
 Open access Proceedings Article DOI:10.1109/CEC.2016.7743797

Many-objective genetic programming for job-shop scheduling — Source link

Atiya Masood, Yi Mei, Gang Chen, Mengjie Zhang

Institutions: Victoria University of Wellington

Published on: 01 Jul 2016 - Congress on Evolutionary Computation

Topics: Job shop scheduling, Genetic programming and Tardiness

Related papers:

An Evolutionary Many-Objective Optimization Algorithm Using Reference-Point-Based Nondominated Sorting
Approach, Part I: Solving Problems With Box Constraints

 A fast and elitist multiobjective genetic algorithm: NSGA-II

 Dynamic Multi-objective Job Shop Scheduling: A Genetic Programming Approach

 Performance assessment of multiobjective optimizers: an analysis and review

 Feature Selection for Evolving Many-Objective Job Shop Scheduling Dispatching Rules with Genetic Programming

Share this paper:

View more about this paper here: https://typeset.io/papers/many-objective-genetic-programming-for-job-shop-scheduling-
5cy2re0ey6

https://typeset.io/
https://www.doi.org/10.1109/CEC.2016.7743797
https://typeset.io/papers/many-objective-genetic-programming-for-job-shop-scheduling-5cy2re0ey6
https://typeset.io/authors/atiya-masood-160262eyxl
https://typeset.io/authors/yi-mei-3a93kqj8ms
https://typeset.io/authors/gang-chen-ux7i0kq3xx
https://typeset.io/authors/mengjie-zhang-2e6k0i36ub
https://typeset.io/institutions/victoria-university-of-wellington-87lkr9ts
https://typeset.io/conferences/congress-on-evolutionary-computation-189ojnjk
https://typeset.io/topics/job-shop-scheduling-14p5wd9o
https://typeset.io/topics/genetic-programming-1pdte4vc
https://typeset.io/topics/tardiness-12x02wag
https://typeset.io/papers/an-evolutionary-many-objective-optimization-algorithm-using-2bj8j4euce
https://typeset.io/papers/a-fast-and-elitist-multiobjective-genetic-algorithm-nsga-ii-1zk92kwqxo
https://typeset.io/papers/dynamic-multi-objective-job-shop-scheduling-a-genetic-5ar6iaxgdy
https://typeset.io/papers/performance-assessment-of-multiobjective-optimizers-an-wf8l3c8h73
https://typeset.io/papers/feature-selection-for-evolving-many-objective-job-shop-3rk9n6s6jw
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/many-objective-genetic-programming-for-job-shop-scheduling-5cy2re0ey6
https://twitter.com/intent/tweet?text=Many-objective%20genetic%20programming%20for%20job-shop%20scheduling&url=https://typeset.io/papers/many-objective-genetic-programming-for-job-shop-scheduling-5cy2re0ey6
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/many-objective-genetic-programming-for-job-shop-scheduling-5cy2re0ey6
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/many-objective-genetic-programming-for-job-shop-scheduling-5cy2re0ey6
https://typeset.io/papers/many-objective-genetic-programming-for-job-shop-scheduling-5cy2re0ey6

Many-Objective Genetic
Programming for Job-Shop

Scheduling

by

Atiya Masood

A thesis
submitted to the Victoria University of Wellington

in fulfilment of the
requirements for the degree of

Doctor of Philosophy
in Computer Science.

Victoria University of Wellington
2020

Abstract

The Job Shop Scheduling (JSS) problem is considered to be a challenging
one due to practical requirements such as multiple objectives and the com-
plexity of production flows. JSS has received great attention because of its
broad applicability in real-world situations. One of the prominent solu-
tion approaches to handling JSS problems is to design effective dispatch-
ing rules. Dispatching rules are investigated broadly in both academic and
industrial environments because they are easy to implement (by comput-
ers and shop floor operators) with a low computational cost. However, the
manual development of dispatching rules is time-consuming and requires
expert knowledge of the scheduling environment. The hyper-heuristic
approach that uses genetic programming (GP) to solve JSS problems is
known as GP-based hyper-heuristic (GP-HH). GP-HH is a very useful ap-
proach for discovering dispatching rules automatically.

Although it is technically simple to consider only a single objective op-
timization for JSS, it is now widely evidenced in the literature that JSS
by nature presents several potentially conflicting objectives, including the
maximal flowtime, mean flowtime, and mean tardiness. A few studies in
the literature attempt to solve many-objective JSS with more than three
objectives, but existing studies have some major limitations. First, many-
objective JSS problems have been solved by multi-objective evolutionary
algorithms (MOEAs). However, recent studies have suggested that the
performance of conventional MOEAs is prone to the scalability challenge
and degrades dramatically with many-objective optimization problems
(MaOPs). Many-objective JSS using MOEAs inherit the same challenge as
MaOPs. Thus, using MOEAs for many-objective JSS problems often fails

to select quality dispatching rules. Second, although the reference points
method is one of the most prominent and efficient methods for diversity
maintenance in many-objective problems, it uses a uniform distribution
of reference points which is only appropriate for a regular Pareto-front.
However, JSS problems often have irregular Pareto-front and uniformly
distributed reference points do not match well with the irregular Pareto-
front. It results in many useless points during evolution. These useless
points can significantly affect the performance of the reference points-
based algorithms. They cannot help to enhance the solution diversity of
evolved Pareto-front in many-objective JSS problems. Third, Pareto Local
Search (PLS) is a prominent and effective local search method for handling
multi-objective JSS optimization problems but the literature does not dis-
cover any existing studies which use PLS in GP-HH.

To address these limitations, this thesis’s overall goal is to develop GP-
HH approaches to evolving effective rules to handle many conflicting ob-
jectives simultaneously in JSS problems.

To achieve the first goal, this thesis proposes the first many-objective
GP-HH method for JSS problems to find the Pareto-fronts of nondomi-
nated dispatching rules. Decision-makers can utilize this GP-HH method
for selecting appropriate rules based on their preference over multiple
conflicting objectives. This study combines GP with the fitness evalua-
tion scheme of a many-objective reference points-based approach. The
experimental results show that the proposed algorithm significantly out-
performs MOEAs such as NSGA-II and SPEA2.

To achieve the second goal, this thesis proposes two adaptive reference
point approaches (model-free and model-driven). In both approaches, the
reference points are generated according to the distribution of the evolved
dispatching rules. The model-free reference point adaptation approach
is inspired by Particle Swarm Optimization (PSO). The model-driven ap-
proach constructs the density model and estimates the density of solutions
from each defined sub-location in a whole objective space. Furthermore,

the model-driven approach provides smoothness to the model by apply-
ing a Gaussian Process model and calculating the area under the mean
function. The mean function area helps to find the required number of the
reference points in each mean function. The experimental results demon-
strate that both adaptive approaches are significantly better than several
state-of-the-art MOEAs.

To achieve the third goal, the thesis proposes the first algorithm that
combines GP as a global search with PLS as a local search in many-
objective JSS. The proposed algorithm introduces an effective fitness-
based selection strategy for selecting initial individuals for neighborhood
exploration. It defines the GP’s proper neighborhood structure and a new
selection mechanism for selecting the effective dispatching rules during
the local search. The experimental results on the JSS benchmark problem
show that the newly proposed algorithm can significantly outperform its
baseline algorithm (GP-NSGA-III).

iv

Acknowledgments

I would like to express my sincere gratitude to the Victoria University of
Wellington for providing the Victoria Doctoral Scholarship for me to con-
tinue my research studies in New Zealand.

I would like to express my sincere gratitude to my supervisors, Dr.
Gang Chen, Dr. Yi Mei, Dr. Harith Al-Sahaf, and Professor Mengjie Zhang
for their exemplary guidance, support, and encouragement throughout
the progress of my Ph.D. study. They have provided invaluable feedback
to improve my research.

I also take this opportunity to express my gratitude to Dr. John Park,
Dr. Deepak Singh, Dr. Michael Ikechi Emmanuel, Philippa Becroft, Dr. TJ
Boutorwick, and Karen Commons for their cordial support, valuable infor-
mation, and guidance, which helped me in my research activities through
various stages.

I would also like to thank my research colleagues, the Evolutionary
Computation Research Group (ECRG), and the Evolutionary Computa-
tion for Scheduling and Combinatorial Optimisation group (ECCO) for
their constructive feedback and comments in my study and discussions.

My sincere gratitude also goes to my beloved husband, Masood, for
his constant support, encouragement, and understanding throughout this
research work. I would like to thank my mother for her prayer, uncondi-
tional love and care. My sincere thanks as well to my uncles, Dr. Jaffery
and Muhammad Kalim, for their constant support, prayer, and encour-
agement throughout my study.

v

vi

List of Publications

1. A. Masood, Y. Mei, G. Chen, M. Zhang, ”Many-objective genetic pro-
gramming for job-shop scheduling”, Evolutionary Computation (CEC)
2016 IEEE Congress, pp. 209-216, 2016.

2. Masood, A., Mei, Y., Chen, G., Zhang, M.: A PSO-Based Reference
Point Adaption Method for Genetic Programming Hyper-Heuristic
in Many-Objective Job Shop Scheduling. ACALCI. Lecture Notes in
Computer Science, vol. 10142, pp. 326–338 (2017).

3. Masood, A., Chen, G., Mei, Y., Zhang, M.: Reference point adaption
method for genetic programming hyper-heuristic in many-objective
job shop scheduling. In: European Conference on Evolutionary Compu-
tation in Combinatorial Optimization. pp. 116–131. Springer (2018).

4. Masood A., Chen G., Mei Y., Zhang M.: Adaptive Reference Point
Generation for Many-Objective Optimization Using NSGA-III. In:
Advances in Artificial Intelligence. AI 2018. Lecture Notes in Computer
Science, vol 11320. pp. 358-370. Springer(2018).

5. Masood A., Chen G., Mei Y., Al-Sahaf H., Zhang M.: Genetic Pro-
gramming with Pareto Local Search for Many-Objective Job Shop
Scheduling. In: Advances in Artificial Intelligence. AI 2019. Lecture
Notes in Computer Science, vol 11919. pp. 536-548. Springer(2019).

6. A. Masood, G. Chen,Y. Mei, H. Al-Sahaf, M. Zhang, ”Fitness-based
Selection Method for Genetic Programming with Pareto Local Search

vii

viii

in Many-Objective Job Shop Scheduling”, (Evolutionary Computation
(CEC) 2020 IEEE Congress on, pp. 1-8, 2020).

7. A. Masood, G. Chen,Y. Mei, H. Al-Sahaf, M. Zhang, ”Adaptive Ref-
erence Point Generation based on Gaussian Process Model for Many-
Objective Optimization”. Submitted to IEEE Transactions on Evolu-
tionary Computation. (2020), 14pp. (under review).

Contents

1 Introduction 1
1.1 Problem statement . 1
1.2 Motivations . 6
1.3 Research goals . 9
1.4 Major contributions . 13
1.5 Organisation of thesis . 16

2 Literature Review 19
2.1 Background . 19

2.1.1 Basic concepts . 20
2.1.2 JSS Problems . 23
2.1.3 Evolutionary computation 27
2.1.4 Multi-objective EAs (MOEAs) 30
2.1.5 Many-objective optimization (MaOPs) 32
2.1.6 MaOPs for irregular Pareto-front 38
2.1.7 Model-based EMO . 40
2.1.8 Gaussian process modelling 41
2.1.9 Genetic programming (GP) 43
2.1.10 Basic GP algorithm . 47
2.1.11 Local search . 48
2.1.12 Pareto local search (PLS) 49

2.2 Related work . 52
2.2.1 JSS techniques . 52

ix

x CONTENTS

2.2.2 GP-HH for JSS . 57
2.2.3 Multi-objective and many-objective JSS 59
2.2.4 Local search for JSS . 63
2.2.5 PLS for JSS . 63

2.3 Summary . 65

3 Experimental Methodology 69
3.1 Benchmark problems for JSS 69
3.2 GP terminals and function set 71
3.3 Performance measures . 71

4 Many-Objective GP-HH for JSS 75
4.1 Introduction . 75
4.2 Problem description . 78
4.3 Many-objective-GP-HH for JSS 79

4.3.1 Representation of rules 80
4.3.2 General framework of GP-NSGA-III 80

4.4 Experimental studies . 83
4.4.1 Parameter settings . 84

4.5 Results and discussions . 85
4.5.1 Relationship among scheduling objectives 85
4.5.2 Results . 88
4.5.3 Discussions . 89

4.6 Chapter summary . 100

5 Reference Points Adaptation for Many-Objective JSS 105
5.1 Introduction . 105
5.2 General framework for adaptive reference points generation 109
5.3 Model-free adaptive reference points generation 110

5.3.1 Design of experiment 112
5.3.2 Results and discussions 113

5.4 Model-based adaptive reference points generation 118

CONTENTS xi

5.4.1 Reference point Adaptation by density-based model 119
5.5 Gaussian process-based probabilistic model 124

5.5.1 Modelling by Gaussian process 126
5.5.2 Calculate the area under the mean function 128
5.5.3 Reference points generation 130
5.5.4 Computational Complexity of One Generation of

GP-MARP-NSGA-III 130
5.5.5 Design of experiment 131
5.5.6 Results and discussion 132

5.6 Selection of adaptive reference points approach 136
5.7 Chapter summary . 139

6 GP with Pareto Local Search for Many-Objective JSS 141
6.1 Introduction . 141
6.2 GP-PLS structure . 144

6.2.1 General framework of GP-PLS 144
6.2.2 GP-PLS-I overview 144
6.2.3 GP-PLS-II overview 148

6.3 Design of experiment . 155
6.3.1 Sensitivity analysis . 156

6.4 Results and discussions . 159
6.4.1 Results . 159
6.4.2 Discussion . 161

6.5 Chapter summary . 173

7 Conclusions 175
7.1 Achieved objectives . 175
7.2 Main conclusions . 178

7.2.1 Many-Objective GP for JSS 178
7.2.2 Non-uniform Pareto-front 179
7.2.3 Pareto local search (PLS) 181

7.3 Future work . 182

xii CONTENTS

7.3.1 Incorporate user preferences to many-objective JSS . 183
7.3.2 Incorporate locality of search operators to Genetic

Programming . 183
7.3.3 Incorporate effective crossover operator to many-

objective JSS . 184
7.3.4 Incorporate adaptive terminal selection to many-

objective JSS . 185
7.3.5 Dispatching rules for many-objective dynamic JSS . . 185
7.3.6 Dispatching rules for many-objective flexible JSS . . . 186

7.4 General Considerations . 187
7.4.1 Main components of thr Proposed algorithm 187
7.4.2 Cloud task scheduling problem 189

A Further studies 193
A.1 Introduction . 193
A.2 Benchmark functions on MaOPs 194

A.2.1 IDTLZ1 and IDTLZ2 problems 194
A.2.2 DTLZ-4, DTLZ5, and IDTLZ-7 Problems 195
A.2.3 MAF1 and MAF2 Problems 196
A.2.4 WFG1,WFG2 and WFG9 Problems 196

A.3 Experiment design . 197
A.3.1 Parameter setting of benchmark problems 197
A.3.2 Algorithms parameter settings 198

A.4 Results and discussion . 199
A.4.1 Performance of obtained solutions 199
A.4.2 Further analysis . 199

List of Tables

2.1 Notations in JSS . 24

2.2 Example of a static JSS problem instances (N = 3,M =2) . . . 27

3.1 Static JSS data sets. 69

3.2 Terminal set of GP for JSS. 72

4.1 The mean and standard deviation over the average HV and
IGD values on training instances of the compared algo-
rithms in the four-objective experiment. 88

4.2 The mean and standard deviation over the HV values on
the test instances of the compared algorithms. 90

4.3 The mean and standard deviation over the IGD values on
the test instances of the compared algorithms. 91

5.1 The mean and standard deviation over the HV and IGD val-
ues on the test instances of the compared algorithms in the
4-obj experiment. 114

5.2 The mean and standard deviation of HV and IGD values of
the 30 independent runs on training instances of the com-
pared algorithms on four-objective JSS problems. 132

5.3 The mean and standard deviation of HV and IGD achieved
by all competing algorithms on test instances on four-
objective JSS problems. 132

xiii

xiv LIST OF TABLES

6.1 The mean and standard deviation over the average HV and
IGD values on training instances of the compared algo-
rithms in the four-objective experiment. 157

6.2 The mean and standard deviation over the average HV and
IGD values on training instances of the compared algo-
rithms in the four-objective experiment. 159

6.3 The mean and standard deviation over the HV values on
the test instances of the compared algorithms. 162

6.4 The mean and standard deviation over the IGD values on
the test instances of the compared algorithms. 163

A.1 The characteristics of benchmark problems 194
A.2 Number of Reference Points and Population Size for DTLZ

and MAF. 197
A.3 Number of Reference Points and Population Size for WFG. . 198
A.4 The mean and standard deviation (x̄ ± σ) over the aver-

age HV values on M -objectives on IDTLZ1, IDTLZ2,
DTLZ4,DTLZ5, DTLZ7, MAF1, MAF2, WFG1, WFG2 prob-
lems. 200

A.5 The mean and standard deviation (x̄ ± σ) over the aver-
age IGD values on M -objectives on IDTLZ1, IDTLZ2,
DTLZ4, DTLZ5, and DTLZ7, MAF1, MAF2, WFG1, WFG2
problems. 201

List of Figures

2.1 The schedule generated by non-delay SPT α = 0. 28

2.2 The schedule generated by active SPT α = 1. 28

2.3 An example of a GP :PR + (RO × DD)). 44

2.4 An example of a crossover operation in GP. 47

2.5 An example of a mutation operation in GP. 47

2.6 Overview of a tree-based GP-HH applied to JSS. 57

4.1 Illustration of a dispatching rule in JSS. 79

4.2 The GP tree representation of the 2PT+WINQ+NPT rule. . . 80

4.3 Pareto-front for pairwise objective combination. 86

4.4 Pareto-front for pairwise objectives combination between
(mWT −maxWT). 87

4.5 Computational time to evolve dispatching rules 93

4.6 Length of rules of each generation in GP-NSGA-II, GP-
SPEA2, and GP-NSGA-III. 93

4.7 Length of the best rules of each run in GP-NSGA-II, GP-
SPEA2, and GP-NSGA-III. 94

4.8 Frequency of terminals in GP-NSGA-II, GP-SPEA2, and GP-
NSGA-III. 96

4.9 Frequency of terminals (after simplification) in GP-NSGA-
III, GP-NSGA-II, GP-SPEA2. 97

xv

xvi LIST OF FIGURES

4.10 The average relevance of each terminal over the 30 indepen-
dent runs of GP-NSGA-III, GP-NSGA-II and GP-SPEA2 on
the training set. 98

4.11 The average HV value of the non-dominated solutions on
the training set during the 30 independent GP runs. 99

4.12 The average IGD value of the non-dominated solutions on
the training set during the 30 independent GP runs. 99

4.13 Parallel coordinate plot for the distribution of the reference
points and the fitness values of the population at genera-
tions 50 . 100

4.14 Box plots on instance 6 of the compared algorithms. 101
4.15 Box plots on instance 21 of the compared algorithms. 101
4.16 Box plots on instance 32 of the compared algorithms. 102

5.1 Associated and contributing solutions on a convex curva-
ture of Pareto-front . 107

5.2 The curve of average number of useless reference points in
GP-NSGA-III on the training instances during the 30 inde-
pendent GP runs . 108

5.3 The curves of the average number of useless reference
points in GP-NSGA-III, GP-A-NSGA-III(PSO). 116

5.4 The curves of the HV and IGD values of the non-dominated
solutions on the training set during the 30 independent GP
runs. 116

5.5 Parallel coordinate plots of GP-A-NSGA-III(PSO) at gener-
ations 1. 117

5.6 Parallel coordinate plots of GP-A-NSGA-III(PSO) at gener-
ations 50. 117

5.7 Solutions are closest to the reference points. 120
5.8 Density of solution at each sub-location of the simplex. . . . 122
5.9 Generate reference points until M − 1 times 125
5.10 Train a Gaussian process on density-based model. 127

LIST OF FIGURES xvii

5.11 Area under the mean function of the Gaussian process model 130
5.12 HV values of the non-dominated solutions on the training

set during the 30 independent GP runs. 133
5.13 IGD values of the non-dominated solutions on the training

set during the 30 independent GP runs. 134
5.14 The curves of the average number of useless refer-

ence points in GP-NSGA-III, GP-NSGA-III-DRA, and GP-
MARP-NSGA-III. 135

5.15 Parallel coordinate plot for the distribution of the reference
points and the distribution of the fitness values at genera-
tions 50 of GP-NSGA-III. 136

5.16 Parallel coordinate plot for the distribution of the reference
points and the distribution of the fitness values at genera-
tions 50 of GP-A-NSGA-III. 137

5.17 Parallel coordinate plot for the distribution of the reference
points and the distribution of the fitness values at genera-
tions 50 of GP-NSGA-III-DRA. 137

5.18 Parallel coordinate plot for the distribution of the reference
points and the distribution of the fitness values at genera-
tions 50 of GP-MARP-NSGA-III. 138

6.1 General Framework of GP-PLS-I. 146
6.2 Examples of possible neighbor rules(shaded sub trees rep-

resented newly generated sub tree). 147
6.3 Framework of GP-PLS-II. 150
6.4 Example showing how to associate an individual r with a

reference points. In this example, w1 and w2 are two unit
reference points, theta1 and theta2 are the angles between r
and w1 and w2, respectively. Since theta2 < theta1, the indi-
vidual denoted by r is associated with reference points w2. . 152

6.5 Distance measure in the context of minimization with re-
spect to a reference direction. 153

xviii LIST OF FIGURES

6.6 Computational time of whole population 158

6.7 Computational time of sub-population. 158

6.8 Frequency of terminals in GP-NSGA-III, GP-PLS-I-s, GP-
PLS-I-r, GP-PLS-II, and GP-PLS-II-A. 161

6.9 Length of rules from each generation in GP-NSGA-III, GP-
PLS-I-s, GP-PLS-I-r, GP-PLS-II. 165

6.10 The curves of the average number of HV value of the non-
dominated solutions on the training set during the 30 inde-
pendent GP runs. 166

6.11 The curves of the average number of IGD value of the non-
dominated solutions on the training set during the 30 inde-
pendent GP runs. 166

6.12 Parallel coordinate plot of GP-NSGA-III. 167

6.13 Parallel coordinate plot of GP-PLS-I-s. 167

6.14 Parallel coordinate plot of GP-PLS-I-r. 168

6.15 Parallel coordinate plot of GP-PLS-II-U. 168

6.16 Parallel coordinate plot of GP-PLS-II-A. 169

6.17 Distribution of solutions of GP-PLS-II-U on instance 26. . . . 170

6.18 Distribution of solutions of GP-PLS-II-A on instance 26. . . . 171

6.19 Box-plots of the HV values. 172

6.20 Box-plots of the HV values. 172

6.21 Box-plots of the IGD values. 173

6.22 Box-plots of the IGD values. 173

7.1 Main Components of Algorithm 187

A.1 The Pareto-front with three objectives on IDTLZ problems. . 195

A.2 The Pareto-front with three objectives on DTLZ problems. . 196

A.3 The Pareto-front with three objectives on MAF problems. . . 197

A.4 The Pareto-front with three objectives on WFG problems. . . 198

A.5 Approximate Pareto-front for 3-objective IDTLZ1 problem . 202

A.6 Approximate Pareto-front for 3-objective DTLZ4 problem . . 203

LIST OF FIGURES xix

A.7 Approximate Pareto-front for 3-objective DTLZ5 problem . . 204
A.8 Approximate Pareto-front for 3-objective DTLZ7 problem . . 205
A.9 Parallel coordinate plot for the fitness values of the popula-

tion for 5-objective DTLZ7 problem 205
A.10 Parallel coordinate plot for the fitness values of the popula-

tion for 5-objective MAF1 problem 206
A.11 Parallel coordinate plot for the fitness values of the popula-

tion for 5-objective MAF2 problem 207
A.12 Parallel coordinate plot for the fitness values of the popula-

tion for 5-objective WFG2 problem 208
A.13 Parallel coordinate plot for the fitness values of the popula-

tion for eight-objective WFG9 problem 208

xx LIST OF FIGURES

List of Abbreviations

ACO Ant colony optimization

A-NSGA-III Adaptive-NSGA-III

COVERT Cost over time

DD Due date

DRA Density model-based reference point adapta-
tion

EAs Evolutionary algorithms

EC Evolutionary computation

EDAs Estimation of distribution algorithms

EMO Evolutionary multi-objective optimization

FDD Flow due date

GAs Genetic algorithms

GaP Gaussian process

GP Genetic programming

GP-A-NSGAIII GP-adaptive-Non-dominated sorting GA-III

GP-HH Genetic programming based hyper-heuristic

GP-NSGA-III GP-non-dominated sorting GA-III

xxi

xxii LIST OF FIGURES

HV Hypervolume

IGD Inverted generational distance

JSS Job shop scheduling

MaOPs Many-objective optimization problems

maxF Maximal flowtime

maxWT Maximal weighted tardiness

MARP Model-based adaptive reference points

MBEAs Model-based evolutionary algorithms

mF Mean flowtime

MOEAs Multi-objective evolutionary algorithms

MOPs Multi-objective optimization problems

MRT Ready time of the machine

mWT Mean weighted tardiness

NMRT Ready time of the next machine

NOIQ Number of operations in the queue

NOINQ Number of operations in the next queue

NOPT Processing time of the next operation

NP Non-deterministic polynomial-time

NSGA-II Non-dominated sorting genetic algorithm-II

NSGA-III Non-dominated sorting GA-III

PLS Pareto local search

PSO Particle swarm optimization

PT Processing time of the operation

LIST OF FIGURES xxiii

RVEA Reference vector-guided evolutionary algo-
rithm

SPEA2 Strength Pareto evolutionary algorithm

SPT Shortest processing time

SI Swarm intelligence

RVEA* Adaptive version of RVEA

TWT Total weight tardiness

W Weight

WIQ Work in the queue

WINQ Work in the next queue

WKR Work remaining

xxiv LIST OF FIGURES

Chapter 1

Introduction

This chapter provides an introduction to this thesis and its motivations,
goals, contributions, and organization. The problem statement is provided
first, followed by a discussion of the main limitations of existing litera-
ture. The research goals and major contributions of this thesis are then
discussed. This chapter also provides a brief discussion of how this thesis
structured.

1.1 Problem statement

Job Shop Scheduling (JSS) [165] is a non-deterministic polynomial-time
(NP) hard combinatorial optimization problem [53] in which various man-
ufacturing jobs are assigned to machines at particular times while trying
to minimize several objectives such as makespan, mean flowtime, mean
tardiness. JSS problems have received significant attention from both aca-
demics and industry experts. From an industry perspective, JSS is con-
sidered to be a good model for many manufacturing scenarios because
scheduling has direct impacts on the production efficiency and costs of a
manufacturing system [94]. As reported by Johns and Rabelo [94], thou-
sands of manufacturers contribute billions of dollars to the United State’s
economy. Furthermore, JSS is considered one of the significant production

1

2 CHAPTER 1. INTRODUCTION

scheduling problems in practice. It has a wide range of applications in
many industries such as cloud computing [188] and management and op-
erations research [115]. JSS has received substantial research attention due
to its high computational challenges and strong practical value [143, 165].

A JSS problem usually has a set of machines on the shop floor that can
be used to process a set of jobs [165]. Each job has a predetermined se-
quence of operations, which needs to be carried out in order to complete
the job. Each job has a predetermined route through the machines before
it leaves the shop. The machine can only process one operation at a time.
JSS aims to process all arriving jobs by the machines in an optimal way
so that the predefined objectives (e.g., makespan, and tardiness) are op-
timized in order to maximize the total revenue subject to the constraints
(e.g., order of the operations of the jobs and the available machines for the
jobs). The quality of a schedule in a job shop depends on the objective(s)
of the problem.

JSS problems can be classified into two categories: static and dynamic
[165]. The first subset belongs to static JSS problems where a problem
has a fixed amount of jobs with known processing requirements such as
processing time [165]. The second subset is dynamic JSS problems. In
dynamic JSS problems, jobs arrive on the shop floor at various instances
of time with no prior process information, e.g., release date, due date, and
processing time [165].

Approaches for solving static JSS problems can be broken down into
two main categories. The first category is the exact mathematical optimi-
sation approaches [2, 19, 25, 55, 165]. The exact mathematical optimization
approaches generate optimal solutions for JSS problem instances. The ex-
act algorithms aim at searching through the full solution space and only
work well on small-scale JSS problems [13]. For larger JSS problems, these
algorithms are infeasible due to the exponential size of the solution space
[19]. It is reported in [13] that the JSS problem with up to 100 jobs and 20
machines is computationally intractable for any exact mathematical opti-

1.1. PROBLEM STATEMENT 3

mization approach. For such large-scale problems, finding near-optimal
solutions (not optimal) within a reasonable amount of computation time
is more feasible than finding optimal solutions with high computation
cost. In this context, the second category of heuristic approaches is con-
sidered more desirable. These approaches are fast, although they cannot
guarantee the optimality of the solution for JSS problems. These heuris-
tic approaches are “rules-of-thumb” with the hope of generating ”good”
schedules [71]. Heuristic algorithms are mostly divided into two groups:
the first group consists of meta-heuristics which directly targets the solu-
tion space (schedules). The second group explores the space of scheduling
heuristics, typically in the form of dispatching rules represented as prior-
ity functions.

Meta-heuristic algorithms are search-based methods (e.g., genetic algo-
rithms, particle swarm optimization). They can be used to search the so-
lution space [9, 152, 157]. These methods are higher-level heuristics which
provide a general framework to guide low-level heuristics that make local
decisions. Meta-heuristic algorithms have the advantage that they can find
high-quality solutions and successfully tackle large scheduling problems
[152, 157]. A downside of meta-heuristic algorithms is that they require a
substantial amount of time to explore high-quality solutions but are faster
than exact algorithms, particularly for large problems [152].

Dispatching rules have been applied extensively to JSS problems due
to their computational efficiency [176, 185]. Dispatching rules can be seen
as a priority function which is used to assign priority to each job wait-
ing to be processed by a machine. Then, the next job to process will be
selected based on the priority value. Such computation is carried out at
each decision point (e.g., when a machine becomes idle) and can be done
efficiently [185]. There are two broad types of dispatching rules: (1) non-
delay and (2) active rules. As the name indicates, non-delay rules do not
allow any delay on the idle machines as long as the waiting queue is not
empty [165]. On the other hand, active rules [165] allow some reasonable

4 CHAPTER 1. INTRODUCTION

delay (which is no more than the minimal processing time of the wait-
ing jobs) to handle the potential new job arrivals with an urgent due date.
Nguyen et al. [141] explored three different genetic programming (GP)
representations of dispatching rules and proved that evolved dispatching
rules could outperform benchmark human-made dispatching rules for JSS
problems. Hunt et al. [75] evolved effective dispatching rules for the two-
machine JSS problem to minimize the makespan. Dispatching rules are
attractive to both researchers and practitioners because of their simplicity
and high scalability in comparison to most of the direct optimization meth-
ods [141, 159]. However, in designing a dispatching rule for JSS, there are
two main challenges. First, dispatching rules are time-consuming to de-
sign manually, especially for optimizing multiple potentially conflicting
objectives, a frequent demand in a manufacturing environment. Mean-
while, any dispatching rules to be designed by domain experts will have
to go through a lengthy and costly process [70]. Second, it is not always
clear which of the existing dispatching rules is suitable for the given JSS
problems [90].

In order to deal with these disadvantages, hyper-heuristics have been
adopted in this thesis to design the dispatching rules automatically
[70, 103]. GP has been a promising approach for designing dispatching
rule heuristics automatically because GP has an ability to evolve priority
functions with its flexible representation [143, 103]. The hyper-heuristic
approach that uses GP to solve JSS problems is known as GP based hyper-
heuristic (GP-HH) [17, 143].

A GP-HH evolves dispatching rules for both static and dynamic JSS
problems automatically [17, 142, 143, 147, 145]. A GP-HH bypasses the
need for human experts and extensive trial-and-error to construct dis-
patching rules. Dispatching rules evolved by GP can be directly and in-
tuitively represented as tree-based priority functions. Moreover, there are
a wide variety of evolutionary algorithms that deal with multi-objective
(two or three objectives) and many-objective optimization (four or more

1.1. PROBLEM STATEMENT 5

objectives), which shows to have good performances on many optimiza-
tion problems. Therefore, by coupling GP with such multi-objective and
many-objective algorithms can design a group of non-dominated dis-
patching rules automatically. These dispatching rules are expected to
achieve a wide range of trade-offs over many conflicting objectives.

Since the early 2000s, the research on multi-objective JSS has started
gaining popularity. Therefore, many independent studies have been car-
ried out for multi-objective JSS with two ore three conflicting objectives,
including the makespan, mean flowtime, maximum tardiness, maximum
lateness, total workload, and proportion of tardy jobs [147, 184, 201]. In the
literature, multi-objective optimization problems in a job shop were gener-
ally treated in two ways. The first approach aggregates multiple objectives
together into a single objective through a weighted sum (for example, the
linear weighted summation function). It then applies the single-objective
optimization method to find the (single) optimal solution [79]. The sec-
ond category of approach aims at finding a set of optimal solutions based
on the Pareto-dominance concept [42] instead of finding a single optimal
solution using aggregation functions.

The Pareto-dominance concept defines that a solution x dominates an-
other solution y if no objective of x is worse than the corresponding one
of y and at least one objective of x is better than y. Based on this concept,
Pareto-optimal rules in JSS refer to the rules that cannot be dominated
by others based on their performance on concerned scheduling objec-
tives [116]. Multi-objective scheduling problems with the goal to find the
Pareto-optimal front was first considered by Ishibuchi et al. [79] in 1998.
After that, many evolutionary computation (EC) algorithms have also
been proposed to evolve the Pareto-front for multi-objective JSS [44, 211].

Recently, many-objective optimization has become an active research
topic [43, 116]. As emphasized by Deb in [43], a large proportion of real-
world problems can be described naturally as many-objective optimiza-
tion problems (MaOPs). Many-objective optimization refers to a class

6 CHAPTER 1. INTRODUCTION

of optimization problems that have more than three objectives. The last
decade has witnessed the emergence of many-objective optimization as a
booming topic in a wide range of complex modern real-world scenarios
[84]. There is also a growing interest in industries to tackle problems with
many objectives [43, 86]. According to our knowledge, the research on
many-objective JSS algorithms is limited in the literature. Only a few algo-
rithms in the literature tackles JSS problems consisting of more than three
scheduling objectives [51, 147]. These algorithms utilize the conventional
multi-objective evolutionary algorithms (MOEAs) (NSGA-II and SPEA2)
but MOEAs experienced substantial difficulties when they were adopted
to tackle MaOPs [43, 84]. These conventional MOEAs lost their selection
pressure in solving MaOPs which is essential for the population to con-
verge toward the Pareto-front [84]. Because of the lack of research on
many-objective JSS, it is both theoretically and practically important to de-
velop innovative GP-HH algorithms for many-objective JSS.

Hence, the overall goal of this thesis is to develop GP-HH approaches to
evolve effective dispatching rules for many conflicting objectives in JSS problems.

1.2 Motivations

Scheduling theory has been established over the years, but most of the ex-
isting literature on the automatic design of dispatching rules mainly con-
centrates on single-objective JSS [67, 159] and multi-objective JSS [79, 200].
However, in practice, a good schedule for a JSS problem is expected to sat-
isfy many objectives such as minimizing: tardiness, makespan, flowtime,
and percentage of tardy jobs.

Most studies in JSS considered decomposition-based approaches to op-
timize these objectives together [67, 185]. In decomposition-based ap-
proaches, objectives are aggregated into a single objective (fitness func-
tion) and the problem is treated as a single-objective optimization prob-
lem. Even in the case where normalized objective functions are used,

1.2. MOTIVATIONS 7

the assigned weights still need to be predefined by the decision-makers
and decision-makers should have good information about the trade-offs
among different objective functions. To alleviate the strong dependency
on domain knowledge, evolving the whole Pareto-front of non-dominated
dispatching rules is naturally a better target for JSS problems with two or
more than two objectives. It will also assist decision-makers in deciding of
selection for quality dispatching rules which based on the trade-offs rep-
resented by the obtained Pareto-front.

Very few studies [129, 147] attempted to solve the many-objective JSS
using MOEAs such as non-dominated sorting genetic algorithm II (NSGA-
II) [44] and the strength Pareto evolutionary algorithm 2 (SPEA2) [211].
However, recent studies have suggested that conventional MOEAs are
prone to the scalability challenge, i.e., the performance of these MOEAs
degrades dramatically with the MaOPs [84, 43]. This is because MOEAs
cannot provide sufficient selection pressure towards the Pareto-frontfor
MaOPs. The main reason is that the number of non-dominated solutions
increases exponentially as the number of objectives increases [84]. Many-
objective JSS using MOEAs faces the same scalability challenges. Thus,
using MOEAs for many-objective JSS often fail to select quality dispatch-
ing rules. Although the effectiveness of GP-HH has been extensively stud-
ied in the field of JSS [143, 147] (single JSS and multi-objective JSS), it was
seldom explored in the context of many-objective JSS.

In MOEAs, when the primary selection criterion (convergence) can-
not readily find good solutions, the diversity-based secondary criterion
plays a vital role in the selection of the fittest solutions. For good solution
diversity, MOEAs requires uniformly distributed candidate solutions to
approximate the Pareto-front jointly [31]. However, in the case of a high
dimension in terms of a number of objectives, it is quite challenging to
maintain solution diversity because of the sparse distribution of the candi-
date solutions. The diversity maintenance can be controlled by providing
multiple predefined reference points [43]. The reference points method

8 CHAPTER 1. INTRODUCTION

is one of the prominent and efficient ways for diversity maintenance in
many-objective problems. With widely distributed reference points, solu-
tions associated with these points are also encouraged to be distributed
widely in the objective space.

Several recently developed algorithms such as NSGA-III [43], RVEA
[31], and SPEAR [92] employed a predefined set of uniformly distributed
reference points located on a hyperplane. These algorithms have suc-
cessfully solved various practical MaOPs. One of the reasons for using
a uniform distribution of reference points is because candidate solutions
corresponding to each reference point can be emphasized to find a set of
widely distributed sets of Pareto-optimal solutions. It is also reported by
Ishibuchi et al. [80] that good results can be obtained by MOEAs algo-
rithms only if the distribution of reference points is consistent with the
Pareto-front shape of the problem to be solved. In this case, uniformly dis-
tributed reference points are inappropriate when the true Pareto-front is
non-uniform, discontinuous, and irregular [86].

JSS problems often have irregular Pareto-front [142]. Therefore, many
uniformly distributed reference points may be located in a region where
no Pareto-optimal solutions exist and they are never associated with any
dispatching rules on the evolved Pareto-front and become useless refer-
ence points. Clearly, if only a few reference points are truly associated
with the dispatching rules evolved by GP-HH at the current generation, it
will not be easy to distinguish and select these rules to improve diversity
for future generations. In other words, many reference points will be as-
sociated with a large number of candidate dispatching rules. Some rules
can be far from the corresponding reference point. Such a dispatching
rule should enjoy higher selection opportunities but may not be selected
during evolution simply because it is associated with a popular reference
point. This issue has been clearly highlighted in [85, 86]. In particular, to
evolve high-quality dispatching rules, it is essential to match the distribu-
tion of the reference points with the distribution of the Pareto-front. This

1.3. RESEARCH GOALS 9

is one of the key research issues for many-objective JSS problems.

Pareto Local Search (PLS) is a simple and effective local search method
for tackling multi-objective combinatorial optimization problems [26]. It is
an extension of iterative local search algorithms for single-objective prob-
lems [149] to the multi-objective domain. PLS is a crucial component of
memetic algorithms. Researchers have studied the application of PLS to
multi-objective evolutionary algorithms with some success [26]. In fact,
by hybridizing global search with local search, the performance of many
MOEAs can be noticeably improved [26, 79]. Despite the preliminary suc-
cess, the practical use of PLS on many-objective JSS is relatively limited.
Moreover, our comprehensive search of the literature does not discover
any existing studies involving the use of PLS in GP-HH for many-objective
JSS.

In this thesis, one of our goals is to enhance the quality of evolved dis-
patching rules for many-objective JSS through hybridizing GP with the
PLS technique. There are three challenges herein. First, the neighborhood
structure in GP is not defined. Second, the PLS algorithm may suffer from
low efficiency in the case of more than two objectives [89] because the
number of optimal solutions grows exponentially with a number of objec-
tives. Thus to search the neighborhood of a massive number of solutions
becomes very time-consuming. For this reason, the size of the initial solu-
tions for neighborhood exploration should be determined carefully. Third,
the hybridized algorithm for many-objective JSS is how to divide the avail-
able computation time between the local search and the global search. A
thorough investigation is required to determine how to achieve a desirable
balance between local search and global search.

1.3 Research goals

The overall goal of this thesis is to develop GP-HH methods to evolve
reusable and effective dispatching rules for many-objective JSS problems.

10 CHAPTER 1. INTRODUCTION

This research is also focused on investigating the conflicting nature among
many related objectives that often should be considered together for ef-
fective JSS. This research aims to develop GP-HH methods that alleviate
issues related to many-objective optimization in JSS problems and evolve
new effective dispatching rules that are capable of enhancing the produc-
tivity of job shops. It is expected that the evolved rules can be reusable
in unseen situations and outperform state-of-the-art multi-objective and
many-objective algorithms in the literature. This research will be broken
down into the following key objectives:

1. Investigate how GP can be used to handle many-objective JSS problems.

This research objective explores whether the standard multi-
objective optimization algorithms, such as NSGA-II and SPEA2,
are competent at tackling many-objective JSS problems. To carry
out this research effectively, we adopt a popular reference points-
based approach (NSGA-III) [43] for many-objective optimization JSS
. In particular, this research objective combines GP with the many-
objective fitness evaluation scheme of NSGA-III and compares the
performance of the resulting hybridized algorithm with NSGA-II
and SPEA2 in solving many-objective JSS. It is expected that the
newly proposed method will evolve high-quality Pareto-optimal dis-
patching rules that can effectively tackle not only the training prob-
lem instances but also unseen problem instances. The new algorithm
is also investigating factors that influence the trade-offs among dif-
ferent objectives. In this objective, we will further study whether
many typically considered scheduling objectives such as mean flow-
time, mean total tardiness, maximum tardiness, and maximum flow-
time are mutually conflicting or not.

2. Investigate how to develop GP-HH approaches for the non-uniform Pareto-
front of many-objective JSS problems which can evolve high-quality Pareto-
optimal dispatching rules.

1.3. RESEARCH GOALS 11

This study is mainly focused on addressing the diversity issue in
many-objective JSS. In the literature, diversity maintenance is of-
ten controlled by providing multiple predefined reference points
[31, 43]. These points are widely distributed. Therefore, solutions
associated with these points are also widely distributed in the objec-
tive space.

Most of the algorithms, such as NSGA-III and RVEA [31, 43] employ
a predefined set of uniformly distributed reference points. However,
as discussed in Section 1.1, the adoption of uniformly distributed
reference points affect the solution diversity and deteriorate algo-
rithm’s performance. To address this vital issue of useless reference
points, the main goal of this research objective is to develop new and
effective mechanisms for reference point generation. These mech-
anisms improve the association between reference points and the
Pareto-front during the whole evolutionary search process. Further,
these new algorithms will be developed to increase the chance of
discovering well-distributed solutions on the Pareto-optimal fronts.
In this research objective, we explore both model-free and model-
driven techniques to approximate the Pareto-front based on evolved
dispatching rules accurately. In order to evaluate the performance
of the proposed model-free and model-driven methods, we evaluate
JSS problems and ten mathematical optimization benchmark prob-
lems. These problems have irregular, disconnected, degenerate, and
inverted shapes of the Pareto-front where the number of objectives
is scaled from three to eight. The proposed algorithms will be com-
pared with four state-of-the-art algorithms as well as adaptive refer-
ence point algorithms.

3. Investigate how to hybridize a local search with a global search and improve
the quality of the evolved rules in many-objective JSS.

Many existing research studies analyzed the potential combination

12 CHAPTER 1. INTRODUCTION

of the local search with evolutionary multi-objective optimization
(EMO) algorithms [26, 79, 108]. PLS has three phases: (1) the se-
lection of initial solutions phase from the non-dominated solution’s
archive; (2) the exploration phase, in which the neighborhood of
the selected solutions is explored, and candidate neighbors are ex-
tracted; and (3) the Pareto-archive phase, in which the archive is up-
dated with the candidate neighboring solutions. The main goal of
this study is to build an effective many-objective PLS algorithm for
JSS problems.

Driven by this goal, this study thoroughly investigates the inclu-
sion of PLS within GP-HH algorithms. Firstly, this research objec-
tive builds an effective strategy for selecting initial individuals. In
particular, a fitness-based selection strategy will be proposed to bal-
ance convergence and diversity measures properly. By using this
fitness-based selection strategy, we can select the representatives of
each group of solutions. Secondly, the neighborhood structure of
a tree (dispatching rule) in GP is defined. Specifically, this can be
done by using restricted subtree mutation. This mutation can pre-
vent a new neighboring rule discovered during the local search pro-
cess from being significantly different from the original rule. Lastly,
for comparing neighbor rule with its immediate parent, we consider
the following two different strategies: (1) the scalarization strategy
[79] and (2) the replacement strategy [26]. In the scalarization strat-
egy, the objective vector of each rule is aggregated into a scalar using
the weighted sum. The replacement strategy is based on the domi-
nance relation.

It is evidenced in the literature [79] that the total number of gener-
ations for global search and the maximum number of local search
steps is highly influential on the performance of hybridized algo-
rithms. To further enhance the effectiveness of our new PLS algo-
rithms, we investigate how to keep the balance between the number

1.4. MAJOR CONTRIBUTIONS 13

of generations (for global search) and local search steps in our pro-
posed algorithms. It is expected that our proposed algorithms help
to enhance the exploitation ability and increase the chance of discov-
ering promising dispatching rules.

1.4 Major contributions

This thesis makes the following major contributions.

1. This study proposes the first many-objective GP-HH method for
JSS problems to find the Pareto-front of non-dominated dispatching
rules by many conflicting objectives. The experimental results show
that the combination of GP and NSGA-III produces a competitive al-
gorithm as compared with NSGA-II and SPEA2 for evolving a set
of trade-offs rules in many-objective JSS. The detailed analysis of the
evolved Pareto-front reveals in-depth knowledge about the useful
terminals for a large proportion of evolved dispatching rules. The
rules evolved by the new algorithm also exhibit good generalization
abilities as verified by performance on testing benchmark instances.

Part of this contribution has been published in:

A. Masood, Y. Mei, G. Chen, and M. Zhang, ”Many-objective ge-
netic programming for job-shop scheduling”, Evolutionary Computa-
tion (CEC) 2016 IEEE Congress on, pp. 209-216, 2016.

2. This thesis presents two new approaches to dealing with the chal-
lenges caused by the non-uniform distribution of Pareto-front in ob-
jective space and proposes new adaptation mechanisms which im-
prove the performance of evolutionary search and promote popula-
tion diversity for better exploration. This contribution has the fol-
lowing sub-contributions:

14 CHAPTER 1. INTRODUCTION

(a) A new adaptive reference point strategy is proposed by us-
ing the adaptive model-free approach and the reference points
are generated according to the distribution of the solutions. A
new reference point adaptation mechanism has been success-
fully developed based on Particle Swarm Optimization (PSO).
Essential changes to particle dynamics in PSO have also been in-
troduced in our algorithm to prevent the majority of reference
points from converging to small areas in the objective space.
This reference point adaptation mechanism helps to reduce use-
less reference points and significantly improve the performance
of the proposed algorithms. In the experimental evaluations
based on the Taillard benchmark set, we successfully showed
that the proposed reference point adaptation mechanism could
significantly improve the performance of GP-HH and NSGA-III
in terms of both HV and IGD.

Part of this contribution has been published in:

Masood, A., Mei, Y., Chen, G., and Zhang, M.: A PSO-
Based Reference Point Adaption Method for Genetic Program-
ming Hyper-Heuristic in Many-Objective Job Shop Schedul-
ing. ACALCI. Lecture Notes in Computer Science, vol. 10142, pp.
326–338 (2017).

(b) This thesis develops a new adaptive strategy for generating ref-
erence points based on a model-driven technique. This model-
driven technique estimates the density of solutions from each
pre-defined sub-location in the entire objective space. Fur-
thermore, the proposed algorithm provides smoothness to the
model by applying a Gaussian Process on the density-based
model which gives the ability to reduce the noise of the model
and then calculate the area under the mean function. This area
under the curve finds the required number of reference points
in each sub-location. The experimental results demonstrate that

1.4. MAJOR CONTRIBUTIONS 15

a new adaptive mechanism can outperform several state-of-the-
art MOEAs such as RVEA and NSGA-III as well as cutting-edge
MOEAs that support adaptive reference points.

Part of this contribution has been published in:

Masood, A., Chen, G., Mei, Y., and Zhang, M.: Reference point
adaption method for genetic programming hyper-heuristic in
many-objective job shop scheduling. In: European Conference
on Evolutionary Computation in Combinatorial Optimization. pp.
116–131. Springer (2018).

