 2] a2 (3.35)
For As we have
[ A3(®)(u, v)||Loe < Clluv]lce < Cllullg|[vllm- (3.36)

We now turn to A4. The integral
[ WISy AT e o,
: Y
Ex V14 2(6)e —y|*

is a convergent improper integral defined by its principal part. It is uniformly bounded with respect
to 6. In the case of ® equal to 0, it may be explicitly computed. (See Appendix B.) Therefore

[A4(®) (1, )| o < Cllul| 2 [|v]| (3.37)
For As, because of the mild singularity, we easily find
[ 45 (@) (u, v) ||z < Cllull g [[0] a2 (3.38)
Following (3.34), (3.35), (3.36), (3.37) and (3.38) we obtain
[A"(®@)(w, v)l L2 < Cllullg (0]l a1, (3.39)

and by (3.26) we have
Cy
A" (&) (u, v) ]| 2 < = [ull [0l

proving Part 2.
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The kernel R in B is a smooth function. Calculations show that

27
B = — 2 [T TR+ SO € + VT ) ¢ do

p*+¢(0) Jo
P (+)<z>(e) ") VIRE VT 6O+ T @) - o d

2w
'}/ u(w) ( ) 7,9 'Lw iw
+7 ; ) —————=VoR(§ + /p? + ¢(0)e",{ + V/p? + d(w e dw

yu(8)v(8)
(p +¢(0))

)
0 0
_)3/2/ ViR(E+ VT 60 y) - ¢ dy

4(p* + o(0

/ (D2R(E+ /T 900), y)e” - %) dy

where V; and V; refer to the derivatives of R with respect to its first and second arguments
respectively. D?R is the second derivative matrix of R with respect to the first argument of R. Part
3 is now proved easily.

Part 4 follows from Parts 1-3 and the fact that

0= Sg((b)(ua v) = H"(¢)(u,v) + A" () (u,v) + Bg(ﬁb)(ua v) + )‘g(¢)(u7 v). O

Lemma 3.3 There exists ¢ = p(0,&) such that for every £ € U, o(-, &) € H2(S*)N{1,cos8,sin6}+
solves (3.5) and ||p(-, )|l g2 < cyp® where ¢ is a sufficiently large constant independent of &, p and

.

Proof. For simplicity we again assume that £ = 0 and set B¢ = B, L¢ = L, etc. Recall the fixed
point setting (3.5). To use the Contraction Mapping Principle, let

T(¢) = —(IIL)~}(11S(0) + [IN(¢)) (3.40)
be an operator defined on
D(T) = {¢ € H*(S") N {1,cos6,sin0}* : ||p]l g> < cp} (3.41)

where the constant c¢ is sufficiently large which will be made more transparent later.
It is clear from Lemmas 2.2 and 3.1 that

|(T1L) IS (0)] 2 < Ct. (3.42)
More difficult is the estimation of N(¢). We decompose N(¢) into three parts. The first is

N1(6) = H() - % + %(d’ T 6) = H(d) — H(0) — H'(0)(0) (3.43)

which is H(¢) minus its linear approximation at ¢ equal to 0. Lemma 3.2, Part 1, shows that

C
[N1(#)] 2 < ;IWH%% (3.44)
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The second part of N, which we denote by Na, is A(¢) + B(¢) minus its linear approximation, i.e.

Na(¢) = A(¢) — A(0) — A'(0)(¢) + B(¢) — B(0) — B'(0)(¢)- (3.45)

Lemma 3.2, Parts 2 and 3, implies that
Cry
[N2(@)]| 2 < FIId)H?p (3.46)

The third part of N, which is denoted by N3, merely gives a constant so that

N(¢) = Ni(¢) + Na(¢) + N3(¢) = 0.

