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Abstract In this paper we present a new technique to construct neighborly polytopes,

and use it to prove a lower bound of
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for the num-
ber of combinatorial types of vertex-labeled neighborly polytopes in even dimension
d with r + d + 1 vertices. This improves current bounds on the number of combinato-
rial types of polytopes. The previous best lower bounds for the number of neighborly
polytopes were found by Shemer in 1982 using a technique called the Sewing Con-
struction. We provide a new simple proof that sewing works, and generalize it to
oriented matroids in two ways: to Extended Sewing and to Gale Sewing. Our lower
bound is obtained by estimating the number of polytopes that can be constructed via
Gale Sewing. Combining both new techniques, we are also able to construct many
non-realizable neighborly oriented matroids.

Keywords Neighborly polytope · Oriented matroid · Sewing construction ·
Lexicographic extension

1 Introduction

A polytope is said to be k-neighborly if every subset of vertices of size at most k is the
set of vertices of one of its faces. It is easy to see that if a d-polytope is k-neighborly for
any k >

⌊ d
2

⌋
, then it must be the d-dimensional simplexΔd . This is why a d-polytope

is called neighborly if it is
⌊ d

2

⌋
-neighborly. Analogously, an (acyclic) oriented matroid

of rank r is called neighborly if every
⌊ r−1

2

⌋
elements form a face (see [6, Chap. 9]).
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Neighborly polytopes form a very interesting family of polytopes because of their
extremal properties. In particular, McMullen’s Upper Bound Theorem [22] states that
the number of i-dimensional faces of a d-polytope P with n vertices is maximal for
simplicial neighborly polytopes, for all i . Any set of n points on the moment curve in
R

d , {(t, t2, . . . , td) : t ∈ R}, is the set of vertices of a neighborly polytope. Since the
combinatorial type of this polytope does not depend on the particular choice of points
(see [17, Sect. 4.7]), we denote it as Cd(n), the cyclic polytope with n vertices in R

d .
The first examples of non-cyclic neighborly polytopes were found in 1967 by Grün-

baum [17, Sect. 7.2]. In 1981, Barnette [4] introduced the facet splitting technique,
that allowed him to construct infinitely many neighborly polytopes, and to prove that
nb(n, d), the number of (combinatorial types of) neighborly d-polytopes with n ver-
tices, is bigger than

nb(n, d) ≥ (2n − 4)!
n!(n − 2)!( n

d−3

) ∼ 4n(1+o(1)).

(Here and below, the asymptotic notation o(1) refers to fixed d and n → ∞).
This bound was improved by Shemer in [26], where he introduced the Sewing

Construction to build an infinite family of neighborly polytopes in any even dimension.
Given a neighborly d-polytope with n vertices and a suitable flag of faces, one can
“sew” a new vertex onto it to get a new neighborly d-polytope with n + 1 vertices.
With this construction, Shemer proved that nb(n, d) is greater than

nb(n, d) ≥ 1

2

((d

2
− 1

)⌊n − 2

d + 1

⌋)
! ∼ ncd n(1+o(1)),

where cd → 1
2 when d → ∞.

The main result of this paper is the following theorem, proved in Sect. 6, that
provides a new lower bound for nbl(n, d), the number of vertex-labeled combinatorial
types of neighborly polytopes with n vertices and dimension d.

Theorem 6.8 The number of labeled neighborly polytopes in even dimension d with
r + d + 1 vertices fulfills

nbl(r + d + 1, d) ≥ (r + d)(
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This bound is always greater than

nbl(n, d) ≥
(n − 1

e3/2

) 1
2 d(n−d−1) ∼ n

dn
2 (1+o(1)),

and dividing by n! easily shows this to improve Shemer’s bound also in the unla-
beled case. Moreover, when d is odd we can use the bound nbl(r + d + 1, d) ≥
nbl(r + d, d − 1), which follows by taking pyramids (cf. Corollary 6.10).
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Of course, (�) is also a lower bound for pl(n, d), the number of combinatorial
types of vertex-labeled d-polytopes with n vertices, and is even greater than

pl(n, d) ≥
(n − d

d

) nd
4
,

which is, as far as the author knows, the current best lower bound for pl(n, d) (valid
only for n ≥ 2d). This bound was found by Alon [1].

Remark 1.1 To the best of the author’s knowledge, the only known upper bounds for
nbl(n, d) are the upper bounds for pl(n, d). Alon proved in [1] that

pl(n, d) ≤
(n

d

)d2n(1+o(1))
when

n

d
→ ∞.

improving a similar bound for simplicial polytopes due to Goodman and Pollack [16].

We can summarize the main contributions of this paper as follows.

1. First, we show that Shemer’s Sewing Construction can be very transparently
explained (and generalized) in terms of lexicographic extensions of oriented
matroids (Sect. 3). In fact, the same framework also explains Lee & Menzel’s related
construction of A-sewing for non-simplicial polytopes [21] (observation 3.4), and
the results in [29] on faces of sewn polytopes. Moreover, it naturally applies also
to odd dimension just like Bistriczky’s version of the Sewing Theorem [5].

2. Next, we introduce two new construction techniques for polytopes. The first,
Extended Sewing (Construction B) is based on our Extended Sewing Theorem 3.15.
It is a generalization of Shemer’s sewing to oriented matroids that is valid for any
rank and works for a large family of flags of faces (suggested in [26, Remark 7.4]),
including the ones obtained by Barnette’s [4] facet splitting. Moreover, Extended
Sewing is optimal in the sense that in odd ranks, the flags of faces constructed in
this way are the only ones that yield neighborly polytopes (Proposition 3.22).

3. Our second (and most important) new technique is Gale Sewing (Construction D),
whose key ingredient is the Double Extension Theorem 4.2. It lexicographically
extends duals of neighborly polytopes and oriented matroids. With it, we construct a
large family of polytopes called G. This family contains all the neighborly polytopes
constructed in [12], which arise as a special case of Gale Sewing for polytopes of
corank 3.

4. Using Extended Sewing, we construct three families of neighborly polytopes—
S, E and O—the largest of which is O. In Sect. 5, we show that O ⊆ G (Corol-
lary 5.4), and in this sense, Gale Sewing is a generalization of Extended Sewing.
However, it is not true that the Double Extension Theorem 4.2 generalizes the
Extended Sewing Theorem 3.15 (cf. Remark 5.5).

5. The bound (�) is obtained in Theorem 6.8 by estimating the number of different
polytopes in G.

6. To tie our constructions together, we show that combining Extended Sewing and
Gale Sewing yields non-realizable neighborly oriented matroids with n vertices and
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rank s for any s ≥ 5 and n ≥ s + 5 (Theorem 5.8). Even more, in Theorem 6.11
we show that lower bounds proportional to (�) also hold for the number of labeled
non-realizable neighborly oriented matroids.

Observation 1.2 Sanyal and Ziegler [25, Corollary 3.8] proved that the number of
neighborly simplicial (d − 2)-polytopes on n − 1 vertices is a lower bound for the
number of d-dimensional neighborly cubical polytopes with 2n vertices. Hence, (�)
also yields lower bounds the number of neighborly cubical polytopes.

Observation 1.3 It can be proven that all the polytopes that belong to G are inscrib-
able, that is, that they can be realized with all their vertices on a sphere [15]. Hence,
(�) is also valid as a lower bound for the number of inscribable neighborly polytopes
and for the number of neighborly Delaunay triangulations (see also Remark 4.11).

We present our results after the introductory Sect. 2, which may be skimmed with
the exception of the statement of Proposition 2.9. The proof of this and some smaller
results are relegated to Appendix A so as not to interrupt the flow of reading. The
presentation of Extended Sewing and Gale Sewing is mostly independent, and hence
a reader interested only in the the proof of the lower bound (�) can skip Sects. 3 and 5
and concentrate on Sects. 4 and 6.

2 Neighborly and Balanced Oriented Matroids

We assume that the reader has some familiarity with the basics of oriented matroid
theory; we refer to [6] for a comprehensive reference.

2.1 Preliminaries

As for notation, M will be an oriented matroid of rank s on a ground set E with n
elements, with circuitsC(M), cocircuitsC�(M), vectorsV(M) and covectorsV�(M).
Its dual M� has rank r = n−s. M is uniform if the underlying matroid M is uniform,
that is, every subset of size s is a basis.

We view every vector/covector X of M as a function from E to {+,−, 0} (or to
{±1, 0}). Hence, we will say X (e) = + or X (e) > 0. The support X ⊂ E of a
vector/covector X is X = {e ∈ E |X (e) 
= 0}, and we say that a vector X is positive
if X (e) ≥ 0 for all e ∈ E .

We say that two oriented matroids M1 and M2 on respective ground sets E1 and
E2 are isomorphic, M1 � M2, when there is a bijection between E1 and E2 that
sends circuits of M1 to circuits of M2 (and equivalently for vectors, cocircuits or
covectors) in such a way that the signs are preserved.

A matroid M is acyclic if the whole ground set is the support of a positive covector.
Its facets are the complements of the supports of its positive cocircuits, and its faces
the complements of its positive covectors. Faces of rank 1 are called vertices of M. In
particular, every d-polytope is an acyclic matroid of rank d + 1. Similarly, a matroid
is totally cyclic if the whole ground set is the support of a positive vector.
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Fig. 1 An affine Gale diagram
in R

1 from a vector
configuration in R

2

We will need some constructions to deal with an oriented matroid M, in particular
the deletion M \ e and the contraction M/e of an element e. They are defined by
their covectors (by C|E\{e} we denote the restriction of C to E \ {e}):

V�(M \ e) = {C|E\{e}|C ∈ V�(M)} ,
V�(M / e) = {C|E\{e}|C ∈ V�(M) such that C(e) = 0} .

Deletion and contraction are dual operations—(M \ e)� = (M�/e)—that
commute—(M \ p)/q = (M/q)\p—and naturally extend to subsets S ⊆ E by
iteratively deleting (resp. contracting) every element in S.

To illustrate our results, we use affine Gale diagrams, which are described in detail in
[30, Chap. 6] or [28]. They turn a labeled vector configuration V = {v1, . . . , vn} ⊂ R

r

(for simplicity we assume that no vi is 0) into a labeled affine point configuration
A = {a1, . . . , an} ⊂ R

r−1. For this, take a vector c ∈ R
r such that 〈vi , c〉 is not 0 for

any vi (here 〈 , 〉 denotes the standard scalar product). Then A is the point configuration
in the hyperplane with Equation. 〈x, c〉 = 1 consisting of the points ai := vi〈vi ,c〉 for
vi ∈ V . We call ai a positive point if 〈vi , c〉 > 0, and a negative point if 〈vi , c〉 < 0. In
our figures, positive points are depicted as full circles and negative points are empty
circles. See the example of Fig. 1.

2.2 Neighborly and Balanced Oriented Matroids

As we have already mentioned, neighborliness is a purely combinatorial concept that
can be easily defined in terms of oriented matroids.

Definition 2.1 An oriented matroid M of rank s on a ground set E is neighborly if
every subset S ⊂ E of size at most

⌊ s−1
2

⌋
is a face of M. That is, there exists a

covector C ∈ C�(M) with C(e) = 0 for e ∈ S and C(e) = + otherwise.

Thus, realizable neighborly oriented matroids correspond to neighborly polytopes.
However, not all neighborly oriented matroids are realizable (see Sect. 5.3). Never-
theless, several properties of neighborly polytopes extend to all neighborly oriented
matroids (cf. [10] and [27]).

An important property of neighborly matroids of odd rank (in the realizable case,
neighborly polytopes of even dimension) is that they are rigid. We call an oriented
matroid rigid if there is no other oriented matroid that has its face lattice; equivalently,
if the face lattice determines its whole set of covectors. This result was first discovered
by Shemer [26] for neighborly polytopes and later extended to all neighborly oriented
matroids by Sturmfels [27].

123



870 Discrete Comput Geom (2013) 50:865–902

Theorem 2.2 ([27, Theorem 4.2]) Every neighborly oriented matroid of odd rank is
rigid.

Definition 2.1 is based on the presentation by cocircuits, but neighborly matroids
can also be characterized by their circuits. Said differently, one can characterize dual-
to-neighborly matroids in terms of cocircuits. These are balanced matroids.