Masood A., Chen G., Mei Y., and Zhang M.: Adaptive Refer-
ence Point Generation for Many-Objective Optimization Using
NSGA-III. In: Advances in Artificial Intelligence. AI 2018. Lecture
Notes in Computer Science, vol 11320. pp. 358-370. Springer(2018).

A. Masood, G. Chen,Y. Mei, H. Al-Sahaf, and M. Zhang, ”A
Model-Based Approach for Many-Objective Optimization Al-
gorithm with Adaptive Reference Point Generation”, To be sub-
mitted for review to Genetic and Evolutionary Computation Confer-
ence (GECCO 2020).

A. Masood, G. Chen,Y. Mei, H. Al-Sahaf, and M. Zhang, Adap-
tive Reference Point Generation based on Gaussian Process
Model for ManyObjective Optimization”. Submitted to IEEE
Transactions on Evolutionary Computation. (2020), 14pp, (un-
der review.

3. This research objective investigates the usefulness of the PLS in GP-
HH and develops two new algorithms that combine GP-HH as a
global search with PLS as a local search. This is the first algorithm
of its kind for many-objective JSS that combines GP with PLS-based
local search. In this objective, we propose the new selection mecha-
nism for the initial solutions for neighborhood exploration in PLS.
This mechanism defines representatives from each group of solu-

16 CHAPTER 1. INTRODUCTION

tions and selects a solution based on their fitness value. Further,
the proposed algorithm defines the proper neighborhood structure
for tree-based dispatching rules. A new selection mechanism for se-
lecting the suitable dispatching rules during the neighborhood ex-
ploration is also defined. A detailed sensitivity analysis is also per-
formed. The analysis finds the total number of generations and the
maximum number of local search steps in GP-PLS.

Part of this contribution has been published in:

Masood A., Chen G., Mei Y.,H. Al-Sahaf, and Zhang M.: Genetic
Programming with Pareto Local Search for Many-Objective Job Shop
Scheduling. In: Advances in Artificial Intelligence. AI 2019. Lecture
Notes in Computer Science.

A. Masood, G. Chen,Y. Mei, H. Al-Sahaf, and M. Zhang, ”Fitness-
based Selection Method for Genetic Programming with Pareto Local
Search”, Evolutionary Computation (CEC) 2020 IEEE Congress on, pp.
1-8, 2020.

1.5 Organisation of thesis

The remainder of this thesis is organized as follows. Chapter 2 presents
a literature review of related works. Chapter 3 presents the experimental
methodology of this thesis. Chapters 4–6, present the main contributions
of the thesis. Chapter 7 concludes the thesis.

• Chapter 2 presents descriptions of the JSS problem, many-objective
optimization, local search, Pareto local search, GP, and dispatching
rules used for this thesis. The basic concepts of meta-heuristics,
heuristics, and hyper-heuristics for the automatic generation of
heuristics are also presented. This chapter reviews current re-
search methodologies using GP for the automatic generation of new

1.5. ORGANISATION OF THESIS 17

dispatching rules in single-objective, multi-objective, and many-
objective JSS problems.

• Chapter 3 presents the core experimental methodology of this thesis.
It starts with the benchmark problems used throughout the thesis,
the terminals and function set used to evolved dispatching rules. At
the end of the performance measures for experimental results analy-
sis are discussed in detail.

• Chapter 4 develops a new many-objective GP-HH method to deal
with the four conflicting objectives of JSS simultaneously. The pro-
posed GP-HH method is used to evolve the non-dominated dis-
patching rules that are represented by the obtained Pareto-front. An
extensive comparison between the evolved rules from GP-NSGA-
III and the two famous MOEAs (GP-NSGA-II and GP-SPEA2) have
been carried out. Popular multi-objective performance measures
are also used to help assess the performance of the compared algo-
rithms.

• Chapter 5 identifies a key research issue involved in using the uni-
formly distributed reference points, i.e., the failure to promote so-
lution diversity during evolution which affected the performance of
GP-HH. To solve these issues, two new reference point adaptation
mechanisms are proposed which improve the association between
reference points and the evolved Pareto-front, enhancing solution
diversity, and hence the performance of the algorithm. This chap-
ter consists of two sections: (i) the first section develops an adaptive
model-free approach and (ii) the second section proposes a model-
driven approach for learning irregular distributions of the Pareto-
front and systematically sampling reference points. The proposed
algorithm introduces the model-based technique based on the Gaus-
sian process model which estimates the density of solutions from
each defined sub-location in a whole objective space. This density-

18 CHAPTER 1. INTRODUCTION

based model learns the distribution of the candidate solutions and
accurately approximates the Pareto-front based on the evolved so-
lutions. To verify the performance of the proposed algorithm, it is
applied to JSS problems and ten benchmark tests with three to eight-
objective optimization problems. The proposed algorithm is com-
pared with four state-of-the-art many-objective algorithms (RVEA)
[31], IMMOEA [30], NSGA-III [43], Two-Arch [193]), as well as with
adaptive reference many-objective algorithms [85].

• Chapter 6 develops hybrid GP-HH algorithms based on PLS to dis-
cover high-quality dispatching rules for JSS problems. An innova-
tive hybridization of global search (GP) with PLS techniques is pro-
posed. In the proposed algorithm, a new selection mechanism for the
initial individuals is also proposed. Further, a neighborhood struc-
ture is described for GP. Moreover, a sensitivity analysis is performed
for finding the total number of generations required to search the
solution space extensively and a sufficient number of local search
steps utilizing the local search effectively. The key idea of this pro-
posed algorithm is to applied local search effectively and explore the
neighborhood of non-dominated dispatching rules. Extensive ex-
periments are performed to understand the effectiveness of the pro-
posed algorithm as compared to the other algorithms (without local
search). The experimental studies are carried out using the Taillard
static job-shop benchmark set.

• Chapter 7 summarizes the research goals that have been achieved,
followed by the key findings of the thesis. Furthermore, the chapter
highlights the potential research areas of future works. .

Chapter 2

Literature Review

This chapter presents the literature for many-objective job shop schedul-
ing (JSS). The literature review starts with a background that covers fun-
damental concepts, ideas, and algorithms. The literature review then dis-
cusses the relevant research works in Section 2.2, ranging from genetic
programming based hyper-heuristic (GP-HH) approaches to scheduling
problems, many-objective JSS to Pareto local search (PLS). Finally, this
chapter concludes with a summary of the literature review in Section 2.3.

2.1 Background

This section covers the basic concepts related to the research works dis-
cussed in this thesis. This includes a definition of sequencing and schedul-
ing problems, a definition of machine learning, the conceptual differ-
ences between heuristics, meta-heuristics, hyper-heuristics, and dispatch-
ing rules. It is then followed by the introduction of evolutionary compu-
tation, many-objective optimization, and PLS.

19

20 CHAPTER 2. LITERATURE REVIEW

2.1.1 Basic concepts

Sequencing/Scheduling

Sequencing and scheduling are a decision-making process that aims to uti-
lize limited resources as effectively as possible. Sequencing and schedul-
ing studies on production planning so that the manufacturing systems
generate output with minimal waste in time and money [111].

Sequencing selects a job to process next on a specific machine. Schedul-
ing determines the resource (e.g., machine, work center) to handle each
job and the time when the machine begins processing the selected job.
Although sequencing and scheduling are considered two of the crucial de-
cisions for generating a schedule, sometimes, it is not straightforward to
utilize them separately due to the complexity of scheduling problems. In
our thesis, we use dispatching rules. These rules choose the sequence of
jobs at each decision point and begin the process to complete a plan or
schedule.

In general, sequencing and scheduling problems can be used to model
a wide range of real-world scenarios. JSS is an essential example of
scheduling which is briefly discussed in Section 2.1.2. The other types
of scheduling problems include flowshop scheduling problems [53] and
flexible scheduling problems [165].

Machine learning

Machine learning is a field of computer science that focuses on the area of
artificial intelligence [6]. Tom Mitchell [134] gave a “well-defined” math-
ematical and relational definition for machine learning which is “A com-
puter program is said to learn from experience E with respect to some
task T and some performance measure P, if its performance on T, as mea-
sured by P, improves with experience E. In other words, machine learning
allows computer programs to improve through experience automatically.
Machine learning techniques are categorized into four major categories:

2.1. BACKGROUND 21

1. Supervised learning: The supervised machine learning algorithms
handle labeled data with explicit values. The machine learning algo-
rithms in supervised learning environments try to create a function
to map inputs to desired outputs which are known in advance. Ex-
amples of problems that are handled by supervised machine learn-
ing algorithms are classification and regression [172].

2. Unsupervised learning: The unsupervised machine learning algo-
rithms deal with the unlabelled data and capture the patterns from a
set of data. An example of problems which are handled by unsuper-
vised machine learning algorithms is clustering and neural networks
[172].

3. Semi-supervised learning: The semi-supervised learning is a ma-
chine learning algorithm that carries out both supervised and unsu-
pervised learning.

4. Reinforcement learning: The reinforcement machine learning algo-
rithm interacts with a dynamic environment and receives feedback
in terms of rewards and penalties [172]. The goal of the learner, in
this case, is to maximize the rewards and minimize the penalties
[172]. Reinforcement learning is connected to applications for which
the machine learning algorithm must make decisions as the learner
is not trained to take action and must discover the actions that max-
imize the rewards (e.g., playing a chess game).

Heuristics/Meta-heuristics/Hyper-heuristics

There are a number of definitions for heuristics, meta-heuristics, and
hyper-heuristics. For this thesis, we define heuristics as ‘rules-of-thumb.
These can be applied to problems directly [172]. These heuristics are useful
in cases where it is impractical to find exact solutions to complicated and
large-scale problems [133]. For a particular problem, heuristics often incor-

22 CHAPTER 2. LITERATURE REVIEW

porate existing knowledge about the problem to find good solutions for
the problem instances [17]. It means that heuristics are problem-specific
[194]. In other words, a heuristic designed for one scheduling problem
(a heuristic for minimizing makespan) may not be effective for another (a
heuristic for minimizing flowtime) scheduling problem.

Meta-heuristics are defined as problem independent methods that can
be applied to solve a wide range of different problems [152]. Meta-
heuristics solve problems by directly searching the problem’s solution
space by incorporating lower level and problem-specific heuristics, which
facilitate the search to find good solutions [152]. There are many meta-
heuristic techniques developed in the literature and they can be classified
into two main categories: (1) local search-based [1] and (2) population-
based [152]. The details of these meta-heuristics categories can be seen in
Section 2.2.1.

Hyper-heuristics are problem independent techniques that do not di-
rectly solve problems, unlike heuristics and meta-heuristics. Hyper-
heuristics combine low-level heuristic components and construct a suit-
able heuristic for any specific problem [17, 20]. The details of these hyper-
heuristics categories can be seen in subsection 2.2.1.

Dispatching rules

Most popular heuristics in the literature for solving scheduling problems
are referred to as dispatching rules [73, 145]. Dispatching rules are also
called priority rules that decide the processing order of the jobs in a queue.
The priorities depend on several factors, such as the due date, arrival time,
and processing time. The job with the highest priority is processed next to
the available machine. Simplicity and flexibility are the two advantages of
dispatching rules [165].

Dispatching rules are perhaps the most straightforward method to deal
with both static and dynamic JSS problems [20]. In the literature [90, 91],
dispatching rules are divided into simple and composite. A simple rule is

2.1. BACKGROUND 23

a human-made priority function made using various scheduling param-
eters (processing times, waiting times) such as SPT (shortest-processing-
time). On the other hand, a composite dispatching rule is a combination
of two or more simple rules. In this thesis, we use genetic programming
(GP) to evolve dispatching rules (priority functions), comprising distinc-
tive composite dispatching rules. These rules are applied to JSS based on
the machine and job attributes.

2.1.2 JSS Problems

JSS [165] is a significant scheduling problem with a wide range of applica-
tions in many industries, such as manufacturing [165] and cloud comput-
ing [188]. JSS has been intensively investigated in the literature [62] and
has been proven to be NP-hard [13]. This subsection covers the definitions
and mathematical notations for JSS problems and JSS objective functions.
Afterward, active and non-delay scheduling is defined.

JSS: Definition

The general JSS problems are defined based on a set of N jobs and a set
of M machines. Each job ji, 1 ≤ i ≤ N has a sequence of m operations
to be performed, i.e. {o1i , o2i . . . , omi }. Stringent restrictions apply to the
processing order’s overall operations of a job. Specifically, for any job ji,
the operation ok+1

i cannot start until its previous operation oki has been
completed. In other words, operations follow the precedence constraint.
Besides, the operations are non-preemptive, i.e., once an operation starts
to be processed on a machine, the process cannot be interrupted. Every
operation oki , 1 ≤ k ≤ m, is further associated with a fixed processing time
pki > 0 and has to be processed on a specific machine mk

i , 1 ≤ i ≤M .

Each job j has its pre-determined route and processing time on a spe-
cific machine. Classification of JSS depends on machine configurations
and the nature of jobs [11]. In static JSS, the number of jobs is fixed and

24 CHAPTER 2. LITERATURE REVIEW

Table 2.1: Notations in JSS

Notation Definition
m1,m2,m3 . . . ,mM Set of M machines

j1, j2, j3 . . . , jN Set of N jobs
oki kth operation of job i

Di due date for job i

Ri release time of job i

wi the weight given to job i

rki ready time of kth operation of job i

Ci completion time of job i

Ti Tardiness of job i

processing information of all jobs is available such as arrival time and due
date. On the other hand, in a dynamic environment, jobs continuously
arrive and no prior information related to them is available in advance.
When an operation has the flexibility of being processed on more than one
machine, it is called flexible JSS problems. One of the simplest forms of
JSS is a flowshop, where all jobs follow the same processing order of op-
erations. Table 2.1 shows the basic definitions and notations in JSS. In this
thesis, we will use the GP to evolve dispatching rules for static JSS because
many-objective research is comparatively new and the existing research
only focus on optimizing single or multi objectives. Furthermore, other
forms of JSS environments (dynamic and flexible) are more complex than
static JSS environments. This thesis evolved effective dispatching rules for
static JSS and understand how optimization approaches can be adapted to
improve many-objective JSS algorithms’ performance.

Objectives for JSS

A schedule is evaluated by several criteria that can be classified as process-
focused performance criteria and customer-focused due date criteria [59].

Process-focused performance criteria pertain to information about the
start and end time of jobs and focus on shop performance, such as the
utilization of machines. Flowtime and makespan are the most commonly

2.1. BACKGROUND 25

used performance criteria.
Flowtime is the amount of time a job spends in a shop. Let Ci be the

completion time and Ri be the release time of job i, then meanflowtime

and then maxflowtime [165] are given as:

meanflowtime =
1

N

N∑
i=1

(Ci −Ri), (2.1)

maxflowtime = max

{
1

N

N∑
i=1

(C1 −R1),
1

N

N∑
i=1

(C2 −R21), . . .
1

N

N∑
i=1

(Ci −Ri)

}
,

(2.2)
where N is a number of jobs.

Makespan is the total length of the schedule. In order to optimize the
schedule, a minimum makespan (Cmax) is desired which is given as:

Cmax = max {C1 , C2 , . . . , CN} (2.3)

Besides performance criteria, some customer-focused criteria are also
frequently considered. For example, tardiness is one of the common
customer-focused criteria. It measures the amount of time by which the
completion time exceeds the due date. Tardiness of job i is defined as
Ti = max {Ci −Di , 0}. The TotalTardiness , TotalWeightTardiness , and
MeanWeightTardiness are shown below

TotalTardiness =
N∑
i=1

{max(Ci −Di , 0)} , (2.4)

=
N∑
i=1

wi {max(Ci −Di , 0)} . (2.5)

MeanWeightTardiness =
1

N

N∑
i=1

wi {max(Ci −Di , 0)}. (2.6)

The maximum tardiness (Tmax) is another difficult objective to minimize
due to its sensitivity to the shop condition [147] which is define as:

Tmax = max {T1 , T2 , . . . , TN} (2.7)

26 CHAPTER 2. LITERATURE REVIEW

Different studies have considered different objectives for JSS problems.
Banu et al. [23] used a range of artificial intelligence approaches and
explored their effectiveness in the JSS environment with different popu-
lar objectives such as mean flowtime, maximum flowtime, percentage of
tardy jobs, mean tardiness and maximum tardiness.

Active schedules and non-delay schedules

When tackling JSS problems, it is essential to distinguish between active
and non-delay scheduling [165]. In a non-delay scheduling, no waiting
occurs before the machine starts processing the next job [165, 179].

In other words, a non-delay scheduling algorithm does not allow any
delay on the idle machines as long as the waiting queue is not empty. For
example, if machine m is available, the scheduling algorithm starts the
new job ji from the waiting queue without any delay.

In the case where no jobs are waiting at the machine m, the non-delay
scheduling algorithm will wait until the next jobs arrive and select one of
the jobs at the decision point which has the earliest arrival time.

An active schedule allows some reasonable delay (which is no more
than the minimal processing time of the waiting jobs) to handle any newly
arriving jobs with an urgent due date [165]. Suppose that when a machine
m finishes processing a job in an active schedule, a job that has the earliest
expected completion time will be processed next by machine m.

The non-delay factor α ∈ [0,1] determines how many jobs should be
considered to be processed next. If a scheduling algorithm has α = 0,
then the scheduling algorithm is considered a non-delay schedule where
the machine will immediately begin processing some operation as soon as
there are jobs at the machine m. if α = 1, then the scheduling algorithm
generates an active schedule for jobs that have arrived at the machine and
gives preference to these jobs according to their earliest completion time.
Finally, if α is between 0 and 1, then the scheduling algorithm is considered
a hybrid schedule which has characteristics of both active and non-delay

2.1. BACKGROUND 27

Table 2.2: Example of a static JSS problem instances (N = 3,M =2)

job machine sequence processing time
j1 m1,m2 1,2
j2 m2,m1 2,1
j3 m1,m2 3,1

schedules. The non-delay factor does not go beyond 1.

The following is an example of a static JSS problem instance with the
minimization of the makespan objective. This example shows the non-
delay and an active schedule in JSS with α = 0 and α = 1, respectively.
Table 2.2 shows job properties (processing order and processing time).
Figures 2.1 and 2.2 show the non-delay and active scheduling for a JSS
problem, respectively.

In this problem, there are three jobs (j1, j2, j3) and two machines (m1

and m2). SPT (where operations with shorter processing times have a
higher priority) is used to generate different types of schedules (active or
non-delay). For the non-delay schedule, we can see that job j1 has the
shortest processing time than j3. Therefore, m1 process j1 before j3. Then
m1 begins processing j3 as soon as j1 has been completed. On the other
hand, in the active schedule, machine m1 processes j2 before j3, as j2’s
second operation has a shorter processing time than j3’s first operation,
and j2 arrives at machine m1 before the expected completion time of j3.
For this problem instance, we can see that the non-delay SPT generates a
better solution than active SPT.

2.1.3 Evolutionary computation

Evolutionary computation (EC) is a sub-field of artificial intelligence
which focuses on algorithms inspired by the principle of the Darwinian
theory of biological evolution [95]. This includes nature-inspired algo-
rithms or population-based systems to deal with various problems. In
general, EC techniques are divided into two main categories: (1) evolu-

28 CHAPTER 2. LITERATURE REVIEW

Figure 2.1: The schedule generated by non-delay SPT α = 0.

Figure 2.2: The schedule generated by active SPT α = 1.

tionary algorithms (EAs) [95] and (2) swarm intelligence (SI) [101]. There is
also a third category called miscellaneous algorithms, including the learn-
ing classifier system [134].

2.1. BACKGROUND 29

Evolutionary algorithms (EAs)

EAs are inspired by the principles of natural evolution such as selection,
reproduction, crossover, and mutation. In EA, a population of individ-
uals s selected by their fitness value (i.e., individuals’ survival depends
on their fitness). After the selection, offspring are generated by crossover
and mutation. The genetic algorithms (GAs) [69] and GP [105] are the two
well-known members of EA that are briefly introduced here.

• Genetic algorithms (GAs): GAs work on finite populations. Each
population consists of N chromosomes (solutions) which are typi-
cally represented as a fixed-length array [69]. These arrays can rep-
resent as bits, integer numbers, or real numbers that carry the infor-
mation. However, these typical arrays can be decoded to solutions
before solving any problem. Then solutions are evaluated according
to a specified fitness function and parents are selected to produce off-
spring through the genetic operators (crossover and mutation). The
resulting offspring inherit properties directly from their parents. The
offspring are evaluated and a fitter individual is placed in the new
population which replaces the weaker solution. The GAs mechanism
consists of three phases: evaluation of each solution’s fitness, selec-
tion of the parent, and applications of mutation and recombination
(crossover) operators to the parent for producing offspring. The pro-
cess is repeated until to have the desired quality of solution or reach
the maximum generation.

• Genetic programming (GP): GP is a “search-based automatic pro-
gramming” technique [105]. GP is an extension of GAs where a pop-
ulation of computer programs is generated with variable length. The
application of reproduction operators (elitism, crossover, and mu-
tation) produces new programs applied in GP. These programs are
then tested against fitness function and those who have higher fit-
ness values are more likely to survive to future generations. In GP,

30 CHAPTER 2. LITERATURE REVIEW

the programs are traditionally represented as tree structures. Other
data structures (linear,graph) have also been employed to construct
computer programs. GP is explained in detail in Subsection 2.1.9.

Swarm Intelligence (SI)

SI algorithms are inspired by the collective intelligence of a group of sim-
ple agents [12]. In SI, the swarm is an abstract representation of a group
of biological organisms that interact with each other to reach a specific
goal, e.g., finding food. There are five basic principles of swarm intelli-
gence: proximity, quality, diverse response, stability, and adaptability. A
well-known SI algorithm is:

• Particle swarm optimization (PSO): PSO [101] is a swarm intelli-
gence technique where the particles represent a group of organisms
such as a flock of birds. The movement of an individual in PSO is
influenced by the search direction of the local best (position of the
one-particle) and global best (found by all particles). The feedback
between the individuals allows PSO to identify high-quality solu-
tions to a given problem quickly.

2.1.4 Multi-objective EAs (MOEAs)

Over the last three decades, MOEAs have been successfully developed to
handle various constrained and unconstrained multi-objective optimiza-
tion problems (MOPs). In general, MOEAs have two ultimate goals with
respect to performance which are convergence (minimizing the distance to
the Pareto-front) and diversity (widely and uniformly distributed over the
Pareto-front front) [42]. MOEAs have been applied to those problems with
two or three objectives. Without loss of generality, in general, MOPs, can
be formulated as:

min f
−→
(x) = {f1(−→x) . . . fm(−→x)} : s.t. −→x ∈ F f ∈ Y, (2.8)

2.1. BACKGROUND 31

where F is the complete set of feasible solutions and x ∈ F is one of the
feasible solution, Y⊂ Rm is the objective space and f(x) = (f1(−→x) . . . fm(−→x))
∈ Y is the objective vector. Here m stands for the number of objectives and
m either has values two or three.

Because objectives are mutually conflicting, no single solution can op-
timize all objectives simultaneously. Instead, we aim to obtain a set of op-
timal solutions that represent different trade-offs between these objectives.
In multi-objective optimization, the comparison of two solutions (x1 and
x2) is based on the concept of domination [42]. The solution x1 dominates
x2 if and only if

∀i, 1 ≤ i ≤ m, fi(x1) ≤ fi(x2), (2.9)

∃i, fi(x1) < fi(x2). (2.10)

If any other solution does not dominate a solution x1, then it is called a
Pareto-optimal solution (x∗). The set of all Pareto-optimal solutions jointly
forms the Pareto-front in the objective space and the Pareto Set (PS) in the
decision space. Two very popular MOEAs are:

• Non-dominated sorting GA-II (NSGA-II): The first popular MOEA
is NSGA-II, proposed by Deb et al. [44]. NSGA-II is a parameterless
elitist strategy which first combines the parent and offspring pop-
ulations and then performs non-dominated sorting on a combined
population followed by the crowding distance.

Non-dominated sorting uses a dominance rank. The solutions that
are not dominated by any other population solutions are assigned
the dominance rank of one. Then, the next set of solutions which
are only dominated by solutions with a dominance rank of one, is
assigned a dominance rank of two, and so forth.

Crowding distance calculates the average distance of two neighbor-
ing solutions. The best solutions (by fitness and spread) are selected
through tournament selection for the genetic operators to create the
new population.

32 CHAPTER 2. LITERATURE REVIEW

• Strength Pareto evolutionary algorithm 2 (SPEA2): The second
popular MOEA is SPEA2 proposed by Zitzler et al. [211]. Like
NSGA-II, is also an elitist method. SPEA2 has a separate fixed-size
archive where the population is updated at each generation with
non-dominated individuals. The archive can eliminate individuals
if the non-dominated fronts exceed the fixed size. Individuals’ fit-
ness is a combination of a dominance strength (which is the number
of solutions in the archive and current population dominated by the
individual) and density information. There are many other MOEAs
in the literature, such as MOEA/D [205]. This thesis evolves trade-
off (non-dominated) dispatching rules for many-objective JSS prob-
lems, therefore, we focus on Pareto dominance based MOEAs such
as NSGA-II and SPEA2.

• MOEA based on decomposition (MOEA/D): MOEA/D [205] de-
composes MOP to single-objective problems by employing three
possible decomposition functions [205]. These functions are
the weighted sum function, the Chebyshev function, and the
penalty-based boundary intersection function, which decompose the
multiple-objective problems into a set of scalarizing subproblems. It
maintains population diversity by a predefined set of weight vectors.
Several variants of MOEA/D have been proposed for enhancing the
selection strategy of each sub-problem [205].

2.1.5 Many-objective optimization (MaOPs)
Over the years, evolutionary multi-objective (EMO) algorithms have two
performance-centric considerations: convergence (minimizing the distance
to the Pareto-front) and diversity (widely and uniformly distributed over
the Pareto-front) on a problem with two or three conflicting optimization
objectives [42]. If MOPs have four or more than four objectives (i.e., m ≥
4), then it is called MaOPs [116].

Many real-world problems have been naturally defined as MaOPs [43].

2.1. BACKGROUND 33

Prominent examples include water resource engineering [138], nurse ros-
tering [180], car control system design [140], and air traffic control [65].
In recent years, MaOPs have drawn great attention in the EMO commu-
nity, intending to tackle various new challenges caused by handling many
concurrent objectives.

MaOPs pose a number of challenges to Pareto-based MOEAs [84].
First, the number of non-dominated solutions increases at an exponential
scale with an increasing number of objectives. Therefore, most Pareto-
based MOEAs, such as NSGA-II and SPEA2, cannot provide sufficient
selection pressure towards the Pareto-front. Second, commonly used
diversity-preservation operators such as crowding distance [44] and clus-
tering [211]. These operators become computationally expensive when
they used in MaOPs [84].

Categories of many-objective optimization algorithms

Many-objective optimization approaches are roughly classified into the
three classes: (1) dominance-based approaches, (2) decomposition-based
approaches, and (3) indicator-based approaches.

• Dominance-based approaches solve the MaOPs by enhancing
the convergence pressure towards the Pareto-front. Since most
of the MOEAs lose their selection pressure toward the Pareto-
frontbecause of Pareto-dominance’s inability to distinguish solu-
tions. To solve this issue, most MOEAs use the convergence en-
hancement which modifies the dominance relationship to increase
the Pareto-frontselection pressure. Several dominance modifica-
tion approaches have been proposed, such as grid-dom [199] and
α-dom.[77]. Many other algorithms are also used to combine the
additional convergence-related metrics with the Pareto-dominance-
based criterion. An example is an indicator-based preference com-
bined with the dominance criterion for speeding up the convergence

34 CHAPTER 2. LITERATURE REVIEW

of NSGA-II [27]. One of the recently proposed algorithms, the knee
point-driven EA (KnEA) [208], enhances the convergence pressure
by assigning the higher selection to the non-dominated fronts’ knee
points in the current population. Dominance-based approaches en-
large the dominating area of the non-dominated solution but make
diversity maintenance more difficult [116].

• Decomposition-based approaches convert a complex MOP to a
number of sub-problems and simultaneously solve them. They
are another promising method for MaOPs. This class of MaOPs
is further divided into two other types of decomposition-based ap-
proaches.

The first type of decomposition-based approach decomposes multi-
ple objectives into a single objective using scalarizing functions and
weighting vectors. These approaches use the aggregated criteria to
distinguish solutions. Multiple single-objective Pareto sampling [72]
and MOEAs based on decomposition (MOEA/D) [205] are the two
famous aggregation-based algorithms. These approaches have two
major challenges: selecting weighting vectors and diversity main-
tenance subject to the limitation of adopted scalarizing functions.
Several variants of MOEA/D provide a better balance between con-
vergence and diversity by enhancing the selection strategy for each
sub-problem [205].

In the second type of decomposition-based approach, an MOP is de-
composed into other sub-MOPs. For instance, the research studies
in [31, 43] partition the whole Pareto-front into a Pareto-front sub-
set, and each sub-Pareto-front can be considered a sub-problem. An-
other MOEA that mainly falls under this category is NSGA-III [43]
that employs a set of uniformly distributed reference points to pre-
serve the diversity of the candidate solutions. The results on several
test problems and practical problems have shown NSGA-III’s useful-

2.1. BACKGROUND 35

ness in solving three- to 15-objective constrained and unconstrained
optimization problems [43], [86].

The reference vector-guided EA (RVEA) [31] is one of the promi-
nent decomposition-based approaches. RVEA uses reference vec-
tors to decompose the MOPs into a number of single-objective sub-
problems via objective function aggregations and use user prefer-
ences to target preferred subspaces of the whole Pareto-front.

• Indicator-based approaches Indicator-based approaches use indica-
tor values to guide the search process. An example of indicator-
based approaches is the S-metric selection-based evolutionary multi-
objective algorithm [132] and a dynamic neighborhood MOEA based
on HV indicator [117, 18]. These approaches do not have dominance-
based MOEAs issue for solving MaOPs. Unfortunately, the calcu-
lation of the performance indicator (HV) becomes computationally
expensive especially in the case of many-objective [18].

A few other approaches do not fall into any of the above three main
categories. These approaches include the diversity-based approaches,
preference-based approaches, and dimensionality reduction-based ap-
proaches.

The diversity-based approaches are used in the selection of a solution
when the primary selection criterion fails. Diversity-based approaches try
to minimize the adverse impact of diversity in MaOPs. Many diversity
measures have been proposed, such as the shift density estimator [119]
and the grid-based neighborhood niching [199].

The Preference-based approaches select the biased region of search space
with the help of user preference. This approach can be further categorized
into three classes, a priori, interactive, and posterior methods, according
to the timing when users give their preference (before, during, or after the
optimization).

Dimensionality reduction-based approaches try to reduce dimensionality

36 CHAPTER 2. LITERATURE REVIEW

by reducing the number of objectives. They might lose some important
information as a result of collectively handling several relevant objectives.

It is expected from population-based optimization algorithms to con-
vergence its population near the Pareto-optimal front and distributed uni-
formly around the entire front. In this thesis, we evolve dispatching
rules which will help decision-makers by providing them with potential
trade-offs among different objectives. In this scenario, indicator-based ap-
proaches can not be a good choice because they have high computational
cost. Further, few indicators-based approaches are not strictly monotonic
with Pareto dominance and might lead to performance degradation. Next,
dominance-based approaches modify the Pareto-dominance idea by en-
larging the non-dominated solutions’ dominating area and improving the
convergence criteria. However, the drive toward a more aggressive se-
lection pressure seems to make diversity maintenance more difficult in a
dominance-based MOEAs. In contrast, decomposition-based approaches
distribute reference points evenly in the whole objective space and man-
age the candidate solutions’ diversity, eventually contributing to enhanced
convergence of the algorithm and finding well-converge and widely dis-
tributed sets of Pareto-optimal solutions.

Non-dominated sorting GA-III (NSGA-III)

The basic framework of NSGA-III is similar to the NSGA-II algorithm. The
difference between NSGA-II and NSGA-III is the maintenance of diversity
among population members. NSGA-II uses the crowding distance mea-
sure for selecting a well-distributed set of Pareto-optimal solutions. In
contrast, NSGA-III is aided by the supplied well-spread reference points
(Zr) for selecting the Pareto-optimal solutions.

In NSGA-III, the parent population (Pg) of size N is randomly gener-
ated in the specified problem domain which is then followed by the selec-
tion of binary tournament, application of crossover and mutation opera-
tors to Pg. Then, an offspring population Qg of size N is created. This is

2.1. BACKGROUND 37

then followed by the combination of Pg and Qg which is called Rg (Pg ∪
Qg) of size 2N.

The combined population (Rg) is sorted according to different non-
domination ranks (F1, F2, . . . Fk). Each rank (F1, F2, . . . Fk) is selected
one at a time and stored in a new population Sg of size N. After the non-
dominated sorting, members of all the acceptable levels and the last level
(lth level) are stored in Sg. The lth level is usually accepted partially. The
niche-preservation operator selects the members of the well-distributed
solution of Fl.

The supplied reference points (Zr) are used to select the remaining
members in NSGA-III. The reference points are generated systematically
[39] and place on the normalized hyper-plan. Objective values are also
normalized so that they have an identical range of reference points. There-
after, the perpendicular distance between a member in Sg and each of the
reference point is calculated. The member is then associated with the ref-
erence point having the smallest perpendicular distance. Next, the niche
counts ρ for each reference point is calculated. The reference point having
the minimum associated solution is identified and the associated mem-
bers of the last rank Fl enter in the final population. The selected reference
point’s niche count is increased by one and the procedure is repeated to
fill up the population (Pg+1) of a new generation.

Issues in handling many-objective optimization

The literature has discussed that EMO algorithms may face the difficul-
ties of scalability and diversity measures [43]. In this thesis, we focus on
scalability and diversity issues which are briefly discussed below:

• Scalability (in terms of a number of objectives) is considered as
one of the major challenges where MOEAs cannot provide sufficient
pressure toward the Pareto-front. Conventional Pareto-based EMO
algorithms encounter difficulties when the number of objectives in-

38 CHAPTER 2. LITERATURE REVIEW

creases [43]. This is because all the candidate solutions become non-
dominated and the Pareto-based selection criterion cannot clearly
distinguish among these candidate solutions. Therefore, NSGA-II
and it is contemporary fail to handle more than three objectives prob-
lems.

• Diversity Maintenance plays an important role in the selection of
the fittest solutions when the primary selection criterion (conver-
gence) cannot readily find good solutions in EMO. For the sake of
enhancing diversity, EMO promotes the evolution of uniformly dis-
tributed candidate solutions [43]. However, in the case of a high
dimension, it is quite challenging to maintain solution diversity be-
cause solutions distribute very sparsely in a high-dimensional space.
Moreover, diversity-preservation operators of EMO such as crowd-
ing distance [44] and clustering [211] cannot strengthen the selection
pressure toward the Pareto-front and also suffers from high compu-
tational cost. Diversity maintenance can be controlled by providing
multiple predefined reference points. Most of the algorithms [31, 43]
employ a predefined set of uniformly distributed reference points to
encourage the generation of wide distributed solutions on the whole
objective space.

2.1.6 MaOPs for irregular Pareto-front

It has been verified that the many-objective algorithms’ performance is
highly dependent on the curvature of the Pareto-front [80, 118]. Hence
many algorithms that use uniformly distributed reference points can per-
form very well on the MaOPs when Pareto-front has regular shapes [86]
such as DTLZ-1 [43]. RVEA [31] and NSGA-III [43] show remarkable
results, especially when Pareto-front is uniform. However, their perfor-
mance deteriorates considerably when these algorithms are applied to ir-
regular, non-uniform, and discontinuous Pareto-front [85, 86]. Recently,

2.1. BACKGROUND 39

Ishibuchi et al. [80] found that the reference-point-based algorithms can
perform effectively if the distribution of reference points is consistent with
the distribution of Pareto-optimal solutions. Motivated by this discov-
ery, several algorithms such as A-NSGA-III [85] and RVEA* (extension of
RVEA) [31] have been proposed which adjust reference points adaptively.

These reference-point-adaptation algorithms mainly learn the distribu-
tion of the candidate solutions and adjust the reference points accordingly.
The reference points based EA for many-objective optimization (REPA)
[123] is an extension of NSGA-III which generates a set of reference points
according to the current population. In the environmental selection pro-
cess, the fittest individuals are selected by calculating the Euclidean dis-
tance between the reference points and individuals.

A-NSGA-III [85] is a notable improvement in NSGA-III. This extension
of NSGA-III is designed to relocate the reference points by two major op-
erations dynamically: (1) inclusion and (2) exclusion. In the inclusion pro-
cedure, multiple reference points are added around the crowded reference
points with a high niche count. These reference points are generated by
a centroid method where the original points are considered as a centroid.
However, in A-NSGA-III, it is not easy to introduce new points around the
vertices of simplex because this violates the positive quadrant’s condition
[85]. Due to this reason, A-NSGA-III cannot avoid useless points com-
pletely and fails to guide the evolution of a well-distributed set of Pareto-
optimal solutions.

RVEA* [31] is a well-known state-of-the-art algorithm for reference
point adaptation. RVEA* uses the replacement approach instead of the
deletion and addition operations. RVEA* first partitions the current popu-
lation into different subspaces. Next, reference points around these empty
subspaces are replaced by the new non-empty subspace locations based
on objective values’ ideal and nadir points.

40 CHAPTER 2. LITERATURE REVIEW

Generation of reference points

Without loss of generality, this thesis’s reference points are positive (they
are all in the first quadrant). In this approach, a set of uniformly dis-
tributed reference points (z) is generated by the canonical simplex-lattice
design method [35] as

zik ∈
{

0
H
, 1
H
, . . . , H

H

}
,
∑m

i=1 z
i
k = 1

~zk = (z1k, z
2
k, . . . , z

m
k), k = 1, 2, . . . , K

(2.11)

where i = 1, 2, . . . , K are theK uniformly distributed points,m is the num-
ber of objectives, and H is a positive integer used in the simplex-lattice
design.

2.1.7 Model-based EMO

Traditional EAs such as NSGA-II and SPEA2 generate new individuals
for the next generation using genetic operators (e.g., crossover and muta-
tion) [42]. These EAs generate solutions without utilizing any problem-
specific knowledge. Unlike these algorithms, model-based evolutionary
algorithms (MBEAs) are designed to learn desired features or structure
problems explicitly.

Recently, many MBEAs have been proposed and one of the recent sur-
veys in [29] classified MBEAs into three categories: (i) Estimation of Dis-
tribution Algorithms (EDAs) [109], (ii) Inverse Modelling [30], and (iii)

Surrogate Modelling [93].

EDA is the most popular category of MBEA and it mainly focuses on
estimating the solution distribution. EDA estimates the distribution of the
Pareto-optimal solutions by training and sampling in the decision space
[109]. In EDA, a machine learning model such as a regression model, is
iteratively refined to estimate the distribution of solutions as the evolution
proceeds.

2.1. BACKGROUND 41

In the earlier research of EDA, conditional probabilistic modeling has
been used which enables piece-wise interaction between candidate solu-
tions. The research studies in [41, 161] show an elementary work of pair-
wise intersection in the linear model. On the other hand, complex interac-
tions among the solutions can also be handled through the Bayesian net-
work as a multivariate model [160]. The Bayesian network is also used to
build a multi-objective model and to balance convergence and diversity.
For example, Bayesian multi-objective optimization algorithm (BMOA)

[110] introduces the new selection operator ε which is based on a ε-archive
that keeps track of a minimal set of solutions that dominates all other so-
lutions generated so far. One of the research studies in [151] proposed a
Voronoi-based EDA which helps to put the candidate solutions on differ-
ent fronts.

The multi-objective EDAs can effectively preserve the diversity of the
population is shown in [15, 186, 35]. Multi-objective EDA usually builds
the model in a decision space but the study in [30, 36] suggests directly
controlling the distribution of the solutions through an inverse model.
Notably, the Gaussian process-based inverse model aims to construct the
Gaussian process model that maps the optimal solutions from the objec-
tive space to the decision space [30]. This model is subsequently utilized
to sample candidate solutions with the help of a reproduction operator.

Similar to the related works summarized above, in this thesis, we will
adopt a modeling technique to tackle one of the challenges of MaOPs.

2.1.8 Gaussian process modelling

A Gaussian process (GaP) is a stochastic process which has a collection
of random variables and can be seen as a generalization of multivariate
Gaussian distribution in the function space [170].

In particular, if any finite sub-collection of random variables
r(x) : x ∈ X are drawn from a GaP, these variables are fully specified by a

42 CHAPTER 2. LITERATURE REVIEW

mean function µ(x) and a covariance function K(xi, xj). The following equa-
tion can denote the GaP::

r(x) ∼ GaP (µ(X), K(xi, xj)), (2.12)

where the covariance function K(xi, xi) measures the correlation between
any of the two arbitrary xi and xj which is expressed as:

K =


K (x1, x1) · · · K (x1, xj)

...
K (xi, x1) · · · K (xi, xj)

 . (2.13)

One of the most commonly used covariance functions is the squared
exponential in which the correlation of xi and xj is measured as a function
of their distance:

K (xi, xj) = σ2
f exp

(
−

n∑
k=1

θk
∣∣xki − xkj ∣∣2

)
, (2.14)

where σ2
f and θk are hyperparameters of the covariance functions.

Assuming the regression model in equation (2.15) which shows the re-
lationship between x (input vector) and y (output vector), we have:

y (xi) = r (xi) + ε (xi) , (2.15)

where ε (x) ∼ N (0, σ2) and i = 1, 2 · · · ,m.
Training of GaP focuses on the mean function µ(x) and the covariance

function K(xi, xj). The prior distribution of the Gaussian process regres-
sion model is shown below as a latent function.

r (·) ∼ GaP (0, K(·, ·)) , (2.16)

In order to calculate this posterior distribution of the model, a distribution
over the hyperparameters p(θ|y,X) needs to be defined. In general, log-
likelihood could be used for estimating hyperparameter values which is
explained as:

2.1. BACKGROUND 43

logp(θ|y,X) (θ) = −1

2

(
log|K|+ y>K−1y +N log σ2

)
, (2.17)

Based on the training set X , a covariance matrix K of size N × N can be
calculated. With respect to any given input vector x∗, the corresponding
predicted output y∗ can be obtained by a Gaussian probability distribution
with the mean and covariance given as:

µ(y∗) =K>∗
(
K + (σn)2I

)−1
y∗,

(σ(y∗))2 =K∗∗ −K>∗
(
K + (σn)2I

)−1
K∗. (2.18)

where K∗ =[K (x1, x
∗) ,, K (xN , x

∗)] is the N × 1 vector of covariances
between the test and the training cases, and K∗∗ is the covariance between
the test input itself.

2.1.9 Genetic programming (GP)

GP [105] is an EC-based meta-heuristic search method which can evolve
computer programs to perform specific tasks automatically. GP individ-
uals are represented as variable-length data structures. Different data
structures have been used for GP representation, such as tree-based [105],
graph-based [120] and linear-based [203] representations. The tree-based
representation is flexible in nature because the size of the evolved tress
can vary from minimum depth to maximum depth [40]. This means GP
has the potential to cover a larger search space of potential functions GAs
(because of fixed-length representation).

Due to its flexibility, GP can be applied to various machine learning and
optimization problems, including numerous combinatorial optimization
problems such as JSS. Tree-based GP has been widely used in JSS literature
to evolve dispatching rules [145, 147]. This thesis will focus on using tree-
based GP for evolving dispatching rules to construct schedules.

44 CHAPTER 2. LITERATURE REVIEW

Representation

In GP, solutions are normally represented as Lisp S-expression. Tree-based
GP is represented by a tree structure. Trees are constructed by internal
nodes and leaf nodes. In general, leaf nodes are called terminals and they
consist of variables and constant numbers. On the other hand, internal
nodes are functions defined by user in terms of different operators such as
arithmetic operators {+,−, ∗, /} and logical operators {OR, AND, XOR}
[178]. An example of a tree-based GP is given in Figure 2.3. In the GP tree,
the selection of a terminal set and function set can be problem-specific. For
example, ready time {RJ}, number of remaining operations {RO}, work
remaining of job {RT}, operation processing time {PR}, weight {w}, due
date {DD}, and machine ready time {RM} are commonly considered job
shop attributes [145].

+

PR *

RO DD

Figure 2.3: An example of a GP :PR + (RO × DD)).

Initialization

The initial individuals are usually generated by two earliest initialization
methods: full and grow methods [105]. In the full method, nodes are se-
lected from the function set and appended to the tree until the tree’s depth
reaches a predefined maximum depth. After that, the members of the ter-
minal set are used as leaf nodes. In the full initialization procedure, all the
terminals are located at a maximum depth of the trees.

In the grow approach, the leaf nodes do not need to be at maximum
depth. Therefore, the nodes are randomly picked from both the terminal

2.1. BACKGROUND 45

set and the function set. The grow method generates trees with more va-
riety in shape and size as compare to the full method.

Another initialization method is the ramped half-and-half method
[104]. In order to generate a wide variety of trees of various depths,
lengths, and shapes, the full and grow methods are often combined. In
the ramped half-and-half method, half of the trees are created by the full
method and the other half are constructed by the grow method.

Evaluation

A driving force of GP is the fitness function. It helps guide the search to
find good individuals from the population-based on the fitness values of
those individuals. The uses of the fitness function depend on the problem
domain. For example, consider a JSS problem to minimize tardiness. In
this problem, the fitness value of each individual is calculated as follows.
First, the individual from a tree-based GP population is applied to train-
ing instances as a priority dispatching rule and generates solutions. After-
ward, the fitness function calculates the mean tardiness of the solutions.
If an individual A1 has a fitness value lower (in a minimization problem)
than an individual A2, A1 is considered better than individual A2.

Selection

In a natural evolution, next-generation is produced by selecting the fittest
individuals from the current population. GP follows a similar approach
and after the evaluation phase, fitness values are used to select individu-
als to generate offsprings for the next generation. It should be noted that
better individuals are more likely to survive in the evolutionary process.
Two popular selection methods are the roulette wheel selection and the tour-
nament selection.

In the roulette wheel selection [105], an individual is randomly selected
based on the probability determined by its fitness value. Thus, an indi-

46 CHAPTER 2. LITERATURE REVIEW

vidual having a higher fitness value will have a higher chance of being
selected.

In the tournament selection method [105], a number of individuals are
sampled randomly from the entire population into the tournament. The
best individual from the tournament is then selected and is placed into
the mating pool for mating by genetic operators. The mutation uses one
tournament because of the requirement of a single parent individual. The
Crossover uses two tournaments because of the requirement of two-parent
individuals.

Genetic operators

There are three main genetic operators used in GP which are crossover,
mutation, and reproduction. They together produce new programs from
the selected individuals.

The crossover is applied to two selected individuals known as the par-
ents. A subtree is then randomly picked from each parent. Next, follow-
ing the subtree crossover method, the selected subtrees are exchanged and
two offsprings will be created as a result. A node is randomly picked from
each parent who is identified as a crossover point. This is known as a sub-
tree crossover, where two offsprings are produced by swapping the sub-
tree from the two parents. Figure 2.4 represents an example of a subtree
crossover.

The mutation operator selects only one parent to create an offspring.
The most common mutation approach is the subtree mutation, in which
a random node is chosen as a mutation point from a selected parent and
the subtree rooted from the node is removed. After that, a new subtree
is grown from that mutation point. Figure 2.5 shows a subtree mutation
example.

In the case of reproduction, all the selected individuals are copied to the
new population. This operator ensures the good individual will survive
during the evolutionary process.

2.1. BACKGROUND 47

Parent A

+

*

PR RT

-

/

RO w

PR

Parent B

+

PR -

+

DD RT

RT

Child A

+

*

PR RT

-

+

DD RT

PR

Child B

+

PR -

/

RO w

RT

Figure 2.4: An example of a crossover operation in GP.

Parent

+

/

PR RT

-

+

DD RT

RT

Replacement

*

RO DD
Child

+

/

PR RT

-

+

DD *

RO DD

RT

Figure 2.5: An example of a mutation operation in GP.

2.1.10 Basic GP algorithm
Algorithm 1 shows a basic GP algorithm, which aims to find the best per-
forming individual program from the evolved programs. The algorithm
starts with the initialization of a randomly generated population of a size
specified, S. Then, evaluation, selection, and genetic operations (discussed
above) are carried out. Every individual ∆i in the population of programs
P is evaluated using a pre-determined fitness function. Suppose the eval-
uated program is better (has smaller fitness value since we focus on min-
imization problems in this research) than the best program ∆∗. In that
case, it will be assigned to the best program found so far ∆∗ and the best
fitness value fitness(∆∗) is also updated. Once all the best individuals
in the population are evaluated, new individuals for the next generation
are generated by applying mutation, crossover, and elitism to individuals
selected using the selection mechanism. The algorithm repeats the evolu-
tionary process until the maximum number of generations is attained and
returns the best found rule ∆∗.

