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Abstract

The development and differentiation of vertebrate skeletal muscle provide an important paradigm to understand the inductive signals and
molecular events controlling differentiation of specific cell types. Recent findings show that a core transcriptional network, initiated by
the myogenic regulatory factors (MRFs; MYF5, MYOD, myogenin and MRF4), is activated by separate populations of cells in embryos in
response to various signalling pathways. This review will highlight how cells from multiple distinct starting points can converge on a

common set of regulators to generate skeletal muscle.
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Introduction

Understanding the process of differentiation is a central
concern of developmental biology, and the study of
vertebrate skeletal muscle provides an excellent para-
digm to understand this problem. Investigations over
many years have shed light on the inductive processes
within embryos that lead to myogenesis and the
molecular events that underpin this. As well as providing
basic insights into developmental biology, this work has
the potential to inform regenerative medicine as, at least
in some respects, the myogenic programme active in
adult muscle stem cells recapitulates that of the embryo.

One of the striking features apparent from recent work
is the variety of ways in which skeletal muscle cells can
be generated. From diverse developmental starting
points, precursor cells converge on a small number of
core transcriptional regulators that govern the myogenic
programme. In amniote embryos (mammals, birds and
reptiles), muscle development starts at late neurula/phar-
yngula stages (described in Box 1). Although there are
significant differences between species in early develop-
ment, the myogenic programme is highly conserved, and
both mammalian and avian embryos have been widely
used in its analysis. This review will describe the core
transcriptional network of the myogenic programme,
how it is induced in different cells and what implications
this has for our understanding of differentiation.

The origins of muscle

There are a number of embryonic tissues capable of
producing skeletal muscle, all of which are mesodermal
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in origin. The locations of these areas in the embryo are
shown schematically in Fig. TA. Most muscles are derived
from paraxial trunk mesoderm (i.e. the mesoderm lying
immediately adjacent to the midline, see Fig. 1A and B),
which forms somites, and head mesoderm. Additionally,
some lateral neck mesoderm has also been shown to have
myogenic potential. Trunk, head, neck and limb muscles
are all produced by distinct developmental pathways,
which are briefly described below.

Myogenesis in somites

Somites are segmentally repeated embryonic structures
that bud off from unsegmented paraxial mesoderm
alongside the neural tube (shown in Fig. 1). Somites
are found throughout the chordates and are the source of
all the skeletal muscle of the trunk and limbs as well as
some head muscles, such as the tongue muscles (Noden
et al. 1999, Brent & Tabin 2002, Christ et al. 2007).
Somites begin forming at the anterior of the embryo and
are added posteriorly as the embryo extends. This means
that anterior somites are older and more developed than
posterior somites, and there is a range of somite stages
within a single embryo. This can be seen in Fig. 2A,
which shows an early pharyngula chicken embryo (see
Box 1) at Hamburger—Hamilton stage 16 (Hamburger &
Hamilton 1951) where MYF5, an early marker of muscle
differentiation, is expressed in anterior somites, while the
most recently formed somites (I-VI) do not yet express
myogenic markers. Below the newly formed somites is
the presegmented paraxial mesoderm, which continues
to segment to produce more posterior somites.
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4 cell Blastocyst Epiblast Gastrula Neurula | Pharyngula
A(i) B(i) C(i)y Extraembryonic E(i) F(i)
Inner cell ectoderm Head folds
[} . Branchial
2 Epiblast arches
§ Somite
ophtctod Visceral I Limb
rophectoderm endoderm streak Somite Bud
E2 E3 E5.5 E7
Al B jnner cenf €™ Epiblast | P _
,' il
c [
© i
E 1
3 N _
x E— = Primitive
Trophectoderm Hypoblast streak
Ccs2 cs3 cs6 cs7 €S 10 Ccs 13
(2-3 days) (5 days) (13—14 days) (15—-17 days) (26-30 days)
Aii) B(iii) Ciii) D(iii) Fiii)
Pl
Epiblast ’
: @ @”A -
2
1o
=
o Hypoblast Primitive
streak
HH1 HH5
(egg laid) (19-22 h)

Much of the data discussed in this review have come from experiments on mouse or chicken embryos, because
non-amniote vertebrates, such as zebrafish and Xenopus, have some significant differences in their myogenic
programmes. Here, we show a schematic comparison of mouse, chicken and human development, demonstrating
some of the similarities seen between these species’ embryos. Also shown is the time at which these stages are
reached along with the Carnegie stages (CS) for human embryos (Hill 2007) and the Hamburger-Hamilton stages
(HH) for chicken embryos (Hamburger & Hamilton 1951). Mouse embryos are described with the embryonic day
(E) since fertilisation (Kaufman 1992).