It follows that

C Cvy
[Ns(9)] < Ellcbllizz + ?Ilcﬁllip- (3.47)
Therefore we deduce, from (3.44), (3.46), (3.47) and with the help of Lemma 3.1, that
C Cvy
IN(@)llL2 < pfg,\\qﬁllizz + F\Iqﬁllfql (3.48)
_ C
I(TIL) T IN () |2 < pj\\(bllfm +Cyplloln (3.49)

Using (1.7), (3.42), (3.41), and (3.49) we find
IT($)| 2 < Cyp® + Cy*p™ + CP7p'? < ey

if ¢ is sufficiently large and vp* sufficiently small. Therefore T is a map from D(T) into itself.
Finally we show that T is a contraction. Let ¢1,¢2 € D(T). To estlmate Ni(¢1) — Ni(¢2) we
proceed as in the proof of Lemma 3.2, Part 1. Let &; = % and ®, = 22. Then, writing H(q)l) for

H(®,®", ®/) for simplicity, we find

p|N1(¢1 ~) (¢2)| ) i

= [H(®) - H(®y) — Hy(0)(21 — ®y) — Ha(0)(D] — @b) — Hs(0)(®] — )]
= |H (D2)(@1 — D) + Ha (Do) (D) — D)) + Hs(®2)(®] — @)
(

+§H11(t<1>1—(1—t)<1>2)(<1>1 ®y)? + H22 t®) — (1 —1)Py) (D) — Dh)?

+1€I12(t<1)1 — (1 =t)D2) (P — Bo)(P) — CI)IQ) + H23(t(1)1 — (1 = t)®2)(®] — ®Y)(P) — @)
+Hs (1@ — (1 — 1)D2) (D] — DY) (@1 — Do)

—Hy(0)(®1 — ®2) — Hy(0)(®) — @5) — H3(0)(®] — )]

Cl|®1] + [@2])[ @1 — Po| + (|D)| 4 [P5])| D] — @5

F(|P1| + [@2]) @] — @5 + (|D] + |D5])| D1 — By

+(|21] + [@5])| @] — 5] 4 (|| + |D5])| ] — Py

+(127] + [25])[ @1 — Do + (|@1] + |D2])| D] — P5]].

IA
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Since there is no (|®7| + |®5])|P} — @4 term, by the Sobolev Embedding Theorem we deduce, after
returning to ¢, and ¢,

|

INL(61) = Ni(92)llz < = (llonllaz + [9lla2)l¢1 — p2llaz < Cyplldr — d2ll a2 (3.50)

ot

p
For N> we note that

Na(¢1) — Na(¢2) = A(¢1) — A(d2) — A'(0)(d1 — ¢2) + B(d1) — B(¢2) — B'(0)(¢1 — ¢2).  (3.51)

Therefore using Lemma 3.2, Part 2, we obtain

| A(p1) — A(g2) — A'(0) (1 — ¢2)| 12
< A (2)(r — b2) — AO) (b1 — d)llze + %nm — o2

Cvy Cvy

< ?”¢2HH1H¢1 — ¢ollmr + ?H% — $o|l3
Cy

< F(II%IIH1 + o2l z)ll¢1 — d2|

Similarly using Lemma 3.2, Part 3, we deduce

C
1B(¢1) — B(¢2) — B'(0)(¢1 — ¢2)|| L2 < T’Y(II%IIH1 + llp2lla)l¢1 — pallm-

From (3.51) we conclude that

C
IN2 (1) — Na(62)l|12 < p—Z(\mnm +llg2llzs)lér — dallm < CY20 i1 — ol (3.52)
We also have
IN3(¢1) — N3(¢2)ll22 < Clyp+ 20" d1 — ¢l m2- (3.53)
Hence, following (3.50), (3.52), and (3.53), we find that
IT(¢1) — T(d2)llm2 < Cyp* +7*p")lp1 — d2ll 2, (3.54)

i.e. that T is a contraction map if yp* is sufficiently small, with the help of (1.7). A fixed point ¢
is found.

Since ¢ satisfies ||@||g2 < cyp®, by taking & small we see that cyp? is small and hence p? + ¢
remains positive. E, is a perturbed disc.

4 Existence

We prove Theorem 1.1 in this section. From Lemma 3.3 we know that for every & = (£1,&) € U
there exists (-, &) € H2(S') N {1,sin6,cos@}+ such that ILS¢(p(-,€)) = 0, i.e. (3.1) holds. In this
section we find a particular £, denoted by ¢, in U such that S¢(¢(-,¢)) = 0.