48 CHAPTER 2. LITERATURE REVIEW

Algorithm 1: Basic GP algorithm.
Input : problem data
Output: the best evolved program ∆∗

1 randomly initialize the population P ← {∆1, . . . ,∆S};
2 set ∆∗← null (best rule);
3 set fitness(∆∗)← +∞;
4 generation← 0;
5 while generation < maxGeneration do
6 foreach ∆i ∈ P do
7 evaluate and assign fitness to ∆i;
8 end
9 foreach ∆i ∈ P do

10 if fitness(∆i) < fitness(∆∗) then
11 ∆∗← ∆i ;
12 fitness(∆∗)← fitness(∆i);

13 end

14 end
15 set P new ← ∅;
16 while |P new| < S do
17 ∆new ← apply genetic operators crossover, mutation and

reproduction to selected programs from P ;
18 P new ← P new ∪ ∆new ;

19 end
20 P ← P new ;
21 generation← generation+ 1;

22 end
23 return the best individual ∆∗;

2.1.11 Local search

Local search [38] is a meta-heuristic approach to improves the search effec-
tiveness and quality of individuals. The local search method is typically

2.1. BACKGROUND 49

presented as an iterative process that starts with an initial solution gener-
ated randomly or by some constructive heuristic. The method iteratively
improves the current solution by moving to better neighboring solutions
defined by the neighborhood function. If the current solution s0 found
a better neighborhood solution s1, it replaces the current solution s0 and
the search is continued from s1. If no better solution is found, the algo-
rithm terminates at a local minimum. The exploration strategies in local
search determine the number of the neighborhood to be explored [149].
The most often used strategies for exploration in the literature are the first-
improvement and the best-improvement [79]. In the first-improvement strat-
egy, the first best neighboring solution is selected. The best-improvement
strategy explores the neighborhood entirely and returns the best neighbor-
ing solution.

The combinatorial optimization problem’s solution is represented by
discrete structures like graphs, sequences, and genetic programs The
neighborhood function introduces suitable perturbation operators tailored
for the corresponding representations to generate ’neighboring’ solutions
via swapping, moving, or replacement. In subsection 2.2.4, we will discuss
the works related to local search methods applied to JSS problems.

2.1.12 Pareto local search (PLS)

PLS can be considered as a direct extension of local search from single-
objective problems to the multi-objective case. Generally, PLS maintains
the Pareto archive of non-dominated solutions.

Algorithm 2 illustrates the PLS framework. The input to PLS is an ini-
tial set of solutions S0 that are mutually non-dominated. The solutions in
S0 are initially marked as unexplored (line 2). PLS updates an archive of
non dominated solutions S which is initially equal to S0. PLS starts with
an initial Pareto archive and then solution s is chosen randomly among all
unexplored ones in the archive. Next, the neighborhood of solution of s,

50 CHAPTER 2. LITERATURE REVIEW

Algorithm 2: Pseudo-code for Pareto Local Seach
Input : An initial set of solutions S0

Output: S
1 explored(s)← FALSE ∀s ∈ S0;
2 S←S0;
3 while S0! = ∅ do
4 s← select randomly a solution from S0;
5 foreach s′ ∈ N(s) do
6 if s′ non-dominated with respect to the solutions in S then
7 explored(s′)← FALSE;
8 S ← Update(S, s′);

9 end

10 end
11 explored(s)← TRUE;
12 S0← {s ∈ S|explored(s) = False} ;

13 end
14 return the best individual ∆∗;

N(s) is explored. In PLS, the acceptance of a new neighborhood solution
is based on the dominance relation. The procedure Update (line 7) adds an
s′ ∈ N(s) candidate solution to the archive if s′ is not dominated by any
solution in the archive and removes all the archive solutions that become
dominated by s′. Whenever a new neighbor solution s1 not dominated by
the current solution is found, the Pareto archive needs to be updated. The
s1 is accepted if it is not dominated by all solutions in the archive and all
dominated solutions by s1 are removed from the archive. Furthermore,
PLS has a natural stopping condition when the neighborhoods of all so-
lutions in the archive have been explored (line 11). Liefooghe et al. [121]
generalize PLS algorithms into several categories based on the different
ways of defining its basic components: (1) initial solutions strategy for
neighborhood scanning, (2) exploring the neighbors of a non-dominated
solution, fully vs. partially, (3) archiving method, e.g., bounded vs. un-
bounded, and (4) stopping conditions.

2.1. BACKGROUND 51

Selection

The selection strategy selects the solutions of the current archive whose
neighborhood will be explored. Either all of the solutions are selected from
the archive or only a subset of solutions may be selected. The subset of
solutions is selected either uniformly at random or according to the fitness
of solutions.

Exploration

Explorations strategies control the size of the neighborhood for explo-
ration. PLS can either explore the neighborhood entirely (fully) or only
partially until their termination criterion is met.

Archiving

Two types of archiving strategies are considered. In the first strategy, the
archive can have a set of all non-dominated solutions. In the second strat-
egy, the archive can have a subset of non-dominated solutions. The second
strategy limits the archive’s size using some criteria such as diversity cri-
teria (crowding distance).

Termination criteria

A common termination criterion is the one when all the solutions are fully
explored. Otherwise, other popular termination criteria consider the time
spent by the algorithm, the number of iterations, and a number of iter-
ations without improvement [50]. Several PLS-based methods have also
been developed for solving multi-objective JSS [14].

52 CHAPTER 2. LITERATURE REVIEW

2.2 Related work

This section covers the related works that have been carried out in vari-
ous fields of research that are relevant to the research goals and objectives.
First, we cover the exact optimisation, heuristic, meta-heuristic, and the
GP-HH approaches that have been proposed in scheduling research. Af-
terward, we cover the multi-objective and many-objective JSS. Finally, we
cover local search and PLS that have been applied to JSS problems.

2.2.1 JSS techniques

This section covers the exact optimisation, heuristic and meta-heuristic ap-
proaches to JSS techniques.

Exact optimisation techniques

Exact optimization techniques such as Jackson’s algorithm [83] can solve
two-machine JSS problems to minimize makespan. Garey et al. [53]
showed that static makespan minimization JSS problems with the num-
ber of machines (M > 2) are NP-hard. This means that no algorithm can
spend polynomial time in the worst-case scenario (M > 2) to minimize
the makespan in a job shop. Researchers have suggested exhaustive search
techniques to handle more difficult JSS problems. Branch-and-bound [107]
is one of the search techniques which have been used extensively in the lit-
erature [5, 7, 19, 24, 25]. Carlier and Pinson [25] have proposed a notable
branch-and-bound technique where they were able to find an optimal so-
lution for a JSS problem instances proposed by Muth and Thompson [139]
with N = 10 jobs, M = 10 machines, and 10 operations per job. Branch-
and-bound techniques are covered in detail in a survey paper by Potts and
Strusevich [166].

Dynamic programming is an exact optimization technique that has
been applied to static JSS problems [60, 112, 165]. Dynamic programming

2.2. RELATED WORK 53

approaches divide a JSS problem instance into sub-problems and attempt
to solve each sub-problem separately. Lawler and Moore [112] proposed a
technique of applying dynamic programming to a single machine schedul-
ing problem with total weighted tardiness minimization. They suggested
methods of extending it to parallel and two machine flowshop problems.
A more recent dynamic programming approach to JSS with makespan
minimization has been proposed by Gromicho et al. [60] in 2012, where
they adopt an approach proposed by Held and Karp [64] for the traveling
salesman problem (TSP). Their analysis shows that the dynamic program-
ming approach can generate optimal solutions for moderate benchmark
instances where problem instances have up to N = 10 jobs and M = 5

machines.
Although exact mathematical optimization techniques guarantee an

optimal solution for a JSS problem instance, they generally take too long
to generate optimal solutions for problem instances that have more than
10 to 15 jobs [60]. In addition, exact mathematical optimization techniques
are not suitable for more complex problems because they generally take
too long to generate optimal solutions such as many-objective JSS [5].

Heuristic techniques

Heuristic approaches (e.g., shifting bottleneck heuristic) have been ap-
plied to large static JSS problems, where problem instances have up to
N = 8700 jobs and M = 9 machines [154]. They have also been ap-
plied to dynamic JSS problems where it is not appropriate to use exact
optimization techniques as a schedule may not be optimal as new un-
foreseen events occur during processing [181]. Examples of heuristics
are small and simple dispatching rules such as Shortest Processing Time
(SPT), First In First Out (FIFO), and Earliest Due Date (EDD) [165]. The
EDD rule prioritizes jobs based on the earliest due and time. Vepsalainen
et al. [191] covers multiple composite dispatching rule heuristics for JSS
problems with Total Weight Tardiness (TWT) minimization objective, in-

54 CHAPTER 2. LITERATURE REVIEW

cluding the COVERT (cost over time) and ATC (apparent tardiness cost)
priority-based dispatching rules. Gupta et al. [61] use dispatching rules
in semiconductor manufacturing. They show that dispatching heuristics
provides schedules quickly that are easy to understand, easy to apply, and
require relatively short computation time. The primary disadvantage of
manually dispatching rules is that these cannot hope for optimal solutions
for all performance measures in the dynamic job shop [147].

Jayamohan et al. [90] compares various dispatching rules which have
been proposed in the literature, such as rules proposed by Holthaus et
al. [70] and also introduced several new dispatching rules. They per-
formed a computational analysis of the rules on dynamic JSS problems for
minimizing various aspects of flowtime and tardiness. They further ex-
tended the comparative study to incorporate weighted COVERT [90] and
weighted ATC rules [191] and propose new dispatching rules. Nguyen et
al. [145] proposed three different representations of dispatching rules and
suggested that the representation that integrates the system and machine
attributes can improve evolved rules’ quality.

Holthaus et al. [70] proposed the 2PT + WINQ + NPT priority rule and
variations of the rule for the dynamic JSS problems with flowtime and
tardiness minimization objectives. PT denotes the processing time for the
job’s operation. WINQ denotes the work-in-next-queue, which is the sum
of processing time of other jobs waiting at the next machine that the job will
be processed on. NPT denotes the processing time of the job’s operation
on the next machine, it needs to be processed or 0 otherwise. They show
that 2PT + WINQ + NPT consistently outperformed the other benchmark
dispatching rules, such as the RR rule (Raghu and Rajendran’s rule) [168]
for minimizing mean tardiness for dynamic JSS problem instances. [63]
considers multiple shop scenarios in a dynamic shop environment and
apply Gaussian process regression to switch dispatching rules between
EDD, MOD, 2PTPlusWinqPlusNPT [169].

A more complex example of a heuristic approach is the shifting bot-

2.2. RELATED WORK 55

tleneck (SB) heuristic which was proposed by Adams et al. [3] in 1988
for static JSS problem with makespan minimization objective. Adams et
al. showed that the heuristic approach can find high-quality optimal solu-
tions for problem instances with up to N = 15 jobs and M = 15 machines.

Meta-heuristic techniques

The research on meta-heuristics for JSS problems has also been extensively
studied in the literature where both local search-based techniques and
population-based techniques have been effectively applied to different JSS
problems.

• Local search Local search based methods such as simulated anneal-
ing [190] and Tabu search [162] have shown very promising results
in JSS. These methods begin with a complete schedule and try to
improve the schedule by developing efficient and effective neigh-
borhood structures, mainly based on the concept of critical paths
and critical blocks. They also have diversifying strategies to escape
from local optima. Many of the research work in [3, 7, 139] applied
tabu search to various benchmark JSS problems and showed that
Tabu search approaches can found optimal solutions for the static
JSS problem instances. Like Tabu search, simulated annealing [190]
approaches have been applied effectively to JSS problems in the lit-
erature. Kreipl [106] proposed a large step random walk (LSRW)
method. This is considered one of the best local search methods for
dealing with JSS problems with tardiness objectives. The detailed
information of local search in JSS can be found in subsection 2.2.4.

• Population-based techniques Cheng et al. [28] surveyed the GAs to
JSS problems, showing that GAs consists of a population of individ-
uals represented by a fixed-length chromosome. One of the notable
examples of a GA to JSS problems with tardiness objective is pro-
posed by Zhou et al. [206]. The GA algorithm is hybridized with

56 CHAPTER 2. LITERATURE REVIEW

the existing heuristics for JSS. The experimental result showed that
the hybrid GA outperforms pure GA approaches and significantly
reduces the computation time required to generate a solution. A hy-
brid GA method and neighborhood local search for JSS to minimize
makespan was proposed in [173]. In this method, the random keys
were used for chromosome representation which represents the pri-
orities of operations.

Other meta-heuristic approaches which use EC techniques include
ACO [34] and PSO [177, 196]. Sha and Hsu [177] used PSO and Tabu
search (HPSO) for JSS problems. HPSO modified the particle posi-
tion based on priority-based and a new preference list-based repre-
sentation. The experimental results showed that HPSO has better
solutions than other meta-heuristics methods.

Xia and Wu [197] developed a hybridization of PSO and simulated
annealing. In this work, a hybridization approach is applied to
the multi-objective flexible job-shop problems with makespan, total
workload, and critical machine workload. The results showed that
the hybridized approach effectively solved problems of up to 20 ma-
chines and 20 jobs.

Hyper-heuristics

As described by Cowling et al.[37] as “heuristics to design heuristics”,
hyper-heuristics have gained the attention of researchers whose goals are
to design generic but effective heuristic methods to problems [20].

Burke et al. [20] describe one of the main motivations for developing
hyper-heuristic approaches to handle the ”challenge of automating the de-
sign and tuning of heuristic methods to solve hard computational search
problems.” Hyper-heuristics are designed to work on low-level heuristic
components with the help of suitable operators that combine low-level
heuristics and a method of evaluating the performance of heuristics. The

2.2. RELATED WORK 57

Figure 2.6: Overview of a tree-based GP-HH applied to JSS.

hyper-heuristic methods hence search in the heuristic space [21]. This
enables us to easily distinguish hyper-heuristics from meta-heuristics as
meta-heuristics search in the solution space.

One popular hyper-heuristic approach is GP-HH [20]. Figure 2.6 shows
a high-level overview of a tree-based GP being applied to a JSS problem.
Figure 2.6 shows a tree-based GP-HH takes in the base heuristics {PT
(processing time), W (weight), and DD (due date)} and the operators
{+,−,×} to initialize the individuals in the population. The GP system
then passes the heuristic into the JSS problem domain and gets a goodness
measure back in the individual’s fitness. The final output is a heuristic
which represents a priority-based dispatching rule PT +DD − PT .

2.2.2 GP-HH for JSS

The main aim of hyper-heuristic is to automate designing and selecting
the heuristics to solve hard and complex problems such as JSS problems
[20]. GP is able to evolve complex programs or rules. It becomes a suitable
paradigm for learning heuristics known as GP-HH [20].

58 CHAPTER 2. LITERATURE REVIEW

Representation of GP as a Hyper-Heuristic

In GP, the most prominent representation and traditionally represented as
tree structures. Other program structures have been investigated in the
literature, such as linear sequences of instructions or grammar.

The individual of tree-based GP is represented as arithmetic function
trees [105, 145, 159] which are called priority dispatching rules in the
scheduling environment. Hunt et al. [74] used arithmetic representation
to evolve dispatching rules to minimize tardiness objectives in the static
JSS problem. The evolved rules from GP were more effective than manual
design dispatching rules.

Nguyen et al. [145] investigated three GP representations for JSS. The
first representation (R1) evolved decision trees, the second representa-
tion (R2) used arithmetic representation, and the third representation (R3)
showed a mixed representation, which combined (R1 andR2). Experimen-
tal results showed that the evolved rules outperformed the existing rules
on the static JSS problems [145].

GP-based hyper-heuristics for scheduling

The first comprehensive review on hyper-heuristics is shown in [17]. This
study focused on the key design choices and critical issues involved in the
process of developing scheduling heuristics. Hunt et al. [75] proposed a
GP-HH approach to evolve dispatching rules for both the static and dy-
namic two-machine job shop environments. This was considered the first
study that used GP to evolve dispatching rules for reducing makespan.

Park et al. [158] improved the robustness of evolving ensembles of dis-
patching rules from a single population of GP individuals. They investi-
gate four ensemble approaches based on majority voting, linear combina-
tion, weighted linear combination and weighted majority voting. Through
experimentation, they found that linear combination schemes are better
than other ensemble techniques. Hunt et al. [73] revealed that local infor-

2.2. RELATED WORK 59

mation is one of the drawbacks in dispatching rules. Therefore, they used
lookahead terminals for GP to evolve “less myopic”rules for dynamic job
shop scheduling problems.

Nguyen et al. [145] proposed a tree-based GP representation for evolv-
ing rules for static JSS problems. They proposed different representations
of dispatching rules and suggested that the representation that integrates
the system and machine attributes can improve the quality of the evolved
rules. Nguyen et al.[141] also developed methods for evolving iterative
dispatching rules using GP.

Tay and Ho [185] used GP-HH for multi-objective FJSS problems. They
tried to minimize makespan, mean tardiness, and mean flowtime. They
used an aggregation method to solve the multi-objective FJSS problems.
Nguyen et al.[147] developed a GP-HH method for multi-objective JSS
problems that optimize five conflicting objectives simultaneously.

A literature survey shows that dispatching rules are prominently used
for solving JSS problems with a single objective or multiple objectives.
There are no many works in the literature to deal with many-objective
JSS problems. However, the previous section mentioned that Pareto-based
EMO algorithms may not effectively handle many objectives due to a high
proportion of non-dominated solutions. Therefore, in this research, we
will use GP-HH with the selection scheme of NSGA-III for evolving the
dispatching rules more effectively.

2.2.3 Multi-objective and many-objective JSS

In the literature, many research works have been used EC algorithms for
JSS but these algorithms mainly focus on optimizing a single objective
[67, 159]. For example, GAs have been utilized for minimizing makespan
while scheduling identical parallel machines [99]. Park et al. have also
considered using cooperative evolutionary technologies to minimize the
TWT in dynamic JSS problems [159].

60 CHAPTER 2. LITERATURE REVIEW

It is becoming clear that JSS essentially has multiple (or many) different
objectives. In general, there are two alternative approaches for handling
multiple objectives in a job shop, i.e., the aggregation method and the Pareto-
dominance method [96]. In a typical aggregation method, multiple optimiza-
tion objectives have to be aggregated together to form a scalar-valued fit-
ness function through a weighted sum [116]. Obviously, this method’s
usefulness is restricted to the situation when the preferences over differ-
ent objectives can be quantified before applying any EC techniques. On
the other hand, without using any aggregation functions, the Pareto- dom-
inance concept can be exploited to define the optimization criteria for a
guided search of Pareto-optimal schedules [116]. Based on this idea, many
EC algorithms have been proposed with the aim of evolving the Pareto-
front [43, 44, 211, 27, 76].

In the literature, the Pareto-dominance method has attracted substan-
tial research attention. Prominent examples include the NSGA-II and
SPEA2. Specific techniques have also been successfully developed for
multi-objective JSS. For instance, Murata et al. [137] proposed a multi-
objective GA for flowshop scheduling problems. Their research specifi-
cally considered problem instances with concave Pareto-front and at most
three optimization objectives (i.e., the makespan, total tardiness, and to-
tal flowtime). A trade-off between the makes and the availability of ma-
chines identifies in bi-objective JSS problems [200]. Nguyen et al. [147, 144]
used several multi-objective GP approaches in order to evolve schedul-
ing rules consisting of a dispatching rule and due-date assignment rule.
Those approaches evolved two expression trees, one of which would be
used for due-date assignment to jobs, while the other would be used as
a standard dispatching rule. The results showed that the evolved rules
outperformed various combinations of existing scheduling rules from the
literature. Evolving dispatching rules for multi-objective criteria were also
analyzed by Nguyen et al. [146]. In [73], a scheduling problem consisting
of two and three scheduling criteria was optimized by the use of two pro-

2.2. RELATED WORK 61

posed heuristics and a genetic algorithm.

Moreover, A short overview of some other multi-objective problems in
the unrelated machine’s environment can be found in [163]. Moslehi and
Mahnam [128] present an approach based on a hybridization of the parti-
cle swarm and local search algorithm to solve the multi-objective flexible
JSS problem. Zhang et al. [207] have formulated the textile dyeing pro-
cess scheduling problem as a bi-objective optimization model, in which
one objective is related to tardiness cost while the other objective reflects
the level of pollutant emission. And they proposed a multi-objective par-
ticle swarm optimization algorithm enhanced by problem-specific local
search techniques (MO-PSO-L) to seek high-quality non-dominated solu-
tions. Luo et al. [126] proposed a distributed flexible JSS Problem with
transfers (DFJSPT), in which operations of a job can be processed in differ-
ent factories. In order to expand the search space and accelerate the con-
vergence speed of the solution, an efficient memetic aAlgorithm (EMA)
is proposed to solve the DFJSPT with the objectives of minimizing the
makespan, maximum workload, and total energy consumption of facto-
ries. Zhao et al. [209] proposed an improved multi-objective evolution-
ary algorithm, which is based on decomposition (IMOEA/D) for multi-
objective JSS problem which minimized three objectives – the maximum
completion time (makespan), the total flow time and the tardiness time
are considered simultaneously. Several prior rules are presented in the
proposed algorithm to construct the initial population with a high-quality
level. Karunakaran et al. [98] proposed the sampling heuristic for GP-HH
and presented the algorithm based on the island model approach.

In addition to the research works mentioned above, some researchers
have started considering JSS problems with more than three objectives.
For example, Nguyen et al. [147] have considered designing dispatch-
ing rules for general JSS problems with up to five different objectives.
In [137], four different objectives have been considered for evolving op-
timal schedules. Fowler et al. [51] considered the problem for scheduling

62 CHAPTER 2. LITERATURE REVIEW

a printed wiring board manufacturer’s drilling operation subject to five
optimization objectives. They have used several approaches to solve the
given problem. Kolahan and Kayvanfar [103] used the simulated anneal-
ing approach to solve a scheduling problem consisting of the makespan,
earliness, and tardiness objectives. Wang et al. [192] proposed an algo-
rithm for many-objective flexible job shop scheduling problems. In this
algorithm, the mathematical model was established considering six ob-
jectives: makespan, workload balance, mean of earliness and tardiness,
cost, quality, and energy consumption simultaneously. XU et al. [198]
proposed an algorithm for many-objective flowshop scheduling problems
based on fuzzy sets’ relative entropy. This algorithm built a mathematical
model of the many-objective flow-shop scheduling problems, including
four objectives, makespan, tardiness, total inventory cost and total tardi-
ness cost. A many-objective permutation flow shop scheduling problems
model with four objectives, namely, the makespan, total tardiness, inven-
tory holding cost, and energy consumption cost, was established in [210].
Gong et al. [56] considered many-objective flexible job shop scheduling
problem (MaOFJSP) with five objectives under dynamic electricity pricing
and applied non-dominated genetic algorithm-III to solve it.

Our survey found that there has been relatively little attention to solv-
ing many-objective JSS problems. There are a few studies found in the lit-
erature of many-objective JSS but these studies used conventional MOEAs.
MaOPs pose a number of challenges to Pareto-based MOPs [43, 31]. First,
the proportion of non-dominated solutions in a population rises rapidly
with the number of objectives. This issue also becomes a part of JSS prob-
lems whenever optimization of more than three objectives is attempted.
Second, a commonly used diversity-preservation operator such as crowd-
ing distance [44], clustering [211] cannot strengthen the Pareto front’s se-
lection pressure. These operators also become computationally expensive
[84].

2.2. RELATED WORK 63

2.2.4 Local search for JSS
Local search is a popular method for dealing with NP-hard problems —
the first application of a local search that was studied in [38]. There are
several reasons for interest in local search algorithms. One important as-
pect is that local search algorithms are more easily understandable and
implementable than exact algorithms. In practice, local search has been
shown to be very effective at solving complicated problems [1].

The local search algorithm is widely used for solving JSS [166]. It was
first introduced for JSS in 1980. A year later, Talliard et al. [183] intro-
duced the tabu search for JSS problems. One of the studies [189] discussed
the local search method to emphasize deterministic and randomized JSS
problems. They also discussed existing neighborhood techniques for local
search methods. Hunt et al. [75] applied a local search in the fitness eval-
uation process to improve the performance of dispatching rules. Further-
more, JSS problems with alternative sequence and sequence-dependent
setup are addressed in [33]. They developed mixed-integer program mod-
els with local search to reduce computational time. The research study in
[58] solved stochastic JSS problems using several neighborhood functions
from the literature.

A few pieces of literature show that local search is also used with GP
to improve the quality of evolved dispatching rules [148, 173]. Nguyen et
al. [148] improved the quality of evolved dispatching rules for dynamic
JSS through Iterated Local Search (ILS) [124]. The key idea of ILS is to
iteratively apply local search heuristics to solutions obtained by perturba-
tions of previously visited locally optimal solutions [10]. The study in [173]
combined ILS, and GP. The goal of GP in these algorithms was to evolve
perturbation operators based on a range of low-level operators and rules.

2.2.5 PLS for JSS

PLS is one of the heuristic algorithms for handling combinatorial opti-
mization problems and maintaining the Pareto archive [155]. The goal of

64 CHAPTER 2. LITERATURE REVIEW

PLS is to approximate a high-quality Pareto-optimal set. It can be used as
a standalone algorithm [156] or hybridized with the EMO algorithm [127].

Hybridization of local search with EMO is often called a memetic
algorithm [81]. This hybridization improves the searchability of the
pure EMO algorithms [88]. The hybrid algorithms have been found in
the literature for solving combinatorial optimization problems effectively
[14, 49, 82, 88, 81, 137]. The evaluation mechanisms in the local search
of memetic EMO algorithms are performed by either weighted scalar fit-
ness function [81] or Pareto ranking [102]. The effectiveness of PLS as a
component of the hybrid algorithms may be explained by the fact that
it has different characteristics than most other multi-objective algorithms.
As noticed by Lara et al. [108], each multi-objective metaheuristic should
search both towards and along the Pareto-front.

Several methods of PLS have been proposed in the multi-objective JSS
problems. Murata et al. [137] proposed a multi-objective GA to minimize
the makespan, total tardiness, and flowtime. Ishibuchi et al. [81] proposed
a genetic local search algorithm. This algorithm uses a weighted sum of
multiple objectives as a fitness function to guide parents’ selection for gen-
erating offspring solutions through crossover and mutation operations. A
local search is then employed to each solution generated by genetic opera-
tors to improve its fitness value further. This algorithm was tested on two
instances of flowshop with two pairs of objectives (makespan and total
tardiness) and (makespan and maximum tardiness). Moslehi et al. [136]
proposed a hybridization of a particle swarm algorithm and local search
methods for multi-objective JSS problems. In this algorithm, local search
is employed to enhance convergence speed. The research study in [4] de-
fined a variable neighborhood search (VNS) for a multi-objective dynamic
JSS problem. In this approach, VNS is hybridized with an artificial neural
network (ANN), where ANN is used to optimize the algorithmic param-
eters for VNS. They showed that VNS can outperform common human-
made dispatching rules such as SPT and FIFO.

2.3. SUMMARY 65

The research in [89] applied PLS to the many-objective combinatorial
optimization problems and showed high effectiveness of the proposed
many-objective Pareto local search algorithm. In this algorithm, they used
three new mechanisms: (1) the efficient update of large Pareto archives
with ND-Tree data structure, (2) a new mechanism for the selection of the
promising solutions for the neighborhood exploration, and (3) partial ex-
ploration of the neighborhoods. Furthermore, Seada et al. [175] combined
NSGA-III with local search and Karush-Kuhn-Tucker Proximity Measure
(KKTPM). The local search in this algorithm used two distinct operators.
One operator enhances overall population diversity and the other pro-
motes convergence.Meanwhile, KKTPM speeds up the convergence and
guides the second local search operator.

2.3 Summary

This chapter has discussed the key concepts of GP, JSS, hyper-heuristics,
multi-objective optimization, many-objective optimization, model-based
EMO, Gaussian process, local search, and PLS. GP is one of the most pop-
ular hyper-heuristic because of its flexibility, which automatically evolves
dispatching rules in single and multi-objective JSS. However, the research
in the direction of many-objective JSS is relatively new and many aspects
need to be explored to enhance the quality of GP-HH methods and cope
with practical requirements. There are some identified limitations of the
existing body of work in the literature, which motivate this thesis’s work.
These limitations are:

• There are a number of different approaches that have been proposed
in the literature for various JSS problems. Most of the works in the
literature on JSS do not focus on many-objective JSS. Our survey
found that there has been relatively little attention to solving many-
objective JSS problems. Heuristic approaches are prominently used

66 CHAPTER 2. LITERATURE REVIEW

to solve JSS problems because of its advantages over other meth-
ods. Literature shows that heuristic approaches are better for solving
multi-objective JSS problems. Moreover, GP-HH approaches have
been successfully used to design effective dispatching rules automat-
ically. However, GP-HH approaches are relatively new for many-
objective JSS and require further investigations. There are a few stud-
ies found in the literature of many-objective JSS but these studies
used conventional MOEAs. These MOEAs fail to work properly for
MaOPs. Due to the issue of using MOEAs in solving many-objective
JSS, new GP-HH approaches are required that can potentially work
with many-objective JSS.

• Literature survey shows that decomposition-based approaches are
good for diversity maintenance [43]. The decomposition-based ap-
proaches use uniformly distributed reference points and perform
better on problems which have uniformly distributed Pareto-front
such as the DTLZ1 problem. However, they face difficulty when it is
applied to non-uniform and irregular Pareto-front problems such as
the DTLZ7 and JSS problems. Deb and Jain [86] also notice this lim-
itation. Deb and Jain have witnessed several many-objective prob-
lems where reference points can never be associated with any good
solutions, while others are associated with more than one candidate
solutions. The distribution of the Pareto-front of JSS problems in the
objective space is also non-uniform. Algorithms for many-objective
JSS are required to consider this limitation and generate reference
points according to the distribution of the Pareto-front.

• Literature survey shows that local search is a widely used technique
for the classical combinatorial optimization problem. There are sev-
eral existing studies using PLS (extension of the local search) for
multi-objective JSS problems. These algorithms hybridized the lo-
cal search with the global search and used to improve the quality of

2.3. SUMMARY 67

the dispatching rules. This hybridization is called the memetic al-
gorithm. PLS enhances multi-objective GA performance; however,
no works in the literature hybridize GP with PLS techniques. In this
thesis, we enhance the quality of evolved dispatching rules through
PLS in many-objective JSS.

The following contribution chapters in this thesis will propose new ap-
proaches that mainly aim to address these limitations.

68 CHAPTER 2. LITERATURE REVIEW

Chapter 3

Experimental Methodology

This chapter presents the experimental methodology of this thesis. First,
it discusses the benchmark problems for JSS that will be used throughout
the thesis. Next, it describes the GP functions and terminals for JSS. Then
it discusses the performance measures used for evaluating many-objective
optimization algorithms.

3.1 Benchmark problems for JSS

There are four widely used static job shop benchmark sets in the literature.
These are Lawrence static job shop benchmark set (LA 01-40 Lawrence)
[113], Applegate and Cook benchmark set (ORB 01-10) [8], Taillard static
job shop benchmark set (TA 01-80) [182], and Demirkol et al. benchmark
set (DMU 01-80) [46]. Details of the benchmark sets can be seen in Table
3.1.

Table 3.1: Static JSS data sets.

Data set Notation # of instances Size (#J #M)
LA LA01-LA40 40 10 5 to 15 15

ORB ORB01-ORB10 10 10 10
TA TA01-TA80 80 15 15 to 100 20

DMU DMU01-DMU80 80 20 15 to 50 20

69

70 CHAPTER 3. EXPERIMENTAL METHODOLOGY

The goal of this thesis is to evolve effective dispatching rules (prior-
ity functions) for many-objective JSS. We used static JSS environments be-
cause many-objective research is comparatively newer than single objec-
tive JSS and multi-objective JSS. Further, dynamic JSS environments are
more complex than static JSS environments.

The TA is the most used benchmark problem for solving static JSS prob-
lems in the literature [131, 159]. The benchmark targets permutation flow-
shop, flowshop, open shop, and JSS problems. It contains job shop in-
stances of sizes up to 100 jobs on 20 machines, resulting in 2000 job opera-
tions. This benchmark problem is still using to use to solve multi-objective
optimization problems [97]. Therefore, the TA has been selected as the
dataset for experiments in this thesis.

There are 80 indexed problem instances in the TA set (i.e., each problem
instance has a different ID from 1 to 80). These can be further divided into
eight groups (denoted as TA-1, TA-1, . . . , TA-8). The problem instances
in the same group have the same number of jobs and machines but the
processing time matrices are generated by using different random seeds.
In the experiments, the total 80 instances are divided into the training set
and the test set, each consisting of 40 instances. The training set consists
of all the instances with odd IDs and the test set contains all the instances
with even IDs.

The GP uses the training instances in order to evolve dispatching
rules for some given objectives. Once obtained, the effectiveness of these
evolved dispatching rules will be evaluated by using the test instances.
The release times of all jobs in all problem instances are safely set to zero.
Since there is no due date information included in the original dataset, the
due date assignment rule [11] will assign the due dates of each insistence
of jobs. That is,

dd(ji) = λ×
m∑
k=1

pki .

where dd(ji) stands for the due date of the job ji, and λ is used to indicate

3.2. GP TERMINALS AND FUNCTION SET 71

the tightness of due dates. We chose λ value is 1.3 for all instances in the
training set and test set in our experiments because it is most commonly
used value in the JSS literature. The job weights are set according to the
2:6:2 rule [165]. That is, the weight is set to 4, 2, and 1 with the probabilities
of 20%, 60%, and 20%, respectively. These weighted probabilities in this
research are inspired by Pinedo and Singer [165]. Their study showed that
the first 20% of jobs are assigned a weight of 4, the weight of 2 is assigned
to the next 60% of jobs, and weight of 1 is assigned the last 20% of jobs.

Four objectives are considered in the experiment. These are the mean
flowtime (mF) (see equation (2.1) of Chapter 2) , maximal flowtime (maxF)
(see equation (2.2) of Chapter 2), mean weighted tardiness (mWT) (see
equation (2.6) of Chapter 2) and maximal weighted tardiness (maxWT)
(see equation (2.7) of Chapter 2).

3.2 GP terminals and function set
The terminal set is described in Table 3.2. The non-terminal set is set to
{+,−, ∗, /,min,max, ifthe}, where ”+”, ”−” and “∗” are basic arithmetic
operators. The function ”/” is the protected division operator which re-
turns one if the denominator is zero. The functions ”min” and ”max” take
two arguments and return either the smallest and the largest value, re-
spectively. The function ifthe takes three arguments a, b and c, and returns
b if a > 0 and c otherwise. These non-terminals [141] used by existing GP-
HH methods in the literature and also used in manually designed rules
[20, 70]. These rules determine the priority of jobs by computing the ex-
pression. For example, the simple shortest processing time (SPT) rule [176]
and the apparent tardiness cost (ATC) rule [70].

3.3 Performance measures

There are a variety of performance measures proposed for evaluating
multi-objective optimization algorithms from different perspectives. In

72 CHAPTER 3. EXPERIMENTAL METHODOLOGY

Table 3.2: Terminal set of GP for JSS.

Attribute Symbol
Job Properties

Processing time of the operation PT
Processing time of the next operation NOPT

Ready time of the next machine NMRT
Work Remaining WKR

Work in the next queue WINQ
Number of operations in the next queue NOINQ

Flow due date FDD
Due Date DD

Weight W
Machine Properties

Number of operations in the queue NOIQ
Work in the queue WIQ

Ready time of the machine MRT

this thesis, we choose the HyperVolume [212] and Inverted Generational Dis-
tance [206]. They are the two main performance measures in the literature.
Theoretically, a set of trade-off dispatching rules with better performance
should have a larger HV value and a smaller IGD value. All the objectives
have been normalized into the range between 0 and 1 before calculating
the above performance measures.

HyperVolume (HV)

Given a nadir points z∗ and a set of non-dominated solutions {y1, . . . ,yn}
in the objective space. HV indicates the area covered by {y1, . . . ,yn} with
respect to z∗.

The selection of the nadir points is an important issue. It is better for
z∗ to be slightly larger than the maximum value of each objective to em-
phasize the balance between convergence and diversity. In the thesis, all
algorithms have normalized objective values. So that the ideal point and
the nadir point are (0, 0) and (1, 1) respectively in the objective space of a
two-objective problem. After this normalization, the nadir points (z∗, z∗)
with z∗ =1 + 1

(n−1) (where n is the size of solutions) may be a good choice

3.3. PERFORMANCE MEASURES 73

when the Pareto front is nonlinear or irregular [78].
For HV, the nadir point is set to (1, 1, 1, 1) in this thesis since all the

objectives are to be minimized.

Inverted generational distance (IGD)

The IGD value is based on the true Pareto-front {y∗1, . . . ,y∗u}. Specifically,
it is defined as the average distance of each Pareto-optimal solution y∗i to
its closest point in {y1, . . . ,ys}. That is,

IGD =
1

u

u∑
i=1

min
y∈{y1,...,ys}

{dist(y∗i ,y)}. (3.1)

Since the true Pareto-front is unknown in JSS, an approximate Pareto-
front will be adopted for IGD by selecting the non-dominated solutions
among the final solutions acquired from all the runs of all the tested algo-
rithms.

74 CHAPTER 3. EXPERIMENTAL METHODOLOGY

Chapter 4

Many-Objective GP-HH for JSS

4.1 Introduction

A study of the literature shows that most of the past research on JSS fo-
cuses on optimizing job shop scheduling (JSS)-relevant objectives [67]. For
example, Park et al. have considered cooperative evolutionary technolo-
gies to minimize the total weighted tardiness (TWT) in dynamic JSS prob-
lems [159]. It is technically simple to consider only a single optimization
objective for JSS. However, it is now widely evidenced in the literature
that JSS by nature presents conflicting objectives, including the makespan,
mean flowtime, maximum tardiness, maximum lateness, total workload,
and proportion of tardy jobs [137, 122].

Over the last few years, JSS has been frequently considered as a multi-
objective optimization problem with several potentially conflicting objec-
tives [201]. The research study in [185] presented the first work on genetic
programming (GP) that focuses on multi-objective JSS problems. In this
study, an aggregation method was used which aggregated the multiple
optimization objectives together and formed a scalar-valued fitness func-
tion through a weighted sum [79]. However, this method is restricted to
the situation when the preferences over different objectives can be quanti-
fied before applying any evolutionary computation (EC) techniques. The

75

76 CHAPTER 4. MANY-OBJECTIVE GP-HH FOR JSS

Pareto-dominance approach can be exploited to define the optimization
criteria for a guided search of Pareto-optimal schedules. In the literature,
the Pareto-dominance approach has attracted substantial research atten-
tion. Prominent examples include the non-dominated sorting genetic al-
gorithm II (NSGA-II) [44] and the strength Pareto evolutionary algorithm
2 (SPEA2) [211].

Despite the rapid development of EC techniques for multi-objective
JSS, existing studies of JSS problems that have more than three objectives
(so-called many-objective) are still very limited. There are only a few stud-
ies on many-objective JSS [53, 147]. In [147], Nguyen et al. considered five
conflicting objectives to design dispatching rules for JSS problems. These
studies used multi-objective evolutionary algorithms (MOEAs) such as
NSGA-II [44] and SPEA2 [211] for solving the many-objective JSS Prob-
lems. However, MOEAs noticeably deteriorate their search ability when
more than three objectives are involved [31, 43]. One major reason for this
is that the proportion of non-dominated solutions in a population rises
rapidly with the number of objectives. This issue also becomes a part of
JSS problems, whenever optimization of more than three objectives is at-
tempted. Therefore, we aim to explicitly investigate JSS problems with
many conflicting objectives and consider the challenges of many-objective
optimization.

As we discussed in Chapter 1, rather than directly evolving Pareto-
optimal schedules, we evolve dispatching rules. We hope that the evolved
dispatching rules could achieve a good balance over many conflicting ob-
jectives. This is essentially a machine learning approach where rules can
be evolved based on a training set of problem instances and then further
evaluated on a different set of testing instances. In the literature, the most
effective technique is to evolve dispatching rules using (GP-HH) [143, 148]
which is also be adopted in this study. This chapter aims to use GP-HH for
evolving dispatching rules for many-objective JSS problems, which can provide
potential trade-offs among different objectives. The sub-objectives of this chap-

4.1. INTRODUCTION 77

ter are:

1. To develop a many-objective GP-HH method to evolve dispatching
rules for JSS,

2. To investigate the relationship among JSS objectives,

3. To perform detailed comparisons with other multi-objective evolu-
tionary algorithms (i.e. NSGA-II [44] and SPEA2 [211]) for verifying
the efficacy of the proposed algorithm in solving many-objective JSS.

The first sub-objective provides the algorithm for evolving a set of
trade-off dispatching rules in many-objective JSS. A few interesting many-
objective algorithms have already been developed in recent years [116, 43].
Among all the different technologies, we have particular interests in the
decomposition-based approach (see in Section 2.1.5 of Chapter 2). NSGA-
III is a state-of-the-art algorithm that can be seen as a decomposition-based
approach and has shown leading performance on many benchmark prob-
lems [43]. In this thesis, we used decomposition-based approaches specif-
ically for obtaining Pareto-optimal solutions for many-objective JSS prob-
lems. The second sub-objective will give an answer to the question of
how different scheduling objectives influence each other when they are
optimized together. Finally, the last sub-objective will examine multi-
objective optimization algorithms such as NSGA-II and SPEA2 are compe-
tent at tackling many-objective JSS problems. The first research objective’s
main goal is to use GP-HH for JSS problems to find the Pareto fronts of
non-dominated dispatching rules to deal with many conflicting objectives.
NSGA-II and SPEA2 were selected since they represent one of the most
popular Pareto dominance based multi-objective algorithm. Also, the ba-
sic framework of the NSGA-III remains similar to the original NSGA-II
algorithm. Further, NSGA-II and SPEA2 used in [147] and we will explore
the performance of the proposed many-objective algorithm as compared
to the NSGA-II and SPEA2 algorithms in solving many-objective JSS. In

78 CHAPTER 4. MANY-OBJECTIVE GP-HH FOR JSS

Section 4.2, a problem description is presented. Section 4.3 describes the
proposed algorithm for many-objective JSS. Section 4.4 gives a description
of the experimental studies. Section 4.5 describes the achieved results and
contains the discussion. Finally, Section 4.6 concludes this chapter.

4.2 Problem description

Based on the JSS problem described in Subsection 2.1.2 of Chapter 2,
our goal is to evolve useful dispatching rules that can build the com-
plete schedules incrementally. The quality of the schedules created by
using these rules will then be evaluated with respect to D objectives
f = {(f1, f2, . . . , fd)}.

Without losing generality, we assume that all the dimensions of f are
minimized. Here, we consider the case with D ≥ 4, i.e., there are four or
more objectives (many-objective JSS). Given two schedules ∆1 and ∆2, it is
said that ∆1 dominates ∆2 if and only if

∀i, 1 ≤ i ≤ D, fi(∆1) ≤ fi(∆2) (4.1)

and
∃i, fi(∆1) < fi(∆2). (4.2)

Consequently, if P1 is the dispatching rule that produces schedule ∆1 and
P2 is the dispatching rule that produces schedule ∆2, then we can also
say that, for the given problem instance I , P1 dominates P2. Based on the
above explanations, it should now be clear that our goal is to evolve a
collection of Pareto-optimal dispatching rules, jointly known as the Pareto-
front. Each dispatching rule in the Pareto-front is non-dominated by any
other rules evolved by using our proposed algorithm.

In the job shop, when a new job arrives at an idle machine that job
will be processed immediately. The information about that job will be ex-
tracted from the terminals in Table 3.2 of Chapter 3. Then, the dispatching
rule will be evaluated and after the evaluation, priority will be assigned

4.3. MANY-OBJECTIVE-GP-HH FOR JSS 79

Figure 4.1: Illustration of a dispatching rule in JSS.

to the considered job. This procedure will be applied until priorities are
assigned to all waiting jobs on the machine and the job in the queue with
the highest priority will be processed next. This can be seen in Figure 4.1.

4.3 Many-objective-GP-HH for JSS

This section shows how the proposed Many-Objective-GP-HH method is
used to solve many-objective JSS problems. It is common to use hyper-
heuristics for evolving dispatching rules for JSS and this has achieved
great success [68, 87]. Section 4.3.1 will show how GP represents dispatch-
ing rules. The newly proposed algorithm which is named GP-NSGA-III
is given in Algorithm 3. GP-NSGA-III combines the initialization, evalua-
tion, and evolutionary operators of GP and the selection scheme of NSGA-
III. Then, the proposed Many-Objective-GP-HH algorithm is presented.

80 CHAPTER 4. MANY-OBJECTIVE GP-HH FOR JSS

4.3.1 Representation of rules

As with previous studies of GP for JSS problems [143, 147], dispatching
rules are also represented by GP trees [105] in this thesis. Basically, dis-
patching determines the priorities of jobs waiting in the queue. Figure 4.2
shows the GP tree representation of the 2PT+WINQ+NPT rule [70].

Figure 4.2: The GP tree representation of the 2PT+WINQ+NPT rule.

In Figure 4.2, the terminals in that tree are {2, PT, WINQ, NPT}, and the
non-terminals are {+, ∗}. Proper terminal and non-terminal sets are cru-
cial for constructing promising and concise search space for GP. GP-based
approaches in this thesis use a mixture of terminal sets. These terminals
are used by existing GP-HH approaches in the literature and evolved qual-
ity rules [141, 143, 147]. These terminals range is from common attributes
(e.g., operation processing time PT) to more complex terminals (e.g., pro-
cessing time of the next operation NPT). WINQ and NPT reflect the status
of the current machines. Whereas WINQ denotes the sum of imminent
process times of all jobs waiting at the queue of the next operation of job i.
The commonly considered job shop attributes are included in this thesis,
which has been summarized in Table 3.2 of Chapter 3.

4.3.2 General framework of GP-NSGA-III

In this thesis, we evolve dispatching rules to minimize four popular JSS
objectives which include the mean flowtime (see equation (2.1) of Chapter

4.3. MANY-OBJECTIVE-GP-HH FOR JSS 81

Algorithm 3: The framework of GP-NSGA-III.
Input : A training set Itrain
Output: A set of non-dominated rules P ∗

1 Initialize and evaluate the population P 0 of rules by the
ramped-half-and-half method;

2 Calculate set of reference points Z;
3 Set Pg ← P0 and generation← 0;
4 while generation < maxGeneration do
5 Generate the offspring population Qg using the crossover,

mutation and reproduction of GP;
6 foreach Q ∈ Qg do
7 Evaluate rule Q
8 end
9 Rg ← P g ∪Qg;

10 (F1, F2, · · ·)← Non-dominated-sort(Rg);
11 Form the new population P g+1 from (F1, F2, · · ·) by the

NSGA-III selection;
12 generation← generation+ 1;

13 end
14 return The non-dominated individuals P ∗ ⊆ Pgmax ;

2), maximal flowtime (see equation (2.2) of Chapter 2), mean weighted
tardiness (see equation (2.6) of Chapter 2), maximal weighted tardiness
(see equation (2.7) of Chapter 2).

The GP-NSGA-III algorithm explores the Pareto-front of non-
dominated dispatching rules regarding the four objectives mentioned
above. Algorithm 3 shows the workflow of our proposed many-objective
algorithm. In this algorithm, first, a number of training instances are given
as input. The initial GP population P0 is created using the ramped-half-
and-half method [105]. The ramped half-and-half is the best generative
method that works best over a broad range of problems and generates a

82 CHAPTER 4. MANY-OBJECTIVE GP-HH FOR JSS

wide variety of tree sizes and shapes [105]. All individuals in the GP popu-
lation P0 will be evaluated by applying the rules to training instances. This
fitness evaluation of GP population P0 is required in line 1 of Algorithm 3.

Algorithm 4: The evaluation of a dispatching rule.
Input : A training set Itrain and a rule P
Output: The fitness f(P) of the rule P

1 foreach I in Itrain do
2 Construct a schedule ∆(P, I) by applying the rule P to the JSS

instance I ;
3 Calculate the objective values f(∆(P, I));

4 end
5 f(P)← 1

|Itrain|
∑

I∈Itrain
f(∆(P, I));

6 return f(P);

The detailed process for fitness evaluation is presented in Algorithm
4 where f(.) is the objective vector. The quality of each individual (dis-
patching rule) in the population will be measured by the average value
of the objectives across all training instances. This is shown in line 5 of
Algorithm 4.

After all, individuals have been evaluated then the reference points
Z are generated in Algorithm 3. In this study, we use Das and Dennis’s
systematic approach [39]. In this approach, reference points to place on a
normalized hyperplane (for more detail, refer to Subsection 2.1.6 in Chap-
ter 2). Next, in the algorithm, offspring (Qg) of generation g is generated
by applying subtree crossover and subtree mutation to the current popu-
lation (Pg). The fitness evaluation of Qg is required in line 7 of Algorithm
3. The detailed process for fitness evaluation is presented in Algorithm
4. After the fitness evaluation of Qg, GP-NSGA-III combines the offspring
population and the parent Pg together. Later, all the individuals in the
combined populationRg are sorted according to different non-domination

4.4. EXPERIMENTAL STUDIES 83

ranks (F1, F2 . . . , Fl−1, Fl). Then, each non-domination rank is selected one
at a time to construct a new population of next-generation Pg+1, starting
from F1 to Fl or until the size of the population reaches to N (population
size). All solutions from F(l+1) to onwards are rejected from the combined
populationRg. If Fl cannot be fully inserted into the population, then each
individual of Fl is assigned to a reference point Z ∈ Z and selected one by
one using the niching method (details of the niching method can be seen
in Subsection 2.1.5 of Chapter 2) and in [43].