Following fertilisation and initial cell division, the embryo segregates into embryonic and extra-embryonic
lineages. At blastocyst stages in mammals (B, i-iii), the outer cell layer forms the trophoblast, which will form the
placenta, while the embryo itself is derived from the inner embryonic stem cells. These inner cells then form the
epiblast (C, i—iii). In most amniotes, including humans and chickens, the epiblast is an epithelial disc with a thin
layer of underlying cells, the hypoblast. In rodents, the epiblast forms a cup shape contained within the visceral
endoderm (VE). The tissues of the embryo are almost exclusively derived from the epiblast, and the main role of the
hypoblast and VE is to provide spatial cues for the epiblast as it forms its primary axes.

At gastrula stages (D, i—iii), the embryo produces the three germ layers of ectoderm, mesoderm and endoderm.
Epiblast cells migrate into the primitive streak where they undergo epithelial to mesenchymal transition. Cells from
the streak migrate out between the epiblast and hypoblast (or VE in rodents). These cells will generate endoderm and
mesoderm and, in humans and chickens, displace the hypoblast to produce the trilaminar embryo.

Ectoderm cells then give rise to the neural plate and neural tube (neurula stages, E, i-iii). Mesoderm alongside the
neural tube begins to segment to form somites, while at the posterior of the embryo, the tail bud continues to extend
and generate more mesoderm. At this stage, rodent embryos begin to turn as they return to a more typically amniote
embryonic programme. It is at this point that the most anterior somites are beginning the myogenic programme.

Pharyngula embryos are characterised by the appearance of the branchial (or pharyngeal) arches (F, i-iii). The
mesenchymal core of the arches will generate the facial and jaw muscles. In anterior somites, myogenesis is well
advanced, while posterior somites are still undergoing the early stages of differentiation. At these stages, myoblasts
are beginning to migrate into the limb buds where they will produce the limb muscles.

Reproduction (2011) 141 301-312

www.reproduction-online.org

Downloaded from Bioscientifica.com at 08/23/2022 05:33:12AM

via free access



A Anterior

Head mesoderm
-4 (head and jaw
muscles)

1
Lateral occipital
mesoderm
(neck muscles)

i c
Somites
(trunk muscles) pMmL!

I

Presegmented
paraxial
mesoderm

Posterior

Epaxial

My

VLL
Hypaxial

Myogenesis in vertebrate embryos 303

Figure 1 (A) Schematic of 13 somite amniote embryo corresponding to Carnegie stage 11 in human (~24 days), E8.5 in mouse, HH11 in chicken
(40-45 h) showing location of myogenic regions. (B) Transverse section of embryo showing spatial arrangement of mesodermal derivatives in blue,
ectodermal derivatives in orange and endoderm in yellow. The dorsal somite will produce the dermomyotome, and the ventral somite will produce
the sclerotome. (C) Spatial organisation of somite compartments in the embryo as somites undergo differentiation; the dermomyotome is shown in
red, myotome in green and sclerotome in blue. (D) Immunostaining of transverse section of HH stage 18 chicken embryo; PAX3 staining in red,

MF20 (antibody to sarcomeric myosin, marker of differentiated muscle) in green. LPM, lateral plate mesoderm; IM, intermediate mesoderm; Som,
somite; NT, neural tube; Nc, notochord; Ec, ectoderm; En, endoderm; Dm, dermomyotome; My, myotome; Sc, sclerotome; DML, dorsomedial lip of

dermomyotome; VLL, ventrolateral lip of dermomyotome.

As somites develop, they form a number of distinct
compartments that will contribute to distinct tissues of
the animal. These include the sclerotome, which will give
rise to vertebrae and ribs, the dermatome, which
produces the dorsal dermis, the syndetome, from where
axial tendons are derived, and the myotome, which is
where muscle differentiation first occurs (Brent et al.
2003, Christ et al. 2007). Myogenic precursors can first
be detected in the dermomyotome, a characteristic
‘C’-shaped epithelial structure containing a mixture of
myogenic and dermal progenitors (see Fig. 1C and D)
which subsequently segregate to give rise to the
dermatome and myotome. The first molecular markers
that label myogenic precursors in this structure are the
paired box transcription factors PAX3 and PAX7, the
expression of which is induced by signals from surround-
ing tissues (Otto et al. 2006). PAX3 and 7 label
proliferating myoblasts, the precursors of skeletal muscle,
in the dermomyotome where they form a regulatory
network with other factors, such as the DACH2, SIX1 and
EYA2 proteins, to initiate the myogenic programme
(Heanue et al. 1999, Kardon et al. 2002, Grifone et al.
2007). The structure of the developing somites is shown
in Fig. 1D, which shows PAX3 expression labelled in red
in the dermomyotome and expression of sarcomeric
myosin, a marker of differentiating muscle cells, labelled
in green in the underlying myotome.