Definition 2.3 An oriented matroid M of rank r and n elements is balanced if every
cocircuit C of M is balanced; and a cocircuit C ∈ C�(M) is balanced when

⌊n − r + 1

2

⌋
≤ |C+| ≤

⌈n − r + 1

2

⌉
.

where C+ = {e ∈ E |C(e) = +}.
These cocircuits (and matroids) are called balanced because of the fact that, in a
uniform oriented matroid, a cocircuit is balanced if and only if it has the same number
of positive and negative elements (±1 if the corank is odd).

That neighborliness and balancedness are dual concepts is already implicit in the
work of Gale [13] for the case of polytopes, and one can find a proof for oriented
matroids by Sturmfels in [27].

Proposition 2.4 ([27, Proposition 3.2]) An oriented matroid M is neighborly if and
only if its dual matroid M� is balanced.

2.3 Single Element Extensions

Let M be an oriented matroid on a ground set E . A single element extension of M by
an element p is an oriented matroid M̃ on the ground set E ∪{p} for some p /∈ E , such
that M is the deletion M̃ \ p. We will only consider extensions that do not increase
the rank, i.e., rank(M̃) = rank(M).

A concept crucial to understanding a single element extension of M is its signature,
which we define in the following proposition (cf. [6, Proposition 7.1.4]).

Proposition 2.5 ([6, Proposition 7.1.4], [19]) Let M̃ be a single element extension
of M by p. Then, for every cocircuit C ∈ C�(M), there is a unique way to extend C

to a cocircuit of M̃.
That is, there is a unique function σ from C�(M) to {+,−, 0} such that for each

C ∈ C�(M) there is a cocircuit C ′ ∈ C�(M̃) with C ′(p) = σ(C) and C ′(e) = C(e)
for e ∈ E. The function σ is called the signature of the extension.

Moreover, the signature σ uniquely determines the oriented matroid M̃.

Although not every map from C�(M) to {0,+,−} corresponds to the signature of
an extension (see [6, Proposition 7.1.8]), we will only work with one specific family
of single element extensions called lexicographic extensions.

Definition 2.6 Let M be a rank r oriented matroid on a ground set E . Let
(a1, a2, . . . , ak) be an ordered subset of E and let (ε1, ε2, . . . , εk) ∈ {+,−}k be a
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sign vector. The lexicographic extension M[p] of M by p = [aε1
1 , aε2

2 , . . . , aεk
k ] is

the oriented matroid on the ground set E ∪ {p} which is the single element extension
of M whose signature σ : C�(M) → {+,−, 0} maps C ∈ C�(M) to

σ(C) �→
{
εi C(ai ) if i is minimal with C(ai ) 
= 0,
0 if C(ai ) = 0 for i = 1, . . . , k.

We will also use M[aε1
1 , . . . , aεk

k ] to denote the lexicographic extension M[p] of M
by p = [aε1

1 , . . . , aεk
k ].

Remark 2.7 If M is a uniform matroid of rank r , then M[aε1
1 , . . . , aεk

k ] is uniform if
and only if k ≥ r . In this situation, the aεi

i with i > r are irrelevant, so we can assume
that k = r . This is the most interesting case for us.

An important property is that lexicographic extensions preserve realizability (cf.
[6, Sect. 7.2]).

Lemma 2.8 M[p] is realizable if and only if M is realizable.

In the setting of a vector configuration V , the lexicographic extension by p =
[aε1

1 , aε2
2 , . . . , aεk

k ] is very easy to understand. For every hyperplane H spanned by
vectors in V \{a1}, the new vector p must lie on the same side as ε1a1; for hyperplanes
containing a1 but not a2, p must lie on the same side as ε2a2; etc. This is clearly
achieved by the vector p = ε1a1 + δε2a2 + δ2ε3a3 + · · · + δk−1εkak for some δ > 0
small enough. Equivalently, a suitable p can be found by placing a new vector on top
of ε1a1, then perturbing it slightly towards ε2a2, then towards ε3a3 and so on. See
Fig. 2 for an example of this procedure on an affine diagram.

Lexicographic extensions on uniform matroids behave well with respect to contrac-
tions. The upcoming Proposition 2.9 can be used to iteratively explain all cocircuits of
a lexicographic extension, and hence can be seen as the restriction of [6, Proposition
7.1.4] to lexicographic extensions. It is a very useful tool that will be used extensively.
Its proof is not complicated and can be found in Appendix A.

Fig. 2 An affine Gale diagram,
and its lexicographic extension
by p = [a+

4 , a−
1 , a+

6 ]
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Proposition 2.9 Let M be a uniform oriented matroid of rank r on a ground set E,
and let M[p] be the lexicographic extension of M by p = [aε1

1 , aε2
2 , . . . , aεr

r ]. Then

M[p]/p
ϕ� (M/a1)

[
a−ε1ε2

2 , . . . , a−ε1εr
r

]
, (2.1)

M[p]/ai = (M/ai )
[
aε1

1 , . . . , aεi−1
i−1 , aεi+1

i+1 , . . . , aεr
r

]
, and (2.2)

M[p]/e = (M/e)
[
aε1

1 , aε2
2 , . . . , aεr−1

r−1

]; (2.3)

where e ∈ E is any element different from p and any ai . The isomorphism ϕ in (2.1) is
ϕ(e) = e for all e ∈ E \ {p, a1} and ϕ(a1) = [a−ε1ε2

2 , . . . , a−ε1εr
r ]; where the latter

is the extending element.

The most interesting case is (2.1). If M is realized by V and V ∪ {p} realizes the
lexicographic extension of M by p = [aε1

1 , aε2
2 , . . . , aεr

r ], then the intuition behind
the isomorphism M[p]/p � (M/a1)[a−ε1ε2

2 , . . . , a−ε1εr
r ] is that every hyperplane

spanned by V that goes through p and not through a1 looks very much like some
hyperplane that goes through a1 and not through p. If ε1 = +, then a1 and p are very
close, which means that when we perturb a hyperplane H with p in H+ that is spanned
by a1 ∪ S to its analogue H ′ spanned by p ∪ S, then a1 lies in H ′− and the remaining
elements are on the same side of H ′ as they were of H . On the other hand, if ε1 = −,
then a1 and −p are very close, and to perturb H to H ′, one must also switch the sign
of a1. Hence if p was in H+, then a1 is in H ′−.

3 The Sewing Construction

This section is devoted to explaining the Sewing Construction, introduced by Shemer
in [26], that allows to construct an infinite class of neighborly polytopes. Even if
Shemer described it in terms of Grünbaum’s beneath-beyond technique, it is in fact a
lexicographic extension, and we will explain it in these terms. In this section, we use
the letter P for oriented matroids to reinforce the idea that all the following results
translate directly to polytopes.

3.1 Sewing a Point Onto a Flag

Let P be an acyclic oriented matroid on a ground set E , and let F ⊂ E be a facet of P .
That is, there exists a cocircuit CF of P such that CF (e) = 0 if e ∈ F and CF (e) = +
otherwise. Consider a single element extension of P by p with signature σp. We say
that p is beneath F if σp(CF ) = +, that p is beyond F when σp(CF ) = −, and that
p is on F if σp(CF ) = 0. We say that p lies exactly beyond a set of facets T if it lies
beyond all facets in T and beneath all facets not in T .

Lemma 3.1 ([6, Proposition 9.2.2]) Let P̃ be a single element extension of P with
signature σ . Then the values of σ on the facet cocircuits of P determine the whole
face lattice of P̃ .
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A flag of P is a strictly increasing sequence of proper faces F1 ⊂ F2 ⊂ · · · ⊂ Fk .
We say that a flag F is a subflag of F ′ if each face F that belongs to F also belongs
to F ′. Given a flag F = {Fj }k

j=1 of P , let T j be the set of facets of P that contain Fj ,
and let Sew(F) := T1 \ (T2 \ (· · · \ Tk) . . . ), so that

Sew(F) =
{
(T1 \ T2) ∪ (T3 \ T4) ∪ · · · ∪ (Tk−1 \ Tk) if k is even,
(T1 \ T2) ∪ (T3 \ T4) ∪ · · · ∪ Tk if k is odd.

Given a polytope P with a flag of faces F = F1 ⊂ F2 ⊂ · · · ⊂ Fk , Shemer proved
that there always exists an extension exactly beyond Sew(F) ([26, Lemma 4.4]), and
called this extension sewing onto the flag. We will show that there is a lexicographic
extension that realizes the desired signature.

Definition 3.2 (Sewing onto a flag) Let F = {Fj }k
j=1 be a flag of an acyclic matroid

P on a ground set E . We extend the flag with Fk+1 = E and define U j = Fj \ Fj−1.
We say that p is sewn onto P through F , if P[p] is a lexicographic extension of P by

p = [
F+

1 ,U
−
2 ,U

+
3 , . . . ,U

(−1)k

k+1

]
,

where these sets represent their elements in any order. Put differently, the lexicographic
extension by p is defined by p = [aε1

1 , aε2
2 , . . . , aεn

n ], where a1, . . . , an are the elements
in Fk+1 = E sorted such that

– if there is some m such that ai ∈ Fm and a j /∈ Fm , then i < j ;
– if the smallest m such that a j ∈ Fm is odd, then ε j = +; and ε j = − otherwise.

We use the notation P[F] to designate the extension P[p] when p is sewn onto P
through F .

For example, if P has six elements and rank 5, and F1 = {a1, a2} and F2 =
{a1, a2, a3, a4} are the elements of two faces of P , then the lexicographic extensions by
[a+

1 , a+
2 , a−

3 , a−
4 , a+

5 ], [a+
2 , a+

1 , a−
3 , a−

4 , a+
6 ] or [a+

2 , a+
1 , a−

4 , a−
3 , a+

6 ] are extensions
by an element sewn through the flag F1 ⊂ F2 (note how the orders in the faces and
last element of the extension can be chosen arbitrarily). Another example is shown in
Fig. 3.

Fig. 3 A polytope P = conv{a, b, c, d, e}. Sewing onto the flag F = {c} ⊆ {c, b} ⊆ {c, b, a}. Shaded
facets in P correspond to Sew(F)
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In terms of oriented matroids, the definition of P[F] is ambiguous, since it can
represent different oriented matroids. However, the following proposition (together
with Lemma 3.1) shows that all the extensions P[F] have the same face lattice. In
particular, this implies that there is no ambiguity when P[F] is neighborly of odd
rank, because these are rigid (Theorem 2.2).

Proposition 3.3 Let F = {Fj }k
j=1 be a flag of an acyclic oriented matroid P . If P[p]

is the lexicographic extension P[F], then p lies exactly beyond Sew(F).

Proof Let the lexicographic extension be by p = [aε1
1 , aε2

2 , . . . , aεn
n ] with the elements

and signs as in Definition 3.2. We have to see that, for 1 ≤ j ≤ k, p lies beneath any
facet in T j \ T j+1 if j is even, and beyond any facet in T j \ T j+1 if j is odd (with the
convention Tk+1 = ∅).

That is, if σ is the signature of the lexicographic extension and F a facet of P
defined by a cocircuit CF , we want to see that

σ(CF ) =
{+ if there is an even j such that Fj ⊆ F but Fj+1 
⊆ F,

− if there is an odd j such that Fj ⊆ F but Fj+1 
⊆ F;
where Fk+1 = E , the ground set of P .

In our case, if F is in T j \ T j+1 then the first ai with CF (ai ) 
= 0 belongs to Fj+1
and thus εi = + if j is even and εi = − if j is odd. Therefore, since by definition of
lexicographic extension σ(CF ) = εi CF (ai ) = εi , then σ(CF ) = + (i.e., p is beneath
F) when j is even while σ(CF ) = − (i.e., p is beyond F) when j is odd. ��
Observation 3.4 (A-sewing) In [21], Lee and Menzel proposed the operation of
A-sewing. Given a flag F = {Fj }k

j=1 of a polytope P , it allows to find a point on
the facets in Tk , beyond the facets in Sew(F) \ Tk , and beneath the remaining facets.
In our setting, one can analogously see that the process of A-sewing corresponds to

a lexicographic extension by [F+
1 ,U

−
2 ,U

+
3 , . . . ,U

(−1)k−1

k ]. In the example of Fig. 3,
the polytopes P[c+, b−] and P[c+, b−, a+] correspond to A-sewing through the flags
{c} ⊆ {c, b} and {c} ⊆ {c, b} ⊆ {c, b, a}, respectively.