4.4 Experimental studies

In this section, experimental studies will be conducted to compare the pro-
posed GP-NSGA-III to GP-NSGA-II and GP-SPEA2 which are two well-
known MOEAs. All compared algorithms are combined with GP as well,
i.e., they adopted the solution representation and evolutionary operators
of GP and selection mechanisms of NSGA-II and SPEA2 (The detailed in-
formation of NSGA-II and SPEA2 can be seen in Section 2.1.4 of Chapter
2). In the following, we will describe the parameter settings of the algo-
rithms. For each run of each compared algorithm, the experiment consists
of two steps as follows.

1. In the first step, the algorithm (GP-NSGA-III, GP-NSGA-II, or GP-
SPEA2) is applied to the training set and obtain a set of trade-offs
dispatching rules;

2. In the second step, for every problem instance in the test set, we
apply every newly evolved rule to produce a schedule and calculate
all the considered objective values with respect to the schedule.

The above steps are repeated for the compared GP-NSGA-III, GP-
NSGA-II and GP-SPEA2 algorithms. In terms of objectives, four objec-
tives, i.e. the mean flowtime (mF) (see equation (2.1) of Chapter 2) , max-
imal flowtime (maxF) (see equation (2.2) of Chapter 2), mean weighted

84 CHAPTER 4. MANY-OBJECTIVE GP-HH FOR JSS

tardiness (mWT) (see equation (2.6) of Chapter 2) and maximal weighted
tardiness (maxWT) (see equation (2.7) of Chapter 2) are considered to min-
imize in the experiment. We selected the Taillard (TA) static JSS bench-
mark instances [182] as the testbed. (The detailed information of TA can
be found in Section 3.1 of Chapter 3).

4.4.1 Parameter settings

The population size for GP-NSGA-II and GP-SPEA2 is set to 1024. This
is a reasonably large population size that ensures enough diversity in the
population [135, 145]. The elitist archive of size in GP-SPEA2 is set to
512 by following the ECJ [125] guidelines (we used the ECJ platform for
implementing our algorithms). GP-NSGA-II builds the archive separately
which maintains the current best individuals. On the other hand, GP-
SPEA2 archive consists of the specified proportion of its population.

NSGA-III is suggested that the population size is equal to the number
of reference points [43]. In addition, the reference points of NSGA-III de-
pends on the number of objectives. In this study, we chose the population
size for GP-NSGA-III that are not significantly different from GP-NSGA-II
and GP-SPEA2. The population size chooses for GP-NSGA-III is 1025.

The total number of generations is set to 50, commonly used in the lit-
erature [145, 164]. The crossover rate is set to 85% and the mutation rate
is set to 10%. The reproduction rate is set to 5%. These rates (reproduc-
tion, crossover, and mutation) have been previously used in [145]. The
maximum depth of dispatching rules is set to eight. This depth is used
to restrict the dispatching rule from becoming too large [145]. However,
we can choose this maximum depth to decrease the computational times
of the GP system and make the evolved rules easier to analyze. Tourna-
ment selection with a tournament size of seven is used to select individuals
for genetic operations [105]. In the experiments, the two commonly used
measures in multi-objective optimization, i.e., IGD [206] and HV [212] are

4.5. RESULTS AND DISCUSSIONS 85

used to compare the algorithms (The detailed information can be seen in
Section 3.3 of Chapter 3).

4.5 Results and discussions

In the experiment, for each of the three algorithms, 30 independent runs
are carried out. Then, the mean and the standard deviation of HV and
IGD values are reported. First, we will analyze how the different schedul-
ing objectives are correlated with each other. Then, we will present the
training performance results followed by testing performance results.

4.5.1 Relationship among scheduling objectives

This section will analyze how the different scheduling objectives are cor-
related with each other. In order to visualize the interdependencies be-
tween different objectives, we used the aggregated Pareto-front, including
the non-dominated evolved dispatching rules extracted from Pareto-front
generated by all compared algorithms in 30 independent runs on the train-
ing instances. Figure 4.3 shows a scatter plot matrix that contains all the
pairwise of four objectives (any two plots in a scatter plot matrix are simi-
lar with respect to the diagonal and these two axes are interchanged). This
plot helps us to understand the trade-offs between objectives and how op-
timizing one objective influences optimizing another objective.

Figure 4.3 shows that flowtime objectives (maxF-mF) are conflicting in
nature meaning that by optimizing one objective, the other objective be-
comes worse. Therefore, maxF compromises its objective values because
of the mF and vice versa. This is because trying to minimize the maxF
could negatively affect several other jobs in the shop and thus increase
the total mF of the entire system. Also, if we are trying to minimize the
maxWT it may increase the mWT of other jobs which are late in the entire
system.

86 CHAPTER 4. MANY-OBJECTIVE GP-HH FOR JSS

Scatter Plot Matrix

mF440

460

480

500 440 460 480 500

380

400

420

440

380 400 420 440

maxF620

640

660

680 620 640 660 680

560

580

600

620

560 580 600 620

mWT
600

700
600 700

400

500

400 500

maxWT

1500

2000 1500 2000

500

1000

500 1000

Figure 4.3: Pareto-front for pairwise objective combination.

4.5. RESULTS AND DISCUSSIONS 87

180 185 190 195 200

26
0

28
0

30
0

32
0

34
0

meanW_T

m
ax

_T

Figure 4.4: Pareto-front for pairwise objectives combination between
(mWT −maxWT).

It is interesting to note from Figure 4.3 that mF and mWT have a strong
relationship when the values are high. Thus, by optimizing one objective,
the other objective will also be indirectly optimized. However, trade-offs
between mF and mWT can be witnessed when these objectives reach their
lowest extreme. We can see from the Pareto-front that reducing maxWT
will deteriorate other objectives. On the other hand, maxF optimized well
with mWT and mF.

It can also be observed from Figure 4.4 that the due date related objec-
tives (maxWT-mWT) have overlapping solutions. This could be possible
because the jobs which contribute late to the objective value are mostly
redundant.

88 CHAPTER 4. MANY-OBJECTIVE GP-HH FOR JSS

Table 4.1: The mean and standard deviation over the average HV and
IGD values on training instances of the compared algorithms in the four-
objective experiment.

HV (x̄± σ)

GP-NSGA-III GP-NSGA-II GP-SPEA2

0.694(0.0152) 0.688(0.0220) 0.564(0.0233)

IGD (x̄± σ)

GP-NSGA-III GP-NSGA-II GP-SPEA2

0.00139(0.00021) 0.00163(0.00034) 0.00235(0.00019)

4.5.2 Results

Table 4.1 shows the mean and standard deviations of the training perfor-
mance in terms of HV and IGD of the rules obtained by GP-NSGA-III,
GP-NSGA-II, and GP-SPEA2. For each instance, Wilcoxon’s rank-sum test
[195] is conducted to compare the best performing algorithm against the
other two algorithms. The significance level is set to 0.05. If both p-values
are smaller than 0.05, then the best algorithm is considered significantly
better than the other two algorithms. The significantly better results are
marked in bold.

Performance of Obtained Dispatching Rules

Table 4.1 reveals that GP-NSGA-III outperforms GP-NSGA-II and GP-
SPEA2 in terms of both HV and IGD on training instances. However,
GP-NSGA-II is very competitive with GP-NSGA-III in terms of HV. For
more detail, Tables 4.2 and 4.3 show the test performance on the 40 test
instances.

Tables 4.2 and 4.3 show the mean and standard deviation over the HV
and IGD values of the 30 independent runs of the compared algorithms
with respect to the 40 test instances in the 4-objective experiment. In the
tables, “ID” is the instance ID, and #J and #M indicate the number of jobs

4.5. RESULTS AND DISCUSSIONS 89

and machines, respectively. One can see that as the instance ID increases,
the problem size increases as well.

Tables 4.2 and 4.3 together suggest that GP-NSGA-III performed sig-
nificantly better in terms of both HV and IGD than GP-NSGA-II and GP-
SPEA2 in most of the tested instances with four objectives have signifi-
cantly deteriorated each other. In terms of HV, GP-NSGA-III performed
the best with statistical significance in 31 out of the total 40 instances. GP-
NSGA-II outperformed the other algorithms in the remaining 8 instances.
GP-SPEA2 failed to achieve the best performance in any instance.

In terms of IGD, Table 4.3 reveals a similar pattern. GP-NSGA-III per-
formed significantly better in 37 out of the 40 instances, and GP-NSGA-II
achieved the best performance in the remaining 3 instances. Again, there
is no instance in which GP-SPEA2 performed the best.

When taking a closer look at the tables, it can be found that GP-NSGA-
II performed better on smaller instances (no more than 20 jobs and 20 ma-
chines). On the other hand, GP-NSGA-III appeared to be more effective
on larger instances. This demonstrates the advantage of GP-NSGA-III, es-
pecially on challenging problems. In addition, GP-NSGA-III appeared to
be more effective at improving IGD than HV. This might be GP-NSGA-III
seem to contribute most of the non-dominated solutions in the approxi-
mate Pareto-front.

4.5.3 Discussions

In this section, we further analyze the evolved dispatching rules and ob-
tained distribution of the optimal solutions. We also show the average HV
and IGD of the non-dominated solutions evolved by compared algorithms
across multiple generations.

Computational Complexity of the Algorithm

The proposed algorithm (GP-NSGA-III) is hybridized, combines GP with
the evaluation scheme of NSGA-III. So, the main computational complex-

90 CHAPTER 4. MANY-OBJECTIVE GP-HH FOR JSS

Table 4.2: The mean and standard deviation over the HV values on the test
instances of the compared algorithms.

ID #J #M GP-NSGA-III GP-NSGA-II GP-SPEA2
1 15 15 .0292(.0068) .0035(.0007) .0170(.0028)
2 15 15 .0541(.0049) .3430(.0493) .0345(.0037)
3 15 15 .0668(.0062) .0197(.0021) .0179(.0017)
4 15 15 .0329(.0049) .1136(.0250) .0126 (.0012)
5 15 15 .0344(.0034) .0122(.0012) .0116(.0017)
6 20 15 .1027(.0087) .1796(.0094) .0410(.0032)
7 20 15 .0668(.0085) .2354(.0122) .0425(.0017)
8 20 15 .1193(.0118) .2506(.0138) .0457(.0029)
9 20 15 .1287(.0109) .0593(.0035) .0602(.0047)

10 20 15 .1106(.0118) .0876(.0038) .0533(.0032)
11 20 20 .0945(.0056) .2706(.0139) .0307(.0031)
12 20 20 .0873(.0064) .5793(.0209) .0361(.0021)
13 20 20 .0348(.0057) .0332(.0015) .0346(.0024)
14 20 20 .0826(.0047) .0241(.0017) .0330(.0025)
15 20 20 .0030(.0032) .0161(.0012) .0158(.0017)
16 30 15 .2235(.0188) .1729(.0048) .1263(.0062)
17 30 15 .2092(.0132) .1514(.0046) .1139(.0047)
18 30 15 .1932(.0132) .1402(.0041) .1194(.0057)
19 30 15 .1976(.0161) .1525(.0057) .1058(.0040)
20 30 15 .1863(.0157) .1533(.0044) .1163(.0046)
21 30 20 .1863(.0184) .1188(.0038) .0839(.0047)
22 30 20 .0777(.0067) .0230(.0019) .0249(.0031)
23 30 20 .1739(.0127) .1119(.0034) .0880(.0058)
24 30 20 .1687(.0147) .1401(.0028) .0900(.0034)
25 30 20 .1692(.0127) .1252(.0035) .0920(.0044)
26 50 15 .2609(.0139) .1999(.0062) .1713(.0070)
27 50 15 .3092(.0229) .2035(.0047) .1750(.0061)
28 50 15 .2453(.0159) .1820(.0070) .1577(.0058)
29 50 15 .2811(.0216) .1789(.0062) .1578(.0067)
30 50 15 .2708(.0177) .1845(.0053) .1599(.0098)
31 50 20 .2143(.0135) .1738(.0062) .1366(.0054)
32 50 20 .3182(.0193) .2001(.0042) .1582(.0045)
33 50 20 .2568(.0162) .1829(.0066) .1383(.0051)
34 50 20 .2955(.0189) .1876(.0046) .1522(.0055)
35 50 20 .2737(.0130) .1851(.0043) .1500(.0064)
36 100 20 .3333(.0163) .2169(.0062) .2131(.0081)
37 100 20 .2687(.0164) .0896(.0037) .0796(.0048)
38 100 20 .2659(.0145) .2141(.0057) .2132(.0061)
39 100 20 .2345(.0134) .1141(.0668) .1111(.0055)
40 100 20 .3564(.0190) .2217(.0046) .2211(.0059)

4.5. RESULTS AND DISCUSSIONS 91

Table 4.3: The mean and standard deviation over the IGD values on the
test instances of the compared algorithms.

ID #J #M GP-NSGA-III GP-NSGA-II GP-SPEA2
1 15 15 .0071(4.0E-05) .0077(4.9E-05) .0087(1.4E-05)
2 15 20 .0071(6.9E-05) .0037(2.1E-05) .0105(9.3E-05)
3 15 15 .0009(1.9E-05) .0018(6.1E-06) .0017(1.8E-05)
4 15 15 .0057(3.9E-05) .0036(1.2E-05) .0119(4.7E-05)
5 15 15 .0013(1.6E-05) .0023(1.4E-05) .0037(4.9E-05)
6 20 15 .0024(2.2E-05) .0028(3.3E-05) .0051(6.2E-05)
7 20 15 .0110(7.5E-05) .0088(5.9E-05) .0167(1.4E-05)
8 20 15 .0027(4.0E-05) .0038(3.3E-05) .0060(9.2E-05)
9 20 15 .0023(2.3E-05) .0033(3.9E-05) .0054(7.5E-05)
10 20 15 .0029(3.0E-05) .0044(5.6E-05) .0072(9.0E-05)
11 20 20 .0017(1.4E-05) .0025(1.5E-05) .0046(6.3E-05)
12 20 20 .0023(1.8E-05) .0031(2.4E-05) .0048(5.9E-05)
13 20 20 .0016(9.7E-06) .0027(1.0E-05) .0042(8.1E-05)
14 20 20 .0021(2.3E-05) .0027(2.2E-05) .0045(5.7E-05)
15 20 20 .0032(3.6E-05) .0050(4.0E-05) .0083(9.3E-05)
16 30 15 .0009(1.7E-05) .0013(1.9E-05) .0020(2.5E-05)
17 30 15 .0024(3.3E-05) .0032(4.9E-05) .0054(5.5E-05)
18 30 15 .0017(2.0E-05) .0023(3.0E-05) .0036(3.4E-05)
19 30 15 .0025(3.4E-05) .0033(3.8E-05) .0052(6.3E-05)
20 30 15 .0015(2.3E-05) .0018(3.1E-05) .0030(2.8E-05)
21 30 20 .0026(4.1E-05) .0033(4.7E-05) .0050(1.0E-05)
22 30 20 .0040(2.5E-05) .0048(2.7E-05) .0080(7.5E-05)
23 30 20 .0027(2.0E-05) .0031(3.1E-05) .0048(4.4E-05)
24 30 20 .0033(5.1E-05) .0037(5.0E-05) .0059(6.3E-05)
25 30 20 .0030(4.0E-05) .0037(3.6E-05) .0059(6.1E-05)
26 50 15 .0013(1.3E-05) .0018(2.9E-05) .0031(3.5E-05)
27 50 15 .0007(1.2E-05) .0013(2.2E-05) .0022(2.7E-05)
28 50 15 .0041(4.2E-05) .0047(8.3E-05) .0081(9.8E-05)
29 50 15 .0017(3.0E-05) .0023(4.2E-05) .0041(4.9E-05)
30 50 15 .0020(3.6E-05) .0024(4.0E-05) .0041(4.6E-05)
31 50 20 .0010(1.0E-05) .0015(4.2E-05) .0024(4.3E-05)
32 50 20 .0008(9.6E-06) .0013(2.1E-05) .0021(3.2E-05)
33 50 20 .0033(5.0E-05) .0035(4.5E-05) .0058(6.6E-05)
34 50 20 .0012(2.4E-05) .0016(2.8E-05) .0026(2.7E-05)
35 50 20 .0013(2.2E-05) .0020(3.3E-05) .0034(3.4E-05)
36 100 20 .0011(1.6E-05) .0016(1.9E-05) .0030(3.8E-05)
37 100 20 .0005(8.4E-06) .0012(1.9E-05) .0010(1.4E-05)
38 100 20 .0015(1.7E-05) .0018(3.3E-05) .0035(8.8E-05)
39 100 20 .0012(1.3E-05) .0027(3.7E-05) .0047(5.8E-05)
40 100 20 .0009(1.4E-05) .0015(2.3E-05) .0028(4.6E-05)

92 CHAPTER 4. MANY-OBJECTIVE GP-HH FOR JSS

ity resulted from an evaluation scheme of NSGA-III and computational
time for evolving dispatching rules. The evaluation scheme of NSGA-III
holds a computational complexity of O(MN2) [43], where M is the objec-
tive number and N is the population size. In addition, the computational
complexity of two compared algorithms (NSGA-II and SPEA2) are also
having O(MN2) [44, 211].

To know the computational cost of each algorithm to evolve rules, we
performed several experiments. Figure 4.5 shows each algorithm’s com-
putational cost (GP-NSGA-III, GP-NSGA-II, GP-SPEA2) to evolve rules.
Figure 4.5 reveals that the computational cost of GP-NSGA-III is lower
than GP-NSGA-II and GP-SPEA2. In addition, the computational time
of GP-NSGA-III is quite consistent in all generations as compared to GP-
NSGA-II and GP-SPEA2. One possible explanation is that GP-NSGA-II
and GP-SPEA2 have trouble finding effective compact rules in most gen-
erations and good performances can only be obtained by large and so-
phisticated rules in the GP-NSGA-II and GP-SPEA2 populations. As these
rules are evolved, they will take GP-NSGA-II and GP-SPEA2 more time
for evaluations.

The lengths of rules obtained by GP-NSGA-III, GP-NSGA-II, and GP-
SPEA2 are shown in Figure 4.6. The length of a rule is the total num-
ber of nodes, including terminal and function nodes. In most genera-
tions, GP-NSGA-III produces shorter rules as compared to GP-NSGA-II,
and GP-SPEA2. This is also consistent with our results that the compu-
tational time of GP-NSGA-III is lower than GP-NSGA-II and GP-SPEA2.
This is because GP-NSGA-III can find more compact rules which require
less time for evaluations. Further, the rules generated by GP-SPEA2 is rel-
atively short as compared to GP-NSGA-II. Given the poor performance of
the rules generated by GP-SPEA2 in terms of HV and IGD (see Section
4.5.2), the results here show that GP-SPEA2 has failed to develop effective
rules.

Figure 4.7 shows the length of the best rules of each run. Overall the

4.5. RESULTS AND DISCUSSIONS 93

Figure 4.5: Computational time to evolve dispatching rules

Figure 4.6: Length of rules of each generation in GP-NSGA-II, GP-SPEA2,
and GP-NSGA-III.

the length of the best rules of GP-NSGA-II and GP-SPEA2 are quite long
as compared to GP-NSGA-III which may directly affect the computational
time of the algorithm.

94 CHAPTER 4. MANY-OBJECTIVE GP-HH FOR JSS

0

10000

20000

30000

40000

50000

60000

70000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

L
e
n

g
th

 o
f

ru
le

s

Runs

GP-NSGA-III GP-NSGA-II GP-SPEA2

Figure 4.7: Length of the best rules of each run in GP-NSGA-II, GP-SPEA2,
and GP-NSGA-III.

Analysis of dispatching rules

This section analyzes each terminal’s frequency that was counted in the
set of 30 independent runs of evolved rules from GP-NSGA-II, GP-SPEA2,
and GP-NSGA-III. From the frequency of terminals, we can further an-
alyze the relevant and irrelevant terminals. The bar chart in Figure 4.8
shows the frequency of terminals in each algorithm. We can be seen from
Figure 4.8 that W and PT are the most frequently chosen terminals in all
algorithms. However, we need to investigate the relevance of terminals to
optimize tardiness and flowtime objectives.

According to the existing studies in the literature [70, 114], MRT, PT,
WKR, WINQ, NOINQ, FDD, and NOPT are useful terminals (relevant)
for optimizing flowtime objectives. Specifically, PT, WINQ, and WKR are
the most important three terminals for optimizing the flowtime objective.
On the other hand, WINQ, NOINQ, NOPT, W, PT, MRT, and DD are the

4.5. RESULTS AND DISCUSSIONS 95

useful terminals for optimizing tardiness objectives. PT, DD, and W are
the most useful terminals for optimizing tardiness objectives.

It can be seen from Figure 4.8 that W, PT are the most frequently chosen
terminals in all algorithms. The frequency of occurrences of PT and W
terminals is higher in the GP-NSGA-III than GP-NSGA-II. It can also be
seen that WINQ, MRT, NOPT, and DD are also more frequent terminals
in GP-NSGA-III. NOINQ and WKR are more frequent terminals in GP-
NSGA-II. GP-NSGA-III and GP-NSGA-II have an identical frequency of
occurrences of FDD. It is not very clear whether the remaining terminals
(WIQ, NMRT) are useful or not.

It can be seen from Figure 4.8 that GP-NSGA-III has a greater frequency
of useful terminals which positively affects the performance of the GP-
NSGA-III. As mentioned in the last section 4.5.2, GP-NSGA-III evolved
significantly better rules as compared to the other algorithms in terms of
HV and IGD. Therefore, GP-NSGA-III selects well-converged and well-
diversified rules. In this sense, these selected rules are well-optimized and
have more occurrences of these useful terminals.

Feature relevance

The contribution of a feature (terminal) to a priority function on a set of
JSS instances show the relevancy of each terminal. In other words, the
terminal (ti) contribution to the priority function is the difference between
the fitness values before and after removing ti from the priority function.
A positive value of contribution indicates that after removing ti, the new
dispatching rule will generate worse schedules for the tested JSS instances.
On the other hand, a negative value implies that ti makes a negative contri-
bution to a priority function, and removing ti can lead to an improvement
in the performance. If the value is zero, ti makes no contribution. Intu-
itively, if ti is a more relevant or useful terminal, it contributes to the rules
that perform well in tested JSS instances.

To perform this experiment, we are using an offline terminal-selection

96 CHAPTER 4. MANY-OBJECTIVE GP-HH FOR JSS

Figure 4.8: Frequency of terminals in GP-NSGA-II, GP-SPEA2, and GP-
NSGA-III.

strategy. We used the following steps for the selection of terminals.

1. simplify the obtained rules(see Section 4.5.2) according to the princi-
ples which were proposed in [131],

2. calculate the relevance of each terminal which is based on the 30 best
rules.

The bar chart in Figure 4.9 shows the frequency of each terminal (after
simplification of rules) that was counted in the set of 30 independent runs
of evolved rules from GP-NSGA-III, GP-NSGA-II, GP-SPEA2. Figure 4.8
reveals that W and PT are the most frequently chosen terminals in all al-
gorithms which is consistent with Figure 4.8 where the W and PT are also
the most frequent terminals. Figure 4.9 also shows the PT and W termi-
nals’ frequencies are higher in the GP-NSGA-III than GP-NSGA-II and
GP-SPEA2. It can be seen from Figure 4.8 that the WKR is a more fre-
quent terminal in GP-NSGA-II but Figure 4.9 shows after simplification

4.5. RESULTS AND DISCUSSIONS 97

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

W PT FDD DD WKR MRT WINQ NOIQ NOINQ NMRT NOPT WIQ

F
re

q
u

e
n

c
y
 o

f
T
e
rm

in
a
ls

Terminals

GP-NSGA-III GP-NSGA-II GP-SPEA2

Figure 4.9: Frequency of terminals (after simplification) in GP-NSGA-III,
GP-NSGA-II, GP-SPEA2.

of rules, WKR is the most frequent terminals in GP-NSGA-III. Moreover,
GP-NSGA-III and GP-NSGA-II have an identical frequency of occurrences
of FDD in Figure 4.8 but after simplification of rules, FDD is higher in the
GP-NSGA-II.

Figure 4.10 shows the average relevance of terminals from all three al-
gorithms to optimize tardiness and flowtime objectives. Figure 4.10 re-
veals that PT has the largest relevance (nearly 0.48), followed by PT, which
is about 0.4. There are 4 features whose relevance is almost close to zero
(FDD, NOIQ, NMRT, and WIQ), indicating that they made no contribution
to the best rule most of the time. Hence W, PT, DD, WKR, MRT, WINQ,
NOINQ, and NOPT are selected as relevant terminals to tardiness and
flowtime objectives. Most of these terminals are higher in the GP-NSGA-
III than GP-NSGA-II and GP-SPEA2 which can positively affect the per-
formance of the GP-NSGA-III.

98 CHAPTER 4. MANY-OBJECTIVE GP-HH FOR JSS

0

0.1

0.2

0.3

0.4

0.5

0.6

W PT FDD DD WKR MRT WINQ NOIQ NOINQ NMRT NOPT WIQ

R
e
le

v
a
n

c
e

Terminals

Figure 4.10: The average relevance of each terminal over the 30 indepen-
dent runs of GP-NSGA-III, GP-NSGA-II and GP-SPEA2 on the training
set.

Further analysis

To further investigate how the reference point scheme affects the GP search
process, the average HV and average IGD of the non-dominated solutions
obtained on training instances are plotted for each generation during the
30 independent runs of the three compared algorithms, as given in Figures
4.11 and 4.12.

Figures 4.11 and 4.12 show that GP-NSGA-III obtained better conver-
gence curves in terms of both HV and IGD as compared to the GP-NSGA-
II and GP-SPEA2. The convergence curve shows that in terms of HV, GP-
NSGA-II performs better in the early generations but then GP-NSGA-III
has better HV value than the other two compared algorithms. GP-SPEA2
obtained the worst performance in both HV and IGD, which is consistent
with the results reported in Table 4.1.

4.5. RESULTS AND DISCUSSIONS 99

Figure 4.11: The average HV value of the non-dominated solutions on the
training set during the 30 independent GP runs.

Figure 4.12: The average IGD value of the non-dominated solutions on the
training set during the 30 independent GP runs.

Figures 4.13 (a) and 4.13 (b) depict the populations’ distribution of the
fitness values of GP-NSGA-II and GP-NSGA-III in generations 50 with 4
objectives. It can be seen that GP-NSGA-III managed to achieve better
values in objectives 3 and 4 and covered a wider range of trade-offs cor-
responding to objective 1. This also shows that GP-NSGA-III can evolve

100 CHAPTER 4. MANY-OBJECTIVE GP-HH FOR JSS

(a) GP-NSGA-II (b) GP-NSGA-III.

Figure 4.13: Parallel coordinate plot for the distribution of the reference
points and the fitness values of the population at generations 50 .

more diversified rules than GP-NSGA-II.

Figures 4.14 (a) to 4.16 (b) represents the box plots of the HV and
IGD values on different test instances. For the HV metric, GP-NSGA-III
achieved significantly better results on complex instances (ID-21 and ID-
32). On the other hand, GP-NSGA-II performs significantly better on the
smallest instance (ID-6). As for IGD, GP-NSGA-III has again proven to
be significantly better than the other two algorithms on both small and
complex instances.

4.6 Chapter summary

Dispatching rules for JSS problems are mainly designed in the literature
for single-objective and multi-objective optimization problems. However,
several industries (e.g., manufacturing and cloud) require suitable dis-
patching rules that can balance several objectives instead of simply focus-

4.6. CHAPTER SUMMARY 101

(a) HV (b) IGD.

Figure 4.14: Box plots on instance 6 of the compared algorithms.

(a) HV (b) IGD.

Figure 4.15: Box plots on instance 21 of the compared algorithms.

ing only on one objective. Thus, this chapter studies the importance of
considering many (four) potentially conflicting objectives for effective JSS.
Aiming at solving JSS problems with many objectives, the new algorithm

102 CHAPTER 4. MANY-OBJECTIVE GP-HH FOR JSS

(a) HV (b) IGD.

Figure 4.16: Box plots on instance 32 of the compared algorithms.

was developed that seamlessly combines GP-HH for evolving dispatching
rules with the selection technique introduced in NSGA-III.

Extensive experiments have been performed to investigate the pro-
posed algorithm’s effectiveness compared with the other two popular
multi-objective algorithms, i.e., NSGA-II and SPEA2. The experimental
studies utilized the Taillard static job-shop benchmark set. Our experi-
ment results gave evidence that the proposed algorithm performed con-
sistently better than GP-NSGA-II and GP-SPEA2 on the majority of the
problem instances.

Several interesting conclusions were also drawn. The results have
shown on both training and test instances, GP-NSGA-III can evolve more
effective rules than GP-NSGA-II and GP-SPEA2 in terms of HV and IGD.
Further, GP-NSGA-III has well-optimized rules; therefore, it has more ef-
fective terminals than GP-NSGA-II and GP-SPEA2. Further, the results
show that the evolved rules enjoy high generalization capability and can
effectively tackle both training instances and unseen problem instances.

In the next chapter, we will focus on addressing the second issue: di-

4.6. CHAPTER SUMMARY 103

versity maintenance [199]. In the literature, diversity maintenance is of-
ten controlled by providing multiple predefined reference points. These
points are widely distributed. However, uniformly distributed reference
points are inappropriate when the true Pareto-front is non-uniform and
irregular [85, 86], such as JSS problems. These problems may have some
reference points that are never associated with any of the Pareto-optimal
solutions and will become useless reference points during evaluation. The
existence of these useless reference points in algorithms significantly af-
fects its performance. To address this issue, we have proposed a new ref-
erence point adaptation mechanisms in our next chapter.

104 CHAPTER 4. MANY-OBJECTIVE GP-HH FOR JSS

Chapter 5

Reference Points Adaptation for
Many-Objective JSS

5.1 Introduction

This chapter addresses the second issue of many-objective optimization
problems (MaOPs), which is diversity maintenance [199]. In the literature,
diversity maintenance is often controlled by providing multiple prede-
fined reference points such as NSGA-III [43] and SPEAR [92]. These points
are widely distributed on a normalized hyperplane (simplex) [31, 43] and
they are expected to guide the population to be distributed evenly over
the true Pareto-front [43].

Reference points based algorithms such as NSGA-III [43], RVEA [31],
and SPEAR [92] use a predefined set of uniformly distributed reference
points and they have successfully solved various practical many-objective
optimization problems [43]. This set of widely distributed reference points
promotes the diversity of evolved solutions in the Pareto-front with three
to fifteen objectives.

Even though these algorithms have successfully solved various practi-
cal MaOPs, they still have challenges when applying to real-world prob-
lems such as the car cab design problem and the design of vehicle prob-

105

106 CHAPTER 5. REFERENCE POINTS ADAPTATION METHODS

lems. These real-world problems usually have non-uniform and irregular
Pareto-front. Therefore, the adoption of uniformly distributed reference
points affects algorithms’ performance adversely [85, 86]. This is because
many of these reference points are never associated with any of the opti-
mal solutions and become useless. Also, useless reference points will no-
tably affect the performance of reference points based algorithms which
is hard to achieve whenever the true Pareto-front is irregular (e.g., non-
convex or non-uniform). This issue has been highlighted in the literature
[85, 86].

Particularly, in problems with an irregular, non-uniform and discon-
nected Pareto-front, a few reference points are associated with more than
one optimal solution in their closest proximity. If the reference point is as-
sociated with many solutions, they may not be selected during evolution.
Therefore, candidate solutions that should enjoy higher selection oppor-
tunities may not be selected because they are associated with a popular
reference point [86]. Figure 5.1 shows that reference point F is associated
with many solutions than the other useful points (A, C, and D). Consider
the population size (N=10) in this example. Therefore, reference point (A

or C or D) has the minimum associated solutions selected first and mem-
bers associated with these points become a part of the next generation.
The reference point F has a lesser selection opportunity than the other ref-
erence points. This is because a number of solutions associated with A, C,
and D are equal to the population size. Thus, solutions associated with
F may not be part of the next generation and highly affect the solution
diversity.

In many combinatorial optimization problems, such as job shop
scheduling (JSS) problems, the true Pareto-front is usually irregular and
discontinuous [142]. JSS problems have also inherited the issue of use-
less reference points, i.e., the solution diversity’s demotion. Despite the
promising results of GP-NSGA-III (the detailed information can be seen
in Subsection 4.3.2 of Chapter 4), we have found (shown in Figure 5.2) that

5.1. INTRODUCTION 107

Figure 5.1: Associated and contributing solutions on a convex curvature
of Pareto-front

many reference points are useless. They are never associated with any
dispatching rules on the evolved Pareto-front in JSS. It can also be seen
in Figure 5.2 that the number of useless references points in GP-NSGA-III
kept increasing from 910 to about 980. Suppose only a few reference points
are truly associated with the Pareto-optimal dispatching rules at the cur-
rent generation. In that case, it is not easy to distinguish and select these
rules to improve diversity for future generations. Due to the above rea-
son, we should find how to get better matches between reference points
and the evolved Pareto-front that can help to enhance solution diversity
and, therefore, the performance of GP-NSGA-III.

To enhance the solutions’ diversity and reduce the useless points, the
distribution of reference points must have a better match with the candi-
date solutions’ distribution. For this purpose, A-NSGA-III [85], RVEA*
[31] proposed reference points adaptation strategies for generating refer-
ence points according to the approximated Pareto-front which can be seen
in Section 2.1.6 of Chapter 2.

RVEA* and A-NSGA-III mechanisms require the number of refer-

108 CHAPTER 5. REFERENCE POINTS ADAPTATION METHODS

Figure 5.2: The curve of average number of useless reference points in GP-
NSGA-III on the training instances during the 30 independent GP runs

ence points to be changed dynamically. In high-dimensional objective
space, when the number of reference points becomes large, adding or
replacing reference points may affect algorithms’ efficiency. Moreover,
both RVEA* and A-NSGA-III use some heuristics for generating reference
points. These heuristics do not have any concrete knowledge of the objec-
tive space and generated the reference points based on the last generation
solutions.

This chapter aims to develop two new effective mechanisms (model-free and
model-driven) for reference point generation and improve the association be-
tween reference points and the Pareto-front during evaluation to address
the issues mentioned above. Furthermore, better matches between refer-
ence points and the evolved Pareto-front can help to enhance the solution
diversity and quality of dispatching rules. The objective of this chapter is
further broken down into two major sub-objectives:

5.2. GENERAL FRAMEWORK FOR ADAPTIVE REFERENCE POINTS GENERATION109

1. To develop a new adaptive reference point strategy using the model-
free approach (heuristics approach). In the model-free approach, we
proposed a new adaptation mechanism inspired by particle swarm
optimization (PSO). This reference point adaptation mechanism is
expected to significantly improve our proposed algorithm’s perfor-
mance by reducing useless reference points. The proposed approach
will be evaluated on the Taillard benchmark JSS problem and is com-
pared with the baseline algorithm (GP-NSGA-III).

2. To develop an adaptation mechanism using a model-based tech-
nique that estimates the density of solutions from each defined sub-
location in a whole objective space. Subsequently, it applies a Gaus-
sian Process on the model, which gives smoothness to the model.
The performance of the proposed adaptive model-based technique
is also verified on JSS instances and compared with GP-A-NSGA-III
[85] and GP-NSGA-III. In this section, we will further show the gen-
eral applicability and usefulness of the model-based reference point
adaptation technique by applying them to the benchmarks prob-
lems.

This chapter is divided into two major parts. First, we provide the model-
free reference points generation algorithm, followed by the experimental
design and the results compared with GP-NSGA-III approaches. After-
ward, the model-based algorithms in the context of adaptive reference
point generation are discussed. Next, we present the experimental design
and the results. Finally, a chapter summary is provided.

5.2 General framework for adaptive reference

points generation

The proposed algorithms for generating adaptive reference points can be
considered as a major enhancement of GP-NSGA-III (GP-NSGA-III is de-

110 CHAPTER 5. REFERENCE POINTS ADAPTATION METHODS

veloped in Section 4.3.2 of Chapter 4). Both model-based and model-
free mechanisms utilize the adaptive reference point’s general framework,
which is similar to that of the GP-NSGA-III. In GP-NSGA-III, the popula-
tion is created after the niching operation Pt+1. Further, the niche counts
ρi (the number of population members associated with ith reference point,
zi ∈ Z) for each reference point is updated then reference points are gen-
erated adaptively. More details of adaptive reference point mechanisms
will be discussed in the next two sections.

5.3 Model-free adaptive reference points gener-

ation

In GP-NSGA-III, the size of reference points is almost equal to the popu-
lation’s size (N). Additionally, in an ideal condition, every reference point
is expected to be associated with one population member. Thus, if ρ ≥ 2,
some other reference point has ρ (niche count) equal to zero and is con-
sidered to be a useless point.

In this model-free approach, each reference point has its fitness value
which is defined as the number of individuals in the population associ-
ated with reference points. In other words, the fitness value of the useless
reference point has a niche count (ρ) which is equal to zero. These use-
less reference points are relocated to those reference points which have
maximum fitness value. This relocation strategy provides a better match
between reference points and the Pareto-front evolved by GP-HH. This
is expected to help to enhance the solution diversity and, therefore, the
performance of GP-NSGA-III.

PSO has been proven in the literature to be highly effective for approx-
imating arbitrary distributions such as the fitness landscape [153, 204].
Our model-free approach GP-Adaptive-NSGA-III(PSO). (GP-A-NSGA-
III(PSO)) is inspired by the principle of PSO, which has a swarm of parti-

5.3. MODEL-FREE ADAPTIVE REFERENCE POINTS GENERATION 111

cles (reference points). The particle’s size is similar to the size of the refer-
ence point (nref). Particularly, each reference point is seen as a particle in
the swarm and each reference point consists of its own velocity vector V
along with the position vectorX .

Like the PSO, GP-A-NSGA-III(PSO) also has the concept of the global
best particle. The global best particle is the one with the most individuals
associated with it. The swarm consists of only one single best position in
the PSO, but our proposed algorithm can have more than one global best
with no elitism strategy being adopted for the global best. This can be seen
in Algorithm 5 (line 4). This way, the reference points can have sufficient
diversity. Every useless reference point can be optionally attracted to its
closest global best location. This GP-A-NSGA-III(PSO) reference point up-
date scheme (update(Z)) is described in Algorithm 5 where Z is a set of
reference points.

Each useless particle updates its position according to the new velocity
shows in line 11 in Algorithm 5. Note that when updating the velocity (line
9) in Algorithm 5, the term for the local best position (PSO uses of memory
of each particle’s best location) is ignored. It can be seen that the fitness
of particles (reference points) depends on the distribution of the whole
swarm and the positions of other particles. Thus, it may not be meaningful
to move towards the local best, which can become worse upon particles’
movements prevent the majority of reference points from converging to
small areas in the objective space. The new velocity is defined as

V g
i,j = w ∗ V g−1

i,j + c2 ∗ rand() ∗ (Z∗ −Xg−1
i,j). (5.1)

where Z∗ denotes the global best position and the parameters w, c2 are
inertia weight and positive constants respectively. In the baseline, PSO
algorithm w is chosen as [0.5 0.9]. Also, V g−1

i,j is a velocity vector of i-
th element of the preceding generation, which includes the M objective
values.

112 CHAPTER 5. REFERENCE POINTS ADAPTATION METHODS

Algorithm 5: Update of the reference points.
Input : Reference points Z = (X,V), ρ
Output: Updated reference points Zg

1 Calculate fitness fit(Zi)= ρi (number of individuals associated for each
Zi ∈ Z);

2 Calculate w = wmax − g · (wmax − wmin)/gmax;
; // inertia weight of generation(g), gmax is the maximum

generation.

3 for i = 1→ nref do
4 Calculate the global best Zk

∗ = arg max{fit(Zi)} ; // global best

5 end
6 for i = 1→ nref do
7 if ρi 6= 0 then
8 for j = 1→M do
9 V g

i,j = w ∗ V g−1
i,j + c2 ∗ rand() ∗ (Zk

∗ −Xg−1
i,j); // velocity

vector of generation g.

10 ;
11 Xg

i,j = Xg−1
i,j + V g

i,j ; // position vector of generation

g.

12 ;

13 end

14 end

15 end
16 return Zg = (Xg,V g);

5.3.1 Design of experiment

The experimental design is carried out to evaluate the GP-A-NSGA-III
(PSO) and GP-NSGA-III approaches. In the experimental studies, we
compared the performance of GP-A-NSGA-III(PSO) with the baseline GP-
NSGA-III. The JSS benchmark, the Taillard (TA) static JSS benchmark in-
stances (see in Section 3.3 of Chapter 3) is selected as a testbed. In the ex-
periments, we considered four potentially conflicting objectives:the mean
flowtime (mF) (see equation (2.1) of Chapter 2) , maximal flowtime (maxF)
(see equation (2.2) of Chapter 2), mean weighted tardiness (mWT) (see

5.3. MODEL-FREE ADAPTIVE REFERENCE POINTS GENERATION 113

equation (2.6) of Chapter 2) and maximal weighted tardiness (maxWT)
(see equation (2.7) of Chapter 2).

The terminal set and function set are described in Table 3.2 of Chapter
3. Both GP-A-NSGA-III(PSO) and GP-NSGA-III adopt the GP representa-
tion (tree-based) and evolutionary operators (e.g., initialization, crossover,
and mutation). For both compared algorithms, the population size is set
to 1025. The crossover, mutation and reproduction rates are set similar
to Subsection 4.4.1 of Chapter 4. The maximal number of generations
(gmax) is set to 51. For the PSO parameters, we set c2 = 2, wmin = 0.4

and wmax = 0.9, which are standard settings used in many existing studies
[100]. In the experiments, we again use IGD [206] and HV [212] to com-
pare the algorithms (The detailed information can be seen in Section 3.3
Chapter 3).

5.3.2 Results and discussions

During the GP search process, a rule is evaluated on the 40 training in-
stances. The fitness function for each objective is defined as the average
normalized objective value of the schedule obtained by applying that rule
to each of the 40 training instances. For each algorithm, 30 GP runs ob-
tained 40 final dispatching rules. Then, the rules were tested on the 40 test
instances.

Overall results

Table 5.1 shows the mean and standard deviations of the test performance
(HV and IGD) of the rules obtained by GP-NSGA-III and GP-A-NSGA-
III(PSO). In addition, for each test instance, the Wilcoxon rank-sum test with
the significance level of 0.05 was conducted separately on both the HV and
IGD of the rules obtained by the two compared algorithms. That is, if the
p-value is smaller than 0.05, then the best algorithm is considered signifi-
cantly better than the other algorithm. The significantly better results are
marked in bold.

114 CHAPTER 5. REFERENCE POINTS ADAPTATION METHODS

Table 5.1: The mean and standard deviation over the HV and IGD values
on the test instances of the compared algorithms in the 4-obj experiment.

Problem Instances HV IGD
ID #J #M GP-NSGA-III GP-A-NSGA-III(PSO) GP-NSGA-III GP-A-NSGA-III(PSO)
1 15 15 .0096(.0145) .2414(.0368) .0265(.0008) .0088(.0113)
2 15 15 .1600(.0182) .1666(.0110) .0254(.0005) .0218(.0004)
3 15 15 .0806(.0125) .0906(.0127) .0205(.0008) .0292(.0006)
4 15 15 .1263(.0183) .0692(.0091) .01765(.0007) .0218(.0006)
5 15 15 .1661(.0202) .1752(.0192) .0190(.0005) .0237(.0007)
6 20 15 .1271(.0176) .1421(.0139) .0154(.0004) .0211(.0004)
7 20 15 .2488(.0683) .2538(.0695) .0079(.0013) .0077(.0014)
8 20 15 .1115(.0201) .2015(.0253) .0186(.0006) .01819(.0026)
9 20 15 .1700(.0148) .1839(.0219) .0170(.0005) .0149(.0005)
10 20 15 .1086(.0151) .3580(.0366) .0156(.0002) .0160(.0003)
11 20 20 .0114(.0038) .1087(.0118) .0299(.0006) .0240(.0008)
12 20 20 .0852(.0133) .1206(.0134) .0173(.0004) .0222(.0006)
13 20 20 .1540(.0151) .1569(.0326) .0188(.0003) .0137(.0002)
14 20 20 .0504(.01103) .0704(.0118) .0328(.0008) .0272(.0007)
15 20 20 .3985(.0225) .2454(.0199) .0109(.0004) .0150(.0002)
16 30 15 .2465(.030) .2375(.0234) .0144(.0006) .0140(.0002)
17 30 15 .1813(.0096) .2278(.0229) .0138(.0003) .0097(.0004)
18 30 15 .3198(.0233) .1957(.0132) .0131(.0004) .0152(.0003)
19 30 15 .2789(.0126) .3004(.0197) .0150(.0004) .0114(.0004)
20 30 15 .2575(.0312) .2124(.0312) .0144(.0005) .0195(.0003)
21 30 20 .1347(.0657) .2325(.0792) .0135(.0022) .0098(.0014)
22 30 20 .2365(.0472) .3027(.0470) .0065(.0010) .0052(.0006)
23 30 20 .2944(.0398) .2984(.0410) .0046(.00004) .0045(.0005)
24 30 20 .3812(.0503) .6161(.0174) .0070(.0009) .0018(.0004)
25 30 20 .5199(.0477) .5290(.0396) .0059(.0012) .0046(.0005)
26 50 15 .4563(.0417) .4872(.0270) .0051(.0009) .0039(.0004)
27 50 15 .5710(.0361) .5685(.0304) .0040(.0009) .0032(.0003)
28 50 15 .4598(.0398) .4966(.0250) .0049(.0010) .0036(.0003)
29 50 15 .4862(.0372) .5125(.0251) .0045(.0007) .0037(.0003)
30 50 15 .4510(.0406) .4732(.0240) .0033(.0005) .0026(.0002)
31 50 20 .5085(.0424) .5147(.0295) .0053(.0008) .0042(.0004)
32 50 20 .4378(.0476) .4266(.0375) .0046(.0006) .0041(.0004)
33 50 20 .3422(.0266) .4383(.0838) .0125(.0006) .0069(.0051)
34 50 20 .3828(.0384) .4089(.0262) .0036(.00005) .0030(.00029)
35 50 20 .5558(.0349) .5763(.0165) .0025(.0005) .0020(.0001)
36 100 20 .3648(.0179) .2972(.0093) .010(.0003) .0130(.0006)
37 100 20 .3442(.0142) .2844(.0101) .0086(.0003) .0107(.0003)
38 100 20 .3006(.0196) .3025(.0136) .0067(.0009) .0066(.0002)
39 100 20 .6495(.0185) .6515(.0191) .0010(.0001) .0010(.0001)
40 100 20 .3658(.0158) .3828(.0100) .0085(.0003) .0088(.0002)

Table 5.1 reveals that GP-A-NSGA-III(PSO) performed significantly
better than GP-NSGA-III in most of the test instances. In the case of HV,
GP-A-NSGA-III(PSO) performed significantly better in 24 out of 40 test
instances. On the other hand, GP-NSGA-III performed significantly bet-

5.3. MODEL-FREE ADAPTIVE REFERENCE POINTS GENERATION 115

ter only in 6 instances. For the remaining 10 instances, the two compared
algorithms performed statistically the same. In regard to IGD, Table 5.1 ex-
hibits the same pattern. GP-A-NSGA-III(PSO) achieved significantly bet-
ter performance in 21 out of the 40 test instances. In contrast, GP-NSGA-III
only performed significantly better in 13 instances.

Table 5.1 also shows that GP-A-NSGA-III(PSO) not only performed
better on smaller instances compared to the baseline algorithms GP-
NSGA-III. Also, it is more effective in more challenging and larger in-
stances. For some test instances (e.g., instances 1, 10, 24), GP-A-NSGA-
III(PSO) achieves a significant improvement. This demonstrates the use-
fulness of the proposed adaptive reference point scheme, which can find
a better association with population members and obtain well-distributed
reference points.

Further analysis

To further investigate how the adaptive reference point scheme affects the
GP search process, we plot the average number of useless reference points
(those associated with no individual in the population). Moreover, we
plot the average HV and IGD of the non-dominated solutions obtained
for each generation during the 30 independent runs of the two compared
algorithms, as given in Figures 5.3 and 5.4, respectively.

Figure 5.4 shows the convergence curves of the HV and IGD values
of the non-dominated solutions on the training set. Figure 5.4 shows that
the adaptive reference point scheme can significantly reduce the number
of useless points during the GP search process. Without adaptive points,
the number of useless references points in GP-NSGA-III increased from
910 to about 980. On the contrary, in GP-A-NSGA-III(PSO), the number
of useless reference points first increased and then decreased to 810. This
figure reveals that the adaptive reference point scheme at the later stage
of the search led to less useless reference points. Thus, it was a better
refinement of the densely populated regions of the population. Figure

116 CHAPTER 5. REFERENCE POINTS ADAPTATION METHODS

0 10 20 30 40 50 60

Generation

800

820

840

860

880

900

920

940

960

980

#
 o

f
U

s
e

le
s

s
 P

o
in

ts

Uniform Reference Points Adaptive Reference Points

Figure 5.3: The curves of the average number of useless reference points
in GP-NSGA-III, GP-A-NSGA-III(PSO).