PAX3 and PAX7 are important regulators of muscle
development and are upstream of myogenic genes in
somites, limb muscles and satellite cells. Pax3 is
expressed in somite muscle precursor cells, and mice
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carrying mutations in this gene lack limb muscles
(Goulding et al. 1994), although myogenesis in trunk
muscle precursors still takes place. However, in mice
lacking both Pax3 and Pax7, major defects in myogenesis
occur, suggesting that together these genes are required

Anterior

Figure 2 (A) In situ hybridisation of MYF5 in HH stage 16 embryos.
Anterior is towards the top, posterior is towards the bottom. Expression
is seen in anterior somites starting in the epaxial myotome and then
spreading more widely through the somite. Posterior somites (I-VI) do
not express muscle-specific genes. (B) In situ hybridisation of MYF5 in
HH stage 22 embryos. Expression is seen in all muscle types including
myogenic cells in somites (s), limb buds (Ib) and head. Tongue muscle
precursors are seen in the hypoglossal cord (hgc), jaw and facial
muscles in the branchial arches (ba) and extraocular muscles (eom)
around the eye.
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for normal muscle development. While PAX3/7 are not
unique to muscle cells, as they also have roles in neural
development, they have an important role in the
determination of trunk myoblasts, and in their absence,
myogenesis is not sustained, although early muscle cells
in the somite are still formed via a PAX-independent
mechanism (Relaix et al. 2005). Analysis of mouse
mutants and overexpression in chick embryos has
shown that PAX3/7 control the expression of myogenic
regulators such as MYF5 and MYOD (Maroto et al. 1997,
Bajard et al. 2006, Sato et al. 2010). They also support the
proliferation and survival of myoblasts before differen-
tiation (Buckingham & Relaix 2007, Collins et al. 2009).

Following induction, myoblasts then migrate around
the edges of the dermomyotome to form the myotome,
the region of the somite where myogenic differentiation
is first observed. This process has been extensively
studied using cell labelling and confocal microscopy in
chicken embryos (Kahane et al. 1998, Cinnamon et al.
1999, Denetclaw et al. 2001, Ordahl et al. 2001, Venters
& Ordahl 2002, Gros et al. 2004). This process begins
in the dorsomedial lip of the dermomyotome where
myoblasts migrate ventrolaterally to form a layer of cells
lying directly under the dermomyotome, the epaxial
myotome. Figure 1C and D show the structure of the
differentiating somite and its separation into three
compartments. Subsequently, myoblasts also migrate
from the ventrolateral lip and from lateral edges of the
dermomyotome into this layer to produce the primary
myotome. The ventrolateral lip myoblasts contribute to
the hypaxial myotome, while cells from the lateral edges
of the dermomyotome contribute to both epaxial and
hypaxial myotomes (Gros et al. 2004). It is here that
myogenic differentiation starts, as cells exit the cell cycle
and begin to express muscle-specific markers while
PAX3 is down-regulated. It is this switch from prolif-
erative myoblast to post mitotic myocyte, which marks
the start of differentiation. MYF5 is the earliest marker of
determined muscle cells, closely followed by MYOD.
MYF5 expression in the epaxial myotome is shown in
Fig. 2A. At later stages, cells from the central dermo-
myotome also move directly into the underlying
myotome, rather than by migrating around the edges of
the dermomyotome, and lineage tracing in both chicken
and mouse embryos has shown that it is from these cells
that satellite cells, adult muscle stem cells, are derived
(Gros et al. 2005, Relaix et al. 2005, Lepper & Fan 2010).

The myotome can be divided into two regions, the
epaxial and hypaxial myotomes. The epaxial myotome
gives rise to the deep muscles of the back, while the
hypaxial myotome produces the muscles of the body
wall and limbs. Spatially, the epaxial myotome is located
in the dorsal somite, while the hypaxial myotome is
ventral. There is no obvious morphological division
between these domains in somites, but they can be
distinguished at the molecular level by the expression of
epaxial markers such as ENT and hypaxial markers such
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as SIM1 (Cheng et al. 2004). The epaxial and hypaxial
myotomes are largely derived from dorsomedial and
ventrolateral regions of the dermomyotome respectively
(Huang & Christ 2000), although careful examination of
labelled cells has shown a more complex distribution of
cells in the myotome including myoblasts migrating from
the lateral edges of the dermomyotome contributing to
both epaxial and hypaxial muscles (Gros et al. 2004).
Epaxial and hypaxial muscles are induced by distinct
signalling events from neighbouring tissues. The
induction of myogenesis in somites has been examined
using somite explant culture where dissected somites
from either chicken or mouse embryos are cultured
in vitro and by surgical manipulation of chicken
embryos. These approaches allow co-culture with
other tissues to examine inductive events or the addition
of defined growth factors either in culture or directly to
the embryo. This has shown that myogenesis is driven by
signals from the neural tube, notochord, overlying
ectoderm and lateral mesoderm (Munsterberg & Lassar
1995). A combination of WNT1 and WNT3A from
the dorsal neural tube and SHH from the floor plate of
the neural tube and notochord induces myogenesis
in the epaxial myotome (Munsterberg et al. 1995,
Tajbakhsh et al. 1998, Borycki et al. 1999). The bone
morphogenetic protein (BMP) inhibitor noggin is also
produced in dorsal somites and plays an important role,
as otherwise BMP signals from the dorsal neural tube
inhibit myogenesis (Hirsinger et al. 1997, Marcelle et al.
1997). However, in hypaxial muscles, a combination of
BMP from lateral mesoderm and WNTs from
overlying ectoderm is responsible for myogenic induc-
tion (Dietrich et al. 1998, Otto et al. 2006), demonstrat-
ing that even within a single somite, different myogenic
programmes are used to generate skeletal muscle.