But first we state a result regarding the linearization of S¢ at ¢(-,£). Denote the linearized
operator by l~/§. We have the following analog to Lemma 3.1.
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Lemma 4.1 Let II be the same projection operator to L*(S*) N {1,cosf,sinf}+.
1. There exists C > 0 such that for all u € H*(S*) N {1, cosf,sin O}

lull 2 < Cp® ML (w)]] 2

2. If (1.8) holds, ~
lullf < Cp*(ILg(u), u).

Proof. In this proof we again assume, without the loss of generality, that { = 0, and write L, L
for Le¢, Le, etc.
By Lemma 3.1, Part 3, Lemma 3.2, (1.7), and the fact ||¢|| gz = O(7p%), we deduce

ITL(w)|z2 > [HL(w) g2 — [T(L — L) (u)]| 2
c C Oy

> —||u|| g2 — + — )l g2 ||uv)| g2
p3|| I (p5 p2)|| | 22 |||
C
> EHUHHz_C(7P+72p4)||u”H2
C
> EHUHHQ

when yp* is small.
Write L = H'(p) + A'(¢) + B'(¢) + Ae (). Let

Qe, ¢") =2\/p2+¢+4(l()ff¢)- (4.1)

Then
27
(H () (), u) = / (@10, & 1 + 2Qua(p, o Yud + Qualip, ) ()] .

and a similar expression holds for L if we replace ¢ and ¢’ by 0 in the last formula. Here ()11 is the
second derivative with respect to the first argument of @, etc. With |||z = O(yp°) calculations
show that

27
(H(9) - H (O wu)| < | / (@1, 0') — Qu1(0,0))a do)
1] / " 2(Qualr @) — Qra(0,0))uad do)

27
+ / (Qaa(r ) — Qus(0,0)) (Y2 db|

Cypllulls + Cypllullrz||u’l|zz + Cypllu[|7
CypllulF (4.2)
Lemma 3.2, Parts 2 and 3, and the fact ||¢|| gz = O(7p%) show that

I(A () + B'() = A'(0) = B'(0))ull 2 < C¥*p|ul 1 (4.3)

IAIA
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Finally we combine Lemma 3.1, Part 4, (4.2

~—

, (4.3) and (1.7) to deduce that

(IIL(u),u) = (IL(u),u) + (II(L — L)u,u) > —

|Q

C
lullZn = Cypllulln — Cv2ptlully > pfg\IUII?{u

)
w0

proving the lemma.
One consequence of this lemma is an estimate of g—g.
J

Lemma 4.2 For each £ € U, ¢ satisfies H%HHz =0(yp°), j=1,2.
J

Proof. We prove this lemma by the Implicit Function Theorem. Differentiating ILS¢(yp) with
respect to &; finds that

o = MSe(v)
9&;
= 0 OR 2 0)e?, OR 2 e,
HLE(i)+H7/ [ €+ Vp* +e(0)e”,y) N €+ Vp* +p(0)e y)]dy
0&; E, Ox; dy;
—v/ [03(6 VP2 p(O)ey) | OR(E+ Vo + w(9)ei9,y)] dy
E, axj Byj
where R = R(z,y). It is clear that
IR+ /p* +¢(0)c”,y) | OR(E+ /P + ¢(0)c”,y) o2
E, Ly Yj
and
OR(E+ /p* + (0)e,y) | OR(E+ \/p* + ¢(0)e”, y) o2
E, Ly Yj
With the help of Lemma 4.1 we deduce that

I [
&

We now turn to solve S¢(¢) = 0.

g2 < Cp’pPy = Cyp®.

Lemma 4.3 J(Ey(. ¢) = J(Be) + O(v*p?).

Proof. In this proof without the loss of generality we take £ = 0. Expanding J(E,,) yields
Loe Lo 3 13 416
J(Bp) =J(B)+5 | SO)pdo+ 7 | Llp)pdd+0(r°p) + 00y p"). (4.4)
0 0

The two error terms in (4.4) are obtained in the same way that (3.48) is derived.
On the other hand I1S¢(¢) = 0 implies that

T(S(0) + L(y) + N(¥)) = 0
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where N is given in (3.4) and estimated in (3.48). We multiply the last equation by ¢ and integrate
to derive

27 27
| s@eds s [ Lio)pds = 00%) + 0G4,
0 0

We can now rewrite (4.4) as
1 2m
J(Ep) = J(B)+ 7 | S(0)pdd+0(y*p") +O(y'p").
0
Lemma 2.2 implies that
J(Ep) = J(B) +0(y*p") + O(4°p"*) + 0(v*p'%) = J(B) + O(v*p").

because of (1.6) and (1.7).

