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Many routes to turbulent convection 

By J. P. GOLLUB A N D  S. V. BENSON? 

Physics Department, Haverford College, Haverford, Pa 19041, U.S.A. 

(Received 25 September 1979) 

Using automated laser-Doppler methods we have identified four distinct sequences of 
instabilities leading to turbulent convection at  low Prandtl number (2.5-5.0), in fluid 

layers of small horizontal extent. Contour maps of the structure of the time-averaged 

velocity field, in conjunction with high-resolution power spectral analysis, demon- 

strate that several mean flows are stable over a, wide range in the Rayleigh number R, 
and that the sequence of time-dependent instabilities depends on the mean flow. A 

number of routes to non-periodic motion have been identified by varying the geo- 

metrical aspect ratio, Prandtl number, and mean flow. Quasi-periodic motion at two 

frequencies leads to phase locking or entrainment, as identified by a step in a graph of 

the ratio of the two frequencies. The onset of non-periodicity in this case is associated 

with the loss of entrainment as R is increased. Another route to turbulence involves 

successive subharmonic (or period doubling) bifurcations of a periodic flow. A third 

route contains a well-defined regime with three generally incommensurate frequencies 

and no broadband noise. The spectral analysis used to demonstrate the presence of 

three frequencies has a precision of about one part in lo4 to lo5. Finally, we observe a 

process of intermittent non-periodicity first identified by Libchaber & Maurer a t  lower 

Prandtl number. In this case the fluid alternates between quasi-periodic and non- 

periodic states over a finite range in R. Several of these processes are alsomanifested by 

rather simple mathematical models, but the complicated dependence on geometrical 

parameters, Prandtl number, and mean flow structure has not been explained. 

1. Introduction 

The behaviour of a thin fluid layer heated from below has been of great importance in 

the development and gradually increasing sophistication of nonlinear hydrodynamics. 

The Rayleigh-BBnard instability is well understood, and convecting solutions of the 

nonlinear hydrodynamic equations have been found for layers of infinite horizontal 

extent. The linear stability of this flow with respect to various disturbances has been 

examined, and various secondary instabilities predicted and observed (Busse 1980). 

Some of these secondary instabilities change the spatial structure of the velocity field 

without the addition of time dependence, while others result in an oscillatory flow. 

However, more complex time-dependent flows and the onset of turbulence have re- 

mained out of reach theoretically. 

Oscillatory instabilities have been observed experimentally, but secondary insta- 
bilities leading to  quasi-periodic flows with several distinct frequencies have not been 
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identified. Furthermore, such flows cannot be easily distinguished from turbulent 

flows by qualitative observations. Many elementary questions have not yet been 

answered. How many instabilities occur as the temperature gradient across a fluid 

layer is increased '1 What is the nature of the time-dependent flows that occur 2 Is there 

a well-defined temperature gradient a t  which non-periodic flow begins? How does the 

sequence of instabilities depend on the parameters of the system? 
The experiments reported in this paper utilize significant innovations in order to 

address these questions. A non-perturbative laser-Doppler probe with computer con- 
trol and data acquisition allows the space and time structure of the velocity field to be 

examined in great detail. The statistical properties of the flow are determined by power 

spectral analysis capable of detecting secondary flows far too weak to observe visually. 

Precision control of the thermal environment allows external perturbations to be 

largely eliminated, and changes in the dynamical behaviour resulting from small 

parameter increments to be detected. Using these methods, we are able to distinguish 

clearly between periodic, quasi-periodic, and non-periodic flows. By varying the 

geometry and Prandtl number, we have observed instabilities leading to quasi-periodic 
flows with two and three independent frequencies; phase-locking phenomena involving 

these various frequencies; subharmonic or period-doubling bifurcation of periodic 

convective flows; and intermittent non-periodicity. A t  least four qualitatively differ- 

ent sequences of instabilities can lead to turbulence in this system. 

The paper is organized in the following fashion. In $ 2 we review previous theoretical 

and experimental work on the transition to turbulent convection. Section 3 contains a 

description of the fluid system, the laser-Doppler technique, signal processing elec- 

tronics, and the methods used to compute spectra and contour maps. Our results for 

the various routes to turbulent flow are presented in $4,  and discussed in the light of 
other experiments and theoretical models in $ 5. 