Development of limb muscles

Although the musculature of the limb is derived from
somites, just as trunk muscles are, the developmental
pathways leading to their production have several
distinct features, which are worth noting.

Using quail-chick grafts to produce chimeric embryos
has determined that limb muscles are derived from the
hypaxial myotome. The muscles of the chicken forelimb
are derived from somites 16-21 (Beresford 1983) and
those of the hindlimb from somites 26-33 (Lance-Jones
1988). Detailed analysis of PAX3-expressing cells
migrating into limb buds has shown that in mouse
embryos, forelimb muscles come from somites 9-14
and hindlimb muscles from somites 26-32 (Houzelstein
et al. 1999). Delamination of PAX3-positive myoblasts
from the ventrolateral dermomyotome is induced by
hepatocyte growth factor (HGF)/Scatter factor, which
causes cells to migrate into the developing limb buds as
shown by the overexpression of HGF in chicken embryos
and loss of function of MET (c-met), the HGF receptor, in
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mice (Bladt et al. 1995, Brand-Saberi et al. 1996, Scaal et
al. 1999). The migrating muscle cells form two blocks of
tissue, the dorsal and ventral muscle masses, and only
then do they begin to differentiate and express muscle-
specific genes, a process requiring the transcription
factors MEOX2 and PITX2 (Mankoo etal. 1999, ’Honoré
etal. 2010). This process is shown schematically in Fig. 3
along with sections through chicken embryo limbs,
which have been immunolabelled for PAX3 to detect
myoblasts. The molecular signals responsible for limb
muscle differentiation have not been fully elucidated,
partly because many of these same signals also regulate
limb patterning, and disruptions to patterning can also
affect myogenesis (Robson et al. 1994). Grafting of growth
factor-soaked beads in chicken embryos has shown that
BMP signalling can maintain PAX3-positive myoblasts in
an undifferentiated state in the limb bud (Amthor et al.
1998) as does expression of HGF (Scaal et al. 1999);
however, the factors required for induction of myogenic
differentiation in limbs are not known, and it has been
suggested that these myoblasts simply differentiate when
inhibitory signals of BMPs are down-regulated (Amthor
et al. 1998). Some signals are known to regulate limb
myogenesis, and inhibition of FGFR4 can prevent
myogenic differentiation (Marics et al. 2002). In contrast
to myotome induction in somites, B-catenin-dependent
WNT signalling is not required for differentiation of limb
myoblasts (Hutcheson et al. 2009) and may in fact inhibit
myogenesis by inducing expression of the anti-myogenic
factor MSX1 (Miller etal. 2007), although WNT signalling
has been shown to affect fast/slow fibre type differen-
tiation in limb muscles (Anakwe et al. 2003). WNT6 from
limb ectoderm can also induce expression of PAX3,
MYF5 and myogenin, while it appears to negatively
regulate MYOD suggesting distinct regulatory functions
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in different parts of the myogenic network (Geetha-
Loganathan et al. 2005). It has also been shown that in
somites, PITX2 is regulated by WNT signalling which is
not the case in limb muscle, confirming that distinct
molecular pathways are operating in these muscle groups
(Abu-Elmagd et al. 2010). NOTCH signalling can induce
MYOD in limbs, but appears to be downstream of PAX3
and MYF5 (Delfini etal. 2000), while SHH, another factor
known to positively induce myogenesis in somites, seems
to regulate slow muscle formation rather than induction
of differentiation (Bren-Mattison & Olwin 2002, Li et al.
2004). What is clear is that the myogenic programme in
the limb does not simply recapitulate that seen in somites
and that the differentiation of committed PAX3-positive
myoblasts requires a distinct set of signals.