Figure 5.4: The curves of the HV and IGD values of the non-dominated
solutions on the training set during the 30 independent GP runs.

5.4 reveals that the GP-A-NSGA-III obtained better convergence curves in
terms of both HV and IGD. This figure reveals that the reduction of useless
reference points can lead to better non-dominated sets.

Figures 5.5 (a) to 5.6 (b) show the distribution of the reference points
and the population’s fitness values in generations 1 and 50 of GP-ANSGA-

5.3. MODEL-FREE ADAPTIVE REFERENCE POINTS GENERATION 117

MF MaxWT MaxF MWT
0

0.2

0.4

0.6

0.8

1

Objectives

O
b

je
c
ti

v
e
s
 V

a
lu

e
s

(a) Distribution of the reference

points.

MF MaxWT MaxF MWT
0

0.2

0.4

0.6

0.8

1

Objectives

O
b

je
c
ti

v
e
s
 V

a
lu

e
s

(b) Distribution of the fitness values.

Figure 5.5: Parallel coordinate plots of GP-A-NSGA-III(PSO) at genera-
tions 1.

MF MaxWT MaxF MWT
0

0.2

0.4

0.6

0.8

1

Objectives

O
b

je
c
ti

v
e
s
 V

a
lu

e
s

(a) Distribution of the reference

points.

MF MaxWT MaxF MWT
0

0.2

0.4

0.6

0.8

1

Objectives

O
b

je
c
ti

v
e
s
 V

a
lu

e
s

(b) Distribution of the fitness values.

Figure 5.6: Parallel coordinate plots of GP-A-NSGA-III(PSO) at genera-
tions 50.

III(PSO). It can be seen that in generation 1, the reference points are close
to the initial uniform distribution, and the fitness distribution of the pop-
ulation is relatively uniform as well. On the other hand, at generation 50,
the distributions of the reference points and the population’s fitness val-

118 CHAPTER 5. REFERENCE POINTS ADAPTATION METHODS

ues become very similar. This is consistent with our expectation which is
to use a similar distribution of reference points as that of the population to
fine-tune the promising area around the Pareto-front.

From this study, we identify a key research issue of having non-
uniform Pareto-front, i.e., the simple adoption of uniformly distributed
reference points failed to promote solution diversity during evolution and
affected the performance of algorithms.

In conclusion, the proposed reference point adaptation mechanism has
the potential to decrease useless reference points. It can significantly im-
prove the performance of GP-HH and NSGA-III in terms of both HV and
IGD. However, this research direction requires further investigation to re-
duce more useless reference points and improve the quality of evolved
rules.

5.4 Model-based adaptive reference points gen-

eration

In the literature, NSGA-III has been extended to add and delete reference
points in an adaptive manner [85, 86]. A-NSGA-III is an extended version
of NSGA-III and has implicitly guided the distribution of solutions. A-
NSGA-III first generates the uniformly distributed reference points then
adds and removes these points in a high dimension space. However, in a
high dimension space, the removal condition (ρ is less than one) is difficult
to achieve. The algorithm keeps on including additional reference points
that clearly affect the algorithm’s performance. Most of the adaptive refer-
ence point approaches cannot explicitly construct the distribution model.
The model’s construction helps the concrete knowledge of the Pareto-front
that can provide a close match between the reference points with the dis-
tribution of Pareto-optimal solutions.

Our model-based approach in this thesis adopts a modeling technique

5.4. MODEL-BASED ADAPTIVE REFERENCE POINTS GENERATION 119

[30] that learns the distribution of the Pareto-optimal solution and gener-
ates the reference points according to the solution distribution. This sec-
tion introduces the model with and without the Gaussian process model
[30, 170] (see in Subsection 2.1.8 of Chapter 2). The model without the
Gaussian model is called a density-based model that estimates the density
of solutions from each pre-defined sub-region. After the density-based
model, we build a Gaussian process-based probabilistic model which can
reduce the density noise and provides a reliable approximation of the true
shape of the Pareto-front. In this manner, this section will show the model
effectiveness of the density-based model and the Gaussian process model.

5.4.1 Reference point Adaptation by density-based model

Our proposed algorithm (GP-NSGA-III with density model-based refer-
ence point adaptation (GP-NSGA-III-DRA)) can be considered as a major
enhancement of GP-NSGA-III. GP-NSGA-III-DRA starts after the popu-
lation update mechanism of GP-NSGA-III which can be seen in Subsec-
tion 4.3.2 of Chapter 4. GP-NSGA-III-DRA utilized the Pg+1 population
from GP-NSGA-II and predefined simplex locations W .

Formation of density-based model

The density-based model estimates the density of solutions at each sub-
location (a location on a normalized hyperplane) w ∈ W. Building this
density-based probabilistic model consists of two steps. First, the density-
based model evenly decomposes the simplex into several sub-locations
w1, w2, w3.., wk ∈ W . This decomposition uses Das and Dennis’s [39] sys-
tematic approach (The detailed information can be seen in Subsection 2.1.6
of Chapter 2). Then the association between each solution s with w is ob-
tained based on their perpendicular distance (⊥). As a result, a solution
is associated with a sub-location(ŵ) where the perpendicular distance be-
tween the s with w has a minimum value ŵ. The solutions associated with

120 CHAPTER 5. REFERENCE POINTS ADAPTATION METHODS

ŵ is recorded in archive E(ŵ).

The number of associated solutions in any sub-location ŵ is obtained
by dividing the number of the associated solutions in E(ŵ) by the total
number of non-dominated solutions (‖ S ‖). The density-based proba-
bilistic model is therefore defined as

P (D|ŵ ∈ W) =
‖ (E(ŵ)) ‖
‖ S ‖

, (5.2)

The formation of the density model is shown in Algorithm 6. Figures
5.7 and 5.8 show an example to illustrate the above procedure of formation
of density model. First, solutions are associated with their closest refer-
ence points, which is presented in Figure 5.7. For instance, three solutions
are closest to w3. Then the algorithm calculates the density of solutions at
each sub-simplex location and builds a density-based model using equa-
tion (5.2). This can be seen in Figure 5.8.

Figure 5.7: Solutions are closest to the reference points.

5.4. MODEL-BASED ADAPTIVE REFERENCE POINTS GENERATION 121

Algorithm 6: Construct DensityModel(Sg,W)
Input : Sg,W

Output: Z∗
g

1 foreach w ∈W do
2 E(w) = ∅;
3 D(w) = ∅;
4 end
5 foreach s ∈ Sg do
6 foreach w ∈W do
7 compute d⊥(s, w); // perpendicular distance of each

solution from w

8 end
9 Assign ŵ = argmins∈Sd

⊥(s, w) ; // associate the solution with

the sub-location w

10 Save s in E(ŵ);

11 end
12 for i= 1 to ‖ E(ŵ) ‖ do
13 Assign P (D|ŵ) =‖ E(ŵ)i ‖ ÷‖ S ‖ ; // probability of the

associated solution

14 Assign D(ŵ)=‖ P (ŵ) ‖*length of reference points; // return

solution’s density

15 end
16 Z∗

g= Generate (E(ŵ),D(ŵ), Sg,W);
17 return Z∗

g ;

Reference points generation

Our proposed algorithm is broken into two sub-routines: (1) references
points in proximity to the vertex and (2) the internal reference points. The
generation of reference points is activated in line 16 of Algorithm 6.

1. References points close to the vertex: This method of the proposed
algorithm handles the issue of A-NSGA-III [85] which relates to the
generation of the reference points close to the vertices of the simplex.
Our proposed algorithm generates reference points in close proxim-
ity to the simplex vertices. As a result, our algorithm enhances the

122 CHAPTER 5. REFERENCE POINTS ADAPTATION METHODS

Figure 5.8: Density of solution at each sub-location of the simplex.

ability to generate reference points that match the distribution model
closely. The detailed procedure is explained below:

(a) Obtain the center location (centroid) from the existing solutions
in the sub-location ŵ ∈ W where ŵ is one of the locations close
to the vertices of the hyperplane.

(b) Calculate the perpendicular distance from the centroid to asso-
ciated solutions of ŵ.

(c) Select a solution s based on a minimum perpendicular distance.

(d) Calculate a mid-point value between the selected solution and
the central location for generating a corresponding reference
point. This mid-point of each dimension is considered as one
of the reference points around the vertices.

(e) Selected solution s will not be the part of a centroid. Thus, the

5.4. MODEL-BASED ADAPTIVE REFERENCE POINTS GENERATION 123

Algorithm 7: E(ŵ),D(ŵ), Sg,W

Input : E(ŵ),D(ŵ), Sg,W

Output: Z∗
g

1 foreach ŵ ∈W do
2 set nref= ‖ D(ŵ) ‖ ; // number of reference points required at

location ŵ

3 Assign Zr= ŵ ; // set ŵ as a first reference point

4 if Zr!=Vertex Points then
5 Assign Z∗

g= IntermediatePoints(E(ŵ), D(ŵ), nref, Sg,W,Z
r) ; // call

intermediate points method

6 end
7 if Vertex points then
8 Assign Z∗

g= V ertexPoints(E(ŵ), D(ŵ), nref, Sg,W,Z
r); // call

vertex points method

9 end

10 end
11 return Z∗

g ;

next centroid is calculated from existing solutions that are still
in the race of acquiring reference points.

(f) Repeat steps (a) to (e) until the required number of reference
points are generated based on the size of the number of associ-
ated solutions with ŵ.

2. Generation of reference points internal to the simplex: An exam-
ple below shows the reference points generation internal to the sim-
plex. Consider the j-th internal simplex location which is associated
with more than one solution. If the situation has M = 3 objectives,
then M points are generated at the vertices of j-th internal locations
on the simplex. The simplex side length (interval) is equal to the dis-
tance between two neighboring internal locations on the originally
specified hyperplane and store in the archive Zp. This example is
shown in Figure 5.9. In this example, Z1, Z2, Z3 ∈ Znew reference
points are generated around the j-th internal locations (Zj ∈ Zr). The

124 CHAPTER 5. REFERENCE POINTS ADAPTATION METHODS

reference points generated by the following two equations:

pointsi = Zj − Zp, (5.3)

Zi
new = pointsi + (Interval)/M. (5.4)

where the interval is the difference between two consecutive refer-
ence points on the hyperplane.

The above two equations kept the j-th internal locations at the center
of the newly generated reference point. These newly generated refer-
ence points can be inserted in the reference points archive called Znew

if they satisfy the two main conditions: (i) a reference point must be
inside the entire simplex boundary; (ii) every reference point must
occupy a unique location on the simplex. Once new reference points
are added into archive Znew, then the association between existing
members of Znew and solutions in E(ŵ) must be checked. If the i-th
reference point from Znew still has ρi ≥ 2, again new reference points
are generated around the i-th reference points, but this time, the in-
terval’s parameter value is halved. Therefore, new reference points
are getting closer to the associated solutions with the original refer-
ence points and increase the chance of getting an ideal association
(ρ =1). This process is also shown in Figure 5.9. Figure 5.9 demon-
strates that the ith reference point is kept as a centroid location for
newly generated reference points and the reference points are lay-
ered. These layers are also shown in Figure 5.9 with two different
colors (blue and black lines). Thus, we named this method a layered
centroid approach.

5.5 Gaussian process-based probabilistic model

In Algorithm 6, we defined the density-based model which is built to the
model on the solution’s density at each location of the simplex. This sec-

5.5. GAUSSIAN PROCESS-BASED PROBABILISTIC MODEL 125

Figure 5.9: Generate reference points until M − 1 times

tion predicts a mean value in sub-location for generating reference points
and subsequently reducing the density noise. Gaussian processes (GaP)
(The detailed information can be seen in Subsection 2.1.8 of Chapter 2)
as a powerful method to model unknown functions. In particular, in this
research objective, we used GaP-based modeling. The GaP is defined as a
mean and a covariance function.

f(x) ∼ GaP (µ(x), K(xi, xj)), (5.5)

K defines the shape of GaP and the choice of an appropriate kernel. The
kernels’ selection is based on assumptions such as patterns to be expected
in the data. However, in this study, our assumption provides smoothness
to the model which can reduce the noise of the model. Next, we calculate
the area under the mean function. This area under the curve helps us to
find the required number of reference points in each sub-location.

In our proposed algorithm, model-based adaptive reference points
(GP-MARP-NSGA-III), we use the squared exponential kernel [170]. In
this kernel, if xi and xj behave similarly then the function values at these
points, f(xi) and f(xj), can be expected to be similar. The squared expo-
nential kernel is also known as the Gaussian kernel.

K (xi, xj) = σ2
f exp

(
− 1

2l
|xi − xj|2

)
. (5.6)

where σ2
f and l are hyperparameters of the covariance functions.

126 CHAPTER 5. REFERENCE POINTS ADAPTATION METHODS

5.5.1 Modelling by Gaussian process

In GP-MARP-NSGA-III, first, we construct the density model. The details
of the construction of the density model of the simplex are described in
Subsection 5.4.1. However, we construct the model by using mid-point
location(wc) of the two neighborhoods ŵi ∈ W and ŵj ∈ W on simplex.
The reason for selecting mid-point locations because, in later this algo-
rithm, we approximate areas under the mean function by using Riemann
sum with the midpoints [48].

For the model construction, we need to find two sub-locations ŵi and
ŵi those are close in perpendicular distance with each other. These neigh-
boring locations of ŵi are further saved in an archive Negh(wi). Next, the
mid-point between ŵi and ŵj is determined and stored in Wc. This center
location at wc ∈ Wc serves as an input of our density-based model. Then,
the model based on the association between the center locations and their
respective solutions is stored in E(ŵc). The detailed information can be
seen in Algorithm 8.

Specifically, the total number of the associated solutions with ŵc (ŵc

ŵc means minimum perpendicular distance with population members) is
recorded in archive D(ŵc). In accordance with D(ŵc), the solution density
of each sub-location ŵc is calculated by the associated solutions in E(ŵc)

divided by the total number of non-dominated solutions (‖ S ‖) of each
generation. The density-based probabilistic model(P (D|ŵc ∈ Wc)) is de-
fined in Equation (5.2).

The GaP is a sample of a stochastic process. In this way, P (D|ŵc ∈
Wc) can be seen as a latent function [170] where the joint distribution of a
infinite number of these variables P (D(wc1), . . . , D(wck)) is itself Gaussian:

P (D|ŵc ∈ Wc) = N(D|µ,K), (5.7)

After the construction of the density model, we train the GaP means to
estimate the conditional probability of P (D|ŵ ∈ W) which is fully speci-
fied by the mean function µ(wi) and K that calculates the covariance be-

5.5. GAUSSIAN PROCESS-BASED PROBABILISTIC MODEL 127

tween any two sub-locations(wci, wcj). Without the loss of generality, we
set zero to the prior mean function common in practice.

P (D|ŵc ∈ Wc) = N(D|0, K), (5.8)

With equation (5.8), we make predictions D∗ of given inputs Wc∗ from
the posterior distribution P (D∗|ŵc ∈ Wc, D, ŵc∗ ∈ Wc∗) .The posterior dis-
tribution can be obtained as a Gaussian distribution with mean and vari-
ance.

P (D∗|ŵc ∈ Wc, D, ŵc∗ ∈ Wc∗)) = N(D∗|µ∗, K∗). (5.9)

The detailed information of the GaP can be seen from the Subsection 2.1.8
of Chapter 2. The detailed process of GaP modeling is shown in Algo-
rithm 8 and in Figure 5.10. In this Figure, we show Gaussian process
model and get a smooth function by reducing model-noise. This function
helps us to calculate the area under a mean function of the GaP.

Figure 5.10: Train a Gaussian process on density-based model.

128 CHAPTER 5. REFERENCE POINTS ADAPTATION METHODS

Algorithm 8:Gaussion Modelling(Sg,W)
Input : Sg,W

Output: E(ŵc) (at ŵc) &µ(ŵc) (mean prediction at ŵc)
1 foreach wi ∈W do
2 foreach wj ∈W do
3 compute d⊥(wi, wj) ; // find neighbors of wi

4 end
5 Assign ŵneg = argminwj∈W d⊥(wi, wj) Save ŵneg in Neg(wi);

; // save neighbors of wi location in Neg(wci)

6 end
7 foreach wneg ∈ Neg(wi) do
8 Calculate the center location wc between wneg ∈ Neg(wi) and wi ; // find

center loction between wi and wneg location in Neg(wi)

9 Save wci in E(wci) ; // save center location in E(wci)

10 end
11 foreach s ∈ Sg do
12 foreach wci in E(wci) do
13 compute d⊥(s, wci)

14 end
15 Assign ŵc = argmins∈Sd

⊥(s, wci) ; // associate the solution with

the center location

16 Save s in A(ŵci)

17 end
18 foreach s ∈ A(ŵci) do
19 Calculate the number of associated solutions with ŵci and store in D(ŵci)

20 end
21 Assign P (D|ŵci) =‖ A(ŵci) ‖ ÷‖ S ‖ ; // build a density model

22 Train a Gaussian process on density-based model.P (D|ŵci) ∼ N(0,K)

23 Test input ŵc∗ and obtain the Gaussian distribution with mean µ(ŵc∗) return
E(ŵc) &µ(ŵc)

5.5.2 Calculate the area under the mean function

In this method, we approximately calculate the area under the mean-
function through the mid-point rule. This area under the mean-function
helps us to find the required number of the reference points in each sub-

5.5. GAUSSIAN PROCESS-BASED PROBABILISTIC MODEL 129

Algorithm 9: Calculate Area(µ(ŵ), , E(ŵc))

Input : µ(ŵc), E(ŵc)

Output: Z(ŵc)

1 foreach ŵc ∈ E(ŵc) do
2 Assign area = b−a

n ∗ (µ(wc))

3 Save area in Ar(wc)

4 end

5 Total Area:
∫ b

a
µ(ŵc)dx = b−a

n (µ(wc1) + µ(wc2) + µ(wc3) + · · ·+ µ(wn)) =

Ar(wc1) +Ar(wc2) + · · ·+Ar(wcn))

6 foreach ŵc ∈ Ar(ŵc) do
7 Calculate the number of reference points (nref) in each ŵc : Ar(wc)

TotalArea ;
8 Save nref in Z(ŵc) ; // save number of reference points in

Z(ŵc)

9 end
10 return Z(ŵc);

location. We decided to use the mid-point rule for calculating the area
under the mean function. This is defined in equation (5.10)

TotalArea ≈
∫ b

a

µ(ŵc)dx =
b− a
n

(µ(wc1) + µ(wc2) + · · ·+ µ(wn)), (5.10)

Next we have found the number of reference points in each specified area
and they can be determined as below

referencepoints =
Ar(wc)

TotalArea
. (5.11)

where Ar(wc) is a specific area under the curve. The detailed process for
area calculation is further presented in Algorithm 9. This can also be
seen in Figure 5.11. Next, the algorithm estimates the number of refer-
ence points at each sub-location wc using equation (5.11) and generates
the required reference points in each sub-area.

130 CHAPTER 5. REFERENCE POINTS ADAPTATION METHODS

0 0.2 0.4 0.6 0.8 1
−1

0

1

2

3

4

5

Simplex Location

S
o

lu
ti

o
n

 D
e

n
s

it
y

w2 w3 w4 w5 w6

wc3wc2wc1

ba

Simplex locations

w1

U(wc2)

U(wc3)U(wc1)

Figure 5.11: Area under the mean function of the Gaussian process model

5.5.3 Reference points generation

The generation of reference points is described in this section. For each
ŵc in the reference points archive, if the number of reference points, i.e.,
Z(ŵc) has a niche count equal to one, there is no need to generate new ref-
erence points. Otherwise, reference points are generated using the equa-
tions (5.3) and (5.4). The rest of the procedure for the newly generated
reference points is similar to the ”Generation of reference points internal
to the simplex” of Subsection 5.4.1.

5.5.4 Computational Complexity of One Generation of

GP-MARP-NSGA-III

In line 3 of Algorithm 8, we are computing a neighboring location of W ,
where its size is equal to the size of population N . So, computing a neigh-
boring location takes O(MN2) where M is the objective number. After
that, the center location of two neighboring locations of W (line 8 of Algo-
rithm 8) requires O(MN). In line 13 of Algorithm 8, associating a popula-
tion of N individuals to N reference directions takesO(MN2). However, to
build a density model (line 21) requires only O(N). In addition, to train a
GaP on the density-based model (line 22)O(MN3), which totally depends
on the kernel (KNxN). Finally, the computational complexity of obtaining

5.5. GAUSSIAN PROCESS-BASED PROBABILISTIC MODEL 131

mean µ (line 23) is O(N).

All operations in Algorithm 9 (lines 2, 5, and 8) in calculating area and
calculating the number of reference points would require O(N) computa-
tions. Thereafter, the reference points generation (the procedure shows in
Algorithm 7) requires O(MN) comparisons.

Considering all the above considerations and computations, the over-
all worst-case complexity of one generation of GP-MARP-NSGA-III is
O(MN3).

5.5.5 Design of experiment

To verify the effectiveness of the proposed model-driven reference points,
we compare the performance of our algorithm GP-MARP-NSGA-III and
GP-NSGA-III-DRA with the GP-NSGA-III, GP-A-NSGA-III in the exper-
imental studies. We selected the Taillard (TA) static JSS benchmark in-
stances [182] as the testbed. The details of TA can be found in Section 3.1 of
Chapter 3. In the experiments, we considered four potentially conflicting
objectives:the mean flowtime (mF) (see equation (2.1) of Chapter 2) , max-
imal flowtime (maxF) (see equation (2.2) of Chapter 2), mean weighted
tardiness (mWT) (see equation (2.6) of Chapter 2) and maximal weighted
tardiness (maxWT) (see equation (2.7) of Chapter 2). For all the compared
algorithms, 30 independent runs were conducted.

All the compared algorithms adopt the tree-based representation of
dispatching rules. The terminal set and function set are described in Sec-
tion 3.2 of Chapter 3. GP-MARP-NSGA-III, GP-NSGA-III-DRA and GP-
A-NSGA-III adopt the same parameter setting of the baseline algorithm
GP-NSGA-III. In the experiments, the two commonly used measures, i.e.
IGD [206] and HV [212] are used to compare the algorithms (see in Section
3.3 of Chapter 3).

132 CHAPTER 5. REFERENCE POINTS ADAPTATION METHODS

Table 5.2: The mean and standard deviation of HV and IGD values of the
30 independent runs on training instances of the compared algorithms on
four-objective JSS problems.

HV
Statistic GP-NSGA-III GP-A-NSGA-III GP-NSGAIII-DRA GP-MARP-NSGA-III
(x̄± σ) 0.67234(0.02245) 0.67561(0.02043) 0.67655(0.01955) 0.68498(0.01961)

IGD
Statistic GP-NSGA-III GP-A-NSGA-III GP-NSGA-III-DRA GP-MARP-NSGA-III
(x̄± σ) 0.00139(0.00012) 0.00131(0.00012) 0.00130(0.00012)) 0.00127(0.00008)

5.5.6 Results and discussion

For each algorithm, 30 GP runs have been performed to obtain 30 final
sets of dispatching rules. Afterward, the rules are tested on the 40 test
instances. Tables 5.2 and 5.3 show the mean and standard deviation of
the average HV and average IGD values obtained by GP-NSGA-III, GP-
A-NSGA-III, GP-NSGA-III-DRA, and GP-MARP-NSGA-III. The Wilcoxon
rank-sum test [195] with the significance level of 0.05 has been applied
separately to compare both the HV and IGD achieved by all algorithms.
The significantly better results are bolded.

Table 5.3: The mean and standard deviation of HV and IGD achieved by
all competing algorithms on test instances on four-objective JSS problems.

HV
Statistic GP-NSGA-III GP-A-NSGA-III GP-NSGAIII-DRA GP-MARP-NSGA-III
(x̄± σ) 0.47422(0.024231) 0.48896(0.02336) 0.48625(0.02445) 0.49844(0.02147)

IGD
Statistic GP-NSGA-III GP-A-NSGA-III GP-NSGA-III-DRA GP-MARP-NSGA-III
(x̄± σ) 0.00177(0.00020) 0.00162(0.00025) 0.00164(0.00027) 0.00161(0.00016)

Table 5.2 reveals that GP-MARP-NSGA-III achieved significantly better
performance in HV than the other algorithms. In terms of IGD, GP-MARP-
NSGA-III clearly outperformed GP-A-NSGA-III, GP-NSGA-III-DRA, and
GP-NSGA-III. Moreover, our proposed algorithm GP-NSGA-III-DRA per-

5.5. GAUSSIAN PROCESS-BASED PROBABILISTIC MODEL 133

formed significantly better than GP-A-NSGA-III and GP-NSGA-III.
Table 5.3 summarizes the testing performance of all algorithms in terms

of IGD and HV. The obtained test results exhibit the same patterns as
the training performance results. In the case of HV, GP-MARP-NSGA-
III performed significantly better than the other compared algorithms. In
the case of IGD, GP-MARP-NSGA-III is competitive with GP-A-NSGA-III.
However, both our proposed model-driven algorithms performance is still
significantly better in IGD than the GP-A-NSGA-III and GP-NSGA-III.

0 5 10 15 20 25 30 35 40 45 50

Generation

0.3

0.4

0.5

0.6

0.7

0.8

H
V

 V
a
lu

e
s

HV

GP-NSGA-III

GP-A-NSGA-III

GP-NSGA-III-DRA

GP-MARP-NSGA-III

Figure 5.12: HV values of the non-dominated solutions on the training set
during the 30 independent GP runs.

Further analysis

For further analysis of the algorithms’ performance, we plotted the aver-
age HV and IGD of the non-dominated solutions obtained so far for each
generation during the 30 independent runs of the four compared algo-
rithms.

Figures 5.12 and 5.13 show convergence curves on the training sets.
Figures 5.12 and 5.13 reveal that during the first few generations of evolu-
tion, all algorithms exhibited similar HV and IGD values. However, GP-
MARP-NSGA-III starts to outperform other competing algorithms. More-
over, when the solutions are very close to the Pareto-front, GP-MARP-

134 CHAPTER 5. REFERENCE POINTS ADAPTATION METHODS

0 5 10 15 20 25 30 35 40 45 50

Generation

0

0.5

1

1.5
IG

D
 V

a
lu

e
s

10
-3 IGD

GP-NSGA-III

GP-A-NSGA-III

GP-NSGA-III-DRA

GP-MARP-NSGA-III

Figure 5.13: IGD values of the non-dominated solutions on the training set
during the 30 independent GP runs.

NSGA-III achieved significantly better HV and IGD. This result clearly
demonstrates that GP-MARP-NSGA-III can converge to a high-quality
Pareto-front.

A useless reference points plot can help us to understand how well the
reference points are generated from model-based approaches that match
the distribution of solutions. From Figure 5.14 shows that the number
of useless points during the GP search process is constantly decreasing in
both model-based reference points adaptation methods. Figure 5.14 shows
that GP-MARP-NSGA-III has less useless reference points than GP-NSGA-
III-DRA. This reveals that reducing the density noise led to having fewer
useless reference points and enhanced the better matches between the ref-
erence points and candidate solutions. Further, the evolved Pareto-front
can help enhance solution diversity and, therefore, the algorithms’ perfor-
mance.

The parallel coordinate plots for all competing algorithms are shown
in Figures 5.15 (a) to 5.18 (b). It is well known that the number of useless
reference points will increase if the distribution of reference points is not
fully matched with the distribution of the candidate solutions. This can
be seen in Figures 5.15 (a) and 5.15 (b) for GP-NSGA-III. In these figures,

5.5. GAUSSIAN PROCESS-BASED PROBABILISTIC MODEL 135

0 10 20 30 40 50 60

Generation

650

700

750

800

850

900

950

1000

#
 o

f
U

s
e

le
s

s
 P

o
in

ts

GP-NSGA-III

GP-NSGA-III-DRA

GP-MARP-NSGA-III

Figure 5.14: The curves of the average number of useless reference points
in GP-NSGA-III, GP-NSGA-III-DRA, and GP-MARP-NSGA-III.

we can see that the distribution of the reference points is uniform and that
some reference points are far away from the solution locations, especially
on MWT and MaxWT objectives. These useless reference points will cause
a negative impact on algorithm performance, as confirmed by experiment
results reported in Table 5.2.

Figure 5.16(a) shows that GP-A-NSGA-III still has a few useless points.
Figures 5.16 (a) and 5.16 (b) show that solutions are also not well associ-
ated with reference points on MAxF and MaxWT objectives. In contrast,
Figures 5.18 (a), and 5.18 (b) show that the reference points’ distributions
and the population closely match each other in the GP-MARP-NSGA-III

136 CHAPTER 5. REFERENCE POINTS ADAPTATION METHODS

which is better than GP-NSGAIII-DRA. The distributions of the reference
points and the population of GP-NSGA-III-DRA shown in Figures 5.17 (a)
and 5.17 (b).

MF MaxF MWT MaxWT
0

0.2

0.4

0.6

0.8

1

Objectives

O
b

je
c

ti
v

e
s

 V
a

lu
e

s

(a) Distribution of the reference points.

MF MaxF MWT MaxWT
0

0.2

0.4

0.6

0.8

1

Objectives

O
b

je
c

ti
v

e
s

 V
a

lu
e

s

(b) Distribution of the fitness values.

Figure 5.15: Parallel coordinate plot for the distribution of the reference
points and the distribution of the fitness values at generations 50 of GP-
NSGA-III.

5.6 Selection of adaptive reference points ap-

proach

In this chapter, we proposed three adaptive reference points approaches.
Each reference point approach is equally important but the selection of
approach depends on the decision-makers specific requirements as follow:

1. If the decision-maker prefers a very simple and efficient approach
with reasonable effectiveness, the PSO-based adaptive reference
points approach is the right choice for generating reference points
adaptively.

5.6. SELECTION OF ADAPTIVE REFERENCE POINTS APPROACH 137

MF MaxF MWT MaxWT
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Objectives

O
b

je
c

ti
v

e
s

 V
a

lu
e

s

(a) Distribution of the reference points.

MF MaxF MWT MaxWT
0

0.2

0.4

0.6

0.8

1

Objectives

O
b

je
c

ti
v

e
s

 V
a

lu
e

s

(b) Distribution of the fitness values.

Figure 5.16: Parallel coordinate plot for the distribution of the reference
points and the distribution of the fitness values at generations 50 of GP-A-
NSGA-III.

MF MaxF MWT MaxWT
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Objectives

O
b

je
c

ti
v

e
s

 V
a

lu
e

s

(a) Distribution of the reference points.

MF MaxF MWT MaxWT
0

0.2

0.4

0.6

0.8

1

Objectives

O
b

je
c

ti
v

e
s

 V
a

lu
e

s

(b) Distribution of the fitness values.

Figure 5.17: Parallel coordinate plot for the distribution of the reference
points and the distribution of the fitness values at generations 50 of GP-
NSGA-III-DRA.

2. If the decision-maker prefers an effective approach other than the

138 CHAPTER 5. REFERENCE POINTS ADAPTATION METHODS

MF MaxF MWT MaxWT
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Objectives

O
b

je
c

ti
v

e
s

 V
a

lu
e

s

(a) Distribution of the reference points.

MF MaxF MWT MaxWT
0

0.2

0.4

0.6

0.8

1

Objectives

O
b

je
c

ti
v

e
s

 V
a

lu
e

s

(b) Distribution of the fitness values.

Figure 5.18: Parallel coordinate plot for the distribution of the reference
points and the distribution of the fitness values at generations 50 of GP-
MARP-NSGA-III.

PSO-based approach, the density-based model adaptive reference
points approach is a good choice for generating reference points
adaptively. Further, the density model is more efficient than our
GaP model because it does not need to maintain the Gaussian matrix.
Also, the density model is more flexible than the GaP model because
it introduces simple sampling techniques. The density-based model
is a better trade-off approach between the GaP model approach and
the PSO-based approach.

3. If the decision-maker prefers an effective approach which approxi-
mates the Pareto-front more accurately than the PSO-based approach
and density-based model approaches, the GaP model is the right
choice for the reference points generation. However, the GaP model
approach compromises simplicity, efficiency and flexibility as com-
pared to the other two approaches.

5.7. CHAPTER SUMMARY 139

5.7 Chapter summary

This chapter aims to identify key research issues of those algorithms that
use uniformly distributed reference points, including NSGA-III. The sim-
ple adoption of uniformly distributed reference points failed to promote
solution diversity during evolution and affected the performance of the
many-objective optimization problems, which irregular, disconnected, de-
generate, and inverted shapes of Pareto-front.

To achieve this goal, we proposed model-free and model-driven adap-
tive generation mechanisms for reference points. In our model-free mech-
anism, we introduced a new reference point adaptation mechanism in-
spired by PSO. Essential changes to particle dynamics in PSO have also
been introduced in our mechanism to prevent the majority of reference
points from converging to small areas in the objective space. This algo-
rithm outperformed the baseline algorithm GP-NSGA-III.

Model-based techniques explicitly construct the distribution model
and give the learning ability to the algorithms. These algorithms have
been designed to approximate the Pareto-front accurately and generate
reference points that closely match the distribution of Pareto-optimal so-
lutions. Additionally, improvements have also been made to effectively
reduce the modeling noise in our density-based model using GaP model-
ing. The GP-MARP-NSGA-III algorithm defines the area under the mean-
locations and generates the required number of reference points in each
sub-area.

The proposed algorithm was applied to the static JSS problem. We
compared our proposed algorithms with NSGA-III and previously pro-
posed reference point adaptive approaches. Experimental results on the
benchmark JSS problems show that our proposed algorithm reduces the
useless reference points and provides a better distribution of Pareto-
optimal solutions on the entire Pareto-front. Further, a better distribution
of reference points also helps to improve the diversity of the solutions that

140 CHAPTER 5. REFERENCE POINTS ADAPTATION METHODS

can be observed visually and in terms of HV and IGD.
The experimental results have demonstrated that the GP-MARP-

NSGA-III performs significantly better problems with irregular Pareto-
front because it reduces the number of useless reference points and pro-
vides well-diversified Pareto-optimal solutions on the entire Pareto-front.
Further, a better distribution of reference points also helps to improve the
diversity of the solutions that can be observed visually as well as in terms
of HV and IGD. This finding leads us to believe that our algorithm perfor-
mance is promising on non-uniformly and irregularly distributed Pareto-
front. Also, in the future, these adaptive reference point methods might be
easily deployed with any other reference points-based EMO algorithms to
improve their performance on problems with irregular Pareto-front.

In the next chapter, we will enhance the exploitation ability of the GP-
NSGA-III. This is realized by combining GP-HH with Pareto local search.

Chapter 6

GP with Pareto Local Search for
Many-Objective JSS

6.1 Introduction

Genetic programming (GP) is considered the most popular method for
discovering and constructing dispatching rules for scheduling problems
[141, 149]. Previous studies have shown that GP has been successfully
used to evolve very effective dispatching rules for job shop scheduling
(JSS) problems automatically [159, 143].

Researchers have studied the application of Pareto local search (PLS) to
multi-objective evolutionary algorithms (MOEAs) with some success [50,
26]. By hybridizing global (such as genetic algorithms (GA)) search with
local search, the performance of many evolutionary algorithms (EAs) can
be improved because the local search can help to enhance the exploitation
ability of EAs [26, 79]. This hybridization motivates us to integrate GP as
a primary global search method with PLS and improve the quality of the
evolved rules for many-objective JSS.

PLS can be considered a direct extension of local search from single-
objective problems to the multi-objective domain [26, 50]. PLS has three
main algorithmic components [137]: (1) selection of solutions for neigh-

141

142CHAPTER 6. GENETIC PROGRAMMING WITH PARETO LOCAL SEARCH

borhood exploration, (2) exploring the neighbors of the selected solutions
from (1), and (3) describe the conditions under which a new solution stores
in the PLS archive. The goal of PLS is to obtain a good approximation of
the Pareto-optimal set. In particular, the study in [79] showed that suit-
able candidates for local search should be carefully selected based on a
weighted sum of multiple objectives as a fitness function. One promising
approach for improving the searchability of evolutionary multi-objective
optimization (EMO) algorithms to find near Pareto-optimal solutions is
the hybridization with local search [26, 79]. The hybridization with local
search algorithms is often referred to as memetic algorithms [79]. Exam-
ples of such a hybrid algorithm can be found in multi-objective traveling
salesman problems and flowshop problems [14, 137].

PLS is very effective for tackling NP-hard multi-objective JSS problems
[14]. However, no research works have been dedicated to studying PLS in
genetic programming based hyper-heuristic (GP-HH) for many-objective
JSS. Based on our survey, there is only one existing work [149] studied us-
ing of local search techniques in GP-HH for single-objective JSS. Due to
this limitation, we investigate the effectiveness of PLS in GP-HH in this
chapter. This study is expected to inspire many future studies on PLS
in GP-HH for many-objective optimization. Based on the investigation in
this chapter, new GP-PLS algorithms will be developed. While developing
our algorithm, we aimed to address three challenges that are vital for the
seamless integration of PLS with GP-HH. First, the selection of initial solu-
tions for neighborhood exploration. Second, a tree’s neighborhood struc-
ture (dispatching rule) in GP is not defined in the literature. Third, the
acceptance criteria during the local search have to be carefully designed
to guide the search properly for trade-offs solutions in many-objective JSS
problems.

A new fitness-based selection mechanism is proposed to address the
first challenge, which uses a decomposition-based approach. To address
the second challenge, a restricted mutation, is introduced to modify dis-

6.1. INTRODUCTION 143

patching rules evolved by GP. The restricted mutation tries to avoid large
changes, making the neighboring rules too different from their parent rule.
Multiple consecutive local search steps will be performed to encourage
the discovery of better rules surrounding an existing one. Meanwhile, the
third challenge is tackled by adopting a dominance-based [26] and fitness-
guided [79] acceptance strategy. These three challenges will be explained
more in Section 6.2. In this chapter, we first perform the empirical study to
determine whether the inclusion of local search improves the algorithms’
performance. Then we propose the two new memetic algorithms that in-
tegrate GP with PLS. The chapter aims at developing GP-PLS and enhance
the quality of evolved dispatching rules for many-objective JSS. The sub-
objectives of this chapter are:

1. To investigate whether the inclusion of PLS within a GP-HH algo-
rithm can increase the chance of discovering highly effective dis-
patching rules for many-objective JSS,

2. To develop a new fitness-based selection mechanism and neighbor-
hood structure in GP-PLS, and

3. To compare the proposed GP-PLS with the state-of-the-art GP-
NSGA-III algorithm on a group of benchmark JSS problems.

In this chapter, we start with an explanation of our proposed algo-
rithm, GP-PLS-I which, uses a restricted neighborhood structure and the
partial acceptance mechanism for many-objective optimization problems
(MaOPs). This is followed with the explanation of our other proposed al-
gorithm, GP-PLS-II, which is the extension of GP-PLS-I. Following this,
we will expand on the overview of proposed algorithms, GP-PLS-I and
GP-PLS-II. After the overviews of proposed algorithms, the experimental
design, the results, the analysis, and the discussion for the efficacy investi-
gation are covered. Finally, a chapter summary that wraps up this chapter
is provided.

144CHAPTER 6. GENETIC PROGRAMMING WITH PARETO LOCAL SEARCH

6.2 GP-PLS structure

This section describes the general framework of the proposed algorithms
which combine GP with PLS. First, we propose GP-PLS-I, which combine
PLS with GP. Then, we propose an extension of GP-PLS-I, GP-PLS-II. .

6.2.1 General framework of GP-PLS

GP-PLS starts with the initialization by using the ramped-half-and-half
method. The quality of dispatching rules evaluate in terms of each objec-
tive (lines 1 and 19 of Algorithm 10). These rules then apply to a set of
JSS training instances I train to generate schedules for them. Then, for each
objective, the quality of a rule p is defined as the average objective value
of the schedules generated across all training instances.

Next, PLS features the use of an archive to keep track of candidate rules
for local search. The archive initially has either a randomly-selected sub-
set of rules (Pk) in the population (used in GP-PLS-I) or a selection of the
subset of rules (Pk) based on their fitness value (used in GP-PLS-II). In
both PLS algorithms, first, PLS selects K individuals from the population
to form the archive. Then, the proposed algorithms iteratively search the
neighboring solutions of every rule (p) in the archive with the mutation
operator’s help. A maximum of stepmax neighbors can be generated and
the best neighbors (pnew) are compared with p. If the neighbor rule is bet-
ter than p, then it is added into Pbest. This (Pbest)g archive represents the
best-performing dispatching rules evolved so far.

6.2.2 GP-PLS-I overview

Algorithm 10 outlines the framework of GP-PLS-I. The algorithm of GP-
PLS-I has three significant components, which can be seen in Figure 6.1.
These components are 1) initialization and evaluation of dispatching rules,
2) PLS, and 3) NSGA-III selection. The initialization and evaluation of GP

6.2. GP-PLS STRUCTURE 145

Algorithm 10: The framework of GP-PLS.
Input : training set Itrain
Output: A set of non-dominated solutions(rules) P ∗

1 Initialize of rules and Evaluate the population P0;
2 g← 0;
3 while g < gmax do
4 Pbest ← ∅;
5 Randomly select K individuals from Pg to form archive;
6 foreach p ∈ archive do
7 pnew ← p;
8 for step = 1→ stepmax do
9 p′←mutate(p); // neighbors

10 evaluate(p′);
11 if p′ is better than pnew then pnew ← p′ ;

12 end
13 if pnew is better than p then
14 Pbest \ p ;
15 (Pbest)g ← (Pbest)g ∪ pnew
16 end

17 end
18 Apply genetic operators to (Pbest)g ∪ (Pg \ (Pbest)g) to generate

offspringQg;
19 foreach Q ∈ Qg do Evaluate rule Q;
20 g← g + 1;

21 end
22 return The non-dominated individuals P ∗ ⊆ Pgmax ;

are similar to the general framework of GP-NSGA-III (the detailed infor-
mation can be seen in Subsection 4.3.2 of Chapter 4). PLS components
are the same as the algorithmic components that have been described in

146CHAPTER 6. GENETIC PROGRAMMING WITH PARETO LOCAL SEARCH

Figure 6.1: General Framework of GP-PLS-I.

Subsection 2.1.12 of Chapter 2.

In GP-PLS-I, first, K individuals are selected randomly from the popu-
lation to form the archive. Then, each p in the archive (Pk) is selected for
the neighborhood exploration by using the restricted mutation operator.

When the restricted mutation is applied to rule p, the algorithm ran-
domly selects a node in p whose corresponding sub-tree has a depth of 2.
This restriction tries to avoid significant change that makes the neighbor
rules too different from the parent rules. A randomly generated depth-2
sub-tree then replaces the selected node and its sub-tree. With the help of
this restricted mutation, GP-PLS-I can try to avoid significant changes that
make the neighboring rules significantly different from the original rule
[149]. This restricted mutation procedure is also described in Figure 6.2
and Algorithm 11. Exploring neighboring rules requires the exploration
strategy, which determines the neighborhood’s size for exploration and
the selection strategy for best dispatching rules.

One can either explore the neighborhood entirely (best-improvement)
[50]. Alternatively, only partially until the termination criterion is met [50].

6.2. GP-PLS STRUCTURE 147

Figure 6.2: Examples of possible neighbor rules(shaded sub trees repre-
sented newly generated sub tree).

Algorithm 11: Restricted Mutation
Input : p
Output: pnew

1 Select a node at maximum depth of two in a p;
2 Randomly generate new subtree ;
3 pnew ← replace a selected node with new subtree;
4 return (pnew);

GP-PLS-I randomly samples a neighbor from the neighborhood repeti-
tively until the maximum number of steps (stepmax) is reached. Whenever
the new program is better than the current program, it will replace the
current program.

During the neighborhood exploration of rule p′, pnew sampled from the
neighborhood will be compared with p′ (e.g., line 11 of Algorithm 10). Ac-
cordingly, the following two strategies are considered: (1) the scalarization
strategy [79] and (2) the replacement strategy [26]. In the scalarization
strategy, the objective vector of each rule is aggregated into a scalar using

148CHAPTER 6. GENETIC PROGRAMMING WITH PARETO LOCAL SEARCH

weighted sum, i.e.

fit(x) = w1 · f1(x) + w2 · f2(x) + · · ·+ wm · fm(x), (6.1)

where w = (w1, . . . , wm) is a random weight vector such that wi ≥ 0 (∀i =

1, . . . ,m) and w1 + · · ·+ wm = 1.
The replacement strategy is based on the dominance relation. When

we compare two rules pnew and p′; there are three possible outcomes based
on the replacement strategy:

1. If pnew dominates p′, p′ is replaced by pnew.

2. If pnew and p′ are incomparable to each other, randomly choose one
of them.

3. If pnew is dominated by p′, do nothing.

By replacing rule p with rule pnew that dominates it in the archive, we can
impose selection pressure on the archive and push it towards the Pareto-
front.

In order to maintain a well-diversified collection of rules in the archive,
we combine the GP-PLS-I with the niching mechanism used by NSGA-III
(the detailed information can be seen in Subsection 2.1.5 of Chapter 2).

6.2.3 GP-PLS-II overview

GP-PLS-II algorithm is an extension of GP-PLS-I. GP-PLS-II uses the ref-
erence points and partitions the whole objective space into several sub-
regions. The idea of decomposing the objective space has also been em-
ployed extensively in recent literature [31, 43]. This decomposition of the
objective space determines the appropriate search direction of each solu-
tion. Thus solutions that belong to the same search direction are resided
in the same sub-region of the objective space and called representatives
of this subgroup. With the help of Equation (6.2), the number of repre-
sentative solutions can be identified for each reference point. So, Kr best

6.2. GP-PLS STRUCTURE 149

solutions are selected according to their fitness values from each subspace.
The number of solutions to be selected for neighborhood exploration from
each sub-region is:

Number of Representatives(Kr) =

(
number of solution from each subspace

Total population

)
×K.

(6.2)
Representatives who have the highest fitness value are given prior-

ity to enter the archive of the initial solution. Then, each individual in
the archive is selected for the neighborhood exploration. The selection
of the representatives from each sub-region guides the search toward the
Pareto-front while guaranteeing good population diversity in the objective
space. GP-PLS-II has two variations, the GP-PLS-II-Uniform and GP-PLS-
II-Adaptive. GP-PLS-II-Uniform uses a set of uniform reference points
that are defined by Das and Dennis’s systematic approach [39].

For GP-PLS-II-adaptive, we adopt the adaptive reference points ap-
proach. For generating the adaptive reference points, we select the GP-
MARP-NSGA-III algorithm from Section 5.5 of Chapter 5. GP-MARP-
NSGA-III outperformed other adaptive reference points approaches (A-
NSGA-III, NSGA-III-DRA).Therefore, we select GP-MARP-NSGA-III al-
gorithm in GP-PLS-II. The details of the GP-PLS-II components and its
framework are described below.

In GP-PLS-I, K solutions are selected randomly from the whole popu-
lation. However, in GP-PLS-II, individuals are selected as representatives
from each sub-region according to their local fitness value. In GP-PLS-II,
we used the following steps for the selection of K solutions.

1. Combine the parent (Pg) and offspring (Qg) population and obtain
the combined population (Rg).

2. Use a decomposition-based approach to split the objective space into
a number of independent sub-regions according to a set of reference
points. Solutions associated with similar reference points having an
identical search direction.

150CHAPTER 6. GENETIC PROGRAMMING WITH PARETO LOCAL SEARCH

Figure 6.3: Framework of GP-PLS-II.

3. Assign fitness values to each solution and N solutions are selected
based on their fitness values.

4. Choose K solutions from the N selected solutions as a representa-
tive according to their fitness value. Algorithm 12 outlines the selec-
tion process of solutions in GP-PLS-II and the complete workflow is
shown in Figure 6.3.

For partitioning the objective spaces into many subspaces, GP-PLS-II gen-
erates reference points (either uniformly or adaptively). The generation of
adaptive reference points is shown in Algorithm 8 of Chapter 5.

Through decomposition, the search direction of each solution can be
determined. Two solutions, s1 and s2, have identical search directions
if they are associated with the same reference point. Reference points
are positive and inside the first quadrant, therefore, population Rg are
normalized (see line 9 of Algorithm 12) before partitioned into 2N sub-
populationsRg1, Rg2,. . . RgN by associating each individual with its closest
reference point. The association of r is described in Figure 6.4.