If we consider J(¢(+,§)) as a function of £, then Lemmas 2.3 and 4.3 imply that
2

p
4[D|

myp = log p

5 L Re

E,. =2
I wl ’5)) o+ 2 8

J+0(?p°). (4.5)
Because of the definition of U, (1.6) and (4.5), there is ¢ € U such that J(E,. ¢)) is minimized at

& = (. This ( is close to a global minimum of R. We prove the existence of a solution in the next
lemma. It uses a tricky re-parametrization technique.

Lemma 4.4 At &= ¢, S¢(o(-,¢)) =0.

Proof. For { = (£1,&2) near ¢ we re-parametrize Op E,(. ¢). Let ¢ be the center of a new polar
coordinates, p? + 1) the new radius square and 7 the new angle. A point on OpE,(. ) is described

as ¢ + /p? + e’ Tt is related to the old polar coordinates via

C+ T = €4 T g (4.6

In the new coordinates F, becomes E,. It is viewed as a perturbation of the disc centered at ¢ with
radius p. The perturbation is described by ¢ which is a function of n and &.

The main effect of the new coordinates is to “freeze” the center. The center of the new polar
system is ¢ which is fixed while the center of the old polar system is & which varies in U.

We now consider the derivative of J(E, (. ¢)) = J(Ey(. ) with respect to £&. On one hand, at
£=¢,

0J(Ew<-,s>)| _ 9J(By(0)
og; T og

|5:C = O? j = 1725 (47)

since ( is a minimum.
On the other hand calculations show that

a ) 27
J(ggf’@) - %/o Sc(w(-i))(n)gz . (4.8)

We emphasize that (4.8) is obtained under the re-parametrized coordinates, in which the dependence
of J(Ey(.¢)) on § is only reflected in the dependence of 1 on . Had we calculated in the original
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coordinates, £ would have appeared also in the nonlocal part of J through R(£+...,£+...). The result
would have been very different from (4.8). See the proof of Lemma 4.2 which involves differentiation
with respect to £ in the original coordinates. In the derivation of (4.8) we have used the fact that

274 dnp = 0 which implies that [ 5L dn =0, so that 2 Ac($) 5 dnp = 0 where A¢(¢)) is part of

Sc(¥) = H(Y) + A(W) + Be () + Ac(¥),

and we can reach the right side of (4.8). See Remark 2.1 for the coefficient 1 in (4.8).
The expression S¢(¢) is invariant under re-parametrization, i.e.

Se((,€)(0) = Sc(¥(-,€))(n). (4.9)
Now we return to the original coordinate system and integrate with respect to 6 in (4.8). Then
— = : —_ 4.1
ge =g [ Slel. )0 TR (4.10)

We recall that ¢ and 7 are defined implicitly as functions of 8 and £ by (4.6). Let us agree that
Y =1(n,€) is a function of n and . Set ¥(0,€&) = ¥(n(0,£),&). Implicit differentiation shows that,
with the help of Lemmas 3.3 and 4.2,

-1

d ) 0 Vp* + Usin e
% 96 o6 P 1 N
ov ov ow T in
90 095 06 —/p?+ Pcosn —2\2}2"?
cos Op /9 : cosf  Op cosf  Op
o/t o 90 P + @Slne 1 + 2\/p2+</2 BI3) 2\/p2+@ Bt
X
sinf  9d¢ 2 ., sinf  Od¢ sinf  Od¢
g 00 T VPt pcost SN/ Lt s 9%
—sinn cosn
= 9 24/ p2+¥ 24/ p2+¥
V2P +Tcosn /p?+ Using
" { —V P2+ ¢sind +0(yp°) 14+ 0(yp") O(vp*)
VP2 +pcosd+O0(yp°)  O(vyp?) 1+ O(yp")
At £ =(,n=10, ¥ = ¢ and the above becomes
o ou Dy 1+0(p*) ——A2E +0(1p%) 2L +0(1p%)
20  9& 9 Vp2te Vit
oT 9T OV .
90 08 08 de—¢ O(vp°) 2\/p* +pcos+O0(yp°)  24/p* + psind + O(yp°)
(4.11)
We have found that at £ = (,
ov ov i
——le=¢c =2pcosO+O0(vp°), —le=c = 2psinf+ O(yp°). (4.12)
0&1 082
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To compute %’ we invert n = n(£,0) to express § = O(n,£). Then
J

ov_ov  ov 06
65] 8@} 90 0¢;