3.2 Sewing Onto Universal Flags

Shemer’s Sewing Construction starts with a neighborly oriented matroid P of rank s
with n elements and gives a neighborly oriented matroid P̃ of rank s with n + 1
elements, provided that P has a universal flag.

Definition 3.5 Let P be a uniform acyclic oriented matroid of rank s, and let m =⌊ s−1
2

⌋
.

(i) A face F of P is a universal face if the contraction P/F is neighborly.
(ii) A flag F of P is a universal flag if F = {Fj }m

j=1 where each Fj is a universal
face with 2 j vertices.

The most basic example of neighborly polytopes with universal flags are cyclic
polytopes (cf. [26, Theorem 3.4] and [9, Theorem 1.1]).
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Proposition 3.6 ([26, Theorem 3.4]) Let C2m(n) be a cyclic polytope of dimension
2m, with vertices a1, . . . , an labeled in cyclic order. Then {ai , ai+1} for 1 ≤ i < n
and {a1, an} are universal edges of C2m(n). If moreover n > 2m + 2, then these are
all the universal edges of C2m(n).

Remark 3.7 It is not hard to prove that, for any universal edge E of C2m(n), C2m(n)/E
� C2m−2(n − 2)where the isomorphism is such that the cyclic order is preserved. This
observation, combined with Proposition 3.6, provides a recursive method to compute
universal flags of C2m(n) using universal faces that are the union of a universal edge
of C2m(n) with a (possibly empty) universal face of C2m−2(n − 2).

With these notions, we are ready to present Shemer’s Sewing Theorem.

Theorem 3.8 (The Sewing Theorem) [26, Theorem 4.6] Let P be a neighborly 2m-
polytope with a universal flag F = {Fj }m

j=1, where Fj = ⋃ j
i=1{xi , yi }. Let P[F] be

the polytope obtained by sewing p onto P through F . Then

1. P[F] is a neighborly polytope with vertices vert(P[F]) = vert(P) ∪ {p}.
2. For all 1 ≤ j ≤ m, Fj−1 ∪{x j , p} and Fj−1 ∪{y j , p} are universal faces of P[F].

If moreover j is even, then Fj is also a universal face of P[F].
Combining Remark 3.7 and the Sewing Theorem 3.8, one can obtain a large family

of neighborly polytopes.

Construction A (Sewing: the family S)

– Let P0 := Cd(n) be an even-dimensional cyclic polytope.
– Let F0 be a universal flag of P0. It can be found using Remark 3.7.
– For i = 1, . . . , k:

– Let Pi := Pi−1[Fi−1]. Then Pi is neighborly by Theorem 3.8(1).
– Theorem 3.8(2) constructs a universal flag Fi of Pi .

– P := Pk is a neighborly polytope in S.

This method generates a family of neighborly polytopes that we call totally sewn
polytopes and denote by S. In contrast to Shemer’s original definition of totally sewn
polytopes, we do not admit arbitrary universal flags of P[F] for sewing, but only those
that arise from Theorem 3.8(2).

3.3 Inseparability: An Essential Tool

Before we present our extensions of Shemer’s technique, we must introduce an essen-
tial (albeit straightforward) tool that will be used extensively in what follows. It is
strongly related to the concept of universal edges.

Definition 3.9 Given an oriented matroid M on a ground set E , and α ∈ {+1,−1},
we say that two elements p, q ∈ E are α-inseparable in M if

X (p) = αX (q) (3.1)

for each circuit X ∈ C(M) with p, q ∈ X .
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In the literature, (+1)-inseparable elements are also called covariant and (−1)-
inseparable elements contravariant (see [6, Sect. 7.8]).

Remark 3.10 It is not hard to see that if a pair x, y of elements of a neighborly matroid
P are (−1)-inseparable then they form a universal edge of P . If moreover the rank of
P is odd, the converse is also true; that is, x and y form a universal edge only if they
are (−1)-inseparable.

A first useful property is that inseparability is preserved by duality (with a change
of sign).

Lemma 3.11 ([6, Exercise 7.36]) A pair of elements p and q are α-inseparable in M
if and only if they are (−α)-inseparable in M�.

The following lemma about inseparable elements of neighborly and balanced ori-
ented matroids will be also useful later.

Lemma 3.12 All inseparable elements of a balanced oriented matroid M of rank
r ≥ 2 with n elements such that n − r − 1 is even must be (+1)-inseparable.

Analogously, all inseparable elements of a neighborly oriented matroid P of odd
rank s with at least s + 2 elements must be (−1)-inseparable.

Proof Both results are equivalent by duality and Lemma 3.11. To prove the second
claim, observe that if p and q are α-inseparable in P , then they are also α-inseparable
in P \ S for any S that contains neither p nor q. Hence we can remove elements
from P until we are left with a neighborly matroid of rank s with s + 2 elements.
All neighborly matroids of even dimension and corank 2 are cyclic d-polytopes with
d + 3 vertices (see [13, Sect. 2]), and those only have (−1)-inseparable pairs. ��

A final observation is that inseparable elements appear naturally when working
with lexicographic extensions.

Lemma 3.13 If M[p] is a lexicographic extension of M by p = [aε1
1 , . . . , aεk

k ], then
p and a1 are always (−ε1)-inseparable. Even more, p and ai are (−εi )-inseparable
in M[p]/{a1, . . . , ai−1} for i = 1, . . . , k, and this property characterizes this single
element extension (if p is a loop in M[p]/{a1, . . . , ak}). ��

3.4 Extended Sewing: Flags that Contain Universal Subflags

We are now almost ready to present our first new construction, a generalized version
of the Sewing Theorem for neighborly oriented matroids. Like [5, Theorem 2], our
Extended Sewing does not depend on the parity of the rank. Moreover, it applies to any
flag that contains a universal subflag, as suggested in [26, Remark 7.4]. The analogue
of the second part of the Sewing Theorem 3.8 is Proposition 3.19, where we find
universal faces of the new neighborly matroid.

In order to prove that Extended Sewing works, we need the following lemma, which
generalizes [29, Theorem 3.1], and the notation F ′/Fi = {F ′

j/Fi }m
j=i+1 where F ′

j/Fi

is the face of P/Fi that represents F ′
j .
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Lemma 3.14 Let P be a uniform neighborly matroid of rank s. Let F ′ = {F ′
k}l

k=1 be
a flag of P that contains a universal subflag F = {Fj }m

j=1, where m = ⌊ s−1
2

⌋
and

Fj = ⋃ j
i=1{xi , yi }. Let p be sewn onto P through F ′.

If Fi−1 ∪ {yi } does not belong to F ′, then

P[F ′]/{Fi−1, xi , p} � (P/Fi )[F ′/Fi ].

This isomorphism sends yi to the vertex sewn through [F ′/Fi ], while the remaining
vertices are mapped to their natural counterparts.

Proof By Proposition 2.9, the contraction P[F ′]/Fi−1 is a lexicographic extension
of P/Fi−1 whose signature coincides with that of [F ′] by removing the first 2(i − 1)
elements. Hence P[F ′]/Fi−1 must be one of the extensions

P[F ′]/Fi−1 ∈

⎧
⎪⎪⎨

⎪⎪⎩

P/Fi−1[x+
i , y+

i , x−
i+1, . . .],

P/Fi−1[x−
i , y−

i , x+
i+1, . . .],

P/Fi−1[x+
i , y−

i , x+
i+1, . . .],

P/Fi−1[x−
i , y+

i , x−
i+1, . . .].

⎫
⎪⎪⎬

⎪⎪⎭
.

If F ′
k−1 is the face of F ′ corresponding to Fi−1, and U ′

k = F ′
k \ F ′

k−1, then the
first two cases are possible when U ′

k = {xi , yi }, and the last two when U ′
k = {xi }

(the case U ′
k = {yi } is excluded by hypothesis). We use Proposition 2.9 twice

on each of these (contracting successively xi and p) to get P[F ′]/{Fi−1, xi , p} �
(P/{Fi−1, xi , yi })[x+

i+1, . . .] = (P/Fi )[F ′/Fi ]. ��
We can now state and prove the Extended Sewing Theorem.

Theorem 3.15 (The Extended Sewing Theorem) Let P be a uniform neighborly ori-
ented matroid of rank s with a flag F ′ = {F ′

k}l
k=1 that contains a universal subflag

F = {Fj }m
j=1, where Fj = ⋃ j

i=1{xi , yi } and m = ⌊ s−1
2

⌋
. Let p be sewn onto P

through F ′. Then P[F ′] is a uniform neighborly matroid of rank s.

Proof The proof is by induction on s. Observe for the base case that all acyclic matroids
of rank 1 or 2 are neighborly.

Assign the labels to x1 and y1 in such a way that the extension P[F ′] is either
the lexicographic extension P[x+

1 , y+
1 , . . .] or P[x+

1 , y−
1 , . . .] (depending on whether

F ′
1 = {x1, y1} or F ′

1 = {x1}).
We check that P[F ′] is neighborly by checking that (P[F ′])� is balanced, i.e., we

check that every circuit X of P[F ′] is balanced. That is, we want to see that
⌊ s+1

2

⌋ ≤
|X+| ≤ ⌈ s+1

2

⌉
, where X+ = {e ∈ E |X (e) = +}. Let X ∈ C(P):

1. If X (p) = 0, then X is balanced because it is also a circuit of P , and P is neighborly.
2. If X (p) 
= 0 and X (x1) = 0, we use that p and x1 are (−1)-inseparable because

of Lemma 3.13. By Lemma A.1, there is a circuit X ′ ∈ C(P[F ′]) with X ′(x1) =
X (p), X ′(p) = 0 and X ′(e) = X (e) for all e /∈ {x1, p}. Observe that |X+| =
|X ′+|. Since X ′(p) = 0, X ′ is balanced by the previous point, and hence so is X .
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3. If X (p) 
= 0 and X (x1) 
= 0 then X (p) = −X (x1) because p and x1 are (−1)-
inseparable. Observe that the rest of the values of X correspond to a circuit of
P[F ′]/{p, x1}. If P[F ′]/{p, x1} is neighborly, we are done.
By Lemma 3.14, P[F ′]/{p, x1} � (P/F1)[F ′/F1]. Since the edge {x1, y1} was
universal, the oriented matroid P/F1 (of rank s − 2) is neighborly, and the flag
F ′/F1 contains the universal flag F/F1. Therefore, P[F ′]/{p, x1} is neighborly
by induction. ��
One way to understand this technique is the following. By construction, p is beneath

every facet of P that does not contain x1. Therefore, every subset S of
⌊ s−1

2

⌋
elements

of P that does not contain x1 must still be a face of P[p]. Hence, to prove the neigh-
borliness of P[p], it is enough to study those subsets that contain x1 or p. For those,
we use Lemma 3.14. If F ′ is chosen to contain a universal subflag, then the contraction
of {x1, p} is also an Extended Sewing of a neighborly matroid; and thus, neighborly
by induction.

A first application of the Extended Sewing Theorem is the construction of cyclic
polytopes.

Proposition 3.16 ([21, Theorem 5.1]) Let P be the oriented matroid of a cyclic poly-
tope Cd(n) with elements a1, . . . , an labeled in cyclic order, and let F be the flag
F = {an} ⊂ {an−1, an} ⊂ · · · ⊂ {an−d+1, . . . , an}. Then P[F] is the oriented
matroid of the cyclic polytope Cd(n + 1).

3.5 Universal Faces Created by Extended Sewing

We can tell many universal faces of the neighborly oriented matroids constructed using
the Extended Sewing Theorem 3.15 thanks to Proposition 3.19, the analogue of the
second part of the Sewing Theorem 3.8. It provides a simple way to compute universal
flags of sewn matroids that is explained in Remark 3.20.

These faces are best described using the following notation for flags that contain a
fixed universal subflag.