6.2. GP-PLS STRUCTURE 151

Framework of GP-PLS-II

Algorithm 12: Solution selection in GP-PLS-II.
Input : A set of non-dominated solutions (rules) Pg

Output: archive of selected solutions for neighbourhood
1 Apply genetic operators to Pg to generate offspringQg;
2 foreach Q ∈ Qg do Evaluate rule Q;
3 Combine Pg andQg (Rg=Pg ∪Qg);
4 Generate reference pointsW for j =1 to ‖R ‖ do
5 Calculate the ideal point Zmin

j =minr∈R fj(r);
6 Calculate the worst point Zmax

j =maxr∈R fj(r)

7 end
8 for i = 1 to PopSize do

9 ˆf(i)=
fi−Zmin

j

Zmax
j −Zmin

j
;

10 end
11 foreach r ∈ Rg do
12 foreach w ∈ W do
13 compute the acute angle 〈 ˆf(r), w〉;
14 end
15 Assign ŵ = w : argminw∈W 〈 ˆf(r), w〉;
16 /∗ Population Partition ∗/;
17 Assign θr = 〈 ˆf(r), w〉;
18 save r in E(ŵ)

19 end
20 /∗ fitness of individual from each sub-region ∗/;
21 foreach w ∈ W do
22 foreach r ∈ E(ŵ) do
23 Compute the convergence criteria C(r) ;
24 Compute the diversity criteria D(r) ;
25 Compute the fitness of each individual FV (r) by using

equation (6.5)
26 end

27 end
28 foreach w ∈ W do
29 Select solution according to the FV (r) add selected solution

from each subspace into the archive
30 end
31 return archive;

152CHAPTER 6. GENETIC PROGRAMMING WITH PARETO LOCAL SEARCH

Figure 6.4: Example showing how to associate an individual r with a ref-
erence points. In this example, w1 and w2 are two unit reference points,
theta1 and theta2 are the angles between r and w1 and w2, respectively.
Since theta2 < theta1, the individual denoted by r is associated with refer-
ence points w2.

The acute angle measures the association between individual and ref-
erence points. During the recent few years, the vector angle has attracted a
high level of interest in evolutionary many-objective optimization [92, 30].
In our algorithm, the vector angle reflects the similarity of search direc-
tions between two individuals and latter, the angle information between
two individuals in the objective space is used to maintain the diversity.
The acute angle can be calculated as:

cosθi,j =
ri,j · wi,j

|ri,j|
. (6.3)

where ri,j is an individual from the combined population of the size 2N
and wi,j is a reference point.

If an individual ri,j and wi,j have a minimal acute angle among all the
reference points, ri,j becomes the member of the subpopulation Rg,k.

6.2. GP-PLS STRUCTURE 153

Once the population Rg is partitioned into 2N subpopulations, N solu-
tions are selected through their fitness value. The selection criteria based
on the fitness value (FV) are designed based on two sub-criteria: (1) the
convergence criteria (d1 in Figure 6.5) and (2) the diversity criteria (d2 in
Figure 6.5). d1 is represented by the distance from solution (ri,j) to the
ideal point (Z∗) i.e, ‖ ri,j − Z∗ ‖. Similarly, d2 is represented by the in-
verse of the acute angle between (ri,j) and wi,j , i.e., θi,j . In order to balance
between the convergence criterion and the diversity criterion total FV of
each individual can be formulated as a scalarization function:

FV = d1 +
d2

θm
. (6.4)

since our motivation is to find the solution on each reference point that
is closest to the ideal point Z∗. Therefore, θm is used in equation (6.4) to

Figure 6.5: Distance measure in the context of minimization with respect
to a reference direction.

normalize θi,j . This angle normalization process is adopted from RVEA
[31]. This process is meaningful when some of these reference points are
sparsely distributed or densely distributed. As a result, angles between

154CHAPTER 6. GENETIC PROGRAMMING WITH PARETO LOCAL SEARCH

the candidate solutions and the reference points are either extremely small
or extremely large.

It is the best idea to apply high selection pressure on convergence dur-
ing the exploration phase and push the population toward the Pareto-
frontof the search process. However, during the exploitation phase, the
constant pressure applies to diversity. Therefore, we introduce the penalty
parameter g

gmax
in equation (6.5) which can better regulate the proportion

of convergence and diversity information. So the new FV is expressed as:

FV = d1 +
g

gmax

∗ d2

θm
. (6.5)

In the early stage, FV determines the convergence value (d1) because g
<< gmax, therefore d2 ≈ 0. However, when g approaches gmax, the penalty
parameter gradually increases to emphasize the importance of the diver-
sity criterion θi,j . After getting the fitness values of each individual, then
N solutions are selected. From N, K solutions are selected for the neigh-
borhood exploration. Here parameter K is set identically as GP-PLS-I.

• Neighborhood exploration: Neighborhood explorations strategies
govern the size of the explored neighborhood and the selection of
neighboring solutions. GP-PLS-II supports a partial exploration of
the neighborhood until the maximum number of steps (stepmax) is
reached. This number of steps is selected after the sensitivity analy-
sis, which will discussed in subsection 6.3.1. The neighborhood solu-
tion is obtained from any given rule p using the restricted mutation
operator during neighborhood exploration. The detailed informa-
tion of the restricted sub-tree mutation can be found in Section 6.2.2.

• Comparison: The replacement strategy as discussed in Subsection
6.2.2 using the dominance relation to compare any two rules (p and
pnew). The replacement strategy is also used in GP-PLS-II. It is obvi-
ous that replacing the current rule pwith any neighborhood rule that

6.3. DESIGN OF EXPERIMENT 155

dominates pnew would help in the coverage of the Pareto-optimal so-
lutions. Selection pressure is applied to the solutions by performing
PLS schema on the population Pk and new population Pbest is cre-
ated. The Pbest combined with PN/best and created a new population
Pg+1.

Computational Complexity of the GP-PLS-II

To analyze the computational complexity of the GP-PLS-II, we consider
the main steps in one generation in the main loop of Algorithm 12. Apart
from genetic operations such as crossover and mutation, the main com-
putational cost has resulted from the objective normalization, population
partition (line 16 of Algorithm 12), calculation of fitness value (line 25
of Algorithm 12), and elitism selection (line 29 of Algorithm 12). The
time complexity for the objective normalization (line 9 of Algorithm 12)
is O(MN), where M is the objective number and N is the population size.
The time complexity for the population partition of the 2N subpopulation
is O(MN2). In addition, the calculation of fitness value by using equation
(6.4) holds a computational complexity of O(MN2). Further, for elitism
selection, computational resources are mainly consumed by both conver-
gence and diversity selection. The computational complexity of elitism
selection is O(MN2) and O(N2) in the worst-case scenario.

To summarize, apart from the genetic variations, the worst-case, that is,
all the 2N individuals get trapped into one subspace and other subspaces
do not contain any member, the overall computational complexity of GP-
PLS-II within one generation isO(MN2), which is the same as the average
complexity.

6.3 Design of experiment

The JSS benchmark which is a Taillard (TA) static JSS benchmark instances
(the detailed information can be seen in Section 3.1 of Chapter 3) is se-

156CHAPTER 6. GENETIC PROGRAMMING WITH PARETO LOCAL SEARCH

lected as a testbed. In the experiments, we considered four potentially
conflicting objectives: (1) the mean flowtime (Obj1) (see equation (2.1) of
Chapter 2), (2) maximal flowtime (Obj2) (see equation (2.2) of Chapter 2),
(3) mean weighted tardiness (Obj3) (see equation (2.6) of Chapter 2) , and
(4) maximal weighted tardiness (Obj4) (see equation (2.7) of Chapter 2)
which have been defined in Section 3.2 of Chapter 2.

The terminal set and function set for the tree-based GP have been de-
scribed in Section 3.2 of Chapter 3. The crossover, mutation, and repro-
duction rates are set identical to Subsection 2.1.2 of Chapter 4.

In the experiments, the two commonly used measures in multi-
objective optimisation, i.e. IGD [206] and HV [212] are used to compare
the algorithms (see section of in Section 3.3 of Chapter 3).

6.3.1 Sensitivity analysis

In a hybridized algorithm, it is important to understand how to divide the
available computation time between the local search and the global search.
In order to prevent the local search from spending almost all available
computation time, we decide to use the partial strategy, which restricts
the number of iteration in the local search. If we use a very small value
of stepmax (e.g., stepmax=1), the local search procedure may be terminated
sooner than desired. On the contrary, if we use a large value of stepmax

(e.g., stepmax=10), the local search procedure tends to evaluate more solu-
tions than necessary.

We need to carefully adjust the computation time spent by the local
search procedure in our hybrid algorithm because of the above. There-
fore, in this experiment, we examined different combinations of the pa-
rameters where population size is equal to 1000. These combinations are:
(K, stepsmax, generations) = (1000,3,25), (500,2,50), and (250,4,50). The Sen-
sitivity analysis applies to GP-PLS-I and selecting parameters are later
used in the GP-PLS-I algorithm. We also used selected parameters in GP-

6.3. DESIGN OF EXPERIMENT 157

Table 6.1: The mean and standard deviation over the average HV and
IGD values on training instances of the compared algorithms in the four-
objective experiment.

HV (x̄± σ)
Comb1-(1000,3,25) Comb2-(500,2,50) Comb3-(250,4,50)

GP-PLS-I-s GP-PLS-I-r GP-PLS-I-s GP-PLS-I-r GP-PLS-I-s GP-PLS-I-r
0.634(0.013) 0.684(0.015) 0.630(0.020) 0.676(0.015) 0.690(0.018) 0.705(0.016)

IGD (x̄± σ)
GP-PLS-I-s GP-PLS-I-r GP-PLS-I-s GP-PLS-I-r GP-PLS-I-s GP-PLS-I-r

0.00131(0.00017) 0.00127(0.00012) 0.00134(0.00017) 0.00130(0.00024) 0.00127(0.00013) 0.00122(0.00012)

PLS-II because GP-PLS-II is an extension of GP-PLS-I. The three-parameter
settings have the same total number of fitness evaluations (100000). For
a fair comparison, the number of fitness evaluations is kept identical to
GP-NSGA-III. In the sensitivity analysis, 30 independent runs were per-
formed to produce 30 final sets of dispatching rules for each combination
of the parameters.

For the case of (1000,3,25), GP-PLS-I uses the whole population during
the local search with three stepmax for exploring the neighborhood solu-
tions. For the case of (500,2,50), GP-PLS-I can explore the solution space
very well through 50 generations of evolution but has a small number
of local searches. In contrast with the first two parameter combinations,
(250,4,50) has a proper balance between global search (50 generations) and
local search (4 steps during the local search) capabilities.

From the results summarized in Table 6.1, we found that the total num-
ber of generations and the maximum number of local search steps highly
influenced the performance of GP-PLS-I and their computational time.
They together provide varied trade-offs between global and local searches
in GP-PLS-I.

The result showed that GP-PLS-I could not search the solution space
extensively with a small number of generations in (1000,3,25). On the
other hand, if GP-PLS-I cannot perform a sufficient number of local search
steps in (500,2,50), the power of local search cannot be effectively utilized.

158CHAPTER 6. GENETIC PROGRAMMING WITH PARETO LOCAL SEARCH

Figure 6.6: Computational time of whole population

Figure 6.7: Computational time of sub-population.

Table 6.1 shows that a combination (250,4,50) significantly performed bet-

6.4. RESULTS AND DISCUSSIONS 159

ter in terms of HV and IGD as compared to the other two combinations
for PLS.

Figures 6.6 and 6.7 reveal that the local search on the whole popula-
tion is more computationally expensive than the subset of solutions. For
GP-PLS-I to achieve excellent performance, we select (250,4,50) in the sub-
sequent experiments. GP-PLS-II is an extension of GP-PLS-I. Therefore,
GP-PLS-II will also select similar parameters of GP-PLS-I.

6.4 Results and discussions

6.4.1 Results

Table 6.2: The mean and standard deviation over the average HV and
IGD values on training instances of the compared algorithms in the four-
objective experiment.

HV (x̄± σ)
GP-NSGA-III GP-PLS-I-s GP-PLS-I-r GP-PLS-II-U GP-PLS-II-A

0.68850(0.0221) 0.69048(0.0160) 0.70513(0.0130) 0.70967(0.0115) 0.7133(0.0102)
IGD (x̄± σ)

GP-NSGA-III GP-PLS-I-s GP-PLS-I-r GP-PLS-II-U GP-PLS-II-A
0.00125(0.00015) 0.00127(0.00013) 0.00122(0.00012) 0.00126(0.00016) 0.00123(0.000059)

Tables 6.2 shows the mean and standard deviation of the training per-
formance in terms of HV and IGD of the rules obtained by GP-NSGA-III,
GP-PLS-I-s, GP-PLS-I-r, GP-PLS-II-Uniform (GP-PLS-II-U), and GP-PLS-
II-Adaptive (GP-PLS-II-A). Here GP-PLS-I-s refers to the variation of GP-
PLS-I where the scalarization approach is used for selection in Algorithm
10. On the other hand, GP-PLS-I-r represents the variation where the re-
placement strategy is used for selection in Algorithm 10.

For each algorithm in the experiment, 30 GP runs are conducted to
obtain 30 sets of dispatching rules. Then, the rules are tested on the 40 test
instances. The Wilcoxon rank-sum test [195], with the significance level of

160CHAPTER 6. GENETIC PROGRAMMING WITH PARETO LOCAL SEARCH

0.05 is applied to the HV and IGD of the Pareto-front evolved by the five
compared algorithms.

Table 6.2 reveals that GP-PLS-II-A performs significantly better than
other competing algorithms in terms of both HV and IGD. Table 6.2 shows
that GP-PLS-I-r is also highly competitive with GP-PLS-II-U. Therefore,
we can confirm that the replacement strategy is more effective than the
scalarization strategy. Table 6.2 further shows that the selection of an ini-
tial solution based on FV in PLS improves the algorithm’s performance
compared to those that adopt the random selection. Therefore, both ver-
sions of GP-PLS-II performed significantly better than GP-PLS-I in terms
of HV and IGD.

Tables 6.3 and 6.4 show the mean and standard deviations of the test
performance on each of the 40 test instances. In the case of HV, GP-PLS-
II-A performed the best in 17 instances out of the 40 test instances. GP-
PLS-II-U outperformed the other algorithms in 8 instances, GP-PLS-I-r
performed the best in 5 instances, and GP-PLS-I-s outperformed other al-
gorithms in 2 instances. GP-NSGA-III performed the best only on one
instance.

Regarding IGD, GP-PLS-II-A performed significantly better than other
algorithms in 14 instances out of the 40 test instances. GP-PLS-II-U out-
performed the other algorithms in 9 instances. GP-PLS-I-r performed the
best in 4 test instances. In contrast, GP-NSGA-III performed the best in
4 instances. GP-PLS-I-s outperformed the other algorithms in only 2 in-
stances.

Tables 6.3 and 6.4 show that GP-PLS-I-r performed significantly better
in more instances than GP-PLS-I-s and GP-NSGA-III. The results indicate
that GP-PLS-I-r is more effective in utilizing the dominance relation dur-
ing the local search. Upon taking a closer look at Tables 6.3 and 6.4, it can
be observed that GP-PLS-II algorithms not only performed well on small-
scale problem instances but also on larger and more challenging instances
in terms of HV and IGD. Tables 6.3 and 6.4 further show that GP-PLS-II al-

6.4. RESULTS AND DISCUSSIONS 161

Figure 6.8: Frequency of terminals in GP-NSGA-III, GP-PLS-I-s, GP-PLS-
I-r, GP-PLS-II, and GP-PLS-II-A.

gorithms performed significantly better than GP-PLS-I-r and GP-PLS-I-s.
The results indicate the effectiveness of selecting solutions based on the FV
for neighborhood exploration. The results also demonstrate that overall,
GP-PLS algorithms performed significantly better than GP-NSGA-III.

6.4.2 Discussion

Analysis of dispatching rules

Previous results have shown that GP-PLS-II is a very effective approach to
discovering dispatching rules for JSS. This section will explore its behav-
iors to understand how it can effectively search for dispatching rules. The
bar chart in Figure 6.8 shows the percentage of terminals in evolved rules
from each algorithm. Useful terminals for optimizing flowtime and tardi-
ness objectives have been discussed in Subsection 4.5.3 of Chapter 4. It can
be seen in Figure 6.8 that more than 10 percent of evolved rules from each

162CHAPTER 6. GENETIC PROGRAMMING WITH PARETO LOCAL SEARCH

Table 6.3: The mean and standard deviation over the HV values on the test
instances of the compared algorithms.

ID #J #M GP-NSGAIII GP-PLS-I-s GP-PLS-I-r GP-PLS-II-U GP-PLS-II-A
1 15 15 .1868(.0368) .1698(.0125) .2723(.0145) .2631(.0173) .1060(.0632)
2 15 15 .3296(.0182) .3070(.0145) .4091(.0110) .4141(.0161) .3271(.0782)
3 15 15 .2175(.0225) .2683(.0125) .2508(.0127) .3191(.0371) .3955(.0671)
4 15 15 .3159(.0183) .1259(.0133) .4561(.0091 .1771(.0087) .396(.0107)
5 15 15 .2370(.0202) .1799(.0302) .3479(.0192) .3360(.0462 .2719(.0577)
6 20 15 .4147(.0176) .4024(.0186) .4280(.0139) .3166(.0162) .4719(.0537)
7 20 15 .2396(.0683) .2551(.0695) .3146(.0683) .3636(.0613) .3779(.0582)
8 20 15 .2935(.0201) .3201(.0253) .2158(.0501) .2508(.0590) .2969(.0612)
9 20 15 .1787(.0198) .3232(.0198) .1606(.0219) .4021(.0832) .2019(.0502)
10 20 15 .3180(.0151) .3847(.0141) .2743(.0366) .3533(.0167) .4187(.0609)
11 20 20 .2114(.0038) .2214(.0138) .3087(.0118) .0086(.0064) .2218(.0605)
12 20 20 .3652(.0133) .2452(.0123) .3206(.0134) .3206(.0134) .3974(.0159)
13 20 20 .4540(.0151) .4541(.0326) .4550(.0221) .4971(.0163) .2469(.0175)
14 20 20 .1658(.01103) .2945(.01403) .3318(.0118) .3658(.0558) .2146(.0155)
15 20 20 .1742(.0225) .1840(.0199) .1352(.0125) .1558(.0158) .3704(.0119)
16 30 15 .2964(.0300) .3508(.0234) .3198(.0110) .3733(.0428) .2008(.0157)
17 30 15 .3741(.0096) .3385(.0229) .4076(.0093) .3915(.0529) .4729(.0145)
18 30 15 .3825(.0233) .3710(.3032) .3274(.0103) .4571(.0279) .3988(.0139)
19 30 15 .4353(.0126) .3808(.0197) .3988(.0146) .3495(.0264) .4119(.0302)
20 30 15 .3800(.0312) .3801(.0312) .3762(.0212) .3331(.0296) .3198(.0339)
21 30 20 .1983(.0657) .3340(.0792) .2190(.0492) .3635(.0719) .3768(.0449)
22 30 20 .2385(.0472) .2954(.0470) .3177(.0372) .3095(.0417) .3599(.0602)
23 30 20 .2020(.0398) .2672(.0410) .3675(.0294) .3510(.0267) .3468(.0449)
24 30 20 .4420(.0503) .4652(.0443) .4529(.0174) .3510(.0267) .3468(.0449)
25 30 20 .3372(.0477) .3854(.0396) .2864(.0427) .4555(.0359) .4947(.0418)
26 50 15 .4563(.0417) .4672(.0170) .4872(.0270) .5905(.0275) .6439(.0338)
27 50 15 .5610(.0361) .5685(.0304) .5555(.0304) .5510(.0529) .5849(.0238)
28 50 15 .4598(.0398) .4966(.0250) .4798(.0333) .5250(.0619) .6029(.0182)
29 50 15 .5749(.0372) .5702(.0251) .4323(.0413) .4418(.0274) .6260(.0241)
30 50 15 .4510(.0406) .4310(.0333) .4732(.0240) .5435(.0269) .5049(.0253)
31 50 20 .5190(.0424) .4477(.0295) .4870(.0433) .5124(.0429) .5830(.0171)
32 50 20 .4354(.0476) .5705(.0476) .4996(.0375) .4285(.0429) .5166(.0211)
33 50 20 .4427(.0266) .4426(.0838) .5165(.0366) .4525(.0279) .5206(.0234)
34 50 20 .4108(.0384) .3945(.0262) .4911(.0332) .6015(.0239) .4579(.0253)
35 50 20 .4421(.0349) .4138(.0222) .4140(.0165) .6610(.0189) .5049(.0253)
36 100 20 .6054(.0179) .59169(.0093) .6228(.0222) .5685(.0229) .4571(.0343)
37 100 20 .6584(.0142) .6678(.0101) .5857(.0152) .5735(.0182) .6989(.0188)
38 100 20 .6152(.0196) .6175(.0136) .5525(.0111) .6791(.0267) .6015(.0173)
39 100 20 .6495(.0185) .6515(.0191) .6695(.0103) .6305(.0229) .6885(.0188)
40 100 20 .6830(.0158) .6322(.0100) .6467(.0104) .6913(.0339) .6165(.0199)

6.4. RESULTS AND DISCUSSIONS 163

Table 6.4: The mean and standard deviation over the IGD values on the
test instances of the compared algorithms.

ID #J #M GP-NSGA-III GP-PLS-I-s GP-PLS-I-r GP-PLS-II-U GP-PLS-II-A
1 15 15 .01897(.0008) .02748(.00011) .01479(.00012) .0119(.00017) .0299(.00043)
2 15 15 .0127(.0005) .0124(.0004) .0117(.0003) .0098(.00015) .0133(.00023)
3 15 15 .0173(.0008) .0126(.0006) .0137(.0002) .0115(.0005) .0112(.0026)
4 15 15 .0162(.0007) .0260(.0006) .0135(.0002) .0300(.0006) .0206(.0005)
5 15 15 .0193(.0005) .0200(.0003) .0085(.0007) .0119(.0001) .0115(.0005)
6 20 15 .0079(.0004) .0147(.0001) .0124(.0007) .0111(.0001) .0300(.0006)
7 20 15 .0250(.0013) .0109(.0012 .0121(.0014) .0010(.0009) .0093(.0002)
8 20 15 .0133(.0001) .0156(.0012) .0147(.0013) .0116(.0016) .0106(.0002)
9 20 15 .0201(.0001) .0108(.0005) .0142(.0003) .0078(.0008) .0085(.0001)
10 20 15 .0129(.0002) .0077(.0001) .0128(.0003) .0149(.0002) .0108(.0001)
11 20 20 .0094(.0006) .0090(.0001) .0091(.0003) .0221(.0007) .0119(.0014)
12 20 20 .0217(.0004) .0168(.0001) .0147(.0006) .0109(.0002) .0008(.0018)
13 20 20 .0155(.0001) .0112(.0005) .0100(.0004) .0009(.0001) .0008(.0002)
14 20 20 .0246(.0009) .0174(.0005) .0216(.0004) .0165(.0008) .0283(.0029)
15 20 20 .0191(.0008) .0315(.0003) .0289(.0004) .0083(.0001) .0024(.0008)
16 30 15 .0111(.0006) .0090(.0002) .0070(.0008) .0013(.0001) .0018(.0006)
17 30 15 .0061(.0003) .0047(.0008) .0077(.0007) .0057(.0001) .0058(.0003)
18 30 15 .0060(.0006) .0092(.0008) .0063(.0007) .0068(.0002) .0038(.0007)
19 30 15 .0065(.0004) .0059(.0008) .0054(.0007) .0064(.0002) .0063(.0007)
20 30 15 .0019(.0005) .0054(.0003) .0065(.0002) .0092(.0007) .0062(.0007)
21 30 15 .0094(.0022) .0097(.0013) .0125(.00012) .0122(.0003) .0079(.0009)
22 30 20 .0098(.0010) .0103(.0006) .0095(.00014) .0079(.00017) .0061(.0005)
23 30 20 .0077(.00004) .0074(.00006) .0063(.00024) .0082(.0015) .0127(.0019)
24 30 20 .0069(.00014) .0056(.00016) .0085(.00021) .0052(.0008) .0058(.0001)
25 30 20 .0056(.00012) .0071(.00005) .0074(.00014) .0057(.0001) .0067(.0005)
26 50 15 .0057(.00009) .0058(.00005) 0054(.00044) .0048(.00007) .0043(.0013)
27 50 15 .0038(.00029) 0054(.00013) .0042(.00041) .0045(.0006) .0048(.0007)
28 50 15 .0036(.00010) .0035(.00033) .0040(.00051) .0041(.0005) .0045(.0005)
29 50 15 0035(.00032) .0062(.00034) .0045(.00031) .0066(.00033) .0043(.0003)
30 50 15 .0043(.00010) .0045(.00044) .0042(.00011) .0049(.0008) .0053(.0008)
31 50 20 .0047(.00029) .0046(.00003) .0052(.00018) .0041(.0007) .0044(.0002)
32 50 20 .0040(.00009) .0054(.00006) .0041(.00008) .0062(.0005) .0051(.0005)
33 50 20 .0054(.00001) .0056(.00002) .0044(.00008) .0027(.0002) .0018(.0008)
34 50 20 .0037(.00005) .0035(.00008) .0033(.00009) .0036(.0004) .0049(.0006)
35 50 20 .0032(.00015) .0034(.00007) .0031(.00009) .0030(.0002) .0047(.0004)
36 100 20 .0027(.00020) .0032(.00001) .0021(.00067) .0039(.0006) .0023(.0004)
37 100 20 .0034(.00018) .0031(.00001) .0027(.00017) .0035(.0004) .0025(.0002)
38 100 20 .0044(.00028) 0037(.00004) 0040(.00008) .0028(.0004) .0032(.0003)
39 100 20 .0026(.00020) .0028(.00001) .0024(.00067) .0028(.0003) .0018(.0001)
40 100 20 0018(.00001) .0019(.00002) .0022(.00009) .0023(.0003) .0013(.0002)

164CHAPTER 6. GENETIC PROGRAMMING WITH PARETO LOCAL SEARCH

algorithm have W and PT terminals. According to the literature [70], MRT,
PT, WKR, WINQ, NOINQ, FDD, NOPT are useful terminals (relevant) for
optimizing flowtime objectives. Specifically, PT, WINQ, and WKR are the
most important three terminals for optimizing flowtime objective. On the
other hand, WINQ, NOINQ, NOPT, W, PT, MRT, DD are the useful termi-
nals for optimizing tardiness objectives. Of these, PT, DD, and W are the
most useful terminals for optimizing tardiness objectives.

It can be seen from Figure 6.8 that the number of occurrences of W,
WINQ, PT, DD, MRT, NOPT and FDD terminals are higher in the local
search algorithms (GP-PLS-I-s, GP-PLS-I-r, GP-PLS-II, and GP-PLS-II-A)
than in the GP-NSGA-III algorithms. This is because all the GP-PLS algo-
rithms enhanced the exploitation ability and evolved significantly better
rules as compared to the other algorithms in terms of HV and IGD. There-
fore, these algorithms selected the rules which are well-optimized. As a
result, there are more chances of occurrences of useful terminals in GP-PLS
algorithms. Further, it can also be seen from Figure 6.8 that GP-PLS-II-A
has more useful terminals (W, PT, DD, FDD, and WINQ) than GP-PLS-I-s,
GP-PLS-I-r, GP-PLS-II. This analysis shows the effectiveness of adaptive
reference points with PLS.

Figure. 6.9 shows the length of rules from each generation in GP-
NSGA-III, GP-PLS-I-s, GP-PLS-I-r, GP-PLS-II. In most of the generations,
GP-PLS-II produces shorter rules as compared to GP-PLS-I-r, GP-PLS-I-
s, and GP-NSGA-III. In fact, all the hybridized algorithms with PLS have
relatively short rules as compared to GP-NSGA-III. It is noted that the pro-
gram lengths in Figure. 6.9 average length of the best rules of each inde-
pendent run. This is another advantage of PLS as the short rules are easier
to analyze and interpret. All PLS-II requires less time for evaluations as
compared to GP-NSGA-III. This, in turn, may affect the computational
time of the PLS-algorithm.

6.4. RESULTS AND DISCUSSIONS 165

Figure 6.9: Length of rules from each generation in GP-NSGA-III, GP-PLS-
I-s, GP-PLS-I-r, GP-PLS-II.

Further analysis

To further investigate how PLS affects the GP search process, we plotted
(a) the average HV and IGD of non-dominated solutions evolved by GP-
PLS across multiple generations in Figures. 6.10 and 6.11, (b) parallel co-
ordinate plots of non-dominated solutions evolved by GP-PLS and GP-
NSGA-III algorithms on one problem instance in Figures 6.12 (a) to 6.16
(b), and (c) box-plots of the HV and IGD values on different test instances
in Figures 6.19 (a) to 6.22 (b).

Figures 6.10 and 6.11 reveal that GP-PLS-II-A has better convergence
curves in terms of both HV and IGD than other compared algorithms. Fig-
ures 6.10 and 6.11 also show that both algorithms of GP-PLS-II achieved
better performance than the GP-PLS-I and GP-NSGA-III in terms of HV
and IGD. These results reveal that the selection of the solutions based on
FV (convergence and diversity) can improve the GP-PLS algorithm’s over-
all performance.

166CHAPTER 6. GENETIC PROGRAMMING WITH PARETO LOCAL SEARCH

0 5 10 15 20 25 30 35 40 45 50

Generation

0.2

0.3

0.4

0.5

0.6

0.7

0.8

H
V

 v
a

lu
e

s
HV

GP-NSGA-III

GP-PLS-I-s

GP-PLS-I-r

GP-PLS-II-U

GP-PLS-II-A

Figure 6.10: The curves of the average number of HV value of the non-
dominated solutions on the training set during the 30 independent GP
runs.

0 5 10 15 20 25 30 35 40 45 50

Generation

-5

0

5

10

15

20

IG
D

 v
a

lu
e

s

10
-4 IGD

GP-NSGA-III

GP-PLS-I-s

GP-PLS-I-r

GP-PLS-II-U

GP-PLS-II-A

Figure 6.11: The curves of the average number of IGD value of the non-
dominated solutions on the training set during the 30 independent GP
runs.

The parallel coordinate plots in Figures 6.12 (a) to 6.16 (b) depict
the non-dominated set of dispatching rules obtained respectively by GP-
NSGA-III. Figures 6.12 (a), 6.13 (a), 6.14 (a), 6.15 (a), and 6.16 (a) show that
GP-PLS-I-r successfully evolved rules with better coverage for the objec-

6.4. RESULTS AND DISCUSSIONS 167

tives (on mean flowtime and maximum weighted tardiness) in generation
10. On the other hand, it can be seen in Figures 6.12 (b), 6.13 (b), 6.14 (b),
6.15 (b), and 6.16(b) that rules evolved by GP-PLS-II-A are more diversi-
fied to cover a much wider range of the objective space in generation 50
than other compared algorithms. We can also observe that GP-PLS-II-U
and GP-PLS-I-r are also well-diversified as compared to GP-NSGA-III and
GP-PLS-I-s.

Obji Obj2 Obj3 Obj4
0

0.2

0.4

0.6

0.8

1

Objectives

O
b

je
c
ti

v
e
s
 V

a
lu

e
s

(a) Generation 10.

Obji Obj2 Obj3 Obj4
0

0.2

0.4

0.6

0.8

1

Objectives

O
b

je
c
ti

v
e
s
 V

a
lu

e
s

(b) Generation 50.

Figure 6.12: Parallel coordinate plot of GP-NSGA-III.

Obji Obj2 Obj3 Obj4
0

0.2

0.4

0.6

0.8

1

Objectives

O
b

je
c
ti

v
e
s
 V

a
lu

e
s

(a) Generation 10.

Obji Obj2 Obj3 Obj4
0

0.2

0.4

0.6

0.8

1

Objectives

O
b

je
c
ti

v
e
s
 V

a
lu

e
s

(b) Generation 50.

Figure 6.13: Parallel coordinate plot of GP-PLS-I-s.

168CHAPTER 6. GENETIC PROGRAMMING WITH PARETO LOCAL SEARCH

Obji Obj2 Obj3 Obj4
0

0.2

0.4

0.6

0.8

1

Objectives

O
b

je
c

ti
v

e
s

 V
a

lu
e

s

(a) Generation 10.

Obji Obj2 Obj3 Obj4
0

0.2

0.4

0.6

0.8

1

Objectives

O
b

je
c

ti
v

e
s

 V
a

lu
e

s

(b) Generation 50.

Figure 6.14: Parallel coordinate plot of GP-PLS-I-r.

(a) Generation 10. (b) Generation 50.

Figure 6.15: Parallel coordinate plot of GP-PLS-II-U.

Figures 6.17 and 6.18 show the distribution of solutions of GP-PLS-II-
A and GP-PLS-II-U to understand how GP-PLS-II-A performs better than
GP-PLS-II-U. These figures show that GP-PLS-II-A has widely distributed
optimal solutions than uniformly distributed decomposition-based algo-
rithms.

Figures 6.19 (a) to 6.22 (b) show the box plots of the HV and IGD values

6.4. RESULTS AND DISCUSSIONS 169

(a) Generation 10. (b) Generation 50.

Figure 6.16: Parallel coordinate plot of GP-PLS-II-A.

on different test instances. Figure 6.19 (a) shows a small instance where
GP-PLS-II-A significantly outperforms GP-PLS-II-U in terms of HV. The
box plot of GP-PLS-II-A is comparatively taller than GP-PLS-II-U which
shows that the area occupied by non-dominated solutions is higher than
GP-PLS-II-U. Further, the long upper whisker reveals that most of the HV
values are close to the positive quartile region in GP-PLS-II-A. On the
other hand, GP-PLS-II-U also has long upper whiskers with outliers.

Figure 6.19 (b) shows the box plot on one of the complex instances
with a larger number of machines where GP-PLS-II-A is significantly bet-
ter than GP-PLS-II-U in terms of HV. The box plot shows that GP-PLS-II-
A produces higher HV values above the central region. Further, the box
plot for GP-PLS-II-U is comparatively taller than GP-PLS-II-A. This result
indicates that the area occupied by the non-dominated solutions is more
significant than GP-PLS-II-A.

Figures 6.20 (a) and 6.20 (b) show the box plots of those instances where
GP-PLS-II-U performs significantly better than GP-PLS-A in terms of HV.
Figures 6.20 (a) and 6.20 (b) depict the box plot, showing that most of the

170CHAPTER 6. GENETIC PROGRAMMING WITH PARETO LOCAL SEARCH

Figure 6.17: Distribution of solutions of GP-PLS-II-U on instance 26.

HV values are close to the positive quartile region for GP-PLS-II-U. On the
other hand, GP-PLS-II-A also has a long upper whisker with outliers.

Figures 6.21 (a) to 6.21 (b) show that the box-plots of IGD values on
smallest and complex test instances, respectively. Figure 6.21 (a) shows
that GP-PLS-II-A significantly outperforms GP-PLS-II-U in terms of IGD.
The box plot of GP-PLS-II-A is comparatively lower than GP-PLS-II-U.
Figure 6.21 (b) also indicates that the Pareto-optimal solutions are much
closer to the Pareto-front as compared to Pareto-optimal solutions ob-
tained by GP-PLS-II-U.

Figures 6.22 (a) and 6.22 (b) show the box plots of those instances where
GP-PLS-II-U performs significantly better than GP-PLS-II-A in terms of

6.4. RESULTS AND DISCUSSIONS 171

Figure 6.18: Distribution of solutions of GP-PLS-II-A on instance 26.

IGD. From the HV and IGD box plot, we found that generally evolved
rules performed much better on the complex test problems. Further, HV
and IGD values are more varied on simple problems than the complex
problems.

In this study, our experiment results showed that GP-PLS performs
much better than the base algorithm, GP-NSGA-III, in terms of both HV
and IGD. Moreover, GP-PLS-r performs significantly better than GP-PLS-
s. This indicates the effectiveness of using the dominance relation in the
comparisons during a local search. Both GP-PLS-II versions performed
significantly better than GP-PLS-I-r and GP-PLS-I-s. This result reveals
that the selection of solutions based on the FV (convergence and diver-
sity) for neighborhood exploration will improve solutions’ quality. GP-
PLS-II-A performed significantly better solutions than GP-PLS-II-U and
has widely distributed optimal solutions than GP-PLS-II-U.

172CHAPTER 6. GENETIC PROGRAMMING WITH PARETO LOCAL SEARCH

(a) Instance 3. (b) Instance 39.

Figure 6.19: Box-plots of the HV values.

(a) Instance 9. (b) Instance 38.

Figure 6.20: Box-plots of the HV values.

6.5. CHAPTER SUMMARY 173

(a) Instance 3. (b) Instance 39.

Figure 6.21: Box-plots of the IGD values.

(a) Instance 9. (b) Instance 38.

Figure 6.22: Box-plots of the IGD values.

6.5 Chapter summary

In this chapter, we combine GP with a PLS for solving many-objective JSS
problems. This approach’s key idea is to perform multiple local search

174CHAPTER 6. GENETIC PROGRAMMING WITH PARETO LOCAL SEARCH

steps and effectively find the neighborhood of non-dominated dispatch-
ing rules. This local search mechanism helps create excellent exploitation
abilities in GP-PLS. GP-PLS features the use of a newly designed restricted
neighborhood structure and the partial acceptance mechanism for MaOPs.
In this study, two common selection strategies, scalarization, and replace-
ment are experimentally evaluated.From the experiments, we found that
the total number of generations and the maximum number of local search
steps are highly influential on GP-PLS-I performance. Further, we found
that the dominance relation to compare two rules is significantly better
than the scalarization strategy.

The second algorithm of GP-PLS-II followed the decomposition-based
approach. In this approach, a set of reference points (either uniform or
adaptive) decomposed the whole objective space into a number of small
subspaces. A fitness-based selection criterion was proposed for select-
ing initial solutions for neighborhood exploration — the selection criteria
based on convergence and diversity.

Extensive experiments have been performed to understand the effec-
tiveness of the proposed GP-PLS as compared to GP-NSGA-III by using
the Taillard static job-shop benchmark set. Experiment results showed that
GP-PLS performed much better than the GP-NSGA-III algorithm without
the local search in terms of both HV and IGD. This study was further an-
alyzed to reveal the different preferences over the use of terminals. This
chapter is a first step investigation of PLS in GP. The PLS used in GP im-
proves the effectiveness of evolved rules in terms of HV and GP.

The next chapter discusses the summary of the whole thesis, achieved
research objectives, conclusions. It highlights the potential research direc-
tions that could be carried out in the future related to the research investi-
gations in this thesis.

Chapter 7

Conclusions

This thesis’s overall goal has been successfully achieved, and several
new genetic programming-based hyper-heuristics (GP-HH) methods have
been developed. These developed methods evolved effective dispatch-
ing rules for many-objective job shop scheduling (JSS) problems. The
reusability and the effectiveness of the evolved dispatching rules have
been demonstrated on the tested benchmark JSS instances. Further, we
solved several issues of many-objective JSS problems, such as diversity.
This thesis also used Pareto local search (PLS) to improve the quality of
evolved dispatching rules.

This chapter sets out the research goals that have been achieved, fol-
lowed by the main conclusions. Finally, the chapter provides potential
research areas of more general future works.

7.1 Achieved objectives

The following research objectives have been fulfilled in this thesis:

• The first research objective developed a new many-objective GP-
HH (GP-NSGA-III) to evolve a Pareto-front of non-dominated dis-
patching rules for JSS. The GP-NSGA-III simultaneously evolved

175

176 CHAPTER 7. CONCLUSIONS

non-dominated rules for conflicting objectives instead of aggregating
many-objective problems into a single-objective optimization prob-
lem. GP-NSGA-III seamlessly combined GP-HH for evolving dis-
patching rules with the selection technique introduced in one of
the state-of-the-art-algorithms: NSGA-III. This research objective in-
vestigated the trade-offs among many commonly considered objec-
tives in JSS problems, i.e., the mean flowtime (mF) (see equation
(2.1) of Chapter 2) , maximal flowtime (maxF) (see equation (2.2)
of Chapter 2), mean weighted tardiness (mWT) (see equation (2.6)
of Chapter 2) and maximal weighted tardiness (maxWT) (see equa-
tion (2.7) of Chapter 2). Furthermore, in this objective, we found
that many-objective JSS problems suffered from the same issue of
scalability when many-objective JSS problems used multi-objective
optimization algorithms (NSGA-II and SPEA2). The results of this
research objective in terms of HV and IGD also showed that the pro-
posed algorithm, GP-NSGA-III, is significantly better than the multi-
objective optimization algorithms (NSGA-II and SPEA2).

• The second research objective addressed the diversity maintenance
issue of many-objective optimization problems. In this objective,
we found that uniformly distributed reference points have many
useless points [86]. These points fail to find associated Pareto-
optimal solutions on the objective space for combinatorial optimiza-
tion problems. We successfully developed adaptive reference point
approaches for generating the reference points according to the can-
didate solutions’ distribution. The following two adaptive reference
point approaches were developed: (i) model-free approach and (ii)
model-based approach.

In the model-free approach (GP-A-NSGA-III(PSO)), particle swarm
optimization (PSO) was incorporated into the NSGA-III. Essential
changes to particle dynamics in PSO were also introduced in our GP-

7.1. ACHIEVED OBJECTIVES 177

A-NSGA-III(PSO) to prevent the majority of reference points from
converging to small areas in the objective space. The experiment
results showed that GP-A-NSGA-III(PSO) decreased useless refer-
ence points during the evolutionary search. Further, the generation
of reference points adaptively improved the performance of GP-A-
NSGA-III(PSO) in terms of HV and IGD. The results also showed
that evolved Pareto-front was more diversified with adaptive refer-
ence points than uniform reference points.

In the model-based approach, models were constructed explicitly.
They were constructed according to the density of solutions from
each defined sub-location in a whole objective space. This density-
based model learned the distribution of candidate solutions and ap-
proximated the Pareto-front based on the evolved solutions. For
generating reference points, we introduced two different methods.
The first method produced reference points close to vertices, and the
second method generated reference points on intermediate locations.
Both of these methods enhanced the match between reference points
and Pareto-optimal solutions. As a result, useless reference points
decreased throughout the evolutionary process. To further improve
of the density model, we reduced the density-noise by predicting the
mean value in the sub-location.

The model-based approach reduced the useless reference points and
provided a better distribution of Pareto-optimal solutions on the en-
tire Pareto-front. Further, a better distribution of reference points
improved the diversity of solutions that were observed visually and
in terms of HV and IGD. Experimental results demonstrated that the
adaptive reference point approach (model-based) performed signif-
icantly better than the other compared algorithms on irregular, dis-
connected, degenerated, and inverted Pareto-front shapes.

• The third research objective combined GP with PLS. The two ver-

178 CHAPTER 7. CONCLUSIONS

sions of GP-PLS algorithms were developed in this research objec-
tive, GP-PLS-I and GP-PLS-II. A new fitness-based selection mecha-
nism was developed for the PLS. Both versions of GP-PLS features
used a newly designed restricted neighborhood structure and the
partial acceptance mechanism for many-objective optimization prob-
lems (MaOPs). In this study, we further considered and examined
the use of two common selection strategies for the selection of new
solutions (scalarization and replacement).

Experimental results demonstrated the effectiveness of the newly
developed GP-PLS as compared with the baseline algorithm (GP-
NSGA-III). Evolved rules of GP with PLS were more effective than
rules evolved by GP without PLS because GP-PLS enhanced the ex-
ploitation ability of the algorithm. As a result, rules obtained by GP-
PLS had more useful terminals than GP-NSGA-III.

7.2 Main conclusions

The main conclusions for the three research objectives drawn from the
three contribution chapters (Chapter 4, Chapter 5, and Chapter 6) are dis-
cussed in this section.

7.2.1 Many-Objective GP for JSS

In Chapter 4, we investigated many-objective JSS and focused on evolving
a set of trade-offs dispatching rules for many-objective JSS. For this, we
combined GP with NSGA-III. In order to tackle many objectives, different
aspects have to be considered.

New evolutionary search mechanisms

In this thesis, the evolution process of GP and the selection scheme of
NSGA-III were combined. GP is a commonly-used hyper-heuristic for

7.2. MAIN CONCLUSIONS 179

evolving dispatching rules for JSS and has achieved great success [68, 87].
The combination of GP and NSGA-III was designed as a competitive al-
gorithm for evolving a set of trade-offs rules in many-objective JSS. In this
algorithm, GP-NSGA-III combined the initialization, evaluation, and evo-
lutionary operators of GP with the selection scheme of NSGA-III.

Effectiveness of dispatching rules

The experimental results showed that the evolved rules from GP-NSGA-
III were significantly better than GP-NSGA-II and GP-SPEA2. Therefore,
rules evolved from GP-NSGA-III were well optimized (well-converged
and well-diversified). As a result, GP-NSGA-III rules effectively identify
and use useful terminals than GP-NSGA-II and GP-SPEA2.

Pareto-front

The experimental results showed that the GP-NSGA-III performed on
training instances was significantly better than GP-NSGA-II and GP-
SPEA2 in terms of HV and IGD. The evolved rules of GP-NSGA-III are
also performed significantly better than GP-NSGA-II and GP-SPEA2 on
the test instance, especially on large-size test instances. Thus rules evolved
from GP-NSGA-III exhibit the generalization and re-usability abilities.

7.2.2 Non-uniform Pareto-front

In NSGA-III, the diversity of solutions is encouraged by adopting a set
of uniformly distributed reference points in the objective space. How-
ever, evenly distributed reference points may not be effective for prob-
lems with disconnected and non-uniform Pareto-front. These problems
generate many useless reference points that are never associated with any
of the Pareto-optimal solutions. The existence of these useless reference
points in NSGA-III has significant effects on its performance. Two adap-
tive reference point generation approaches were developed in this thesis

180 CHAPTER 7. CONCLUSIONS

to address the useless reference points issue. These two approaches are
described below:

(1) Model-free approach

The first adaptive reference point method inspired by PSO [153] is called
”Adaptive-NSGA-III(PSO)”. This approach is a simple and efficient one
than the model-based approach. We found that useless reference points
kept decreased during the evolutionary process. Especially at the later
stage of the search, the adaptive reference point scheme led to less useless
reference points and a better refinement of the population’s regions. The
proposed reference point adaptation algorithm significantly improved the
performance of GP-NSGA-III in terms of both HV and IGD which indicate
that the algorithm performs the best if the distribution of the reference
point is consistent with the distribution of the Pareto-optimal solutions.

(2) Model-based approach

In the model-based approach, the models are explicitly constructed and
learn the distribution of the candidate solutions of the current genera-
tion and generate reference points according to the distribution of the so-
lutions. We also used Gaussian process-based modeling for smoothing
the surface and calculated an area under the Gaussian process model’s
mean function. The model-based approach estimated the approximately
accurate number of reference points in each subspace. Furthermore, we
found that the model-based approach was effective than the model-free
approach. Further, the density-based model is more efficient than Gaus-
sian process-based model. However, Gaussian process-based model is
highly effective than the model-free approach and density-based model.
The result showed that the number of useless points during the GP search
process is constantly decreasing in the model-based reference points adap-
tation approach.

7.2. MAIN CONCLUSIONS 181

Benchmarks problems

The performance of the adaptive model-based approach is also verified
on ten benchmark problems. These problems have various shapes of
Pareto-front. We have used these problems as the testbed in the empirical
studies problem, where the number of objectives was scaled from three
to eight. The experimental results demonstrated that the model-based
approach performed significantly better than the other competing algo-
rithms (REVA*, Two-ARCh, NSGA-III, IMMOEA, and A-NSGA-III) on
the different types of Pareto-front which have irregular, disconnected, de-
generate, and inverted shapes of Pareto-front. The model-based approach
performed significantly better as compared to the other MOEAs with var-
ious types of Pareto-front. This is because the model-based approach gets
the concrete knowledge of the objective space and provided better matches
between the distribution of Pareto-optimal solutions and reference points.
Further, a better distribution of reference points improved the diversity of
the solutions in terms of HV and IGD.

7.2.3 Pareto local search (PLS)

In Chapter 6, we combined GP with PLS. The first GP-PLS mechanism,
GP-PLS-I investigated the influence of Pareto local search with GP. Based
on the results of GP-PLS-I, a new algorithm, GP-PLS-II, was developed.
These findings are as follows: (1) GP-PLS required a fitness-based selection
mechanism for selecting the initial solution for neighborhood exploration.
(2) GP-PLS should perform an adequate number of local search steps for
local searches to show its effectiveness, and (3) The total number of gen-
erations and the maximum number of local search steps significantly af-
fected by the performance of GP-PLS. Both GP-PLS algorithms used the
three major components of PLS, (1) selection of a solution, (2) neighbor-
hood exploration, and (3) comparison. From the GP-PLS, we found that
the fitness-based selection mechanism based on the convergence and di-

182 CHAPTER 7. CONCLUSIONS

versity criteria for selecting initial solutions performed significantly better
than the random selection. Further, a neighborhood structure for GP, the
restricted mutation, can effectively prevent a new neighboring rule dis-
covered during the local search process from being significantly different
from the original rule. For comparing the new rule with its immediate par-
ent rule, the following two strategies were considered: (1) the scalarization
strategy [79], and (2) the replacement strategy [26]. The result showed in
terms of HV and IGD indicates the effectiveness of using the dominance
relation in the comparisons during the local search.

Extensive experiments were performed to understand the effectiveness
of the proposed GP-PLS as compared with the base-line algorithm, GP-
NSGA-III. Experiment results showed that GP-PLS performs much bet-
ter than the current state-of-the-art method without local search in terms
of both HV and IGD. Moreover, programs obtained by GP-PLS-II and
GP-PLS-I were more effective than the GP-NSGA-III because GP-PLS en-
hances the exploitation ability; as a result, GP-PLS algorithms have the
majority of useful terminals.

Sensitivity analysis

In the experiment, a sensitivity analysis was performed and found that
the total number of generations and the maximum number of local search
steps together provide varied trade-offs between global and local searches
in GP-PLS.