Formation of head and neck muscle

The muscles of the vertebrate head form a complex and
heterogeneous group including extraocular muscles, jaw
and tongue muscles, and the muscles required to control
head movements (Noden & Francis-West 2006). They
have various origins with some, such as the tongue, being
derived from somites, while others (jaw muscles and
extraocular muscles) are derived from the cephalic and
prechordal mesoderm that lies anterior to the segmented
trunk mesoderm and which does not form somites.
Interestingly, these non-somite-derived muscles
also have some distinct molecular mechanisms driving
their differentiation and do not express PAX3/7 but
instead are specified by other transcription factors such
as PITX2 (Dong et al. 2006, Shih et al. 2007) and TBXT
(Dastjerdi et al. 2007); mice carrying mutations in these
genes show defects in head muscle development, while
overexpression studies in cultured chicken embryo

Dorsal
muscle

mass Figure 3 (A) Schematic of myoblast migration from

ventrolateral dermomyotome into limb buds.

(B) Immunostaining of transverse section of HH
stage 20 chicken embryo. PAX3 (red) -positive
cells are shown delaminating and entering limb
bud (red arrowheads). (C) Schematic of dorsal and
ventral muscle masses formed by limb bud
myoblasts. Undifferentiated precursors (some of
which will give rise to satellite cells in adult
muscles) are shown in red with differentiated
myotubes shown in green. (D) Immunostaining of
transverse section of HH stage 24 chicken embryo.
PAX3 (red) cells are restricted to the dorsal and
ventral regions of the limb bud. My, myotome;
Dm, dermomyotome; P, proximal; D, distal; dmm,
dorsal muscle mass; vmm, ventral muscle mass;
AER, apical ectodermal ridge of limb bud.
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myogenic cells lead to an increase in muscle cell
number. They also share some early markers, such as
ISL1 (islet1), with cardiac muscle (Nathan et al. 2008)
and, as the jawed vertebrates evolved, may have used
these cardiac precursors to develop at least some of their
head muscles (Tzahor 2009). Confirmation of this has
recently come from studies in the simple chordate,
Ciona intestinalis, and clonal analysis of mouse embryos
where some cardiac precursors have also been found to
contribute to jaw muscles and their evolutionary
precursors (Lescroart et al. 2010, Stolfi et al. 2010).

Although the early specification of head and neck
muscles is distinct from those of the trunk, they still
express the core myogenic regulators and require these
genes for their differentiation. This is shown in Fig. 2B,
which shows the expression of MYF5 in the precursors
of the tongue, jaw, facial and extraocular muscles.
The signals responsible for induction of head muscle
from mesoderm have not been fully determined, but
in chicken embryos, head mesoderm does not undergo
myogenesis when grafted into trunk regions (Mootoosamy
& Dietrich 2002), and therefore a different signalling
environment is necessary. Using explant culture of head
mesoderm and retroviral expression in chicken embryos
has shown that inhibitors of both WNT and BMP
signalling can promote head myogenesis (Tzahor et al.
2003) but, as in the limb, positive inductive events have
yet to be identified.

A recent study on the origins of neck muscles has
provided more evidence of the diversity of muscle origins
(Theis et al. 2010). A combination of grafting in avian
embryos and genetic analysis of mouse embryos
demonstrates that these muscles show head muscle-like
characteristics in that they are derived from cells
expressing ISLT and TBX1 and do not require PAX3/7.
However, these muscles are not derived from the head
mesoderm but are derived from lateral plate mesoderm
adjacent to the most anterior somites (lateral occipital
mesoderm, see Fig. TA). The expansion of a myogenic
programme into lateral, as opposed to paraxial, meso-
derm provides another example of evolutionary plasticity
in which distinct signalling events converge on core
myogenic regulators to generate diverse muscle patterns.

Muscle stem cells in adult animals

Adult muscle satellite cells are found underlying
the basal lamina and are able to both self-renew and to
contribute muscle growth and regeneration upon
activation. Quail-chick chimeras, confocal imaging of
labelled cells in chicken embryos and lineage tracing in
mice have shown that these stem cells are derived from
the same compartment as embryonic myogenic cells
(Gros et al. 2005, Kanisicak et al. 2009), and their
function depends on PAX3/7 and the myogenic regula-
tors required in embryonic muscle (Buckingham 2007).
Intriguingly, recent evidence using an inducible
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knockout approach has questioned the absolute require-
ment for Pax gene function during muscle regeneration
in adult mice and suggested that it is only essential in
younger animals (Lepper et al. 2009). These experiments
used mice carrying an oestrogen receptor/Cre recombi-
nase fusion protein, which was able to delete a floxed
Pax7 allele after tamoxifen injection to bypass earlier
defects seen in Pax7 knockout mice. Strikingly, even in
the absence of PAX7 and PAX3, muscles from adult mice
were able to regenerate following damage, while
juvenile mice treated in this way showed a severely
compromised regenerative ability. This may imply that
alternative myogenic pathways, such as those utilised in
head muscle specification, can be used in older animals
but, as yet, no candidates have been identified. There is
also recent evidence that a PAX7-dependent non-
satellite cell compartment can contribute to muscle
regeneration in adults (Mitchell et al. 2010).