Definition 3.17 Let P be a neighborly matroid of rank s = 2m + 1 and let F ′ =
{F ′

k}l
k=1 be a flag of P that contains the universal subflag F = {Fj }m

j=1, where
Fj = ⋃ j

i=1{xi , yi }. Observe that for each 1 ≤ i ≤ j, Fi−1 ∪ {xi } and Fi−1 ∪ {yi }
cannot both belong to F ′. We say that Fi ∈ F is xi -split (resp. yi -split) in F ′ if
Fi−1 ∪ {xi } (resp. Fi−1 ∪ {yi }) belongs to F ′, and non-split if neither Fi−1 ∪ {xi } nor
Fi−1 ∪ {yi } belong to F ′. Moreover, we say that Fi is even in F ′ if the number of
non-split faces Fj with j ≤ i is even, Fi is odd otherwise.

For example, if m = 2 and F = (F1 := {x1, y1}) ⊂ (F2 := {x1, y1, x2, y2}) is a
universal flag, then F1 is x1-split and F2 is non-split in the flag F ′ = {x1} ⊂ {x1, y1} ⊂
{x1, y1, x2, y2}. Moreover, F1 is even in F ′ whereas F2 is odd. In comparison, in the
flag F ′′ = {x1, y1} ⊂ {x1, y1, y2} ⊂ {x1, y1, x2, y2}, F1 is non-split and F2 is y2-split;
and both F1 and F2 are odd.
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Remark 3.18 Theorem 3.15 not only generalizes the Sewing Theorem (when no face
is split), but also includes Barnette’s facet-splitting technique [4, Theorem 3], which
corresponds to the case where all faces of the universal flag are split.

Proposition 3.19 Let P be a uniform neighborly oriented matroid of rank s with a flag
F ′ = {F ′

k}l
k=1 that contains a universal subflag F = {Fj }m

j=1, where Fj = {xi , yi } j
i=1

and m = ⌊ s−1
2

⌋
. Let p be sewn onto P through F ′. Then the following are universal

faces of P[F ′]:
1. Fi , where 1 ≤ i ≤ m, if Fi is even.
2. (Fj \ xi ) ∪ p, where 1 ≤ i ≤ j ≤ m, if

(i) Fi is non-split and Fj/Fi is even in F ′/Fi , or
(ii) Fi is xi -split and Fj/Fi is odd in F ′/Fi , or

(iii) Fi is yi -split and Fj/Fi is even in F ′/Fi .
3. (Fj \ yi ) ∪ p, where 1 ≤ i ≤ j ≤ m, if

(i) Fi is non-split and Fj/Fi is even in F ′/Fi , or
(ii) Fi is xi -split and Fj/Fi is even in F ′/Fi , or

(iii) Fi is yi -split and Fj/Fi is odd in F ′/Fi .

Proof Without loss of generality, we will assume that all split faces are xi -split. The
proof relies on applying, case by case, Proposition 2.9 to reduce the contraction to a
lexicographic extension that we know to be neighborly because of Theorem 3.15.

By Definition 3.2, there are some elements a, b and some ε = ± such that

P[F ′] =
{P[. . . , aε, x−ε

i , yεi , b−ε, . . .] if Fi is xi − split,
P[. . . , aε, x−ε

i , y−ε
i , bε, . . .] if it is non-split.

Therefore, the sign of xi in [F ′] is + if and only if Fi−1 is even. In particular, if Fi is
even, then P[F ′]/Fi � (P/Fi )[F ′/Fi ] and F ′/Fi is a universal flag of P/Fi , which
is neighborly since Fi is a universal face. This proves point 1.

Moreover, independently of whether Fi is even or odd,

P[F ′]/(Fi−1 ∪ {p}) �
{P/(Fi−1 ∪ {xi })[y+

i , x−
i+1, . . .] if Fi is split,

P/(Fi−1 ∪ {xi })[y−
i , x+

i+1, . . .] if it is not.

Hence, P[F ′]/(Fi−1 ∪ {xi , p}) � (P/Fi )[F ′/Fi ] always. If moreover Fi is non-split
then P[F ′]/(Fi−1 ∪{yi , p}) � (P/Fi )[F ′/Fi ]. Therefore, in these cases the problem
is reduced to finding universal faces of (P/Fi )[F ′/Fi ]. But we already know that
Fj/Fi is a universal face of (P/Fi )[F ′/Fi ] when it is even. This proves points 2(i),
2(iii), 3(i) and 3(ii).

If Fi is split, then P̃/(Fi−1 ∪{yi , p}) � (P/Fi )[−F ′/Fi ], where [−F ′/Fi ] means
the extension by [F ′/Fi ] with the signs reversed. Using the previous observation, we
obtain that ((P/Fi )[−F ′/Fi ])/(Fj/Fi ) � (P/Fj )[F ′/Fj ] when Fj/Fi is odd, and
this proves the remaining points 2(ii) and 3(iii). ��
Remark 3.20 In particular, Proposition 3.19 provides a simple way to tell universal
flags of P[F ′]. We start with universal edges:
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Fig. 4 Extended sewing: sewing f onto {a, e} (middle), and sewing onto {a} ⊂ {a, e} (right). In the first
case, {a, f } and {e, f } become universal faces, while {a, e} is not a universal face any more. In the second
case, {a, f } and {a, e} are universal faces, while {e, f } is not

– If F1 is non-split then {x1, p} and {y1, p} are universal edges of P[F ′];
– if F1 is x1-split, then {x1, p} and {x1, y1} are universal edges of P[F ′];
– finally, if F1 is y1-split, then {y1, p} and {x1, y1} are universal edges of P[F ′].
The contraction of any of these universal edges is isomorphic to (P/F1)[F ′/F1], and
we can inductively build a universal flag of P[F ′].

The example in Fig. 4 can give some intuition on why do these universal edges
appear. The next example explores higher dimensional universal faces.

Example 3.21 Let M be a neighborly oriented matroid of rank 5 with a universal flag
F = F1 ⊂ F2, where F1 = {a, b} and F2 = {a, b, c, d}. Consider the lexicographic
extensions by the elements

p1 = [a+, b+, c−, d−, e+],
p2 = [a+, b−, c+, d+, e−],
p3 = [a+, b+, c−, d+, e−], and

p4 = [a+, b−, c+, d−, e+],

where e is any element of M. For i = 1, 2, 3, 4, each pi gives rise to the oriented
matroid Mi = M[pi ], which corresponds to sewing through the flag Fi , with

F1 = {a, b} ⊂ {a, b, c, d},
F2 = {a} ⊂ {a, b} ⊂ {a, b, c, d},
F3 = {a, b} ⊂ {a, b, c} ⊂ {a, b, c, d}, and

F4 = {a} ⊂ {a, b} ⊂ {a, b, c} ⊂ {a, b, c, d}.

Observe that F1 is split in F2 and F4, while F2 is split in F3 and F4. Moreover, F1 is
even in F2 and F4, and F2 is even in F1 and F4. Table 1 shows for which Mi each of
the following sets of vertices is a universal face.
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Table 1 Universal faces in
Example 3.21

ab pi b api abcd pi bcd api cd abpi d abcpi

M1 × � � � × × � �
M2 � × � × � × � �
M3 × � � × � � × �
M4 � × � � × � × �

3.6 Extended Sewing and Omitting

Just like in the construction of the family S, we can combine the Extended Sewing
Theorem 3.15 and Proposition 3.19 to obtain a large family E of neighborly polytopes
that contains S. In fact, since cyclic polytopes belong to E by Proposition 3.16 it
suffices to start sewing on a simplex.

Construction B (Extended Sewing: the family E)

– Let P0 := Δd be a d-dimensional simplex.
– Let F ′

0 be a flag of P0 that contains a universal subflag F0. F0 is built using the
fact that all edges of a simplex are universal.

– For i = 1, . . . , k:
– Let Pi := Pi−1[F ′

i−1], which is neighborly by Theorem 3.15.
– Use Remark 3.20 to find a universal flag Fi of Pi .
– Let F ′

i be any flag of Pi that contains Fi as a subflag.
– P := Pk is a neighborly polytope in E .

Moreover, since subpolytopes (convex hulls of subsets of vertices) of neighborly
polytopes are neighborly, any polytope obtained from a member of E by omitting some
vertices is also neighborly. The polytopes that can be obtained in this way via sewing
and omitting form a family that we denote O.

Construction C (Extended Sewing and Omitting: the family O)

– Let Q ∈ E be a neighborly polytope constructed using Extended Sewing.
– Let S ⊆ vert(Q) be a subset of vertices of Q.
– P := conv(S) is a neighborly polytope in O.

3.7 Optimality

We finish this section by showing that for matroids of odd rank, the flags of the
Extended Sewing Theorem 3.15 are the only ones that yield neighborly polytopes.
Therefore, in this sense the Sewing Construction cannot be further improved.

Proposition 3.22 Let P be a uniform neighborly oriented matroid of odd rank s ≥ 3
with more than s + 1 elements. Then P[F] is neighborly if and only if F contains a
universal subflag.
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Proof By Theorem 3.15, this condition is sufficient. To find necessary conditions, we
use that P[F] is neighborly if and only if every circuit of P[F] is balanced.

The proof is by induction on s. For the base case s = 3 just observe that neighborly
matroids of rank 3 are polygons, and the only flags that yield a polygon with one
extra vertex are of the form {x} ⊂ {x, y} or just {x, y}, where {x, y} is an edge of the
polygon.

Assume then that s > 3. By definition, P[F] is the lexicographic extension P[p],
with p sewn through F . Therefore, p = [a+

1 , aε2
2 , . . . , aεs

s ]. Let X ∈ C(P[F])
be a circuit with {p, a1} ⊂ X . Since p and a1 are (−1)-inseparable by Lemma 3.13,
X (p) = −X (a1). Hence, if X is balanced, so is X \{p, a1}. Now X \{p, a1} is a circuit
of P[F]/{p, a1}, and all circuits of P[F]/{p, a1} arise this way. Hence P[F]/{p, a1}
is neighborly.

By Proposition 2.9,

P[F]/{p, a1} � P/{a1, a2}
[
a−ε2ε3

3 , a−ε2ε4
4 , . . . , a−ε2εs

s

]
,

where the second extension is by a2. Hence, by Lemma 3.13, a2 and a3 are (ε2ε3)-
inseparable in P[F]/{p, a1}, which is a neighborly matroid of odd rank and corank
at least 2. By Lemma 3.12, ε2ε3 = −.

In particular, either (ε2, ε3) = (+,−), or (ε2, ε3) = (−,+). The first option implies
that F1 = {a1, a2}, and the second one that F1 = {a1} and F2 = {a1, a2}.

Since (P[F]/{p, a1})\a2 � P/{a1, a2} by Lemma A.2, if P[F]/{p, a1} is neigh-
borly, then P/{a1, a2} must be neighborly and hence F := {a1, a2} must be a universal
edge of P that belongs to F .

Finally, observe that P[F]/F = (P/F)[F/F] is a matroid of rank s − 2. By
induction, F/F contains a universal subflag. The union of F with each universal face
in F/F is a universal face of P in F , which finishes the proof. ��

4 The Gale Sewing Construction

In this section, we present a different method to construct neighborly matroids. It is
also based on lexicographic extensions, but works in the dual, that is, it extends bal-
anced matroids to new balanced matroids. The key ingredient is the Double Extension
Theorem 4.2, which shows how to perform double element extensions that preserve
balancedness. Before proving it, we need a small lemma.

Lemma 4.1 Let M be a uniform oriented matroid of rank r , let a1, . . . , ar be elements
of M and ε1, . . . , εr be signs. If p, q, p′ and q ′ are defined as

p = [aε1
1 , aε2

2 , . . . , aεr
r ], q = [p−, a−

1 , . . . , a−
r−1];

p′ = [a−ε1ε2
2 , . . . , a−ε1εr

r ], q ′ = [p′−, . . . , a−
r−1],

then

(
M[p][q])/q � (

M/a1
)[p′][q ′].
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Proof Repeatedly applying Proposition 2.9:

(
M[p][q])/q = (

M
[
aε1

1 , aε2
2 , . . . , aεr

r

]

︸ ︷︷ ︸
p

[
p−, a−

1 , . . . , a−
r−1

]

︸ ︷︷ ︸
q

)
/q

ϕ� (
M

[
aε1

1 , aε2
2 , . . . , aεr

r

]

︸ ︷︷ ︸
p

/p
) [

a−
1 , . . . , a−

r−1

]

︸ ︷︷ ︸
ϕ(p)=q ′

ψ� (
M/a1

) [
a−ε1ε2

2 , . . . , a−ε1εr
r

]

︸ ︷︷ ︸
ψ(a1)=p′

[
ψ(a1)

−, . . . , a−
r−1

]

︸ ︷︷ ︸
q ′

.