7.3 Future work

This section highlights key areas of future work related to the field of
many-objective JSS.

7.3. FUTURE WORK 183

7.3.1 Incorporate user preferences to many-objective JSS

This thesis used reference points that decomposed the original many-
objective space into subspace. However, we can further use these reference
points to target the user’s interested in different sub-regions of the entire
Pareto-front. The use of user preferences is important for MaOPs because
the user may have a preferred subset of Pareto-optimal solutions that fall
specific subregion of the objective space. Also, it has been shown in the
literature that reference points are one of the efficient and effective meth-
ods to preference articulation [31]. This preference articulation is particu-
larly crucial in many-objective where it is improbable to cover the whole
Pareto-front [31] comprehensively.

7.3.2 Incorporate locality of search operators to Genetic

Programming

As we know, every optimization problem can be decomposed into a
genotype-phenotype mapping and a phenotype-fitness mapping. In EC,
locality refers to how well neighboring genotypes correspond to neigh-
boring phenotypes. The locality of a representation is high if all neigh-
boring genotypes correspond to neighboring phenotypes. In contrast, the
locality of a representation is low if some neighboring genotypes do not
correspond to neighboring phenotypes. It is already mentioned that a rep-
resentation of high locality is necessary for efficient evolutionary search
[52, 171]. In most local search methods, mutation use to explore the neigh-
borhood of its immediate parents. If the mutation-based search algorithm
does not have a high locality representation, it would jump randomly
around the search space.

There is no explicit genotype-phenotype mapping in the tree-
structured GP, so we can say that there are no explicit phenotypes distinct
from genotypes [52]. This is common in GP, therefore, to study instead of
the behavior of the mapping from genotype to fitness. However, in JSS, a

184 CHAPTER 7. CONCLUSIONS

rule is represented as a GP tree and two dispatching rules with different
tree structures can essentially have exactly the same behavior in making
decisions [130]. For example, the dispatching rules with the priority func-
tions of x, 2x will always make the same decision [66]. So, in JSS, rules are
different in terms of phenotypic behavior instead of genotypic structure.
So to compare the similarity of solutions during neighborhood exploration
in PLS, we will adopt a phenotypic characterization approach [66] which
can characterize the behavior of a dispatching rule as a fixed-length nu-
meric vector. This phenotypic characterization approach is based on a
reference dispatching rule and applied to single objective JSS problems.
However, it is a potential research direction for many-objective JSS. There-
fore, we will explore this research direction in the future and find refer-
ence rules for many-objective JSS. Moreover, we will also integrate this
approach with our PLS algorithm (see Chapter 6).

7.3.3 Incorporate effective crossover operator to many-

objective JSS

This thesis tackles several issues of many-objective JSS. One of the chal-
lenges of many-objective JSS problems is designing an effective crossover
operator. Sato et al. [174] revealed that in combinatorial optimization
problems such as JSS problems, the recombination of two parents close to
the Pareto-front might generate an offspring distant from the Pareto-front
since a conventional crossover operator might be too disruptive for many-
objective combinatorial optimization. This is because, in many-objective
JSS problems, non-dominated solutions can have quite different building
blocks, which are useful for different objectives. Randomly selecting par-
ents based on the dominance relation may result in combining building
blocks for different objectives together which may not lead to good off-
spring. So, in this case, a good recombination operator is needed to dimin-
ish crossover operators’ disruptive effect in many-objective JSS problems.

7.3. FUTURE WORK 185

7.3.4 Incorporate adaptive terminal selection to many-

objective JSS

This thesis developed several GP-HH approaches for many-objective JSS.
Each approach used a GP system for evolving and effective rules. These
rules utilized several potential terminals (and functions) that can be given
as parameters to the GP system to discover dispatching rules automati-
cally. The terminal set was formed by machine, job, and shop attribute
[47, 150]. Although GP based approaches in this thesis outperformed the
other compared algorithms, the terminal selection was not based on the
preference objectives. The size of dispatching rules also increases with the
number of objectives and rules may have redundant terminals that affect
the interpretability of dispatching rules. The interpretability of rules can
be achieved by eliminating the irrelevant terminals from the terminal set.

7.3.5 Dispatching rules for many-objective dynamic JSS

In this thesis, we have only used the GP to evolve dispatching rules (prior-
ity functions) for static JSS environments because many-objective research
is comparatively newer than single objective JSS and multi-objective JSS.
Furthermore, dynamic JSS environments are more complex than static JSS
environments. This is because, in dynamic JSS environments, jobs contin-
uously arrive on the shop floor at various instances of time with no prior
process information, e.g., release date, due date, and processing time are
not given before job arrival. Further, the existing GP-HH for dynamic JSS
is not efficient regarding fitness evaluation. Therefore, this thesis evolved
effective and efficient dispatching rules for static JSS. This thesis assisted
in the understanding of how optimization approaches can be adapted to
improve many-objective JSS algorithms performances. Therefore, there is
a need to investigate dynamic many-objective JSS and evolve effective dis-
patching rules.

186 CHAPTER 7. CONCLUSIONS

7.3.6 Dispatching rules for many-objective flexible JSS

Flexible job-shop scheduling (FJSS) problems [16] is an extension of clas-
sical JSS problems that allows the processing of each operation on more
than one machine. FJSS problems consist of two sub-problems: (1) the
routing sub-problem and (2) the scheduling sub-problem. The routing
sub-problem focuses on assigning each operation to a machine out of the
set of capable machines. The scheduling sub-problem aims to sequence
the assigned operation on all the machines to obtain a feasible schedule
that optimizes one or many objectives. It is more complicated than JSS
problems because it involves two strongly coupled decisions, the routing
sub-problem and the scheduling sub-problem [16]. FJSS is an NP-hard
problem[16]; therefore, it is essential to know how to efficiently use the
GP system and evolve effective rules for many-objective FJSS problems.

Furthermore, over the past decades, the single-objective FJSS problems
mainly focused on minimizing the makespan that has been extensively
studied in the JSS literature. Compared to the single-objective FJSS prob-
lems, the multi-objective FJSS problems research is relatively limited to
three objectives [202]. However, many real-world scheduling problems
involve the simultaneous optimization of several objectives that conflict.
Despite the requirement of many-objective research, there are only a few
studies on many-objective FJSS [57] but in these studies, many-objective
optimization was not explicitly investigated [57]. In line with this re-
search trend, we believe that many-objective FJSS will attract increasing
research attention in the near future. Therefore, research to construct a
hyper-heuristic framework to generate effective rules for many-objective
FJSS problem is a potentially significant research direction that demands a
new and specialized GP approach.

In summary, many future research directions arise as a result of the
work discussed in this thesis.

7.4. GENERAL CONSIDERATIONS 187

7.4 General Considerations

This section first describes the main component of the proposed algo-
rithms with algorithmic parameters. Next, this section shows the appli-
cation of the proposed algorithm to a cloud platform.

7.4.1 Main components of thr Proposed algorithm

This section shows the main components and characteristics of the de-
veloped algorithm. Figure 7.1 shows these three components of the hy-
bridized algorithm developed in this thesis.

Figure 7.1: Main Components of Algorithm

Initialized the Population

In this thesis, we used the GP system to evolve automated dispatching
rules for JSS problems represented as trees and made up of function and
terminal nodes. Terminals nodes are usually defined by constants and
variables from the specific problem domains.

188 CHAPTER 7. CONCLUSIONS

The GP system usually requires genetic parameters such as the popu-
lation size, termination parameter, crossover and mutation probabilities,
and their associated parameters. These parameters are not algorithmic
parameters but problem-specific parameters to generate a population of
individuals.

Although we evolved dispatching rules for static JSS problems, dis-
patching rules can cope in dynamic environments, such as cloud schedul-
ing [188] and vehicle routing problems [16]. Dispatching rules is one of
the potential approaches to deal with dynamic changes because they are
computationally efficient and can react quickly to dynamic changes on the
shop floor [141, 159]. So, one can also use GP based system for evolving
dispatching rules for dynamic problems.

Our algorithm is not limited to generate dispatching rules by using GP
system but one can generate a population of individuals from any other
benchmark functions (see Appendix A) and feed these individuals to the
next component of algorithms to select the best solution.

Reference point adaption method

In real-world scheduling problems, the true Pareto-front is unknown and
due to the discrete and combinatorial solution space, the Pareto- front of
scheduling problems can be very irregular. It was shown in this thesis that
the adoption of uniformly distributed reference points affects the perfor-
mance of the algorithms adversely. Therefore, we developed three adap-
tive reference points approaches (PSO-based adaptive reference points
approach, density-based model adaptive reference points approach, and
gaussian process model adaptive reference points approach).

The PSO-based adaptive reference point approach is more efficient
than the other two approaches but it requires PSO parameters such as in-
ertia weight and acceleration coefficients [101].

The density-based model, adaptive reference points approach, is more
effective than the PSO-based model adaptive reference and more efficient

7.4. GENERAL CONSIDERATIONS 189

than the Gaussian process model adaptive reference points approach. This
approach does not require any controlled parameters.

The Gaussian process model, adaptive reference points approach, is
more effective than the other two approaches. This approach requires the
hyperparameters of the covariance functions [170].

These adaptive reference points approaches which are mentioned
above require the size of reference points but the number of reference
points is not an algorithmic parameter, as this is entirely at the disposal of
the user. The population size is dependent on the size of reference points,
as population size ≈ number of reference points.

Further, these adaptive reference point methods might be easily de-
ployed with any other reference points-based evolutionary multi-objective
optimization (EMO) algorithms to improve their performance on prob-
lems with irregular Pareto-front.

Selection scheme

The algorithm in this thesis solves many-objective JSS problems by com-
bining GP and selection schemes of MaOPs. The new fitness-based se-
lection mechanism based on convergence and diversity was introduced.
This new selection scheme balance the convergence criteria and diversity
criteria and does not require to set any new parameter.

To improve the effectiveness of the solution, we further integrate global
search with the PLS. Here, PLS requires two additional parameters: the
archive’s size and the maximum number of local search steps.

7.4.2 Cloud task scheduling problem

In this section, we apply our many-objective scheduling algorithm on
the cloud task scheduling problem. However, we already applied our
algorithm to the number of benchmark test problems (see Appendix A)

190 CHAPTER 7. CONCLUSIONS

with three to eight objectives to show our many-objective scheduling al-
gorithm’s general applicability and usefulness.

In cloud computing, users may utilize hundreds or thousands of vir-
tualized resources and it is impossible for everyone to allocate each task
manually. Task scheduling problem refers to how to reasonably arrange
many tasks provided by users in virtual machines, which is very impor-
tant in cloud computing.

In cloud computing, the cost, response time, resource utilization, and
load balancing are often conflicting [54]. Hence cloud scheduling can be
considered as a many-objective optimization problem. To achieve better
scheduling performance, one should to minimize cost, minimize time, im-
prove resource utilization, and load.

In order to test the performance of the algorithm on the task schedul-
ing problem, we can use discrete event simulation (DES) platforms [22]
to support cloud computing environments such as the Cloudsim platform
[22]. First of all, detailed parameter settings of the virtual machine and
tasks should be provided. Also, initialize the population of size N. The
GP system can randomly initialize the population, where each individual
represents a dispatching rule. After objective values are calculated by ap-
plying the rule to the training instances of cloud scheduling. The fitness of
dispatching rules is evaluated by a DES. Then the following steps can use
for the selection of N best solutions

1. combine offspring with the parent population and obtain a com-
bined population of size 2N.

2. generate reference points adaptively which split the objective space
into a number of independent sub-regions. This partitions the pop-
ulation into multiple subpopulations by associating each individual
with its closest reference points.

3. Assign fitness values using equation (7.1) (where d1 represents the
distance from solution to the ideal point. Similarly, d2 represents the

7.4. GENERAL CONSIDERATIONS 191

inverse of the acute angle between solutions and reference points)
to each solution and N solutions are selected based on their fitness
values.

FV = d1 +
d2

θm
. (7.1)

This method not only makes a greater contribution to the convergence
performance of the entire population but also improves the diversity of
the population. For evaluating the performance of the algorithm on the
cloud scheduling problem, we perform simulation experiments using the
Cloudsim platform.

192 CHAPTER 7. CONCLUSIONS

Appendix A

Further studies

A.1 Introduction

Although the motivation of our research focuses on JSS problems, to
show the general applicability, usefulness, and effectiveness of the MARP-
NSGA-III (see Chapter 5). We also apply MARP-NSGA-III to the bench-
mark test problems to further check the effectiveness of the MARP-NSGA-
III. In the benchmark problem case, we have compared the performance
of MARP-NSGA-III with NSGA-III [43] and A-NSGA-III [85] with three,
five, and eight objectives.

A-NSGA-III is an updated version of NSGA-III, where RVEA* is an
extension of RVEA [31]. These extensions are mainly relocating reference
points which were suggested to handle problems with irregular Pareto-
front. IMMOEA [30] is a model-based method that constructs Gaussian
process-based inverse models that map all the non-dominated solutions
from the objective space to the decision space.

In these experiments, we focus mainly on ten benchmark problems
with irregular Pareto-front. These problems are DTLZ4, DTLZ5, and
DTLZ7 [31], Inverted DTLZ1 (IDTLZ1), Inverted DTLZ2 (IDTLZ2) [76],
WFG1, WFG2, WFG9 [31], MAF1,and MAF2 [92]. The characteristics of
all the ten benchmark problems are summarized in Table A.1 of the next

193

194 APPENDIX A. FURTHER STUDIES

Table A.1: The characteristics of benchmark problems

Problems Characteristics

IDTLZ1 inverted

IDTLZ2 Convex, inverted

DTLZ4 Concave,biased

DTLZ5 Concave, degenerate

DTLZ7 Mixed, disconnected, multi-model

MAF1 Linear, multi-model, inverted

MAF2 Disconnected

WFG1 Sharp tails

WFG2 Disconnected

WFG9 Concave

section.

A.2 Benchmark functions on MaOPs

Benchmark function are widely used in the literature to evaluate MaOPs
algorithms’ performance on problems with irregular Pareto-front.

In this thesis, we used Inverted DTLZ1 (IDTLZ1), Inverted DTLZ2
(IDTLZ2), DTLZ4, DTLZ5, DTLZ7,WFG1, WFG2, WFG9, MAF1, and MAF2
benchmark problems. The Pareto-front for these problems is also irregu-
lar. MAF1 and MAF2 are taken from the CEC-2017 competition on evolu-
tionary many-objective optimization [32]. The characteristics of all the 10
benchmark problems are summarized in Table A.1. It should be noted here
that all the figures of benchmark problems are taken from MATLAB-based
EMO platform called PlatEMO [187].

A.2.1 IDTLZ1 and IDTLZ2 problems

IDTLZ1 and IDTLZ2 denote the problems of inverted DTLZ1 and DTLZ2,
respectively, where the regular Pareto-front of DTLZ1 and DTLZ2 are in-

A.2. BENCHMARK FUNCTIONS ON MAOPS 195

verted and thus become irregular [86]. This test problem is used to assess
whether MOEA is capable of dealing with an inverted Pareto-front. Fig-
ures A.1 (a) and A.1 (b) shows IDTLZ1 and IDTLZ2, respectively.

(a) IDTLZ1.

(b) IDTLZ2.

Figure A.1: The Pareto-front with three objectives on IDTLZ problems.

A.2.2 DTLZ-4, DTLZ5, and IDTLZ-7 Problems

The Pareto-front of DTLZ-4 has a badly-scaled Pareto-front (where each
objective function is scaled to a substantially different range), especially
when the fitness landscape is highly multi-modal. DTLZ-5 is originally
intended to be test problems with degenerated Pareto-front. The shape of
the true Pareto-front is a 1-D curve which shows this problem independent
of the number of objectives. The shape of the true Pareto-front of DTLZ-7
is disconnected. This problem is usually used to assess the capability of
those MOEAs which have disconnected Pareto-front. Figures A.2 (a), A.2
(b), and A.2 (c) show DTLZ4, DTLZ5, and DTLZ7, respectively.

196 APPENDIX A. FURTHER STUDIES

(a) DTLZ4. (b) DTLZ5. (c) DTLZ7.

Figure A.2: The Pareto-front with three objectives on DTLZ problems.

A.2.3 MAF1 and MAF2 Problems

MAF1 is a modified version of IDTLZ1. The feasible range of MAF1 is
[0,1] on the objective space. This test problem is used to assess whether
MOEAs are capable of dealing with inverted Pareto-front. MAF2 increases
the difficulty of convergence in DTLZ2. In DTLZ2, all in the do not have
to be optimized simultaneously in order to reach the true Pareto-front. In
contrast, the MAF2 problem is used to assess whether the MOEAs can
perform concurrent convergence on different objectives. Figures A.3 (a)
and A.3 (b) show MAF1 and MAF2, respectively.

A.2.4 WFG1,WFG2 and WFG9 Problems

The WFG test problems (WFG1, WFG2, and WFG9) have scaled true
Pareto-front. These WFG test problems are widely used to test the per-
formance of MOEAs on MaOPs [31]. WFG1 contains both convex and
concave segments. Whereas the WFG2 test problem is capable of dealing
with scaled disconnected Pareto-front. WFG9 has concave Pareto-front.
Moreover, its fitness landscape is highly multi-modal. Figures A.4 (a), A.4
(b), and A.4 (c) show WFG1, WFG2, and WFG9, respectively.

A.3. EXPERIMENT DESIGN 197

(a) MAF1. (b) MAF2.

Figure A.3: The Pareto-front with three objectives on MAF problems.

A.3 Experiment design

A.3.1 Parameter setting of benchmark problems

The number of decision variables for DTLZ and inverted DTLZ test prob-
lems is set as recommended in [45]. The MAF problems, the solution di-
mension is set according to [92], whereas, for WFG problems, we follow
the recommendation of decision variables in [31]. The population sizes

Table A.2: Number of Reference Points and Population Size for DTLZ and
MAF.

No. of Obj(M) Ref. Points(H) Pop. Size(N)

3 91 92

5 210 212

8 156 156

for DTLZ and MAF problems of all compared algorithms are shown in
Table A.2. The settings for WFG are shown in Table A.3. For DTLZ and
MAF problems, the maximum number of generations is adopted from [43]

198 APPENDIX A. FURTHER STUDIES

(a) WFG1. (b) WFG2. (c) WFG9.

Figure A.4: The Pareto-front with three objectives on WFG problems.

Table A.3: Number of Reference Points and Population Size for WFG.

No. of Obj(M) Ref. Points(H) Pop. Size(N)

3 105 108

5 175 176

8 217 220

and [31] respectively. The parameter setting of WFG is taken from [31].

A.3.2 Algorithms parameter settings

The widely used genetic operators, i.e., the simulated binary crossover
(SBX) [43] and the polynomial mutation [42] are employed to create the
offspring population, as in many other MOEAs [42, 43]. The evolution
operator is kept identical for all approaches: (i) SBX probability (pc) is set
to 1.0, (ii) polynomial mutation probability (pm) is set to 1/n (where n is
the number of variables) [43]. The distribution index(ηc) is kept as 30 for
SBX crossover and polynomial distribution index (ηm) are set to 20. For
RVEA*, the penalty parameter α is set to 2, and the frequency of reference
point adaptation fr is set to 0.1.

A.4. RESULTS AND DISCUSSION 199

A.4 Results and discussion

In the experiment, 30 independent runs are carried out for each algorithm.
Then, the mean and standard deviations of HV and IGD values were re-
ported. The best value for each problem was marked in boldface. The
benchmark problems are substantially studied in the literature. The source
codes of RVEA* [31], Two-ARCh [167], and IMMOEA [30] are available on
different platforms. Therefore, we compare these algorithms with our pro-
posed algorithms (MARP-NSGA-III) with three, five, and eight objectives.

A.4.1 Performance of obtained solutions

Tables A.4 and A.5 present the HV and IGD values scored by the proposed
algorithm and other compared algorithms. In general, MARP-NSGA-III
has achieved significantly better performance on 15 of 30 instances in HV
and 14 of 30 instances in IGD. On the other hand, RVEA* is a very com-
petitive algorithm and has the best performance in nine instances.

A.4.2 Further analysis

Performance on IDTLZ1 and IDTLZ2

IDTLZ1 has an inverted Pareto-front and many uniformly distributed ref-
erence points created on the normalized hyper-plane will not have an asso-
ciated Pareto-optimal point. Therefore, adaptive reference points play an
important role in achieving a higher degree of population diversity than
uniformly distributed reference points. Tables A.4 and A.5 show that A-
NSGA-III, RVEA*, and MARP-NSGA-III have better HV and IGD values
because they can generate higher population diversity than the NSGA-
III with predefined uniformly distributed reference points. The statistical
results in Tables A.4 and A.5 reveal that the MARP-NSGA-III performs
significantly better than the other methods in the five-objective instances.
However, it has a competitive performance in eight-objective cases. In the

200 APPENDIX A. FURTHER STUDIES

Table
A

.4:The
m

ean
and

standard
deviation

(x̄±
σ)overthe

average
H

V
values

on
M

-objectives
on

ID
TLZ

1,
ID

TLZ
2,D

T
LZ

4,D
T

LZ
5,D

T
LZ

7,M
A

F1,M
A

F2,W
FG

1,W
FG

2
problem

s.

H
V
M
ea
n

(std
)

Function
M

N
SG

A
-III

A
-N

SG
A

-III
R

V
EA

*
Tw

o-A
R

C
h

IM
M

O
EA

M
A

R
P-N

SG
A

3

Inv-D
TLZ

1
3

1.07e-1(4.0e-3)
1.30e-1(2.8e-3)

1.32e-1(3.9e-3)
1.19e-1(1.5e-3)

1.29e-1(3.00e-3)
1.33e-1(3.4e-3)

5
3.91e-3(4.2e-4)

4.2e-3(4.9e-4)
4.23e-3(3.4e-5)

4.32e-3(8.4e-6)
4.34e-3(1.5e-4)

5.3e-3(6.7e-4)
8

6.22e-4(3.8e-5)
7.05e-4(1.5e-3)

6.66e-4(8.8e-5)
5.81e-4(3.7e-3)

5.71e-4(1.9e-5)
6.67e-4(4.0e-4)

Inv-D
TLZ

2
3

4.52e-1(3.1e-3)
4.72e-1(3.0e-3)

4.58e-1(9.5e-4)
4.857e-2(7.0e-3)

5.26e-1(8.8e-3)
4.62e-1(3.7e-3)

5
6.30e-2(2.4e-3)

6.89e-2(5.9e-3)
7.00e-2(2.9e-3)

9.94e-2(2.8e-3)
8.60e-2(5.5e-3)

1.07e-1(6.9e-3)
8

6.62e-3(6.8e-4)
9.37e-3(1.1e-4)

2.7e-3(4.3e-4)
1.47e-1(4.9e-4)

2.577e-3(3.7e-4)
1.54e-2(1.7e-4)

D
T

LZ
4

3
7.02e-1(1.2e-2)

7.47e-1(3.1e-3)
7.34e-1(1.1e-2)

7.19e-1(4.1e-2)
6.97e-1(5.1e-2)

7.66e-1(5.5e-4)
5

7.03e-1(2.6e-3)
7.17e-1(1.2e-4)

7.40e-1(4.2e-4)
7.32e-1(3.7e-3)

7.20e-(5.2e-4)
7.59e-1(3.7e-3)

8
8.45e-1(2.6e-4)

8.59e-1(5.5e-3)
8.71e-1(1.6e-4)

8.67e-1(9.7e-4)
8.57e-1(1.7e-4)

8.74e-1(9.4e-4)

D
T

LZ
5

3
8.19e-2(1.7e-2)

8.55e-2(6.3e-4)
9.19e-2(2.9e-3)

1.3e-1(6.1e-4)
8.23e-2(1.4e-3)

8.49e-2(7.2e-4)
5

5.28e-1(2.6e-2)
6.9e-1(3.7e-2)

7.48e-1(2.8e-4)
6.6e-3(1.6e-4)

7.87e-1(2.2e-4)
5.3e-1(4.4e-2)

8
6.03e-1(1.9e-2)

6.40e-1(2.3e-2)
5.62e-1(1.7e-4)

6.37e-1(3.8e-6
5.56e-1(4.99e-2))

6.38e-1(2.1e-2)

D
T

LZ
7

3
3.25e-1(7.9e-3)

3.48e-1(9.4e-3)
3.44e-1(8.3e-3

3.53e-1(5.8e-2)
3.14e-1(9.6e-2)

3.58e-1(1.2e-3)
5

2.240e-1(3.8e-3)
3.23e-1(6.3e-3)

2.970e-1(2.1e-2)
1.35e-1(2.3e-2)

3.21e-1(1.8e-3)
3.5e-1(7.2e-2)

8
3.08e-1(4.8e-3)

3.25e-1(6.3e-3)
2.98e-1(1.7e-3)

1.56e-1(4.9e-4)
2.56e-1(4.99e-2)

3.31e-1(2.3e-2)

M
A

F1
3

1.15e-1(2.0e-3)
1.34e-1(3.0e-4)

2.88e-1
(1.0e-3)

2.20e-1
(6.59e-3)

2.80e-1
(7.0e-4)

1.38e-2(3.4e-3)
5

2.04e-2(2.9e-4)
2.62-2(3.8e-4)

6.35e-2
(7.93e-4)

2.04e-2(3.01e-4)
7.23e-3

(5.50e-4)
7.18e-2(4.77e-3)

8
6.57e-4(1.0e-5)

6.24-4(6.9e-5)
6.69e-4(4.9e-5)

6.60e-4(4.3e-5)
6.44e-4(3.9e-4)

6.75e-4(4.7e-5)

M
A

F2
3

3.30e-1(2.1e-2)
4.05e-1(3.9e-3)

4.19e-1(1.4e-3)
3.66e-1(3.0e-3)

3.48e-1(2.2e-3)
3.94e-1(2.3e-3)

5
1.22e-1(1.1e-2)

1.57e-1(1.3e-2)
1.61e-1(2.3e-2)

1.52e-1(2.1e-2)
1.38e-1(4.3e-2)

1.68e-1(5.3e-2)
8

1.77e-1(1.82e-3)
2.03e-1(3.2e-3)

1.60e-1(2.4e-3)
1.57e-1(9.7e-3)

1.32e-1(6.6e-3)
2.30e-1(4.2e-3)

W
FG

1
3

8.48e-1(5.2e-2)
8.44e-1(5.0e-2)

8.70e-1
(3.3e-2)

8.56e-1
(3.9e-2)

8.11e-1
(2.74e-2)

8.22e-1(8.4e-2)
5

7.09e-1(1.6e-2)
8.39e-1(1.9e-2)

8.33e-1(3.4e-2)
8.32e-1(5.1e-2)

8.06e-1(2.6e-2)
8.29e-1(1.9e-2)

8
6.09e-1(4.4e-2)

8.35e-1(5.9e-2)
8.29e-1(7.4e-2)

8.34e-1(3.3e-2)
7.86e-1(4.6e-2)

8.38e-1(4.9e-2)

W
FG

2
3

7.07e-1(4.99e-3)
8.44e-1(8.3e-2)

8.55e-1
(4.3e-2)

7.61e-1
(4.5e-2)

7.70e-1
(2.74e-2)

8.42e-1(7.0e-2)
5

9.89e-1(2.2e-3)
9.53e-1(6.4e-2)

9.86e-1(2.6e-2)
9.80e-1(5.6e-2)

9.36e-1(3.6e-2)
9.89e-1(3.3e-2)

8
9.22e-1(9.5e-2)

9.40e-1(7.5e-2)
9.52e-1(8.6e-2)

9.46e-1(7.6e-2)
9.17e-1(7.2e-2)

9.41e-1(6.0e-2)

W
FG

9
3

6.20e-1(4.8e-2)
6.75e-1(4.9e-2)

6.64e-1(1.4e-2)
6.66e-1(3.0e-2)

6.48e-1(3.0e-2)
6.68e-1(3.9e-2)

5
6.22e-1(6.5e-2)

6.52e-1(5.6e-2)
7.0e-1(5.0e-2)

6.69e-1(2.1e-2)
6.38e-1(5.7e-2)

6.53e-1(5.5e-2)
8

7.19e-1(6.9e-2)
7.28e-1(3.2e-2)

8.28e-1(1.9e-2)
7.77e-1(1.7e-2)

7.07e-1(2.7e-2)
8.31e-1(4.9e-2)

A.4. RESULTS AND DISCUSSION 201

Ta
bl

e
A

.5
:

Th
e

m
ea

n
an

d
st

an
da

rd
de

vi
at

io
n

(x̄
±
σ

)
ov

er
th

e
av

er
ag

e
IG

D
va

lu
es

on
M

-o
bj

ec
ti

ve
s

on
ID

T
LZ

1,
ID

T
LZ

2,
D

TL
Z

4,
D

TL
Z

5,
an

d
D

TL
Z

7,
M

A
F1

,M
A

F2
,W

FG
1,

W
FG

2
pr

ob
le

m
s.

IG
D
M
ea
n

(s
td

)

Fu
nc

ti
on

M
N

SG
A

II
I

A
-N

SG
A

-I
II

R
V

EA
*

Tw
o-

A
R

C
h

IM
M

O
EA

M
A

R
P-

N
SG

A
II

I

ID
T

LZ
1

3
3.

58
E-

2(
1.

0e
-3

)
2.

47
e-

2(
8.

0e
-3

)
2.

37
-0

2(
2.

7e
-2

)
1.

66
e-

1(
1.

6e
-2

)
4.

22
e-

1(
1.

0e
-3

)
2.

38
e-

2(
2.

1e
-3

)
5

8.
62

e-
2(

3.
8e

-3
)

5.
53

e-
2(

8.
3e

-3
)

1.
47

e-
1(

2.
0e

-2
)

1.
90

e-
1(

3.
2e

-2
)

6.
75

e-
1

(4
.3

6e
-1

)
3.

13
e-

2(
8.

3e
-3

)
8

9.
62

e-
2(

8.
8e

-3
)

5.
13

e-
2(

9.
2e

-3
)

2.
45

e-
1(

2.
5e

-2
)

1.
96

e-
1(

2.
0e

-2
)

4.
85

e-
1(

3.
0e

-2
)

5.
49

e-
2(

8.
9e

-3
)

ID
T

LZ
2

3
6.

73
e-

2(
8.

3e
-3

)
6.

42
e-

2(
5.

6e
-3

)
8.

07
e-

2(
1.

0e
-3

)
9.

0e
-2

(7
.0

e-
3)

6.
20

e-
2(

4.
0e

-3
)

6.
26

e-
2(

2.
5e

-3
)

5
2.

33
e-

1(
1.

2e
-2

)
2.

03
e-

1(
1.

2e
-2

)
2.

73
e-

1(
1.

3e
-3

)
2.

1e
-1

(5
.8

e-
3)

3.
36

e-
1

(1
.2

e-
2)

1.
78

e-
1(

1.
8e

-2
)

8
5.

62
e-

1(
3.

8e
-2

)
5.

16
e-

1(
2.

3e
-2

)
6.

10
e-

1(
6.

5e
-3

)
4.

1e
-1

(6
.7

e-
3)

5.
44

e-
1(

1.
5e

-2
)

3.
11

e-
1(

2.
3e

-2
)

D
T

LZ
4

3
7.

05
e-

2(
6.

01
e-

3)
6.

26
e-

2(
6.

2e
-3

)
7.

07
e-

2(
8.

4e
-2

)
9.

06
e-

2(
1.

4e
-2

)
7.

57
e-

2(
2.

6e
-3

)
6.

2e
-2

(6
.4

3e
-3

)
5

1.
63

e-
02

(4
.3

e-
4)

1.
64

e-
2(

5.
8e

-4
)

1.
53

e-
2(

5.
4e

-4
)

1.
71

e-
2(

1.
4e

-4
)

1.
68

e-
2(

3.
9e

-4
)

1.
39

e-
2(

3.
9e

-4
)

8
2.

68
e-

02
(1

.0
e-

3)
4.

07
e-

3(
5.

7e
-4

)
3.

25
e-

2(
2.

63
e-

3)
2.

28
e-

2(
1.

33
e-

3)
1.

22
e-

1(
1.

03
e-

3)
2.

16
e-

2(
1.

9e
-3

)

D
T

LZ
5

3
2.

18
e-

2(
2.

2e
-3

)
1.

20
e-

2(
1.

7e
-3

)
1.

37
e-

2(
1.

0e
-3

)
1.

22
e-

2(
7.

0e
-3

)
1.

96
e-

2(
4.

0e
-3

)
1.

75
e-

2(
1.

4e
-3

)
5

2.
70

e-
1(

5.
16

e-
2)

1.
99

e-
1(

5.
7e

-2
)

2.
48

e-
1(

2.
8e

-4
)

2.
6e

-3
(1

.6
e-

4)
1.

87
e-

1(
2.

2e
-4

)
2.

26
e-

1(
3.

9e
-2

)
8

4.
04

e-
1(

8.
8-

e-
2)

4.
01

e-
1(

7.
2e

-2
)

3.
62

e-
1(

1.
7e

-4
)

6.
37

7e
-1

(3
.8

e-
6)

5.
56

e-
1(

4.
99

e-
2)

)
4.

3e
-1

(9
.1

e-
2)

D
T

LZ
7

3
9.

44
e-

2(
4.

99
e-

3)
6.

79
e-

2(
5.

2e
-3

)
7.

05
e-

2(
1.

56
e-

3)
7.

15
e-

2(
8.

5e
-2

)
8.

34
e-

2(
3.

9e
-2

)
6.

75
e-

2(
3.

03
e-

3)
5

4.
54

e-
1(

2.
2e

-2
)

3.
44

e-
1(

2.
4e

-2
)

4.
98

e-
1(

9.
0e

-3
)

5.
3e

-1
(9

.0
e-

2)
5.

65
e-

1
(2

.7
4e

-2
)

3.
08

e-
1(

4.
1e

-2
)

8
7.

89
e-

1(
3.

7e
-2

)
7.

61
e-

1(
2.

7e
-2

)
7.

82
e-

1(
1.

6e
-1

)
7.

53
e-

1(
8.

6e
-2

)
8.

14
e-

1(
9.

6e
-2

)
7.

44
e-

1(
8.

6e
-2

)

M
A

F1
3

6.
44

e-
2(

2.
3e

-3
)

5.
07

e-
2(

1.
1e

-3
)

4.
59

e-
2

(9
.4

e-
4)

4.
37

e-
2

(4
.3

e-
4)

1.
09

e-
1

(9
.9

e-
3)

4.
67

e-
2(

3.
6e

-3
)

5
1.

72
e-

1(
9.

4e
-3

)
1.

75
e-

1(
2.

3e
-3

)
1.

46
e-

1
(7

.2
e-

3)
1.

52
e-

1
(8

.4
2e

-4
)

2.
05

e-
1

(7
.4

1e
-3

)
1.

34
e-

1
(2

.4
e-

3)
8

3.
92

e-
1(

1.
1e

-2
)

3.
28

e-
1(

1.
8e

-2
)

2.
90

e-
1

(2
.1

e-
2)

2.
25

e-
1

(3
.3

e-
2)

3.
02

e-
1

(8
.5

7e
-3

)
1.

73
e-

1
(2

.1
e-

2)

M
A

F2
3

4.
42

e-
2(

1.
6e

-2
)

3.
24

e-
2(

2.
7e

-3
)

2.
98

e-
2(

5.
4e

-3
)

3.
15

e-
2(

1.
4e

-3
)

3.
22

e-
2(

1.
0e

-3
)

3.
27

e-
2(

2.
2e

-3
)

5
1.

22
e-

1(
1.

1e
-2

)
1.

07
e-

1(
1.

3e
-2

)
9.

03
e-

2(
6.

4e
-2

)
1.

05
e-

1(
1.

4e
-2

)
1.

22
e-

1(
1.

0e
-3

)
8.

6e
-2

(1
.3

e-
3)

8
2.

05
e-

01
(1

.3
e-

2)
1.

63
e-

1(
1.

0e
-2

)
2.

50
e-

1(
1.

4e
-2

)
1.

69
e-

1(
2.

0e
-3

)
2.

22
e-

1(
2.

4e
-3

)
1.

44
e-

1(
1.

6e
-3

)

W
FG

1
3

1.
29

e-
1(

5.
16

e-
2)

1.
18

e-
1(

4.
4e

-2
)

1.
17

e-
1(

4.
43

e-
2)

1.
25

e-
1(

3.
13

e-
2)

4.
95

e-
1(

2.
03

e-
2)

1.
16

e-
1(

7.
43

e-
2)

5
3.

25
e-

1(
2.

2e
-2

)
2.

01
e-

1(
1.

5e
-2

)
2.

40
e-

1(
6.

6e
-2

)
3.

75
e-

1(
4.

3e
-2

)
2.

54
e0

(4
.1

e-
2)

2.
09

e-
1(

1.
4e

-2
)

8
1.

86
e-

1(
9.

2e
-2

)
1.

77
e-

1(
4.

43
e-

2)
1.

73
e-

1(
2.

03
e-

2)
1.

71
e-

1(
7.

43
e-

2)
1.

79
e-

1(
3.

6e
-1

)
1.

72
e-

1(
8.

6e
-1

)

W
FG

2
3

8.
02

e-
1(

4.
52

e-
2)

8.
40

e-
1(

3.
9e

-2
)

8.
66

e-
1(

5.
43

e-
3)

6.
75

e-
2(

4.
43

e-
3)

6.
95

e-
2(

3.
03

e-
3)

8.
86

e-
1(

6.
43

e-
3)

5
6.

54
e-

1(
2.

2e
-2

)
6.

47
e-

1(
3.

8e
-2

)
6.

37
e-

1(
8.

5e
-2

)
6.

85
e-

1(
9.

9e
-2

)
6.

50
e-

1(
6.

6e
-2

)
6.

35
e-

1(
3.

9e
-2

)
8

1.
42

e0
(9

.1
e-

2)
1.

26
e0

(7
.9

e-
2)

2.
04

e0
(8

.9
e-

1)
1.

08
e0

(4
.9

e-
2)

1.
50

e0
(4

.6
e-

1)
1.

15
e0

(3
.6

e-
1)

W
FG

9
3

2.
75

e-
01

(8
.3

5e
-2

)
2.

35
0e

-1
(3

.9
e-

2)
1.

86
e-

1(
3.

43
e-

2)
3.

25
e-

1(
1.

43
e-

2)
3.

35
e-

1(
2.

53
e-

3)
1.

37
e-

1(
3.

43
e-

3)
5

9.
75

e-
01

(1
.0

e-
2)

9.
37

e-
1(

8.
3e

-2
)

9.
65

e-
1(

8.
05

e-
2)

9.
85

e-
1(

1.
0e

-2
)

9.
88

e-
1(

9.
77

e-
2)

9.
78

e-
1(

9.
05

e-
2)

8
1.

55
e0

(1
.7

e-
1)

1.
49

e0
(1

.4
8e

-1
)

1.
48

e0
(5

.4
3e

-1
)

1.
88

e0
(3

.0
9e

-1
)

1.
92

e-
1(

3.
03

e-
1)

1.
45

e0
(1

.7
4e

-1
)

202 APPENDIX A. FURTHER STUDIES

case of three-objective, MARP-NSGA-III is slightly better in HV than A-
NSGA-III, RVEA*, and A-NSGA-III. Relevant results on problem instances
with three-objective problems can also be seen in Figures A.5 (a) to A.5
(c). The approximate Pareto-front of each algorithm shows that A-NSGA-
III, RVEA*, and MARP-NSGA-III have a similar distribution of obtained
points.

0

0.2

0.4

0.6

0.8

0

0.5

1

0

0.2

0.4

0.6

0.8

(a) ANSGA-III.

0

0.2

0.4

0.6

0.8

0

0.5

1

0

0.2

0.4

0.6

0.8

(b) RVEA*.

0

0.2

0.4

0.6

0.8

0

0.5

1

0

0.2

0.4

0.6

0.8

(c) MARP-NSGA-III.

Figure A.5: Approximate Pareto-front for 3-objective IDTLZ1 problem

For the IDTLZ2 problem, Tables A.4 and A.5 show that IMMOEA
achieved a significantly better result compared to all other competing al-
gorithms in terms of HV and IGD with three-objective problems. How-
ever, IMMOEA performed poorly on problems with more than three ob-
jectives. In comparison, MARP-NSGA-III achieved the best performance
among all the competing algorithms on five objectives in terms of HV.
However, in terms of IGD, MARP-NSGA-III outperforms all the other
competing algorithms on eight-objective problems.

Performance on DTLZ4, DTLZ5, and DTLZ7

DTLZ4 has a biased density (the density of solutions is different from one
location to another) targeted points on the true Pareto-front. This prob-
lem is to verify whether many-objective algorithms can maintain a proper
distribution of the solutions. Table A.4 confirms that MARP-NSGA-III
achieves overall the best performance in terms of HV. However, Table A.5

A.4. RESULTS AND DISCUSSION 203

reveals that MARP-NSGA-III is significantly better than the other compet-
ing algorithms on three-objective and five-objective. For three-objective,
Figures A.6 (a) and A.6 (b) show that MARP-NSGA-III has widely dis-
tributed the solution as compared to A-NSGA-III. In terms of HV, the
MARP-NSGA-III performed significantly better than the other compared
algorithms on eight-objective problems. By contrast, A-NSGA-III has the
best IGD value over eight-objective problems when compared to other
competing algorithms.

(a) A-NSGA-III.

0

0.5

1

1.5

0

0.5

1

1.5

0

0.5

1

1.5

(b) MARP-NSGA-III.

Figure A.6: Approximate Pareto-front for 3-objective DTLZ4 problem

DTLZ5 has a degenerated Pareto-front, i.e., the Pareto-front is always a
curve regardless of the objective space’s dimensionality. For the three ob-
jective DTLZ5, Two-ARCh performed significantly better than other com-
peting algorithms in terms of HV. The result can be observed in Table A.4.
This result is also illustrated in Figures A.7 (a) and A.7 (b) where Two-
ARCh has well-diversified optimal solutions. It can be observed in Tables
A.4 and A.5 that no single algorithm can perform consistently better than
the rest algorithms on DTLZ5.

DTLZ7 has a disconnected Pareto-front. Due to this feature, those al-
gorithms that rely on uniformly distributed reference points performed
poorly. Tables A.4 and A.5 reveal that the algorithms having adaptive
reference points eventually have significantly better performance. In the

204 APPENDIX A. FURTHER STUDIES

0

0.5

1
0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(a) Two-ARCh.

0

0.5

1
0 0.2 0.4 0.6 0.8

0

0.2

0.4

0.6

0.8

1

1.2

1.4

(b) MARP-NSGA-III.

Figure A.7: Approximate Pareto-front for 3-objective DTLZ5 problem

three-objective case, our proposed algorithm (MARP-NSGA-III) is slightly
better than Two-ARCh in terms of HV. However, MARP-NSGA-III outper-
forms RVEA* which can also be seen in Figures A.8 (a) and A.8 (b). These
figures show that MARP-NSGA-III has well-diversified solutions in three
out of four regions of the Pareto-front. RVEA* apparently failed to cover
some regions on the Pareto-front. In five-objective and eight-objective
cases, MARP-NSGA-III also performs the best which can be seen in Ta-
bles A.4 and A.5. Meanwhile, as evidenced in Figures A.9 (a) and A.9 (b),
MARP-NSGA-III can evolve more diversified solutions than A-NSGA-III.

Performance on MAF1 and MAF2

MAF1 and MAF2 are taken from the CEC-2017 competition on MaOPs
[32]. Moreover, they have irregular Pareto-front. MAF1 is a modified
inverted DTLZ1 which has an inverted Pareto-front. This problem has
the same structure as IDTLZ1. Therefore, we can see similar behavior of
IDTLZ1 in the result. This can be seen in Tables A.4 and A.5. The exper-
imental results reveal that the MARP-NSGA-III performed significantly
better on problems with five and eight objectives than other competing

A.4. RESULTS AND DISCUSSION 205

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

5

10

(a) RVEA*.

0

0.2

0.4

0.6

0.8

1

0

0.2

0.4

0.6

0.8

1

0

5

10

(b) MARP-NSGA-III.

Figure A.8: Approximate Pareto-front for 3-objective DTLZ7 problem

Obji Obj2 Obj3 Obj4 Obj5
0

0.2

0.4

0.6

0.8

1

Objectives

O
b

je
c

ti
v

e
s

 V
a

lu
e

s

(a) A-NSGA-III.

obj1 obj2 obj3 obj4 obj5
0

0.2

0.4

0.6

0.8

1

Objectives

O
b

je
c

ti
v

e
s

 V
a

lu
e

s

(b) MARP-NSGA-III.

Figure A.9: Parallel coordinate plot for the fitness values of the population
for 5-objective DTLZ7 problem

algorithms. In Figures A.9 (a) and A.9 (b), the parallel plots show that
optimal solutions obtained from MARP-NSGA-III are widely distributed.

MAF2 is a modified form of DTLZ2, with the higher irregularity of the
Pareto-front. Tables A.4 and A.5 show that MARP-NSGA-III has achieved

206 APPENDIX A. FURTHER STUDIES

Obji Obj2 Obj3 Obj4 Obj5
Objectives

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

O
b

je
c

ti
v

e
s

 V
a

lu
e

s

(a) RVEA*.

Obji Obj2 Obj3 Obj4 Obj5
Objectives

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

O
b

je
c
ti

v
e
s
 V

a
lu

e
s

(b) MARP-NSGA-III.

Figure A.10: Parallel coordinate plot for the fitness values of the popula-
tion for 5-objective MAF1 problem

significantly better results on MAF2 as compared to the other algorithms
on five-objective problems. We can see that in Figures A.11 (a) and A.11
(b), MARP-NSGA-III has better diversity than its competitor RVEA*.

In conclusion, MARP-NSGA-III outperforms the other algorithms on
five-objective and eight-objective MAF problems.

Performance on WFG1,WFG2, and WFG9

Similar observations of MARP-NSGA-III can be made from the results on
WFG in Table A.4 where MARP-NSGA-III outperforms the other algo-
rithms on the eight-objective instances. RVEA* has also shown compet-
itive performance on WFG problems.

WFG1 is a mixed structure problem involving many transformation
functions in the problem definition. These transformation functions make
it hard to produce well-diversified solutions [92]. We can observe from

A.4. RESULTS AND DISCUSSION 207

Obji Obj2 Obj3 Obj4 Obj5
0

0.2

0.4

0.6

0.8

1

Objectives

O
b

je
c

ti
v

e
s

 V
a

lu
e

s

(a) RVEA*

Obji Obj2 Obj3 Obj4 Obj5
0

0.2

0.4

0.6

0.8

1

Objectives

O
b

je
c

ti
v

e
s

 V
a

lu
e

s

(b) MARP-NSGA-III.

Figure A.11: Parallel coordinate plot for the fitness values of the popula-
tion for 5-objective MAF2 problem

Table A.4 and Table A.5 that RVEA* performs better than the other com-
pared algorithms with three objectives problems, while A-NSGA-III out-
performs the other algorithms on WFG1 with five-objective problems.
In the case of eight objectives, our proposed algorithm MARP-NSGA-III
achieved a higher HV value than other algorithms.

WFG2 is the only WFG problem with disconnected Pareto-front. It can
be observed from Tables A.4 and A.5 that the MARP-NSGA-III outper-
forms the other algorithms with five-objective. This can be seen in Figures
A.12 (a) to A.12 (c). While RVEA* has better performance than A-NSGA-
III. It performed significantly worse performance than MARP-NSGA-III.
This is because MARP-NSGA-III can produce well distributed and well-
diversified solutions. In the meantime, MARP-NSGA-III achieves compet-
itive performance as RVEA* on problem instances with eight objectives.
MARP-NSGA-III shows promising performance on some eight-objective.
Moreover, RVEA* shows generally competitive performance.

WFG9 has a scaled concave Pareto-front and its decision variables are
non-separable. Tables A.4 and A.5 show that MARP-NSGA-III achieved

208 APPENDIX A. FURTHER STUDIES

Obji Obj2 Obj3 Obj4 Obj5
Objectives

0

0.2

0.4

0.6

0.8

1

1.2

O
b

je
c
ti

v
e
s
 V

a
lu

e
s

(a) A-NSGA-III.

Obji Obj2 Obj3 Obj4 Obj5
Objectives

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

O
b

je
c
ti

v
e
s
 V

a
lu

e
s

(b) RVEA*.

Obji Obj2 Obj3 Obj4 Obj5
Objectives

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

O
b

je
c
ti

v
e
s
 V

a
lu

e
s

(c) MARP-NSGA-III

Figure A.12: Parallel coordinate plot for the fitness values of the popula-
tion for 5-objective WFG2 problem

leading performance on WFG9 with eight objectives. Figures A.13 (a) and
A.13 (b) show that MARP-NSGA-III can produce more diversified solu-
tions than RVEA*.

Obji Obj2 Obj3 Obj4 Obj5 Obj6 Obj7 Obj8
0

2

4

6

8

10

12

14

16

18

Objectives

O
b

je
c

ti
v

e
s

 V
a

lu
e

s

(a) RVEA*.

Obji Obj2 Obj3 Obj4 Obj5 Obj6 Obj7 Obj8
0

2

4

6

8

10

12

14

16

18

Objectives

O
b

je
c

ti
v

e
s

 V
a

lu
e

s

(b) MARP-NSGA-III.