At £ = (, since
on
ov B 6 00 _ % _ 1
Tl = 008 g lemc = =5 = OC) (413)
we deduce that o0
i|§=< =2pcost +O(7p°), Hle=¢ = 2psinb + O(p°). (4.14)
o€ 082

Following (4.14) and the fact that %kzc =1+ O(p*y) we find that (4.10) becomes

OJ(Ey(.¢)) 1 [
e = 0 Sce)(2pcosd+ O(3p%)) db,
06, 2 Jo
0J(Ey(.e)) 1 [ .
Pl = [ s)eesing + 00 db, (4.15)
02 2 Jo
Now we combine (3.1), (4.7) and (4.15) to derive that

2 2m
A / cos0(2pcos 0 + O(yp°)) df + Aa ¢ / sinf(2pcos@ + O(yp®))dd = 0
0 0

2m

2m
Al,g/ 0089(2p51n9+O(7p5))d9—|—A27</ sinf(2psinf + O(yp°®))dd = 0.
0 0

Writing the system in matrix form

[2mos 00 o) o [ ]=[ 8] "

we deduce, since (4.16) is non-singular when vp* is small, Ay ¢ = Ay ¢ = 0, proving the lemma.
We have proved the existence part of Theorem 1.1. Because ||¢(-, ()|l gz = O(p%7), the approxi-
mate radius of the perturbed disc Ey. ¢) is

V24 9(0,¢) = p+O(yp°), at each 6 < [0,27]. (4.17)

The center of the disc is ¢ which is close to a minimum of R.
In this theorem a solution is termed stable if it is a local minimizer of J in the space

Ux{¢: ¢ H(S"), ¢ L1, cosb, sinf}. (4.18)

Under the condition (1.8) Lemma 4.1, Part 2, shows that each ¢(+,£) we found in Lemma 3.3 locally
minimizes J, with fixed £ € U, in {¢: ¢ € H}(S), ¢ L 1, cos®, sinf}. On the other hand (-, ()
minimizes J(E,. ¢)) with respect to §. Hence ¢(-, () is a local minimizer of J in (4.18).

If (1.8) does not hold and (1.5) is satisfied with

en® < yp® —2n(n+1), and vp* — 2(n +1)(n +2) < —e(n + 1)?
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for some n > 2, then the eigenvalue \,, of the operator L; in the proof of Lemma 3.1 and its
corresponding eigen function cosnf satisfy

c C

—E, (L1(cosnB),cosnb) < ——.

An <
n p3

By (3.17) and (3.19), the last inequality implies that

C
(L¢(cosnB), cosnb) < i
Then by Lemma 3.2 and (4.2) in the proof of Lemma 4.1
- C
(L¢(cosnd), cosnb) < i

Therefore the solution is unstable.

5 Discussion

The functional (1.2) was derived from the Ohta-Kawasaki density functional theory for diblock
copolymers in [30] as a T-limit. The density functional theory uses a function v on D to describe
the density of A-monomers and 1 — u to describe the density of B-monomers. The free energy of a
diblock copolymer is

62 g
1) = [ [SIV6P + WG + F1-8) - )P da (5.1)

where w is in

{u e H (D) : 7 = a}. (5.2)

The function W is a balanced double well potential such as W (u) = 1u?(1 — u)?. There are three
positive parameters in (5.1): €, o, and a, where € is small and a is in (0, 1).
If we take o to be of order ¢, i.e. by setting

o= ey (5.3)

for some v independent of €. As € tends to 0, the limiting problem of ¢TI turns out to be
v _
IE) = riDxel(D) + ] [ 1-8) (e - ) do (5.4)
D

which is the same as the J in (1.2) except for the additional constant 7 here. This constant is known
as the surface tension and is given by

S /0 VW (g) dq. (5.5)

The functional (5.4) is defined on the same admissible set X, (1.3).
The theory of I'-convergence was developed by De Giorgi [10], Modica and Mortola [23], Modica
[22], and Kohn and Sternberg [19]. It was proved that e 1T T'-converges to J in the following sense.
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Proposition 5.1 (Ren and Wei [30]) 1. For every family {uc} of functions in (5.2) satisfying
lim. .o u. = xg in L?(D),
liminf e ' I(u.) > J(E);
2. For every E in X, there exists a family {u.} of functions in (5.2) such that lim._ou. = xg in
L?*(D), and
limsup e 1 (uc) < J(E).
e—0
The relationship between I and J becomes more clear when a result of Kohn and Sternberg [19]
was used to show the following.