��
Theorem 4.2 (Double Extension Theorem) Let M be a uniform balanced oriented
matroid of rank r . For any sequence a1, . . . , ar of elements of M and any sequence
ε1, . . . , εr of signs, consider the lexicographic extensions

– M[p] of M by p = [aε1
1 , aε2

2 , . . . , aεr
r ], and

– M[p][q] of M[p] by q = [p−, a−
1 , . . . , a−

r−1];
then the oriented matroid M[p][q] is balanced.

Proof The proof is by induction on r (it is trivial for r = 0). For r ≥ 1 we
check that every cocircuit C̃ of M[p][q] is balanced. That is, for each cocircuit
C̃ ∈ C�(M[p][q]), we prove that

⌊ n−r+1
2

⌋ ≤ |C̃+| ≤ ⌈ n−r+1
2

⌉
, where n is the

number of elements of M[p][q] and C̃+ = {e ∈ E |C̃(e) = +}.
If C̃(p) 
= 0 and C̃(q) 
= 0 then, by the definition of lexicographic extension,

there is a cocircuit C of M such that C̃ |M = C and C̃(p) = −C̃(q). Hence |C̃+| =
|C+| + 1, and it is balanced because C is a balanced circuit of M (observe that M
has n − 2 elements).

The cocircuits C̃ with C̃(p) = 0 correspond to cocircuits of (M[p][q])/p, and
those with C̃(q) = 0 correspond to cocircuits of (M[p][q])/q. Therefore, it is enough
to prove that (M[p][q])/p and (M[p][q])/q are balanced. By Proposition 2.9 and
Lemma 4.1

(M[p][q])/p�(M[p][q])/q �(M/a1)
[
a−ε1ε2

2 , . . . , a−ε1εr
r

]

︸ ︷︷ ︸
p′

[
p′−, a−

2 , . . . , a−
r−1

]
,

which is a double extension of the balanced matroid M/a1 of rank r −1, and therefore
a balanced matroid by induction. ��

If V is a balanced vector configuration, the proof that V [p][q], its lexicographic
extension by p = [aε1

1 , . . . , aεr
r ] and q = [p−, . . . , a−

r−1], is also balanced is very
easy to understand. Every hyperplane H spanned by a subset of V defines a cocir-
cuit of V [p][q]. The signature of the extension by q implies that if p ∈ H± then
q ∈ H∓, and hence q balances the discrepancy created by p on this hyperplane. The
other hyperplanes are checked inductively. Indeed, for a hyperplane H that contains p
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Fig. 5 The double
lexicographic extension of an
affine Gale balanced diagram by
p = [a+

4 , a−
1 , a+

6 ] and

q = [p−, a−
4 , a−

1 ], which is also
balanced

but neither a1 nor q, the fact that p and a1 are inseparable implies that except for a1, H
looks like a hyperplane spanned by V containing a1. Hence q must balance the dis-
crepancy created by a1. For hyperplanes that go through p and a1 but neither a2 nor
q, q balances the discrepancy created by a2; and so on.

Figure 5 displays an example of such a double extension on an affine Gale diagram.
The reader is invited to follow this justification in the picture (for example, by com-
paring the hyperplanes spanned by {a4, ai } with the hyperplanes spanned by {p, ai })
and to check how all cocircuits in the diagram are balanced.

Corollary 4.3 For any neighborly matroid P of rank s and n elements there is a
neighborly matroid P̃ of rank s + 2 with n + 2 elements that has an edge {x, y} such
that P̃/{x, y} = P . ��
Remark 4.4 In fact, the proof of Theorem 4.2 shows a stronger result: For a uniform,
not necessarily balanced oriented matroid M on which this pair of extensions is per-
formed, the maximal difference between the number of positive and negative elements
of a cocircuit (its discrepancy) does not change.

This provides the following method to construct balanced matroids (and hence, by
duality, to construct neighborly matroids).

Construction D (Gale Sewing: the family G)

– Let M0 be the minimal totally cyclic oriented matroid, which is realized by
{e1, . . . , er ,−∑r

i=1 ei }, where
{
ei
}

1≤i≤r is the standard basis.
– For k = 1, . . . ,m:

– Choose different elements ak1, . . . , akr of Mk−1 and choose εk j ∈ {+,−} for
j = 1, . . . , r .

– Let pk := [aεk1
k1 , . . . , aεkr

kr ] and qk := [p−
k , a−

k1, . . . , a−
k(r−1)].

– Mk := Mk−1[pk][qk] is balanced because of Theorem 4.2 and realizable
because of Lemma 2.8.

– M := Mk is a realizable balanced oriented matroid.
– P := M� is a realizable neighborly oriented matroid.
– Any realization P of P is a neighborly polytope in G.

We call the double extension of Theorem 4.2 Gale Sewing, and we denote by G the
family of combinatorial types of polytopes whose dual is constructed by repeatedly
Gale Sewing from {e1, . . . , er ,−∑r

i=1 ei }. If P ∈ G, we will say that P is Gale sewn.
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Remark 4.5 With the notation of Construction D, observe that the set Fj :=
⋃ j−1

i=0 {pm−i , qm−i } is always a universal face of P (that is, P/Fj is neighborly),
since M \ Fj is balanced. In particular, F := {Fi }m

i=1 is a universal flag of P .

Remark 4.6 In the formulation above, Construction D only allows for constructing
even dimensional neighborly polytopes. To construct odd dimensional polytopes it is
enough to do one arbitrary single element extension to one Mi for some 0 ≤ i ≤ m.
It is straightforward to check that the matroid obtained after such an extension is
balanced (and hence also all its double extensions).

Cyclic polytopes are a first example of polytopes in G. The following proposition
shows that (Cd+1(n + 1))� � (Cd(n))�[a−

n , . . . , a−
d ]. Therefore, every even dimen-

sional cyclic polytope Cd(n) can be obtained from Cd−2(n − 2) with a double exten-
sion in the sense of Theorem 4.2:

(Cd(n))
� � (Cd−2(n − 2))�

[
a−

n−2, . . . , a−
d−2

][
a−

n−1, . . . , a−
d−1

]
.

This implies that cyclic polytopes are in G because the base case of Construction D cor-
responds to 0-dimensional cyclic polytopes. Observe that this proposition also explains
how to construct odd dimensional cyclic polytopes Cd(n): their duals correspond to a
single lexicographic extension of (Cd−1(n − 1))�.

Proposition 4.7 Let M be the dual of the alternating matroid of the cyclic polytope
Cd(n), and let a1, a2, . . . , an be its elements labeled in cyclic order. Then the dual
matroid of Cd+1(n + 1) is M[an+1], the single element extension of M by an+1 =
[a−

n , a−
n−1, . . . , a−

d ].
Proof We use the following characterization of the circuits of the alternating matroid
of rank r (cf. [6, Sect. 9.4]): the circuits X and Y supported by the r + 1 elements
x1 < x2 < · · · < xr+1 (sorted in cyclic order) are those such that X (xi ) = (−1)i and
Y (xi ) = (−1)i+1.

If C is a cocircuit of M[an+1] (hence a circuit of its dual) such that C(an+1) 
= 0,
the signature of the lexicographic extension implies that C(an+1) is opposite to the sign
of the largest non-zero element. And thus, by the characterization above, M[an+1] is
dual to Cd+1(n + 1). ��

Finally, the following proposition shows that subpolytopes (convex hulls of subsets
of vertices) of Gale sewn polytopes are also Gale sewn polytopes. Its proof, which is
easy using Proposition 2.9 and Lemma 4.1, can be found in Appendix A.

Proposition 4.8 If P is a neighborly polytope in G, and a is a vertex of P, then
Q = conv(vert(P) \ a) is also a neighborly polytope in G.

4.1 Combinatorial Description of the Polytopes in G

Let P be a simplicial polytope that defines an acyclic uniform oriented matroid P , and
let M = P� be its dual matroid. The essence of Gale Sewing is to construct a new
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polytope P̃ whose matroid P̃ is dual to M̃ = M[p], a lexicographic extension of M
by p = [aε1

1 , aε2
2 , . . . , aεk

k ]. In this section we will see that the combinatorics of P̃ are
described by lexicographic triangulations of P.

Let A = {a1, . . . , an} be the set of vertices of P ⊂ R
d . Let M be the d × n matrix

whose columns list the coordinates of the ai ’s:

M :=

⎡

⎢⎢⎢
⎣ a1 a2 . . . an

⎤

⎥⎥⎥
⎦
.

Then there is some small δ > 0 such that the point configuration Ã defined by the
columns of the following (d + 1) × (n + 1) matrix M̃ is a realization of the set of
vertices of P̃:

M̃ :=

⎡

⎢⎢
⎢⎢⎢⎢
⎣

ã1 ã2 ã3 ... ãk ãk+1 ... ãn p

a1 a2 a3 . . . ak ak+1 . . . an 0

−ε1 −ε2δ −ε3δ
2 . . . −εkδ

k−1 0 . . . 0 1

⎤

⎥⎥
⎥⎥⎥⎥
⎦

.

Geometrically, each point ai ∈ A ⊂ R
d is lifted to a point ãi ∈ Ã ⊂ R

d+1

with a height that depends on the signature of the lexicographic extension. Namely,
ãi = ( ai

−εi δ
i−1

)
for i ≤ k and ãi = (ai

0

)
otherwise. Moreover, p is added to Ã with

coordinates
(0

1

)
. The vertex figure of p in P̃ is combinatorially equivalent to P. That is,

the faces of P̃ that contain p are isomorphic to pyramids over faces of P . On the other
hand, the faces of P̃ that do not contain p correspond to faces of a regular subdivision
of P: the lexicographic subdivision of P on [a−ε1

1 , a−ε2
2 , . . . , a−εk

k ]. When a1, . . . , ak

form a basis, this subdivision is a triangulation. A concrete example is depicted in
Fig. 6.

Our formulation of the definition of lexicographic subdivision is based on [11].
However we use a different ordering, the same as in [24], that mirrors the definition
of lexicographic extension (with opposite signs). See also [20].

Definition 4.9 Let P be a d-polytope with n vertices a1, . . . , an . The lexicographic
subdivision of P on [aε1

1 , aε2
2 , . . . , aεk

k ], where εi = ±1, is defined recursively as
follows.

– If ε1 = +1 (pushing), then the lexicographic subdivision of P is the union of the
lexicographic subdivision of P \ a1 on [aε2

2 , . . . , aεk
k ], and the simplices joining a1

to the (lexicographically subdivided) faces of P \ a1 visible from it.
– If ε1 = −1 (pulling), then the lexicographic subdivision of P is the unique sub-

division in which every maximal cell contains a1 and which, restricted to each
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Fig. 6 The lifting of a pentagon P = conv(A) to P̃ = conv( Ã) when Ã� = A�[p] and p = [a−
1 , a+

4 ]. Its
upper envelope are pyramids over facets of P, while the lower envelope is the lexicographic triangulation
of P on [a+

1 , a−
4 ]

proper face F of P, coincides with the lexicographic subdivision of that face on
[aε2

2 , . . . , aεk
k ].

Remark 4.10 The resemblance with Sanyal and Ziegler’s description of the vertex
figures of the neighborly cubical polytopes in [25] is not a coincidence. Indeed, the
Gale duals of those vertex figures are lexicographic extensions of the dual of a fixed
neighborly polytope.

Remark 4.11 The inscribability of the neighborly polytopes in G can be proved with
this primal interpretation of Gale Sewing. For this, the key observation in [15] is that
the pushing triangulation induced by the Double Extension Theorem 4.2 can always
be realized as a Delaunay triangulation.