The core transcriptional programme in skeletal
muscle

When cells differentiate into skeletal muscle, they begin
by activating a unique set of transcriptional regulators,
the myogenic regulatory factors (MRFs). These are the
key inducers of myogenesis and are absolutely required
for differentiation of skeletal muscle.

The MRFs and muscle determination

Myogenesis is initiated by the expression of the MRFs, a
group of four related basic helix-loop-helix transcription
factors, which share the ability to induce myogenic
differentiation when expressed in non-muscle cells
(Pownall et al. 2002). They are MYF5, MYOD, MRF4
(sometimes referred to as MYF6) and myogenin.
However, it is also clear that they have distinct functions
and may act to specify different subsets of muscles. A
further complication is that there is a degree of functional
redundancy between these genes, and, in some cases,
loss of one member can be compensated for by
up-regulation of another (Rudnicki et al. 1992).

MREF expression is seen in all muscles of the embryo,
although there are some differences in timing, with MYF5
normally being expressed first and others being activated in
various sequences depending on the muscle programme,
and patterns such that not all muscles express all MRFs; for
example, MRF4 is not expressed in facial muscles. The
expression pattern of MYF5 in all muscle groups of the
embryo is seen in Fig. 2, which shows expression in
myogenic cells of somites, limb buds and the head.

Activation of one of the MRFs will often result in the
expression of the others; this self-reinforcing mechanism
presumably serves to lock down the myogenic pro-
gramme and inactivate other differentiation programmes
(Delfini & Duprez 2004, de la Serna et al. 2005,
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Sweetman et al. 2008). The exception to this is MYF5,
which is not activated by the expression of other MRFs
and seems to act at the top of the myogenic cascade. The
regulation of MYF5 is complex and controlled by
multiple enhancers covering over 150 kb of DNA, each
of which drives expression in a particular subset of
muscle cells which can be seen by fusing a LacZ reporter
to specific enhancer elements in transgenic mice
(Carvajal et al. 2001, 2008). An example of this is the
early epaxial enhancer that drives expression of MYF5 in
the epaxial myotome (see Fig. 3A). This enhancer
contains TCF/LEF transcription factor binding sites,
which are governed by B-catenin-dependent WNT
signalling, and Gli-binding sites that respond to SHH
signalling. Mutation of the TCF sites results in a loss of
MYF5 expression in the epaxial myotome (Borello et al.
2006), while when the Gli-binding sites are lost, initial
epaxial expression is still seen but not maintained
(Teboul et al. 2003). This analysis has complemented
the embryo manipulations that showed the requirement
for WNT and SHH signalling in the epaxial myotome
(Munsterberg et al. 1995, Tajbakhsh et al. 1998, Borycki
etal. 1999) and provided a link to the underlying genetics
of this process.

Although the interactions between MRFs are complex,
mouse mutants have given some indication of specific
functions of individual MRFs. The clearest phenotype is
seen in mice lacking myogenin that have severe defects in
skeletal muscle formation (Hasty et al. 1993). In contrast,
mice carrying mutations in either MYF5, MYOD or MRF4
are viable and produce morphologically normal muscle;
severe muscle defects in the embryo are only observed
when all three genes are removed (Rudnicki et al. 1993,
Kassar-Duchossoy et al. 2004). Defects in regeneration of
adult muscle have also been reported in the absence of
MYF5 (Gayraud-Morel et al. 2007, Ustanina et al. 2007)
and MYOD (Macharia et al. 2010). Recently, it has also
been shown that ablation of MYF5-expressing cells using
a Myf5-Cre to drive expression of diphtheria toxin in all
MYF5-expressing cells in the embryo also produces
apparently normal muscle development (Gensch et al.
2008, Haldar et al. 2008). This surprising result suggests
that a MYF5-independent population of cells can expand
to fill the niche left when the MYF5 cells are removed and
undergo myogenesis without expressing MYF5. Taken
together, these findings indicate a high degree of
plasticity and the presence of compensatory mechanisms
that are able to induce myogenesis even when normal
mechanisms are severely compromised.

Biochemical studies of MYOD and other MRFs have
revealed how these genes are able to activate muscle-
specific gene expression by recruitment of co-activators
and co-repressors to target gene loci (Berkes & Tapscott
2005); however, the issue of how MRFs regulate
only muscle-specific gene expression remains unre-
solved. E boxes, the DNA motif recognised by MRFs,
are widespread throughout the genome, and, using
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ChlIP-seq analysis, MYOD has been shown to bind to a
huge number of these, including a great many which are
presumably non-functional in terms of inducing muscle
gene expression; it has been suggested that these
interactions may help define the epigenetic state of the
cells, priming them for myogenic differentiation (Cao
et al. 2010). However, this does not address the issue of
how MRF binding can specifically activate transcription
at some sites in the genome but not in others. A possible
answer to this has come from the analysis of other
muscle specification genes such as the Six genes
(Heanue et al. 1999, Grifone et al. 2005). These proteins
form a complex with the EYA and DACH proteins, which
can bind DNA and activate transcription. Muscle-
specific gene promoters often contain both MRF and
SIX complex-binding motifs, and co-operation between
these modules may be required for transcriptional
activation of muscle-specific genes (Liu et al. 2010).