Figure A.13: Parallel coordinate plot for the fitness values of the popula-
tion for eight-objective WFG9 problem

As we can observe in Tables A.4 and A.5, MARP-NSGA-III shows sig-
nificantly better results on most of the five-objective and eight-objective

A.4. RESULTS AND DISCUSSION 209

instances as compared to other algorithms. By contrast, RVEA* shows
promising performance on some of the eight-objective instances. A-
NSGA-III and Two-ARCh show effectiveness on three objective problems.
Based on the experimental results, we can conclude that MARP-NSGA-III
shows better performance on many benchmark problems. This algorithm
performs particularly well on many irregular Pareto-front problems, such
as inverted, disconnected, and scaling problems.

210 APPENDIX A. FURTHER STUDIES

Bibliography

[1] AARTS, E., AND LENSTRA, J. K. Local search in combinatorial opti-
mization. Wiley, Chichester, 1997.

[2] ABDUL-RAZAQ, T. S., POTTS, C. N., AND VAN WASSENHOVE,
L. N. A survey of algorithms for the single machine total weighted
tardiness scheduling problem . Discrete Applied Mathematics 26, 2–3
(1990), 235–253.

[3] ADAMS, J., BALAS, E., AND ZAWACK, D. The shifting bottleneck
procedure for job shop scheduling. Management science 34, 3 (1988),
391–401.

[4] ADIBI, M. A., ZANDIEH, M., AND AMIRI, M. Multi-objective
scheduling of dynamic job shop using variable neighborhood
search. Expert Syst. Appl. 37, 1 (2010), 282–287.

[5] AITZAI, A., BENMEDJDOUB, B., AND BOUDHAR, M. Branch-and-
bound and PSO algorithms for no-wait job shop scheduling. http:
//dx.doi.org/10.1007/s10845-014-0906-7, 2014.

[6] ALPAYDIN, E. Introduction to Machine Learning, 2 ed. MIT press,
2010.

[7] APPLEGATE, D., AND COOK, W. A Computational Study of the Job-
Shop Scheduling Problem. ORSA Journal on Computing 3, 2 (1991),
149–156.

211

212 BIBLIOGRAPHY

[8] APPLEGATE, D., AND COOK, W. A computational study of the job-
shop scheduling problem. ORSA Journal on computing 3, 2 (1991),
149–156.

[9] ATTAR, S., MOHAMMADI, M., AND TAVAKKOLI-MOGHADDAM, R.
Hybrid flexible flowshop scheduling problem with unrelated paral-
lel machines and limited waiting times. The International Journal of
Advanced Manufacturing Technology 68, 5-8 (2013), 1583–1599.

[10] AVANTHAY, C., HERTZ, A., AND ZUFFEREY, N. A variable neigh-
borhood search for graph coloring. European Journal of Operational
Research 151, 2 (2003), 379–388.

[11] BAKER, K. R., AND TRIETSCH, D. Principles of sequencing and schedul-
ing. John Wiley & Sons, 2013.

[12] BENI, G., AND WANG, J. Swarm intelligence in cellular robotic
systems. In Robots and Biological Systems: Towards a New Bionics?
Springer, 1993, pp. 703–712.

[13] BŁAŻEWICZ, J., DOMSCHKE, W., AND PESCH, E. The job shop
scheduling problem: Conventional and new solution techniques.
European Journal of Operational Research 93, 1 (1996), 1–33.

[14] BLOT, A., JOURDAN, L., AND KESSACI, M.-É. Automatic design of
multi-objective local search algorithms: case study on a bi-objective
permutation flowshop scheduling problem. In Proceedings of the Ge-
netic and Evolutionary Computation Conference (2017), ACM, pp. 227–
234.

[15] BOSMAN, P. A., AND THIERENS, D. The naive MIDEA: A baseline
multi–objective EA, x-fetchedfrom = Google Scholar, year = 2005. In
International Conference on Evolutionary Multi-Criterion Optimization,
Springer, pp. 428–442.

BIBLIOGRAPHY 213

[16] BRANDIMARTE, P. Routing and scheduling in a flexible job shop by
tabu search. Annals OR 41, 3 (1993), 157–183.

[17] BRANKE, J., NGUYEN, S., PICKARDT, C., AND ZHANG, M. Auto-
mated Design of Production Scheduling Heuristics: A Review. IEEE
Trans. Evolutionary Computation 20, 1 (2016), 110–124.

[18] BRINGMANN, K., AND FRIEDRICH, T. An Efficient Algorithm for
Computing Hypervolume Contributions**. Evol. Comput. 18, 3 (Sept.
2010), 383–402.

[19] BRUCKER, P., JURISCH, B., AND SIEVERS, B. A branch and bound al-
gorithm for the job-shop scheduling problem. Discrete applied math-
ematics 49, 1 (1994), 107–127.

[20] BURKE, E. K., HYDE, M. R., KENDALL, G., OCHOA, G., OZCAN,
E., AND WOODWARD, J. R. Exploring hyper-heuristic method-
ologies with genetic programming. In Computational intelligence.
Springer, 2009, pp. 177–201.

[21] BURKE, E. K., HYDE, M. R., KENDALL, G., AND WOODWARD, J.
Automatic heuristic generation with genetic programming: evolv-
ing a jack-of-all-trades or a master of one. In Proceedings of the 9th an-
nual conference on Genetic and evolutionary computation (2007), ACM,
pp. 1559–1565.

[22] BYRNE, J., SVOROBEJ, S., GIANNOUTAKIS, K. M., TZOVARAS, D.,
BYRNE, P. J., ÖSTBERG, P.-O., GOURINOVITCH, A., AND LYNN, T.
A review of cloud computing simulation platforms and related envi-
ronments. In International Conference on Cloud Computing and Services
Science (2017), vol. 2, SCITEPRESS, pp. 679–691.

[23] ÇALIŞ, B., AND BULKAN, S. A research survey: Review of AI solu-
tion strategies of job shop scheduling problem. Journal of Intelligent
Manufacturing 26, 5 (2015), 961–973.

214 BIBLIOGRAPHY

[24] CARLIER, J. The One-Machine Sequencing Problem. European Jour-
nal of Operational Research 11, 1 (1982), 42–47.

[25] CARLIER, J., AND PINSON, E. An Algorithm for Solving the Job-
shop Problem. Management Science 35, 2 (1989), 164–176.

[26] CHEN, B., ZENG, W., LIN, Y., AND ZHANG, D. A new local search-
based multiobjective optimization algorithm. IEEE Transactions on
Evolutionary Computation 19, 1 (2015), 50–73.

[27] CHEN, S.-W., AND CHIANG, T.-C. Evolutionary many-objective
optimization by MO-NSGA-II with enhanced mating selection. In
IEEE Congress on Evolutionary Computation (2014), IEEE, pp. 1397–
1404.

[28] CHENG, R., GEN, M., AND TSUJIMURA, Y. A tutorial survey of job-
shop scheduling problems using genetic algorithms, part II: hybrid
genetic search strategies . Computers & Industrial Engineering 36, 2
(1999), 343–364.

[29] CHENG, R., HE, C., JIN, Y., AND YAO, X. Model-based evolutionary
algorithms: a short survey. Complex & Intelligent Systems 4, 4 (2018),
283–292.

[30] CHENG, R., JIN, Y., NARUKAWA, K., AND SENDHOFF, B. A multi-
objective evolutionary algorithm using Gaussian process-based in-
verse modeling. IEEE Transactions on Evolutionary Computation 19, 6
(2015), 838–856.

[31] CHENG, R., JIN, Y., OLHOFER, M., AND SENDHOFF, B. A refer-
ence vector guided evolutionary algorithm for many-objective opti-
mization. IEEE Transactions on Evolutionary Computation 20, 5 (2016),
773–791.

BIBLIOGRAPHY 215

[32] CHENG, R., LI, M., TIAN, Y., ZHANG, X., YANG, S., JIN, Y., AND

YAO, X. A benchmark test suite for evolutionary many-objective
optimization. Complex & Intelligent Systems 3, 1 (2017), 67–81.

[33] CHOI, I.-C., AND CHOI, D.-S. A local search algorithm for jobshop
scheduling problems with alternative operations and sequence-
dependent setups. Computers & Industrial Engineering 42, 1 (2002),
43–58.

[34] COLORNI, A., DORIGO, M., MANIEZZO, V., AND TRUBIAN, M.
Ant system for job-shop scheduling. Belgian Journal of Operations
Research, Statistics and Computer Science 34, 1 (1994), 39–53.

[35] CORNELL, J. A. Experiments with mixtures: designs, models, and the
analysis of mixture data, vol. 403. John Wiley & Sons, 2011.

[36] CORRIVEAU, G., GUILBAULT, R., TAHAN, A., AND SABOURIN, R.
Bayesian network as an adaptive parameter setting approach for ge-
netic algorithms. Complex & Intelligent Systems 2, 1 (2016), 1–22.

[37] COWLING, P., KENDALL, G., AND SOUBEIGA, E. A Hyperheuristic
Approach to Scheduling a Sales Summit. In Practice and Theory of Au-
tomated Timetabling III, vol. 2079 of Lecture Notes in Computer Science.
Springer Berlin Heidelberg, 2001, pp. 176–190.

[38] CROES, A. A method for solving traveling salesman problems. Op-
erations Research 5 (1958), 791—812.

[39] DAS, I., AND DENNIS, J. E. Normal-boundary intersection: A new
method for generating the Pareto surface in nonlinear multicriteria
optimization problems. SIAM Journal on Optimization 8, 3 (1998),
631–657.

[40] DAVIS, L. Evolutionary algorithms. The IMA volumes in mathematics
and its applications. Springer, 1999.

216 BIBLIOGRAPHY

[41] DE BONET, J. S., ISBELL JR, C. L., AND VIOLA, P. A. MIMIC: Find-
ing optima by estimating probability densities. In Advances in neural
information processing systems (1997), pp. 424–430.

[42] DEB, K. Multi-Objective Optimization using Evolutionary Algorithms.
John Wiley & Sons, 2001.

[43] DEB, K., AND JAIN, H. An evolutionary many-objective optimiza-
tion algorithm using reference-point-based nondominated sorting
approach, part I: Solving problems with box constraints. IEEE Trans-
actions on Evolutionary Computation 18, 4 (2014), 577–601.

[44] DEB, K., PRATAP, A., AGARWAL, S., AND MEYARIVAN, T. A fast
and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transac-
tions on Evolutionary Computation 6 (2002), 182–197.

[45] DEB, K., THIELE, L., AND ZITZLER, E. Scalable multi-objectove
optimization test problems. In IEEE Congress on Evolutionary Com-
putation (2002), IEEE, pp. 825–830.

[46] DEMIRKOL, E., MEHTA, S., AND UZSOY, R. Benchmarks for shop
scheduling problems. European Journal of Operational Research 109, 1
(1998), 137–141.

[47] DICK, G. Sensitivity-like analysis for feature selection in genetic
programming. In Proceedings of the Genetic and Evolutionary Compu-
tation Conference (2017), pp. 401–408.

[48] DRAGOMIR, S. S., CERONE, P., AND SOFO, A. Some remarks on
the midpoint rule in numerical integration. RGMIA research report
collection 1, 2 (1998).

[49] DUBOIS-LACOSTE, J., LÓPEZ-IBÁÑEZ, M., AND STÜTZLE, T. A hy-
brid TP+PLS algorithm for bi-objective flow-shop scheduling prob-
lems. Computers & OR 38, 8 (2011), 1219–1236.

BIBLIOGRAPHY 217

[50] DUBOIS-LACOSTE, J., LÓPEZ-IBÁÑEZ, M., AND STÜTZLE, T. Any-
time pareto local search. European Journal of Operational Research 243,
2 (2015), 369–385.

[51] FOWLER, L., PFUND, M., YU, L., FOWLER, J. W., AND CARLYLE,
W. M. Development Of A Robust Scheduling Rule For A Printed
Wiring Board Drilling Operation With Multiple Scheduling Objec-
tives And Fixed Order Release/Pickup Times. In IIE Annual Confer-
ence. Proceedings (2002), Citeseer, p. 1.

[52] GALVÁN-LÓPEZ, E., MCDERMOTT, J., O’NEILL, M., AND

BRABAZON, A. Defining locality as a problem difficulty measure in
genetic programming. Genetic Programming and Evolvable Machines
12, 4 (2011), 365–401.

[53] GAREY, M. R., JOHNSON, D. S., AND SETHI, R. The complexity of
flowshop and jobshop scheduling. Mathematics of Operations Research
1, 2 (1976), 117–129.

[54] GENG, S., WU, D., WANG, P., AND CAI, X. Many-objective cloud
task scheduling. IEEE Access 8 (2020), 79079–79088.

[55] GIFFLER, B., AND THOMPSON, G. L. Algorithms for solving
production-scheduling problems. Operations research 8, 4 (1960),
487–503.

[56] GONG, X., DE PESSEMIER, T., MARTENS, L., AND JOSEPH, W.
Energy-and labor-aware flexible job shop scheduling under dy-
namic electricity pricing: A many-objective optimization investiga-
tion. Journal of Cleaner Production 209 (2019), 1078–1094.

[57] GONG, X., DE PESSEMIER, T., MARTENS, L., AND JOSEPH, W.
Energy-and labor-aware flexible job shop scheduling under dy-
namic electricity pricing: A many-objective optimization investiga-
tion. Journal of cleaner production 209 (2019), 1078–1094.

218 BIBLIOGRAPHY

[58] GONZÁLEZ RODRÍGUEZ, I., RODRÍGUEZ VELA, M. D. C., PUENTE

PEINADOR, J., AND HERNÁNDEZ ARAUZO, A. Improved local
search for job shop scheduling with uncertain durations. In Proceed-
ings of the Nineteenth International Conference on Automated Planning
and Scheduling (2009), Association for the Advancement of Artificial
Intelligence (AAAI).

[59] GRIFFIN, J. L., SCHLOSSER, S. W., GANGER, G. R., AND NAGLE, D.
Operation Management. Cengage Learning, 2015.

[60] GROMICHO, J. A., VAN HOORN, J. J., SALDANHA-DA GAMA, F.,
AND TIMMER, G. T. Solving the job-shop scheduling problem opti-
mally by dynamic programming . Computers & Operations Research
39, 12 (2012), 2968–2977.

[61] GUPTA, A. K., AND SIVAKUMAR, A. I. Job shop scheduling tech-
niques in semiconductor manufacturing. The International Journal of
Advanced Manufacturing Technology 27, 11-12 (2006), 1163–1169.

[62] HART, E., ROSS, P., AND CORNE, D. Evolutionary Scheduling: A
Review. Genetic Programming and Evolvable Machines 6, 2 (2005), 191–
220.

[63] HEGER, J., HILDEBRANDT, T., AND SCHOLZ-REITER, B. Dispatch-
ing rule selection with gaussian processes. Central European Journal
of Operations Research 23, 1 (2015), 235–249.

[64] HELD, M., AND KARP, R. M. A Dynamic Programming Approach
to Sequencing Problems. In Proceedings of the 16th ACM National
Meeting (ACM 1961) (1961), pp. 71.201–71.204.

[65] HERRERO, J. G., BERLANGA, A., AND LOPEZ, J. M. M. Effective
evolutionary algorithms for many-specifications attainment: Appli-
cation to air traffic control tracking filters. Evolutionary Computation,
IEEE Transactions on 13, 1 (2009), 151–168.

BIBLIOGRAPHY 219

[66] HILDEBRANDT, T., AND BRANKE, J. On using surrogates with ge-
netic programming. Evolutionary computation 23, 3 (2015), 343–367.

[67] HILDEBRANDT, T., HEGER, J., AND SCHOLZ-REITER, B. Towards
improved dispatching rules for complex shop floor scenarios: A ge-
netic programming approach. In Proceedings of Genetic and Evolution-
ary Computation Conference (2010), ACM, pp. 257–264.

[68] HO, N., AND TAY, J. Evolving dispatching rules for solving the flex-
ible job-shop problem. In IEEE Congress on Evolutionary Computation
(2005), vol. 3, IEEE, pp. 2848–2855.

[69] HOLLAND, J. Adaption in Natural and Artificial Systems. MIT Press,
Cambridge, MA, 1992. 1st edition: 1975, The University of Michigan
Press, Ann Arbor.

[70] HOLTHAUS, O., AND RAJENDRAN, C. Efficient jobshop dispatching
rules: Further developments. Production Planning & Control 11, 2
(2000), 171–178.

[71] HORST, R., AND ROMEIJN, H. E. Handbook of Global Optimization,
vol. 2. Springer Science & Business Media, 2002.

[72] HUGHES, E. J. Multiple single objective Pareto sampling. In Evolu-
tionary Computation, 2003. CEC’03. The 2003 Congress on (2003), vol. 4,
IEEE, pp. 2678–2684.

[73] HUNT, R., JOHNSTON, M., AND ZHANG, M. Evolving ”less-
myopic” scheduling rules for dynamic job shop scheduling with
genetic programming. In GECCO (2014), D. V. Arnold, Ed., ACM,
pp. 927–934.

[74] HUNT, R., JOHNSTON, M., AND ZHANG, M. Evolving Dispatch-
ing Rules with Greater Understandability for Dynamic Job Shop
Scheduling. Tech. rep., Victoria University, June 2015.

220 BIBLIOGRAPHY

[75] HUNT, R., JOHNSTON, M., AND ZHANG, M. Using Local Search
to Evaluate Dispatching Rules in Dynamic Job Shop Scheduling. In
EvoCOP (2015), G. Ochoa and F. Chicano, Eds., vol. 9026 of Lecture
Notes in Computer Science, Springer, pp. 222–233.

[76] IBRAHIM, A., RAHNAMAYAN, S., MARTIN, M. V., AND DEB,
K. EliteNSGA-III: An improved evolutionary many-objective op-
timization algorithm. In CEC (2016), IEEE, pp. 973–982.

[77] IKEDA, K.-I., KITA, H., AND KOBAYASHI, S. Failure of Pareto-based
MOEAs: does non-dominated really mean near to optimal? In Evo-
lutionary Computation, 2001. Proceedings of the 2001 Congress on (2001),
vol. 2, IEEE, pp. 957–962.

[78] ISHIBUCHI, H., IMADA, R., SETOGUCHI, Y., AND NOJIMA, Y. Refer-
ence point specification in hypervolume calculation for fair compar-
ison and efficient search. In Proceedings of the Genetic and Evolutionary
Computation Conference (2017), pp. 585–592.

[79] ISHIBUCHI, H., AND MURATA, T. A multi-objective genetic local
search algorithm and its application to flowshop scheduling. IEEE
Transactions on Systems, Man, and Cybernetics, Part C: Applications and
Reviews, 28, 3 (1998), 392–403.

[80] ISHIBUCHI, H., SETOGUCHI, Y., MASUDA, H., AND NOJIMA, Y.
Performance of decomposition-based many-objective algorithms
strongly depends on Pareto front shapes. IEEE Transactions on Evo-
lutionary Computation 21, 2 (2016), 169–190.

[81] ISHIBUCHI, H., AND YOSHIDA, T. Hybrid Evolutionary Multi-
Objective Optimization Algorithms. In HIS (2002), A. Abraham, J. R.
del Solar, and M. Köppen, Eds., vol. 87 of Frontiers in Artificial Intel-
ligence and Applications, IOS Press, pp. 163–172.

BIBLIOGRAPHY 221

[82] ISHIBUCHI, H., YOSHIDA, T., AND MURATA, T. Balance between
genetic search and local search in memetic algorithms for multiob-
jective permutation flowshop scheduling. IEEE Trans. Evolutionary
Computation 7, 2 (2003), 204–223.

[83] JACKSON, J. An extension of Johnson’s result on job-lot scheduling.
Naval Research Logistics Quarterly 3, 3 (1956), 201–204.

[84] JAIMES, A. L., AND COELLO, C. A. C. Many-Objective Problems:
Challenges and Methods. In Handbook of Computational Intelligence,
J. Kacprzyk and W. Pedrycz, Eds. Springer, 2015, pp. 1033–1046.

[85] JAIN, H., AND DEB, K. An Improved Adaptive Approach for Eli-
tist Nondominated Sorting Genetic Algorithm for Many-Objective
Optimization. In EMO (2013), R. C. Purshouse, P. J. Fleming, C. M.
Fonseca, S. Greco, and J. Shaw, Eds., vol. 7811 of Lecture Notes in
Computer Science, Springer, pp. 307–321.

[86] JAIN, H., AND DEB, K. An Evolutionary Many-Objective Optimiza-
tion Algorithm Using Reference-Point Based Nondominated Sort-
ing Approach, Part II: Handling Constraints and Extending to an
Adaptive Approach. IEEE Transactions. Evolutionary Computation 18,
4 (2014), 602–622.

[87] JAKOBOVIĆ, D., AND MARASOVIĆ, K. Evolving priority scheduling
heuristics with genetic programming. Applied Soft Computing 12, 9
(2012), 2781–2789.

[88] JASZKIEWICZ, A. On the performance of multiple-objective genetic
local search on the 0/1 knapsack problem - a comparative experi-
ment. IEEE Transactions on Evolutionary Computation 6, 4 (Aug. 2002),
402–412.

[89] JASZKIEWICZ, A. Many-Objective Pareto Local Search. European
Journal of Operational Research 271, 3 (2018), 1001–1013.

222 BIBLIOGRAPHY

[90] JAYAMOHAN, M., AND RAJENDRAN, C. New dispatching rules for
shop scheduling: a step forward. International Journal of Production
Research 38, 3 (2000), 563–586.

[91] JAYAMOHAN, M., AND RAJENDRAN, C. Development and analysis
of cost-based dispatching rules for job shop scheduling. European
Journal of Operational Research 157, 2 (2004), 307–321.

[92] JIANG, S., AND YANG, S. A strength Pareto evolutionary algorithm
based on reference direction for multiobjective and many-objective
optimization. IEEE Transactions on Evolutionary Computation 21, 3
(2017), 329–346.

[93] JIN, Y. Surrogate-assisted evolutionary computation: Recent ad-
vances and future challenges. Swarm and Evolutionary Computation
1, 2 (2011), 61–70.

[94] JONES, A., RABELO, L. C., AND SHARAWI, A. T. Survey of job shop
scheduling techniques. Wiley encyclopedia of electrical and electronics
engineering (2001).

[95] JONG, K. D. Evolutionary Computation: A Unified Approach. The MIT
Press, 2006.

[96] KACEM, I., HAMMADI, S., AND BORNE, P. Pareto-optimality ap-
proach for flexible job-shop scheduling problems: hybridization of
evolutionary algorithms and fuzzy logic. Mathematics and computers
in simulation 60, 3 (2002), 245–276.

[97] KARUNAKARAN, D., CHEN, G., AND ZHANG, M. Parallel multi-
objective job shop scheduling using genetic programming. In Aus-
tralasian Conference on Artificial Life and Computational Intelligence
(2016), Springer, pp. 234–245.

BIBLIOGRAPHY 223

[98] KARUNAKARAN, D., MEI, Y., CHEN, G., AND ZHANG, M. Sam-
pling heuristics for multi-objective dynamic job shop scheduling
using island based parallel genetic programming. In International
Conference on Parallel Problem Solving from Nature (2018), Springer,
pp. 347–359.

[99] KASHAN, A. H., KESHMIRY, M., DAHOOIE, J. H., AND ABBASI-
POOYA, A. A simple yet effective grouping evolutionary strategy
(ges) algorithm for scheduling parallel machines. Neural Computing
and Applications 30, 6 (2018), 1925–1938.

[100] KENNEDY, J., AND EBERHART, R. Particle swarm optimization. In
Proceedings of IEEE international conference on neural networks (1995),
vol. 4, Perth, Australia, pp. 1942–1948.

[101] KENNEDY, J., AND EBERHART, R. C. Swarm Intelligence. Morgan
Kaufmann, April 2001.

[102] KNOWLES, J., AND CORNE, D. M-PAES: a memetic algorithm
for multiobjective optimization. In Proceedings of the 2000 Congress
on Evolutionary Computation. CEC00 (Cat. No.00TH8512) (July 2000),
vol. 1, IEEE, pp. 325–332 vol.1.

[103] KOLAHAN, F., AND KAYVANFAR, V. A heuristic algorithm approach
for scheduling of multi-criteria unrelated parallel machines. World,
Academy of Science, Engineering and Technology 59 (2009), 102.

[104] KOZA, J. R. A Genetic Approach to the Truck Backer Upper Prob-
lem and the Inter-Twined Spiral Problem. In Proceedings of IJCNN
International Joint Conference on Neural Networks (1992), vol. IV, IEEE
Press, pp. 310–318.

[105] KOZA, J. R. Genetic Programming – On the Programming of Computers
by Means of Natural Selection. MIT Press, 1992.

224 BIBLIOGRAPHY

[106] KREIPL, S. A large step random walk for minimizing total weighted
tardiness in a job shop. Journal of Scheduling 3, 3 (2000), 125–138.

[107] LAND, A. H., AND DOIG, A. G. An automatic method for solving
discrete programming problems. Econometrica (1960), 497–520.

[108] LARA, A., SANCHEZ, G., COELLO, C. A. C., AND SCHÜTZE, O.
HCS: A New Local Search Strategy for Memetic Multiobjective Evo-
lutionary Algorithms. IEEE Trans. Evolutionary Computation 14, 1
(2010), 112–132.

[109] LARRAÑAGA, P., AND LOZANO, J. A. Estimation of distribution algo-
rithms: A new tool for evolutionary computation, vol. 2. Springer Sci-
ence & Business Media, 2001.

[110] LAUMANNS, M., AND OCENASEK, J. Bayesian optimization algo-
rithms for multi-objective optimization. In International Conference
on Parallel Problem Solving from Nature (2002), Springer, pp. 298–307.

[111] LAWLER, E. L., LENSTRA, J. K., RINNOOY KAN, A. H. G., AND

SHMOYS, D. B. Sequencing and Scheduling: Algorithms and Com-
plexity . In Logistics of Production and Inventory, vol. 4 of Handbooks in
Operations Research and Management Science . Elsevier, 1993, pp. 445–
522.

[112] LAWLER, E. L., AND MOORE, J. M. A Functional Equation and Its
Application to Resource Allocation and Sequencing Problems. Man-
agement Science 16, 1 (1969), 77–84.

[113] LAWRENCE, S. Resouce constrained project scheduling: An exper-
imental investigation of heuristic scheduling techniques (Supple-
ment). Graduate School of Industrial Administration, Carnegie-Mellon
University (1984).

BIBLIOGRAPHY 225

[114] LEE, Y. H., BHASKARAN, K., AND PINEDO, M. A heuristic to mini-
mize the total weighted tardiness with sequence-dependent setups.
IIE transactions 29, 1 (1997), 45–52.

[115] LEUNG, J. Y.-T., Ed. Handbook of Scheduling - Algorithms, Models, and
Performance Analysis. Chapman and Hall/CRC, 2004.

[116] LI, B., LI, J., TANG, K., AND YAO, X. Many-objective evolutionary
algorithms: A survey. ACM Computing Surveys 48, 1 (2015), 13.

[117] LI, K., KWONG, S., CAO, J., LI, M., ZHENG, J., AND SHEN,
R. Achieving balance between proximity and diversity in multi-
objective evolutionary algorithm. Inf. Sci. 182, 1 (2012), 220–242.

[118] LI, M. Pareto or non-Pareto: Bi-criterion evolution in multiobjective
optimization. IEEE Transactions on Evolutionary Computation 20, 5
(2015), 645–665.

[119] LI, M., YANG, S., AND LIU, X. Shift-Based Density Estimation
for Pareto-Based Algorithms in Many-Objective Optimization. IEEE
Trans. Evolutionary Computation 18, 3 (2014), 348–365.

[120] LI, X., MABU, S., AND HIRASAWA, K. A novel graph-based estima-
tion of the distribution algorithm and its extension using reinforce-
ment learning. Evolutionary Computation, IEEE Transactions on 18, 1
(2014), 98–113.

[121] LIEFOOGHE, A., HUMEAU, J., MESMOUDI, S., JOURDAN, L., AND

TALBI, E.-G. On dominance-based multiobjective local search: de-
sign, implementation and experimental analysis on scheduling and
traveling salesman problems. Journal of Heuristics 18, 2 (2012), 317–
352.

[122] LIN, S.-W., AND YING, K.-C. Minimizing makespan and total
flowtime in permutation flowshops by a bi-objective multi-start

226 BIBLIOGRAPHY

simulated-annealing algorithm. Computers & OR 40, 6 (2013), 1625–
1647.

[123] LIU, Y., GONG, D., SUN, X., AND ZHANG, Y. A reference points-
based evolutionary algorithm for many-objective optimization. In
Proceedings of the Companion Publication of the 2014 Annual Conference
on Genetic and Evolutionary Computation (2014), ACM, pp. 1053–1056.

[124] LOURENÇO, H. R., MARTIN, O. C., AND STÜTZLE, T. Iterated local
search: Framework and applications. In Handbook of metaheuristics.
Springer, 2019, pp. 129–168.

[125] LUKE, S., ET AL. A Java-based Evolutionary Computation Research
System . https://cs.gmu.edu/˜eclab/projects/ecj/.

[126] LUO, Q., DENG, Q., GONG, G., ZHANG, L., HAN, W., AND LI,
K. An efficient memetic algorithm for distributed flexible job shop
scheduling problem with transfers. Expert Systems with Applications
160 (2020), 113721.

[127] LUST, T., AND TEGHEM, J. The multiobjective multidimensional
knapsack problem: a survey and a new approach, July 2010.

[128] MASOOD, A., MEI, Y., CHEN, G., AND ZHANG, M. A PSO-Based
Reference Point Adaption Method for Genetic Programming Hyper-
Heuristic in Many-Objective Job Shop Scheduling. In ACALCI
(2017), M. Wagner, X. Li, and T. Hendtlass, Eds., vol. 10142 of Lec-
ture Notes in Computer Science, pp. 326–338.

[129] MATTFELD, D. C., AND BIERWIRTH, C. An efficient genetic algo-
rithm for job shop scheduling with tardiness objectives. European
Journal of Operational Research 155, 3 (2004), 616–630.

[130] MEI, Y., NGUYEN, S., XUE, B., AND ZHANG, M. An efficient fea-
ture selection algorithm for evolving job shop scheduling rules with

BIBLIOGRAPHY 227

genetic programming. IEEE Transactions on Emerging Topics in Com-
putational Intelligence 1, 5 (2017), 339–353.

[131] MEI, Y., ZHANG, M., AND NYUGEN, S. Feature Selection in
Evolving Job Shop Dispatching Rules with Genetic Programming,
in GECCO, ACM, 2016.

[132] MENCHACA-MENDEZ, A., MONTERO, E., AND MARTÍNEZ, S. Z.
An Improved S-Metric Selection Evolutionary Multi-Objective Al-
gorithm With Adaptive Resource Allocation. IEEE Access 6 (2018),
63382–63401.

[133] MICHALEWICZ, Z., AND FOGEL, D. B. How to Solve It: Modern
Heuristics, 2 ed. Springer Science & Business Media, 2013.

[134] MITCHELL, T. M. Machine learning. McGraw-Hill, New York, NY
[u.a., 2010.

[135] MIYASHITA, K. Job-Shop Scheduling with GP. In Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO-2000) (Las
Vegas, Nevada, USA, July 2000), D. Whitley, D. Goldberg, E. Cantu-
Paz, L. Spector, I. Parmee, and H.-G. Beyer, Eds., Morgan Kaufmann,
pp. 505–512.

[136] MOSLEHI, G., AND MAHNAM, M. A Pareto approach to multi-
objective flexible job-shop scheduling problem using particle swarm
optimization and local search. International Journal of Production Eco-
nomics 129, 1 (2011), 14–22.

[137] MURATA, T., ISHIBUCHI, H., AND TANAKA, H. Multi-objective ge-
netic algorithm and its applications to flowshop scheduling. Com-
puters & Industrial Engineering 30, 4 (1996), 957–968.

[138] MUSSELMAN, K., AND TALAVAGE, J. A tradeoff cut approach to
multiple objective optimization. Operations Research 28, 6 (1980),
1424–1435.

228 BIBLIOGRAPHY

[139] MUTH, J. F., AND THOMPSON, G. L. Industrial Scheduling. Prentice-
Hall, 1963.

[140] NARUKAWA, K., AND RODEMANN, T. Examining the performance
of evolutionary many-objective optimization algorithms on a real-
world application. In 2012 Sixth International Conference on Genetic
and Evolutionary Computing (2012), IEEE, pp. 316–319.

[141] NGUYEN, S. Automatic Design of Dispatching Rules for Job Shop
Scheduling with Genetic Programming. PhD thesis, 2013.

[142] NGUYEN, S., MEI, Y., MA, H., CHEN, A., AND ZHANG, M. Evo-
lutionary scheduling and combinatorial optimisation: Applications,
challenges, and future directions. In 2016 IEEE Congress on Evolu-
tionary Computation (CEC) (July 2016), IEEE, pp. 3053–3060.

[143] NGUYEN, S., ZHANG, M., AND JOHNSTON, M. A genetic program-
ming based hyper-heuristic approach for combinatorial optimisa-
tion. In GECCO (2011), N. Krasnogor and P. L. Lanzi, Eds., ACM,
pp. 1299–1306.

[144] NGUYEN, S., ZHANG, M., AND JOHNSTON, M. A sequential ge-
netic programming method to learn forward construction heuristics
for order acceptance and scheduling. In 2014 IEEE congress on evolu-
tionary computation (CEC) (2014), IEEE, pp. 1824–1831.

[145] NGUYEN, S., ZHANG, M., JOHNSTON, M., AND TAN, K. C. A
computational study of representations in genetic programming to
evolve dispatching rules for the job shop scheduling problem. Evo-
lutionary Computation, IEEE Transactions 17, 5 (2013), 621–639.

[146] NGUYEN, S., ZHANG, M., JOHNSTON, M., AND TAN, K. C. Auto-
matic design of scheduling policies for dynamic multi-objective job
shop scheduling via cooperative coevolution genetic programming.
IEEE Transactions on Evolutionary Computation 18, 2 (2013), 193–208.

BIBLIOGRAPHY 229

[147] NGUYEN, S., ZHANG, M., JOHNSTON, M., AND TAN, K. C. Dy-
namic multi-objective job shop scheduling: A genetic programming
approach. In Automated Scheduling and Planning. Springer, 2013,
pp. 251–282.

[148] NGUYEN, S., ZHANG, M., JOHNSTON, M., AND TAN, K. C. Learn-
ing iterative dispatching rules for job shop scheduling with genetic
programming. The International Journal of Advanced Manufacturing
Technology 67, 1-4 (2013), 85–100.

[149] NGUYEN, S., ZHANG, M., JOHNSTON, M., AND TAN, K. C. Auto-
matic programming via iterated local search for dynamic job shop
scheduling. IEEE Transactions on Cybernetics 45, 1 (2015), 1–14.

[150] OK, S., MIYASHITA, K., AND NISHIHARA, S. Improving perfor-
mance of GP by adaptive terminal selection. In PRICAI 2000 Topics
in Artificial Intelligence. Springer, 2000, pp. 435–445.

[151] OKABE, T., JIN, Y., SENDOFF, B., AND OLHOFER, M. Voronoi-based
estimation of distribution algorithm for multi-objective optimiza-
tion. In Proceedings of the 2004 Congress on Evolutionary Computation
(IEEE Cat. No. 04TH8753) (2004), vol. 2, IEEE, pp. 1594–1601.

[152] OSMAN, I. H., AND KELLY, J. P. Meta-heuristics: An Overview.
Springer, 1996.

[153] OWEN, A., AND HARVEY, I. Adapting Particle Swarm Optimisa-
tion for Fitness Landscapes with Neutralit. IEEE Swarm Intelligence
Symposium, IEEE.

[154] PANWALKAR, S. S., AND ISKANDER, W. A survey of scheduling
rules. Operations research 25, 1 (1977), 45–61.

[155] PAQUETE, L., CHIARANDINI, M., AND STÜTZLE, T. Pareto local
optimum sets in the biobjective traveling salesman problem: An

230 BIBLIOGRAPHY

experimental study. In Metaheuristics for multiobjective optimisation.
Springer, 2004, pp. 177–199.

[156] PAQUETE, L., AND STÜTZLE, T. A study of stochastic local search
algorithms for the biobjective QAP with correlated flow matrices.
European Journal of Operational Research 169, 3 (2006), 943–959.

[157] PARK, J., NGUYEN, S., ZHANG, M., AND JOHNSTON, M. Genetic
programming for order acceptance and scheduling. In 2013 IEEE
Congress on Evolutionary Computation (2013), IEEE, pp. 1005–1012.

[158] PARK, J., NGUYEN, S., ZHANG, M., AND JOHNSTON, M. A Sin-
gle Population Genetic Programming based Ensemble Learning Ap-
proach to Job Shop Scheduling. In Proceedings of the Companion Pub-
lication of the 2015 on Genetic and Evolutionary Computation Conference
(2015), ACM, pp. 1451–1452.

[159] PARK, J., NGUYEN, S., ZHANG, M., AND JOHNSTON, M. Evolving
Ensembles of Dispatching Rules Using Genetic Programming for Job
Shop Scheduling. In Genetic Programming. Springer, 2015, pp. 92–
104.

[160] PELIKAN, M., GOLDBERG, D. E., AND CANTU-PAZ, E. Linkage
problem, distribution estimation, and Bayesian networks. Evolution-
ary computation 8, 3 (2000), 311–340.

[161] PELIKAN, M., GOLDBERG, D. E., AND LOBO, F. G. A survey of opti-
mization by building and using probabilistic models. Computational
optimization and applications 21, 1 (2002), 5–20.

[162] PENG, B., LÜ, Z., AND CHENG, T. A tabu search/path relinking
algorithm to solve the job shop scheduling problem. Computers &
Operations Research 53 (2015), 154–164.

BIBLIOGRAPHY 231

[163] PFUND, M., FOWLER, J. W., AND GUPTA, J. N. A survey of al-
gorithms for single and multi-objective unrelated parallel-machine
deterministic scheduling problems. Journal of the Chinese Institute of
Industrial Engineers 21, 3 (2004), 230–241.

[164] PICKARDT, C. W., HILDEBRANDT, T., BRANKE, J., HEGER, J., AND

SCHOLZ-REITER, B. Evolutionary generation of dispatching rule
sets for complex dynamic scheduling problems. International Journal
of Production Economics 145, 1 (2013), 67–77.

[165] PINEDO, M. L. Scheduling: theory, algorithms, and systems. Springer
Science & Business Media, 2012.

[166] POTTS, C. N., AND STRUSEVICH, V. A. Fifty years of scheduling: a
survey of milestones. JORS 60, S1 (2009).

[167] PRADITWONG, K., AND YAO, X. A new multi-objective evolution-
ary optimisation algorithm: the two-archive algorithm. In Computa-
tional intelligence and security, 2006 international conference on (2006),
vol. 1, IEEE, pp. 286–291.

[168] RAGHU, T., AND RAJENDRAN, C. An efficient dynamic dispatching
rule for scheduling in a job shop . International Journal of Production
Economics 32, 3 (1993), 301–313.

[169] RAJENDRAN, C., AND HOLTHAUS, O. A comparative study of dis-
patching rules in dynamic flowshops and jobshops. European journal
of operational research 116, 1 (1999), 156–170.

[170] RASMUSSEN, C. E., AND WILLIAMS, C. K. I. Gaussian Processes for
Machine Learning. MIT Press, 2006.

[171] ROTHLAUF, F., AND OETZEL, M. On the locality of grammatical
evolution. In European Conference on Genetic Programming (2006),
Springer, pp. 320–330.

232 BIBLIOGRAPHY

[172] RUSSELL, S. J., NORVIG, P., AND RUSSELL, S. J. Artificial Intelli-
gence: A Modern Approach (Prentice Hall Series in Artificial Intelligence),
0002 ed. Prentice Hall, 2003.

[173] SABAR, N. R., TURKY, A., AND SONG, A. A genetic program-
ming based iterated local search for software project scheduling.
In GECCO (2018), H. E. Aguirre and K. Takadama, Eds., ACM,
pp. 1364–1370.

[174] SATO, H., AGUIRRE, H. E., AND TANAKA, K. Genetic Diversity and
Effective Crossover in Evolutionary Many-objective Optimization.
In LION (2011), C. A. C. Coello, Ed., vol. 6683 of Lecture Notes in
Computer Science, Springer, pp. 91–105.

[175] SEADA, H. A., ABOUHAWWASH, M., AND DEB, K. Towards a Better
Diversity of Evolutionary Multi-Criterion Optimization Algorithms
Using Local Searches. In Proceedings of the 2016 on Genetic and Evo-
lutionary Computation Conference Companion (New York, NY, USA,
2016), GECCO ’16 Companion, ACM, pp. 77–78.

[176] SELS, V., GHEYSEN, N., AND VANHOUCKE, M. A comparison of
priority rules for the job shop scheduling problem under different
flow time-and tardiness-related objective functions. International
Journal of Production Research 50, 15 (2012), 4255–4270.

[177] SHA, D., AND HSU, C.-Y. A hybrid particle swarm optimization for
job shop scheduling problem . Computers & Industrial Engineering 51,
4 (2006), 791–808.

[178] SHAO, L., LIU, L., AND LI, X. Feature learning for image classifi-
cation via multiobjective genetic programming. Neural Networks and
Learning Systems, IEEE Transactions on 25, 7 (2014), 1359–1371.

[179] SPRECHER, A., KOLISCH, R., AND DREXL, A. Semi-active, ac-
tive, and non-delay schedules for the resource-constrained project

BIBLIOGRAPHY 233

scheduling problem . European Journal of Operational Research 80, 1
(1995), 94–102.

[180] SÜLFLOW, A., DRECHSLER, N., AND DRECHSLER, R. Robust multi-
objective optimization in high dimensional spaces. In International
conference on evolutionary multi-criterion optimization (2007), Springer,
pp. 715–726.

[181] SURESH, V., AND CHAUDHURI, D. Dynamic scheduling – a survey
of research. International Journal of Production Economics 32, 1 (1993),
53–63.

[182] TAILLARD, E. Benchmarks for basic scheduling problems. european
journal of operational research 64, 2 (1993), 278–285.

[183] TAILLARD, E. D. Parallel taboo search techniques for the job shop
scheduling problem. ORSA journal on Computing 6, 2 (1994), 108–117.

[184] TAVAKKOLI-MOGHADDAM, R., RAHIMI-VAHED, A., AND

MIRZAEI, A. H. A hybrid multi-objective immune algorithm
for a flow shop scheduling problem with bi-objectives: Weighted
mean completion time and weighted mean tardiness. Information
Sciences 177, 22 (2007), 5072–5090.

[185] TAY, J. C., AND HO, N. B. Evolving dispatching rules using
genetic programming for solving multi-objective flexible job-shop
problems. Computers & Industrial Engineering 54, 3 (2008), 453–473.

[186] THIERENS, D., AND BOSMAN, P. A. Multi-objective mixture-based
iterated density estimation evolutionary algorithms. In Proceedings
of the 3rd Annual Conference on Genetic and Evolutionary Computation
(2001), Morgan Kaufmann Publishers Inc., pp. 663–670.

[187] TIAN, Y., CHENG, R., ZHANG, X., AND JIN, Y. PlatEMO: A MAT-
LAB Platform for Evolutionary Multi-Objective Optimization [Edu-
cational Forum], Nov. 2017.

234 BIBLIOGRAPHY

[188] TSAI, C.-W., AND RODRIGUES, J. J. P. C. Metaheuristic Scheduling
for Cloud: A Survey. IEEE Systems Journal 8, 1 (2014), 279–291.

[189] VAESSENS, R. J. M., AARTS, E. H., AND LENSTRA, J. K. Job shop
scheduling by local search. INFORMS Journal on Computing 8, 3
(1996), 302–317.

[190] VAN LAARHOVEN, P. J., AARTS, E. H., AND LENSTRA, J. K. Job
shop scheduling by simulated annealing. Operations research 40, 1
(1992), 113–125.

[191] VEPSALAINEN, A. P. J., AND MORTON, T. E. Priority Rules for
Job Shops with Weighted Tardiness Costs. Management Science 33,
8 (1987), 1035–1047.

[192] WANG, C., JI, Z., AND WANG, Y. Many-objective flexible job shop
scheduling using nsga-iii combined with multi-attribute decision
making. Modern Physics Letters B 32, 34n36 (2018), 1840110.

[193] WANG, H., JIAO, L., AND YAO, X. Two Arch2: An Improved Two-
Archive Algorithm for Many-Objective Optimization. IEEE Transac-
tions on Evolutionary Computation 19, 4 (Aug. 2015), 524–541.

[194] WIDMER, G., AND KUBAT, M. Learning in the Presence of Concept
Drift and Hidden Contexts. Machine Learning 23, 1 (1996), 69–101.

[195] WILCOXON, F. Individual comparisons by ranking methods. Springer,
1992.

[196] WONG, T. C., AND NGAN, S. C. A comparison of hybrid ge-
netic algorithm and hybrid particle swarm optimization to minimize
makespan for assembly job shop. Applied Soft Computing 13, 3 (2013),
1391–1399.

BIBLIOGRAPHY 235

[197] XIA, W., AND WU, Z. An effective hybrid optimization approach for
multi-objective flexible job-shop scheduling problems. Computers &
Industrial Engineering 48, 2 (2005), 409–425.

[198] XU, W.-J., HE, L.-J., AND ZHU, G.-Y. Many-objective flow shop
scheduling optimisation with genetic algorithm based on fuzzy sets.
International Journal of Production Research (2019), 1–25.

[199] YANG, S., LI, M., LIU, X., AND ZHENG, J. A Grid-Based Evolu-
tionary Algorithm for Many-Objective Optimization. IEEE Trans.
Evolutionary Computation 17, 5 (2013), 721–736.

[200] YAQIN, Z., BEIZHI, L., AND LV, W. Study on job-shop scheduling
with multi-objectives based on genetic algorithms. In Proceedings
of 2010 International Conference on Computer Application and System
Modeling (2010), vol. 10, IEEE, pp. V10–294.

[201] YENISEY, M. M., AND YAGMAHAN, B. Multi-objective permutation
flow shop scheduling problem: Literature review, classification and
current trends. Omega 45 (2014), 119–135.

[202] YUAN, Y., AND XU, H. A memetic algorithm for the multi-objective
flexible job shop scheduling problem. In Proceedings of the 15th an-
nual conference on Genetic and evolutionary computation (2013), ACM,
pp. 559–566.

[203] ZAHIRI, A., AND AZAMATHULLA, H. M. Comparison between lin-
ear genetic programming and M5 tree models to predict flow dis-
charge in compound channels. Neural Computing and Applications
24, 2 (2014), 413–420.

[204] ZHANG, G., SHAO, X., LI, P., AND GAO, L. An effective hybrid
particle swarm optimization algorithm for multi-objective flexible
job-shop scheduling problem. Computers & Industrial Engineering 56,
4 (2009), 1309–1318.

236 BIBLIOGRAPHY

[205] ZHANG, Q., AND LI, H. MOEA/D: A multiobjective evolutionary
algorithm based on decomposition. Evolutionary Computation, IEEE
Transactions on 11, 6 (2007), 712–731.

[206] ZHANG, Q., ZHOU, A., ZHAO, S., SUGANTHAN, P. N., LIU, W.,
AND TIWARI, S. Multiobjective optimization test instances for the
CEC 2009 special session and competition. University of Essex,
Colchester, UK and Nanyang technological University, Singapore, special
session on performance assessment of multi-objective optimization algo-
rithms, technical report (2008), 1–30.

[207] ZHANG, R., CHANG, P.-C., SONG, S., AND WU, C. Local search
enhanced multi-objective pso algorithm for scheduling textile pro-
duction processes with environmental considerations. Applied Soft
Computing 61 (2017), 447–467.

[208] ZHANG, X., TIAN, Y., AND JIN, Y. A Knee Point-Driven Evolu-
tionary Algorithm for Many-Objective Optimization. IEEE Trans.
Evolutionary Computation 19, 6 (2015), 761–776.

[209] ZHAO, F., CHEN, Z., WANG, J., AND ZHANG, C. An improved
moea/d for multi-objective job shop scheduling problem. Interna-
tional Journal of Computer Integrated Manufacturing 30, 6 (2017), 616–
640.

[210] ZHU, G.-Y., DING, C., AND ZHANG, W.-B. Optimal foraging al-
gorithm that incorporates fuzzy relative entropy for solving many-
objective permutation flow shop scheduling problems. IEEE Trans-
actions on Fuzzy Systems (2020).

[211] ZITZLER, E., LAUMANNS, M., AND THIELE, L. SPEA2: Improv-
ing the strength pareto evolutionary algorithm. In EUROGEN 2001.
Evolutionary Methods for Design, Optimization and Control with Appli-
cations to Industrial Problems (2002), pp. 95–100.

BIBLIOGRAPHY 237

[212] ZITZLER, E., THIELE, L., LAUMANNS, M., FONSECA, C. M., AND

DA FONSECA, V. G. Performance assessment of multiobjective op-
timizers: an analysis and review. Evolutionary Computation, IEEE
Transactions on 7, 2 (2003), 117–132.