5 Comparing and Combining the Constructions

In this section we compare and combine the construction techniques for neighborly
polytopes, which are strongly related.

5.1 Extended Sewing and Omitting is Included in Gale Sewing

Our first goal is to prove Corollary 5.4, that states that if a neighborly polytope P is
built via Extended Sewing and Omitting (Construction C), then P can also be built
with Gale Sewing (Construction D). For that we will need the following theorem,
which implies that the contraction and deletion of an element determine an oriented
matroid up to the reorientation of that element.

Theorem 5.1 ([23, Theorem 4.1]) Let M′ and M′′ be two oriented matroids with the
same ground set E, of respective ranks s and s−1, such that V�(M′′) ⊆ V�(M′). Then
there is an oriented matroid M with ground set E ∪{p} that fulfills M\ p = M′ and
M/p = M′′. The oriented matroid M has rank s and is unique up to reorientation
of p.
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Corollary 5.2 Let M and M be oriented matroids on a ground set E. If M \ p =
M′ \ p and M/p = M′/p, then M and M′ coincide up to the reorientation of p.

If additionally there is an element q ∈ E and some α = ±1 such that p and q are
α-inseparable in both M and M′, then M = M′.

Theorem 5.3 For any uniform neighborly matroid P̃ in E of rank s with n elements,
and any universal flag F̃ = {F̃i }m

i=1 of P̃ derived from Remark 3.20, where m = ⌊ s−1
2

⌋

and F̃j = ⋃ j−1
i=0 { p̃m−i , q̃m−i }, there is a sequence of balanced matroids M̃k , for

0 ≤ k ≤ m, such that:

1. M̃m = P̃�,
2. M̃0 has rank r = n − s and n − 2m elements, and
3. for 0 < k ≤ m, M̃k = M̃k−1[ p̃k][q̃k] is a double extension as in Theorem 4.2.

Proof The proof is by induction on n. The base case is when n = s. Then both P̃�

and M̃m have rank 0, and the claims follow trivially.
If n ≥ s, then P̃ = P[F ′] where an element p is sewn onto some P ∈ E through

some flag F ′ that contains a universal subflag F . By induction hypothesis we can
assume that P, F and F ′ fulfill:

– P has rank s and n −1 elements. Its dual P� equals Mm for a sequence of matroids
Mk for 0 ≤ k ≤ m constructed as follows: M0 is a uniform balanced matroid of
rank r = n − s − 1 and n − 2m − 1 elements, and for 0 < k ≤ m

Mk := Mk−1[pk][qk], (5.1)

for lexicographic extensions defined by

pk := [
aεk1

k1 , . . . , aεkr
kr

]
, qk := [

p−
k , a−

k1, . . . , a−
k(r−1)

]; (5.2)

where the ai j are pairwise distinct elements of Mi−1.

– F is of the form F = {Fi }m
i=1, where Fj = ⋃ j−1

i=0 {pm−i , qm−i } (that is, Fm−k =
{pm, qm, . . . , pk+1, qk+1}).

– The flag F ′ contains F as a subflag. By Lemma A.3 we assume without loss of
generality that all split faces in F ′ are qi -split.

The proof needs some further notation. Let Pk := P/Fm−k for k = 0, . . . ,m,
and observe that Pk = Mk

�, for all k, by deletion–contraction duality. Moreover, we
define the sets F̃j+1, all containing the sewn element p, as F̃j+1 := Fj ∪ qm− j ∪ p
(that is F̃m−k = {pm, qm, . . . , pk+2, qk+2, qk+1, p}). We denote P̃k = P̃/F̃m−k and
observe that by Lemma 3.14, P̃k = Pk[F ′/Fm−k]. Here in Pk[F ′/Fm−k], the sewn
vertex is pk+1, and thus P̃k \ pk+1 = Pk . We occasionally abbreviate p = pm+1.

Now, set M̃0 = (P̃0)
� and for 0 < k ≤ m let

qk :=
{[

p+
k , (ak1)

−εk1 , . . . , (akr )
−εkr

]
if Fm−k+1 is non-split in F ′,[

p−
k , (ak1)

εk1 , . . . , (akr )
εkr

]
if Fm−k+1 is split in F ′.

pk+1 := [
q−

k , p−
k , (ak1)

−, . . . , (ak(r−1))
−],

M̃k := M̃k−1[qk][pk+1].
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Fig. 7 We reach the lower left figure by two paths: First (starting in the top right), M is constructed from
M0 after Gale Sewing p1 = [a−

2 , a−
1 ] and q1 = [p−

1 , a−
2 ]. The dual of M1 is P (top left). Then P̃ (lower

left) is constructed from P by sewing p onto the flag formed by the universal edge {p1, q1} (which is non-
split). In the second path (lower right), M̃1 is constructed from M̃0 by Gale Sewing q̃1 = [p+

1 , a+
2 , a+

1 ]
and p2 = [q̃−

1 , p−
1 , a−

2 ]; then we dualize to get M̃1
� = P̃

With this notation, we claim that M̃k = P̃�
k (cf. Fig. 7). We prove this claim by

induction on k, and the base case k = 0 is true by construction.
Let k > 0 and assume that M̃k−1 = P̃�

k−1. The proof uses Corollary 5.2 twice and
relies on the following facts (our claim is the final fact (G)):

(A) M̃k/ pk+1 = P̃�

k/ pk+1.
Since by definition P̃k \ pk+1 = Pk , then P̃�

k /pk+1 = Pk
� = Mk and we only

need to prove that

M̃k/pk+1 = Mk . (5.3)

By Lemma 4.1, (M̃k/pk+1)= (M̃k−1/pk)[ãεk1
k1 , . . . ,ã

εkr
kr ][x ′

k
−
, ã−

k1,. . ., ã−
k(r−1)].

Then we get (5.3) combining that M̃k−1/pk = Mk−1 (by the induction hypoth-
esis) with Eqs. (5.1) and (5.2) that define Mk .
(B) pk+1 and qk are (+1)-inseparable in M̃k and P̃�

k.
Follows from Lemma 3.13 and the definitions of M̃k and P̃k .
(C) (P̃�

k \ pk+1)/qk = (M̃k \ pk+1)/qk.
By Lemma A.2,

(M̃k \ pk+1)/qk = (M̃k/pk+1) \ qk and (P̃�
k \ pk+1)/qk = (P̃�

k /pk+1) \ qk .

Now (P̃�
k /pk+1) \ qk = (M̃k/pk+1) \ qk follows directly from (A).
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(D) (P̃�

k \ pk+1) \ qk = (M̃k \ pk+1) \ qk.
This is direct by the induction hypothesis, since

(M̃k \ pk+1) \ qk = M̃k−1 = P̃�
k−1 = (P̃k/{qk, pk+1})� = (P̃�

k \ pk+1) \ qk .

(E) qk and pk areα-inseparable inM̃k\ pk+1 and (P̃ k/ pk+1)
�
, whereα := −1

if Fm−k+1 is non-split and α := +1 otherwise.
If Fm−k+1 is non-split then q̃k is (−1)-inseparable with p̃k in M̃k \ pk+1 =
M̃k−1[qk] by construction. Moreover, by Proposition 2.9

P̃k/pk+1 = (Pk [F ′/Fm−k]︸ ︷︷ ︸
pk+1

)/pk+1 = (
Pk/qk

) [p−
k , . . .]︸ ︷︷ ︸

qk

.

In this last expression the sewn vertex is qk , which is (+1)-inseparable from pk

by Lemma 3.13. This means that pk is (−1)-inseparable with qk in (P̃k/pk+1)
�

because of Lemma 3.11.
The proof for the case when Fm−k+1 is qk-split is analogous.
(F) M̃k \ pk+1 = P̃�

k \ pk+1.
This is a direct consequence of Corollary 5.2 by (D), (C) and (E).
(G) M̃k � P̃�

k.
This follows also from Corollary 5.2 by (A), (F) and (B).

We have already seen that P̃ = P̃m is Gale sewn, but we have to test our complete
induction hypothesis. Namely, it remains to be checked that for each universal flag
of P̃ obtained by Remark 3.20, P̃ can be obtained by Gale Sewing the elements in
the order marked by the flag. This is a consequence of Lemma A.3, which allows to
change the order of the sewings in M̃m . We omit the details of this easy computation
that concludes the proof of Theorem 5.3. ��
Corollary 5.4 O ⊆ G.

Proof By Proposition 4.8, to prove O ⊆ G it suffices to see that E ⊆ G. This follows
directly from Theorem 5.3.

Indeed, let P̃ ∈ E . With the notation of Theorem 5.3, if s is odd, then M̃0 is
balanced of rank r with r +1 elements, which implies that it is the oriented matroid of
{e1, . . . , er ,−∑r

i=1 ei }. Therefore, P̃ is in G because it is built using Construction D.
If s is even, then P̃ is in G in the sense of Remark 4.6. ��
Remark 5.5 The fact that E � G implies that in some sense Gale Sewing generalizes
ordinary (Extended) Sewing. However, it is not true that the Extended Sewing Theo-
rem 3.8 is a consequence of the Gale Sewing Theorem 4.2, because there are neighborly
matroids that have universal flags but are not in G. Hence one can sew on them but they
cannot be treated with Theorem 5.3. This will become clear in Sect. 5.3, where we
work with M10

425, a non-realizable neighborly matroid that has universal flags. Since
Gale Sewing (Construction D) only builds realizable matroids, this matroid is not in
G and yet one can sew on it. This shows why both constructions are needed.
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Table 2 Exact number of
combinatorial types

d n S E O G N

4 8 3 3 3 3 3

4 9 18 18 18 18 23

6 10 15 26 28 28 37

5.2 Some Exact Numbers

We have worked with five families of neighborly polytopes:

N : All neighborly polytopes.
S: Totally sewn neighborly polytopes (Sewing, Construction A).
E : Neighborly polytopes constructed by Extended Sewing (Construction B).
O: Neighborly polytopes built by Extended Sewing and Omitting (Construction C).
G: Gale sewn neighborly polytopes (Construction D).

Table 2 contains the exact number of (unlabeled) combinatorial types of
d-dimensional neighborly polytopes with n vertices in each of these families for the
cases d = 4 and n = 8, 9 and for d = 6 and n = 10. Exact numbers for N come from
[3] and [8], exact numbers for S and O come from [26]. Numbers for G and E have
been computed with the help of polymake [14].

In view of Table 2, the known relationships between these families are summarized
in the following proposition.

Proposition 5.6 S � E � O ⊆ G � N . ��
This begs the question:

Question 5.7 Is O = G?

5.3 Non-realizable Neighborly Oriented Matroids

Since the only neighborly matroids of rank 3 are cyclic polytopes, there are no non-
realizable neighborly matroids of rank 3. The sphere “M10

425” from Altshuler’s list [2]
corresponds to a neighborly matroid of rank 5 with ten elements. In [7], this matroid is
shown to be non-realizable, thus proving that non-realizable neighborly matroids exist.
Kortenkamp’s construction [18] can also be used to build non-realizable neighborly
matroids of corank 3. We combine Theorems 3.15 and 4.2 to show that there are many
non-realizable neighborly matroids. A lower bound for the cardinality of the number
of non-realizable neighborly matroids is derived later in Theorem 6.11.

Theorem 5.8 There exists a non-realizable neighborly matroid of rank s with n ele-
ments for every s ≥ 5 and n ≥ s + 5.

Proof We start with M10
425. With the vertex labeling of [2], {0, 1}, {2, 3}, {4, 5}, {6, 7}

and {8, 9} are universal edges of M10
425 because the corresponding contractions are

polygons with 8 vertices. In particular, {0, 1} ⊂ {0, 1, 2, 3} is a universal flag. Hence,
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applying the Extended Sewing Theorem 3.15 we get many non-realizable matroids of
rank 5 with n vertices for any n ≥ 10.

Now, applying to these matroids the Corollary 4.3 of the Gale Sewing Construction,
we get non-realizable oriented matroids of rank 5 + 2k and n vertices for any k ≥ 0
and any n ≥ 10 + 2k.