MicroRNAs in muscle development

The discovery that microRNAs, small, non-coding RNAs,
can play major roles in the development and differen-
tiation of cells has been the subject of a great deal of
fascinating recent research. Several microRNAs have been
shown to be directly regulated by MRFs, and others have
been identified in the introns of muscle-specific genes.
MicroRNAs are negative regulators of gene function and
act by interacting with complementary sequences in the
3" UTRs of target mRNAs, which are then either degraded
or translationally repressed (Fabian et al. 2010).
Muscle-specific microRNAs have been isolated and
shown to be expressed during muscle cell differentiation
in cell culture (Anderson et al. 2006), in embryonic
muscles in normal development (Sweetman et al. 2006)
and in regenerating adult muscle (Yuasa et al. 2008).
They are also up-regulated in muscle diseases such as
Duchenne muscular dystrophy (Greco et al. 2009) and
myotonic dystrophy (Gambardella et al. 2010), pre-
sumably as part of the regenerative response seen in
these diseases. Of particular interest have been the
so-called myomiRs, a group of microRNAs consisting of
the miR-1/206 family and the miR-133 family. These
microRNAs are derived from three separate loci; each of
these produces a single transcript, which is then
processed to produce one microRNA of the 1/206 family
and another of the 133 family. Interestingly, these appear
to have opposing effects with miR-1/206 enhancing
differentiation, while miR-133 seems to drive myoblast
proliferation (Chen et al. 2006). The mechanisms of
these effects include the ability of miR-1/206 to
negatively regulate follistatin and utrophin, both of
which retain myoblasts in an undifferentiated state
(Rosenberg et al. 2006). Other confirmed targets include
DNA polymerase o (Kim et al. 2006), HDAC4 (Chen
et al. 2006), gap junction protein a1 (GJA1, also known
as connexin43; Anderson et al. 2006), calmodulin and
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MEF2A (lkeda et al. 2009), while miR-133 can target
serum response factor (SRF) to maintain cells as pro-
liferative myoblasts (Chen et al. 2006). This is far from an
exhaustive list of targets of these microRNAs, and the
true number of mRNAs regulated in this way remains
unknown. There is good evidence that these microRNAs
are directly regulated by MRFs in muscle development
(Rao et al. 2006, Rosenberg et al. 2006, Sweetman et al.
2008), and they are good candidates for core com-
ponents of the myogenic programme. Satellite cells have
also been shown to express miR-1 and miR-206, which
regulate the switch from proliferation to differentiation
by controlling PAX7 (Chen et al. 2010) and PAX3 (Hirai
et al. 2010) following microRNA induction by MYOD.
This feedback loop may form an important part of the
myogenic programme. However, the myomiRs are not
restricted to skeletal muscle, and both miR-1 and miR-133
are also expressed in cardiac muscle where they also
regulate differentiation (Townley-Tilson et al. 2010).

As well as the muscle-specific myomiRs, other
microRNAs have also been implicated in muscle
development. Examples include miR-24, which can
regulate transforming growth factor B in skeletal muscle
(Sun et al. 2008), miR-181, which regulates HOXA11
(Naguibneva et al. 2006), miR-221 and -222, which
control cell cycle regulators in skeletal muscle differen-
tiation (Cardinali et al. 2009), and miR-214, which
regulates the epigenetic state of muscle cells (Juan et al.
2009). MicroRNAs have also been identified encoded in
the introns of muscle-specific genes such as myosins.
These can regulate muscle fibre type and may provide a
mechanism, whereby cell fate decisions can be locked
down by co-expression of mMRNAs and miRs which act
together (van Rooij et al. 2009).

The study of microRNAs in development remains at
an early stage, and it is not clear to what extent they are

likely to be major drivers of differentiation or have more
subtle roles in the fine tuning of cell behaviour and
identity; for example, it seems likely that myomiRs act to
regulate the balance between proliferation and differen-
tiation rather than as direct inducers of cell fate.
Understanding the roles of small RNAs in differentiation
and development is an important challenge, especially
given their ability to regulate numerous target genes, and
will undoubtedly have a major impact on our under-
standing of the molecular control of biological processes.