Proposition 5.2 (Ren and Wei [30]) Let § > 0 and E € ¥ be an isolated local minimzer in the
sense that J(E) < J(F) for all xp € Bs(xg) with F # E, where Bs(xg) is the open ball of radius §
centered at X in L*(D). Then there exists €9 > 0 such that for all e < ey there exists uc € Bs/2(xk)
with I(ue) < I(u) for all u € Bs;o(xg). In addition lime ¢ |ue — xE| £2(p) = 0.

Whether the existence of a stable solution E. ¢ to (1.1) in the sense of Theorem 1.1 implies the
existence of a local minimizer, close to xg,. ., In L?(D), of I deserves further study. The stability
concept used in this paper is weaker than in [19] and [30], because a stable solution here is defined
as a local minimizer in a more restricted class of sets than in Proposition 5.2. Another problem
is that the stable solution found in this paper is not always isolated. If we take D to be a ring:
{z € R? : 1 < |z| < 2}, then by rotating one droplet solution we obtain a connected family of droplet
solutions, all having the same energy.

In Theorem 1.1 the center of the droplet is close to a global minimum of R. If 7 is a strict local
minimum of R, i.e. there exists a neighborhood N of 7 such that R(n) < R(£) for all & € N, then
assuming the assumptions in Theorem 1.1, using the same reduction argument, we can show that
there is a droplet solution whose center is close to 7. Moreover if 7 is a strict local maximum of R,
there is also a droplet solution whose center is close to 7, although this droplet is always unstable.

In a forthcoming paper [40] we will show the existence of a multiple droplet pattern as a solution
to (1.1) in a general two dimensional region. In addition to the difficulties encountered here, we
must prevent a new phenomenon, pattern coarsening, from happening. Pattern coarsening means
that some droplets become larger and others become smaller and disappear. Pattern coarsening is
a central property in the Cahn-Hilliard problem, which is just (5.1) without the nonlocal term, i.e.
o =01in (5.1). See Alikakos and Fusco [2] and Alikakos, Fusco and Karali [3] for more studies of
this phenomenon. We also point out that a single droplet solution also exists in the Cahn-Hilliard
problem (see Alikakos and Fusco [1] and Wei and Winter [43]), although it is always unstable.

To prevent pattern coarsening in the diblock copolymer problem, in [40] we impose a lower bound
on v in addition to the conditions (1.5) and (1.12):

1+e

, 5.6
p3 log% ( )

>

Here p is the average radius, i.e. p = zl(?rl where K > 2 is the number of droplets. We see another
difference between our approach and the one by Oshita. The parameter range used by Oshita will

not yield a stable multiple droplet solution.
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A Appendix 1

The derivative of H at 0 is given by straight forward calculations from (2.13):
1
H(0)(u) = —p—g(u” +u). (A1)

The derivative of A at 0 has two terms according to (2.14). The first is

y 2m

8m

RICY GG R
B1(0) |

Am et —y|2

u(w) log(l — cos(f — w)) dw.

The second is

for which we calculate the integral. Here B;(0) is the unit ball. Let y = e¥((1,0) — 2), and
z = re*”. The disc B;(0) now becomes B (1,0), the disc centered at (1,0) of radius 1. Its boundary
is parametrized in the polar coordinates by r = 2 cos 3. Then we have

0 . L0 0 /2 2cos 3
/ %d@/:/ e’z dz—/ / cos Bdrdf = .
B1(0) le?® —y] B1(1,0) |2|? 7/2J0

Then it follows that

A(0)(u) = _81 v u(w)log(1 — cos(f — w)) dw — % (A.2)
™ Jo
B Appendix 2
We evaluate " 291 ot .y
e —yP—201—¢?-y
~/B1(0) ‘eie - y‘4 dy (Bl)

where B;(0) is the unit disc. Let y = €¥((1,0) — 2), and z = re?’. The disc B;(0) now becomes
B (1,0), the disc centered at (1,0) of radius 1. Its boundary is parametrized in the polar coordinates
by r = 2cos 3. Then (B.1) becomes

2 _9(eil . i arccos(r/2) 1_9
/ ] (e i e"z) dz _ / / 1—2cos’ 3 dBdr — s (B.2)
B1(1,0) |Z| 2

arccos(r/2) r

Note that the last integral must be in the d@dr order, otherwise it would be divergent.
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