To get non-realizable matroids of even rank, just observe that any single element
extension on the dual of a neighborly matroid of rank 2k + 1 yields the dual of a
neighborly matroid of rank 2k + 2. ��

All neighborly matroids of rank 2m + 1 that have n ≤ 2m + 3 vertices are cyclic
polytopes. Moreover, all oriented matroids of rank 5 with 8 elements are realizable
[6, Corollary 8.3.3]. Hence the first case (of odd rank) that Theorem 5.8 does not deal
with are neighborly matroids of rank 5 with nine elements.

6 Many Neighborly Polytopes

The aim of this section is to find lower bounds for nbl(n, d), the number of combi-
natorial types of vertex-labeled neighborly polytopes with n vertices in dimension d.
Since two neighborly polytopes with the same combinatorial type have the same ori-
ented matroid (Theorem 2.2), it suffices to bound the number of labeled realizable
neighborly matroids.

Our strategy will consist in using the Gale Sewing technique of Theorem 4.2 to
construct many neighborly polytopes in G for which we can certify that their oriented
matroids are all different.

We only deal with polytopes and oriented matroids that are labeled. Nevertheless,
our bounds are so large as to present the same kind of growth as the naive bounds for
unlabeled combinatorial types obtained by dividing by n!. Namely,

nbl(n, d)

n! ≥ n
d−2

2 n(1+o(1))

for fixed dimension d > 2 and n → ∞.

6.1 Many Lexicographic Extensions

A first step is to compute lower bounds for 
l(n, r), the smallest number of different
labeled lexicographic extensions that any balanced matroid of rank r with n elements
must have. Here, a labeled lexicographic extension of M is a lexicographic extension
M[p] labeled in such a way that the labels of the elements of M are preserved.

There are 2r n!
(n−r)! different expressions for lexicographic extensions of a rank r

oriented matroid on n elements, yet not all of them represent different labeled oriented
matroids. We aim to avoid counting the same extension twice with two different
expressions.
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Proposition 6.1 Let M be a rank r > 1 labeled uniform balanced matroid with n
elements. If n − r − 1 ≥ 2 is even, then there are at least


l(n, r) ≥ 2n!
(n − r + 1)! (6.1)

different uniform labeled lexicographic extensions of M.

Proof We focus only on those extensions where εi = + for all i, and show that they
are unambiguous except for the last element aεr

r .
For this, observe that if r > 1 and the lexicographic extensions by [a+

1 , . . . , a+
r ]

and [a′
1
+
, . . . , a′

r
+] yield the same oriented matroid, then for every cocircuit C ∈

C�(M) with C(a1) 
= 0 and C(a′
1) 
= 0, the signature σ : C�(M) → {±, 0} of the

lexicographic extension fulfills σ(C) = C(a1) and σ(C) = C(a′
1). Thus, if a1 and a′

1
are different, then a1 and a′

1 are (+1)-inseparable in M� and hence, by Lemma 3.11,
(−1)-inseparable in M.

But balanced matroids of rank r ≥ 2 and even corank only have (+1)-inseparable
pairs (see Lemma 3.12), which proves that a1 = a′

1. Analogously, if ai and a′
i are

the first distinct elements and i < r , we can apply the previous argument on the
contraction by {a1, . . . , ai−1}.

Hence, there are at least n!
(n−r+1)! different choices for the first r −1 elements (which

give rise to different matroids). For the last element, observe that M/{a1, . . . , ar−1}
is a matroid of rank 1, and that there are exactly two possible different extensions for
a matroid of rank 1. ��
Remark 6.2 In the bound (6.1), we lose a factor of up to 2r−1 from the real number.
This factor is asymptotically much smaller than our bound of 2n!

(n−r+1)! .
In fact, it is not difficult to prove that Eq. (6.1) can be improved to


l(n, r) ≥ 2r−1 n!
(n − 1)(n − r)!

by giving some cyclic order to the elements of M and counting only the lexicographic
extensions [aε1

1 , . . . , aεr
r ] that fulfill

(i) For 1 < i < r, aεi
i is not b−αεi−1 if b < ai−1 and b and ai−1 are α-inseparable

in M/{a1, . . . , ai−2}.
(ii) For 1 < i < r, aεi

i is not cαβεi−1 when there exists b with c < b < ai−1 such that
b and ai−1 are α-inseparable in M/{a1, . . . , ai−2} and c is β-inseparable from
b in M/{a1, . . . , ai−1}.

(iii) ar and ar−1 are α-inseparable in M/{a1, . . . , ar−2}, ar−1 > ar and εr = αεr−1.

But then the formulas become more complicated and add nothing substantial to the
result.

Remark 6.3 The hypothesis of balancedness and odd corank are not necessary in
Proposition 6.1 and Remark 6.2, and one can adapt the proofs to obtain lower bounds
for the number of lexicographic extensions that any oriented matroid must have.
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6.2 Many Neighborly Polytopes in G

Once we have bounds for 
l(n, r), we can obtain bounds for nbl(n, d) using the Gale
Sewing Construction. But first we do a case where we know the exact number.

Lemma 6.4 The number of labeled balanced matroids of rank r with r + 3 elements
is 1

2 (r + 2)!.

Proof Balanced matroids of rank r with r + 3 elements are dual to polygons with
r + 3 vertices in R

2. There are clearly 1
2 (r + 2)! different combinatorial types of

labeled polygons with r + 3 vertices. ��

For our next proof, we need the following result concerning the inseparability
graph IG(M) of an oriented matroid M, which is defined to be the graph that has the
elements of M as vertices and the pairs of inseparable elements as edges.

Theorem 6.5 ([9, Theorem 1.1]) Let M be a rank r uniform oriented matroid with n
elements.

– If r ≤ 1 or r ≥ n − 1, then IG(M) is the complete graph Kn.
– If r = 2 or r = n − 2, then IG(M) is an n-cycle.
– If 2 < r < n − 2, then IG(M) is either an n-cycle, or a disjoint union of chains.

Lemma 6.6 For r ≥ 2 and m ≥ 2, the number of labeled balanced matroids of rank
r with r + 1 + 2m elements is nbl(2m + r + 1, 2m) and fulfills

nbl(2m+r +1, 2m)≥nbl(2m+r −1, 2m − 2)
r + 2m

2

l(r + 2m − 1, r). (6.2)

Proof The characterization is direct by duality. For the bound, choose a balanced
matroid M of rank r with r + 1 + 2(m − 1) elements such that each element has a
label in the set {1, . . . , r + 1 + 2(m − 1)}. And let M[p] be a labeled lexicographic
extension of M by p = [aε1

1 , . . . , aεr
r ]. Finally let M[p][q] be the extension of M[p]

by q = [p−, a−
1 , . . . , a−

r−1], which is balanced by the Double Extension Theorem 4.2.
We consider all the relabelings of M[p][q] such that q gets label r + 2m + 1 and

the labeling of M[p][q] on M preserves the relative order of the original labeling
of M.

We claim that each labeled matroid obtained this way is constructed at most twice.
Indeed, observe that p and q are inseparable because of Lemma 3.13. Moreover, by
Theorem 6.5, q is inseparable from at most two elements in M[p][q] because 2 ≤ r
and 2 ≤ m. Since the label of q is fixed, M[p][q] might have been counted twice if
q is inseparable from two elements in M[p][q].

Summing up, we can choose among nbl(2m + r − 1, 2m − 2) matroids M,


l(r + 2m − 1, r) extensions M[p], and (r + 2m) labels for p to construct at least
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(r + 2m) nbl(2m + r − 1, 2m − 2)
l(r + 2m − 1, r)

labeled balanced oriented matroids, where each matroid is counted at most twice. This
yields the claimed formula. ��

This result allows us to give our first explicit lower bound on the number of neigh-
borly polytopes.

Proposition 6.7 The number of labeled neighborly polytopes in even dimension d =
2m ≥ 2 with n = r + d + 1 vertices fulfills

nbl(2m + r + 1, 2m) ≥
m∏

i=1

(r + 2i)!
(2i)! . (6.3)

Proof Observe that by rigidity (Theorem 2.2), counting labeled neighborly polytopes
is equivalent to counting labeled neighborly oriented matroids. By duality, this is in
turn equivalent to counting balanced oriented matroids. This we do.

Lemma 6.4 proves the required formula in the initial case m = 1, and yields
nbl(2 + r + 1, 2) = 1

2 (r + 2)!. For m ≥ 2, we observe that by Proposition 6.1,

r + 2m

2

l(r + 2m − 1, r) ≥ (r + 2m)!

(2m)! .

Finally, we apply Lemma 6.6 to obtain (6.3). ��

Although Proposition 6.7 provides us with the desired bound, it is hard to understand
its order of magnitude at first sight. This is the reason why we present the following
simplified bound (�).

Theorem 6.8 The number of labeled neighborly polytopes in even dimension d with
n vertices fulfills

nbl(r + d + 1, d) ≥
(
r + d

)( r
2 + d

2 )
2

r (
r
2 )

2
d(

d
2 )

2

e3 r
2

d
2

, (�)

that is,

nbl(n, d) ≥ (n − 1)(
n−1

2 )2

(n − d − 1)(
n−d−1

2 )
2

d(
d
2 )

2

e
3d(n−d−1)

4

.

Proof We start from Eq. (6.3), and approximate the natural logarithm of
nbl(r + 1 + 2m, 2m). Using the fact that

∫ b
a−1 f (s) ds ≤ ∑b

i=a f (i) for any increas-
ing function f , we obtain

123



896 Discrete Comput Geom (2013) 50:865–902

ln
(

nbl(r + 1 + 2m, 2m)
)≥ ln

( m∏

i=1

(r + 2i)!
(2i)!

)
=

m∑

i=1

r∑

j=1

ln(2i + j)

≥
m∫

i=0

r∫

j=0

ln(2i + j)d jdi

= (2m+r)2 ln(2m+r)−r2 ln(r)

4
− m2 ln(2m)− 3mr

2
.

Hence

nbl(r + 1 + 2m, 2m) ≥ (2m + r)
1
4 (2m+r)2

r
1
4 r2
(2m)m2 e

3
2 mr

,

and we conclude that

nbl(r + d + 1, d) ≥ (r + d)(
r
2 + d

2 )
2

r (
r
2 )

2
d(

d
2 )

2

e3 r
2

d
2

.

��
The following corollary is a further simplification of the bound. It has the

form n
dn
2 (1+o(1)) when d is fixed and n → ∞.

Corollary 6.9 The number of labeled neighborly polytopes in even dimension d with
n vertices fulfills

nbl(n, d) ≥
(n − 1

e3/2

) 1
2 (n−d−1)d

.

Proof Since r (
r
2 )

2
d(

d
2 )

2 ≤ (r + d)(
r
2 )

2+( d
2 )

2

we obtain

nbl(r + d + 1, d) ≥ (r + d)(
r
2 + d

2 )
2

r (
r
2 )

2
d(

d
2 )

2

e3 r
2

d
2

≥ (r + d)
rd
2

e
3rd

4

.

��
Observe that this bound is not only useful for neighborly polytopes whose number

of vertices is very large with respect to the dimension, but also for neighborly polytopes
with fixed corank and large dimension.

A final observation is that we can translate these bounds for even dimensional
neighborly polytopes to bounds for neighborly polytopes in odd dimension just by
taking pyramids, because a pyramid over an even dimensional neighborly polytope is
always neighborly. (If simpliciality was needed, any extension in general position of
the dual of an even-dimensional neighborly polytope would work too).
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Corollary 6.10 The number of labeled neighborly polytopes in odd dimension d with
n vertices fulfills

nbl(n, d) ≥ nbl(n−1, d−1) ≥ (n − 2)(
n−2

2 )2

(n − d − 1)(
n−d−1

2 )
2

(d − 1)(
d−1

2 )
2

e
3(d−1)(n−d−1)

4

≥
(n − 2

e3/2

) 1
2 (n−d−1)(d−1)

.

��

6.3 Many Non-realizable Neighborly Matroids

Exactly the same reasoning that leads to the bounds in Theorem 6.8 can be applied to
give lower bounds for non-realizable neighborly matroids. From now on, let nrl(n, r)
represent the number of labeled non-realizable neighborly oriented matroids of rank
r with n elements.