Conclusions: conservation of the core myogenic
programme in different cellular contexts

During development, myogenic cells are produced in
numerous distinct regions of the body and have to
differentiate in very different cellular contexts. The
distinct programmes leading to MRF activation in these
tissues are summarised in Fig. 4. This is also true during
adult life, as regenerating muscles also need to activate
the myogenic programme. It is this requirement for
flexibility that has required muscle cells to evolve the
ability to activate the core modules of the myogenic
transcriptional network (centred on the MRFs) in
different ways in response to different stimuli. This
flexibility explains the plasticity of early muscle
compartments and the ability of muscles to regenerate
throughout adult life. It has even been reported recently
that MRFs can be bypassed altogether in some muscle
stem cells and that PAX3 alone can drive differentiation
in these cells (Young & Wagers 2010). This unexpected
result may well cause a re-evaluation of the absolute
requirement for MRFs in myogenesis; nevertheless, it is
clear that most myogenic pathways converge on these
regulators and the extent to which non-MRF-dependent
mechanisms exist is not yet known.

A Epaxial B Hypaxial C Limb D Head and neck E Adult
DACH2 DACH2
SIX1/4 SIX 1/ —
EYA2 EYA2
DACH2 PITX2
SIX1/4 ;f
EYA2 " PAX3/7
BMP  HGF WNT TBX1
WNT1 ¥ k.
WNT3A  PAX3 | WiT7A Noggin BMP  WNT7A VEOX2 map- PAX3 MSX1PITX2 (MRF4)  MYFS —T
RNV AV v ) AN - ¥
4MVF5—’MVODI|—BMP4 MYFS mi-MYOD sfemi\IRF4. MYFS  MYOD M= MYOD SIX1/4 == MRF4 MYOD
SHHIL MRF4 myog MYOG4 WNT BMP MYOG

'MYOG

Myogenesis Myogenesis Myogenesis Myogenesis Myogenesis

Figure 4 Comparison of the signalling pathways leading to MRF expression and myogenesis in epaxial and hypaxial somite, limb, head and neck, and
adult. In grey boxes are the core network of MRFs in activating myogenesis from different tissues. Positive regulatory signals are shown in red, and
inhibitory signals are shown in blue. Black arrows show genetic interactions. (A) Epaxial somite: DACH2, SIX1/4, EYA2, PAX3, MYF5 and MRF4 induce
MYOD, thus leading to myogenin (MYOG) expression and myogenesis. WNT1, WNT3A and SHH up-regulate MYF5 expression, and WNT7A
up-regulates MYOD. BMP4 negatively regulates MYOD but is itself inhibited by noggin. (B) Hypaxial somite: DACH2, SIX1/4 and EYA2 are capable of
inducing PAX3. Subsequently, PAX3 induces MYF5 and MRF4, which in turn activate MYOD expression, followed by MYOG expression and
myogenesis. BMPand WNT7A positively regulate MYF5 and MYOD expression. (C) Limb: DACH2, SIX1/4, EYA2, PAX3, MEOX2 and PITX2 are capable
of inducing MYF5 and MYOD; subsequently, MYOD induces MYOG expression and myogenesis. MSX1 can inhibit MYOD expression. BMPand HGF
up-regulate PAX3 expression, and WNT regulates MSX1. (D) Head and neck: PITX2 and TBX1 induce each otherand MYF5. TBX1 is capable of inducing
MYF5 expression (and MRF4 in those head muscles which express it) before activating MYOD expression. Subsequently, MYOD induces MYOG
expression followed by myogenesis, but inhibitory signals from WNTand BMP can also regulate MYOG expression. (E) Adult: PAX3/7 directly induce
MYF5 expression, whereas SIX1/4 can induce MRF4, MYF5 and MYOG. MRF4 and MYOD activate MYOG expression followed by myogenesis.
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One of the striking lessons from the study of
myogenesis is that activation of a specific differen-
tiation programme can be mediated by a simple core
programme containing only a few genes. This has also
been shown in iPS cells where a pluripotent state can
be induced by the expression of just four transcription
factors (Yamanaka & Blau 2010) and, more recently, in
heart tissue where three transcription factors can
induce conversion of fibroblasts into cardiomyocytes
(leda et al. 2010). In both these cases, a small suite of
master regulators appear to be able to overwrite
existing cellular programmes and redefine a cell’s
identity. One fascinating aspect of this is the impli-
cation that these proteins are able to change the
epigenetic state of the cell and restructure chromatin to
allow wholesale changes in gene expression as cells
change fate. It is intriguing to speculate that the MRFs
required for myogenesis may have similar activities as
part of their well-documented ability to induce
changes in cell fate.

Understanding myogenesis has important impli-
cations for regenerative biology, as activation and
differentiation of adult stem cells are often governed by
these core transcriptional programmes. In addition, our
understanding of the basic cellular and developmental
mechanisms controlling cell fate and differentiation has
been greatly informed by these studies. Future work to
elucidate the developmental basis and epigenetic
mechanisms controlling these numerous myogenic
programmes will continue to shed light on some of the
most fascinating aspects of biology.
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