Theorem 6.11 The number of labeled non-realizable neighborly oriented matroids
of odd rank s ≥ 5 with n ≥ s + 5 elements is at least

nrl(n, s) ≥ (n − 1)
1
2 (s−5)(n−s)

( n−s+4
4

)4e
3
4 (s−5)(n−s)

.

Proof (sketch) The principal observation is that an analogue of the inequality (6.2) of
Lemma 6.6 applies. That is, if r ≥ 2, m ≥ 2 and n = 2m + r + 1, then

nrl(n, 2m + 1) ≥ nrl(n − 2, 2m − 1)
n − 1

2

l(n − 2, r).

This uses the Double Extension Theorem 4.2 and the fact that all the lexicographic
extensions of a non-realizable matroid are non-realizable.

Moreover, by Theorem 5.8, nrl(r + 5, 5) ≥ 1 for all r ≥ 5. Which means that for
m ≥ 3 we can mimic the proof of Theorem 6.8 to get

nrl(r + 1 + 2m, 2m + 1) ≥
m∏

i=3

r∏

j=1

(2i + j)

≥ exp

( m∫

i=2

r∫

j=0

ln(2i + j)d jdi

)

= 28(2m + r)
(2m+r)2

4

(r + 4)
(r+4)2

4 (2m)m
2
e

3(m−2)r
2

≥ (2m + r)(m−2)r

( r+4
4

)4e
3(m−2)r

2

.

��
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Appendix A

This appendix contains the proofs of Propositions 2.9 and 4.8, as well as some inter-
mediate lemmas.

For the proof of Proposition 2.9 we need a pair of results. The first one concerns
inseparable elements, and shows the relation between circuits/cocircuits through x and
circuits/cocircuits through y when x and y are inseparable.

Lemma A.1 Let M be a uniform oriented matroid with two α-inseparable elements x
and y.

1. For every circuit X ∈ C(M) with X (x) = 0 and X (y) 
= 0, there is a circuit X ′ ∈
C(M) with X ′(x) = −αX (y), X ′(y) = 0 and X ′(e) = X (e) for all e /∈ {x, y};

2. For every cocircuit C ∈ C�(M) with C(x) = 0 and C(y) 
= 0, there is a cocircuit
C ′ ∈ C�(M)with C ′(x) = αC(y), C ′(y) = 0 and C ′(e) = C(e) for all e /∈ {x, y}.

Proof Both statements are equivalent by duality. We prove the first one.
Let X ′ ∈ C(M) be the circuit with support X ′ = X \ y ∪ x and such that X ′(x) =

−αX (y). This circuit exists because M is uniform. We will see that X ′(e) = X (e) for
all e ∈ X ′ \ x . Let e ∈ X \ y, and let C be the cocircuit of M with C = E \ (X \ y \ e).
That makes C ∩ X = {e, y}. Since y and x are α-inseparable, C(x) = −αC(y), and
by circuit–cocircuit orthogonality,

X (y)X (e) = −C(y)C(e) = αC(x)C(e).

But C ∩ X ′ = {e, x}, and hence, again by orthogonality, X ′(x)X ′(e) = −C(x)C(e).
The conclusion now follows from X ′(x) = −αX (y). ��

In this lemma, the hypothesis of uniformity is important, since the result does not
hold in general.

The second lemma concerns the simultaneous contraction and deletion of p and a1.

Lemma A.2 If M is uniform and p = [aε1
1 , . . .], then

M/a1 = (M[p] \ p)/a1 = (M[p] \ a1)/p.

Proof The first equality is direct. The second one follows from Lemma A.1. Indeed,
every cocircuit of (M[p]/a1)\p corresponds to a cocircuit C of M[p] with C(a1) = 0
and C(p) 
= 0. By Lemma A.1, the values of C on e /∈ {a1, p} coincide with the values
of C ′ on e /∈ {a1, p}, where C ′ is a cocircuit of M[p] with C ′(a1) 
= 0 and C ′(p) = 0.
That is, C ′ corresponds to a cocircuit of (M[p]/p) \ a1. ��

123



Discrete Comput Geom (2013) 50:865–902 899

We are now ready to prove Proposition 2.9, and restate it here for the reader’s
convenience.

Proposition 2.9 Let M be a uniform oriented matroid of rank r on a ground set E,
and let M[p] be the lexicographic extension of M by p = [aε1

1 , aε2
2 , . . . , aεr

r ]. Then

M[p]/p
ϕ� (M/a1)

[
a−ε1ε2

2 , . . . , a−ε1εr
r

]
, (2.1)

M[p]/ai = (M/ai )
[
aε1

1 , . . . , aεi−1
i−1 , aεi+1

i+1 , . . . , aεr
r

]
, (2.2)

and

M[p]/e = (M/e)
[
aε1

1 , aε2
2 , . . . , aεr−1

r−1

]; (2.3)

where e ∈ E is any element different from p and any ai . The isomorphism ϕ in (2.1)
is ϕ(e) = e for all e ∈ E \ {p, a1} and ϕ(a1) = [a−ε1ε2

2 , . . . , a−ε1εr
r ]; the latter is the

extending element.

Proof The proof of (2.2) and (2.3) is direct just by observing the signature of p
in M[p].

To prove (2.1), observe that (M[p]/p) \ a1 = M/a1 by Lemma A.2. Therefore,
we only need to prove that the signature of the extension of (M[p]/p) \ a1 by a1
coincides with that of the lexicographic extension by [a−ε1ε2

2 , . . . , a−ε1εr
r ]. That is, let

C ∈ C�(M[p]) be a cocircuit of M[p] with C(p) = 0 and C(a1) 
= 0 and let k > 1
be minimal with C(ak) 
= 0. We want to see that C(a1) = −ε1εkC(ak).

Because a1 and p are (−ε1)-inseparable, Lemma A.1 yields a cocircuit C ′ ∈
C�(M[p]) with C ′(p) = −ε1C(a1) and C ′(a1) = 0 and such that k is minimal
with C ′(ak) 
= 0. Moreover C ′(ak) = C(ak) and by the signature of the lexicographic
extension C ′(p) = εkC ′(ak) = εkC(ak). The claim follows from comparing both
expressions for C ′(p). ��

The proof of Proposition 4.8 uses Proposition 2.9, Lemma 4.1 and Lemma A.3
below to deduce that subpolytopes (convex hull of subsets of vertices) of Gale sewn
polytopes are also Gale sewn.

Lemma A.3 shows that when Gale sewing, the roles of a1, p and q can be
exchanged. Indeed, the isomorphism in (A.1) implies that we can switch the roles
of p and q, while the isomorphism in (A.2) shows how a1 can also be considered as
one of the sewn elements.

Lemma A.3 Let M be a uniform oriented matroid on a ground set E, and consider
the lexicographic extensions by

p = [
aε1

1 , . . . , aεr
r
]
, q = [

p−, a−
1 , . . . , a−

r−1

];
p′ = [

a−ε1
1 , . . . , a−εr

r
]
, q ′ = [

p′−, a−
1 , . . . , a−

r−1

];
p′′ = [

a+
1 , a−ε1ε2

2 , . . . , a−ε1εr
r

]
, q ′′ = [

p′′−, a−
1 , . . . , a−

r−1

]
.
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Then

M[p][q] ϕ� M[p′][q ′], (A.1)

and

M[p][q] ψ� M[p′′][q ′′], (A.2)

where the bijection ϕ : E ∪ {p, q} → E ∪ {p′, q ′} is

ϕ(p) = q ′, ϕ(q) = p′ and ϕ(e) = e f or e ∈ E;

and ψ : E ∪ {p, q} → E ∪ {p′′, q ′′} is defined as

ψ(p) =
{

a1 i f ε1 = +,
q ′′ i f ε1 = − , ψ(q) =

{
q ′′ i f ε1 = +,
a1 i f ε1 = − ,

ψ(a1) = p′′ and ψ(e) = e f or e ∈ E \ {a1}.

Proof We start proving that M[p][q] ϕ� M[p′][q ′]. For every cocircuit C ∈
C�(M[p][q]) we want to find a cocircuit C ′ ∈ C�(M[p′][q ′]) with C ′(ϕ(a)) = C(a)
for all a ∈ E ∪ {p, q}. That is C ′(p′) = C(q), C ′(q ′) = C(p) and C ′(e) = C(e) for
e ∈ E . Let D be the restriction of C to E .

If C(q) 
= 0 and C(p) 
= 0, let i be minimal with D(ai ) 
= 0. By construction,
C(p) = εi D(ai ) and C(q) = −C(p) = −εi D(ai ). By the definition of M[p′][q ′],
there is a cocircuit C ′ that expands D, with C ′(p′) = −εi D(ai ) = C(q) and C ′(q ′) =
−C(p′) = εi D(ai ) = C(p).

To deal with the case when C(q) = 0 or C(p) = 0, we use Proposition 2.9 to see
that M[p][q]/p�M[p′][q ′]/q ′ and M[p][q]/q�M[p′][q ′]/p′.

To prove that M[p][q] ψ� M[p′′][q ′′] we assume that ε1 = + (otherwise
use (A.1) to exchange p with q). In this case we prove that M[p] � M[p′′], which
implies (A.2) because when p and a1 are (−1)-inseparable the lexicographic exten-
sions by [p−, a−

1 , . . . , a−
r−1] and [a−

1 , p−, . . . , a−
r−1] coincide.

For every cocircuit C ∈ C�(M[p]) we want to find a cocircuit C ′′ ∈ C�(M[p′′])
with C ′′(p′′) = C(a1), C ′′(a1) = C(p′′) and C ′′(e) = C(e) for e ∈ E \ {a1}. Again,
let D be the restriction of C to E .

If C(p) 
= 0 and C(a1) 
= 0, then C(p) = C(a1) = D(a1). Moreover, D is
also expanded to a cocircuit C ′′ of M[p′′] with C ′′(p′′) = C ′′(a1) = D(a1). For
circuits with C(a1) = 0, observe that M[p]/a1 = M[aε2

2 , . . . , aεr
r ] � M[p′′]/p′′

by Proposition 2.9. Finally, if C(p) = 0 then, again by Proposition 2.9, M[p]/p �
M[a−ε2

2 , . . . , a−εr
r ] = M[p′′]/a1. ��

With this lemma we have the last ingredient needed to prove that all the subpolytopes
of a Gale sewn polytope are Gale sewn.

Proposition 4.8 If p is a neighborly polytope in G, and a is a vertex of P, then
Q = conv(vert(P) \ a) is also a neighborly polytope in G.
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Proof Let P be the oriented matroid of P and e the element of P corresponding
to the vertex a. Observe that P \ e is the oriented matroid of Q. The proof is by
induction on the rank of P . When P has rank 1 then P� � {e1, . . . , er ,−∑r

i=1 ei }
and (P \ e)� � {e1, . . . , er ,−∑r

i=1 ei }/e � {e1, . . . , er−1,−∑r−1
i=1 ei }.

Otherwise, let M = P�. That P belongs to G means that there is a matroid N
whose dual N � is in G, such that M = N [p][q] where p = [aε1

1 , aε2
2 , . . . , aεr

r ] and
q = [p−, a−

1 , . . . , a−
r−1].

We will prove that for every e ∈ P , there is some ẽ ∈ N fulfilling

(P \ e)� � (N /ẽ)[ p̃][q̃] = (N � \ ẽ)�[ p̃][q̃], (A.3)

where p̃ = [ãε̃1
1 , ãε̃2

2 , . . . , ãε̃r
r ] and q̃ = [ p̃−, ã−

1 , . . . , ã−
r−1] for some ãi ’s and ε̃i ’s.

Since rank(N �) = rank(P) − 2, by the induction hypothesis (N � \ e′) ∈ G and our
claim follows directly from (A.3).

If e = q, then by Lemma 4.1 we know that (P \ e)� = (N [p][q])/q �
(N /a1)[ p̃][q̃], where p̃ = [a−ε1ε2

2 , . . . , a−ε1εr
r ] and q̃ = [ p̃−, . . . , a−

r−1]. The case
e = p is analogous because of Lemma A.3. If e = ai , then (P \ e)� � (N /ai )[ p̃][q̃],
where p̃ and q̃ have the same signature as p̃ and q̃ but omitting the element ai . For
the remaining elements e, (P \ e)� � (N /e)[ p̃][q̃]. ��
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