2. Background 

The flow of a fluid confined to a horizontal layer and heated from below is defined by 
a small number of parameters. We denote the separation between highly conducting 

parallel plates by d,  and the temperature difference between them by A T .  The state of 

the fluid depends on the boundary conditions and two dimensionless parameters, the 

Rayleigh number R = g a d 3 A T / ~ v ,  and the Prandtl number P = V / K ,  where v is the 
kinematic viscosity of the fluid, a is the thermal expansion coefficient, K is the ther- 

mal diffusivity, and g is the gravitational acceleration. This paper is concerned 

with the range 2 < P < 5.  It is often convenient to use the relative Rayleigh number 

RIR, = AT/AT,,  where AT, is the temperature difference at which convection begins 

in an infinite layer. For a fluid layer of finite horizontal extent, a third important para- 

meter is the aspect ratio I?, defined for rectangular boundaries as the ratio of the 

largest horizontal dimension to the layer thickness.t 

2.1. Time-independent convection 

The form of the time-independent convection that precedes the onset of time depend- 

ence is discussed by Busse (1978, 1980), Koschmieder (1974), Normand, Pomeau & 

Velarde (1977) and Dubois & Berg6 (1978). Of particular relevance is the fact that, in 

t One can also define a horizontal aspect ratio as the ratio of the two horizontal dimensions. 
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a rectangular parallelepiped of small aspect ratio, both calculations (Davis 1967) 

and experiments (Stork & Miiller 1972) show that convection near its onset usually 

has the form of rolls oriented parallel to the short side of the cell. The onset is delayed 

somewhat beyond the value R, which characterizes an infinite fluid layer. Further- 

more, the flows are not generally unique. Several different flows have been observed 

experimentally to be stable for a given geometry, Rayleigh number and Prandtl 

number. For example, the number of rolls may vary (i.e. the dominant wave-number 

may have several different values). Any given flow pattern is stable over a wide 

range in R if the aspect ratio is small. Because of this non-uniqueness, which is in- 

completely understood theoretically, it is important to supplement local measure- 

ments of time-dependent phenomena with a method capable of yielding the overall 

spatial structure of the flow. In practice, we found that the multiplicity of stable 
states was substantially greater than calculations and previous experiments suggest. 

2.2 .  The onset of time dependence 

A stability theory for the onset of time dependence was presented by Clever & Busse 

(1974) and Busse & Clever (1978), who superimposed infinitesimal disturbances on the 

parallel convection rolls for a layer of infinite extent. Whereas the onset of convection 

is independent of P, the onset of time dependence is strongly dependent on P. For 
large P, secondary instabilities involving complex three-dimensional stationary 

structures precede the onset of time dependence. However, for sufficiently low P, 
Clever & Busse predicted that the onset of time dependence would be a transverse 

oscillation of the basic convective rolls. This instability was observed by Willis & 
Deardorff (1970), Krishnamurti (1970, 1973)’ and Ahlers & Behringer (1979). Even 

when a transition to three-dimensional convection precedes the onset of time depen- 

dence, the oscillatory instability seems to be qualitatively similar to the predictions 

for low P (Busse & Whitehead 1974). 

2.3. Transition to turbulent convection 

The possible existence of further time-dependent instabilities has not been investi- 

gated by stability analysis because of mathematical complexity. However, there have 

been several numerical studies based on highly truncated normal mode expansions. 

The first of these is the well-known study by Lorenz (1963) of a model originally due to 

Saltzman ( 1  962). The model assumes a two-dimensional flow and contains only three 

time-dependent amplitudes from the expansions of the velocity and temperature 
fields. Numerical integration of the equations shows non-periodic behaviour for 

certain parameter values even though there are only three degrees of freedom. 

Curry ( 1  978) has recently generalized Lorenz’ model by retaining additional var- 

iables for a total of 14 time-dependent amplitudes. This model is still not realistic 

because of its two-dimensionality and lack of lateral boundaries. Nevertheless, it 

manifests a much greater variety of phenomena: a bifurcation to a limit cycle or 

periodic oscillation, a subharmonic bifurcation in which the dominant oscillation 

frequency is halved, an instability leading to quasi-periodic motion with two distinct 

frequencies, and non-periodic motion. 

McLaughlin & Martin (1975) have extended the idea of Lorenz in a way that dis- 
penses with the unrealistic requirement of two-dimensionality. This model of 39 

coupled variables shows both periodic and chaotic states for reasonable values of the 

15-7 
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parameters of the problem. The calculations were not extensive enough to provide 

evidence for quasi-periodic flows. 

Lipps (1976) simulated stationary and time-dependent convection at  P = 0.7 

using the full hydrodynamic equations in the Boussinesq approximation (Busse 

1978). Periodic boundary conditions a t  lateral boundaries were assumed, along with 

perfectly conducting vertical boundaries. Examples of both periodic and apparently 

non-periodic convection were found, but the numerical solutions did not extend to 

large enough times to permit reliable discrimination between periodic and non- 

periodic flows to be made. 

Overall, the theoretical picture of the transition to turbulent convection is quite 

muddy. It is not known what occurs beyond the onset of oscillations, and how the 

phenomena depend on P and the aspect ratio. 

Recently Ahlers (1974) and Ahlers & Behringer (1978, 1979) have used precision 

thermal methods at  cryogenic temperatures to study the heat transport in convecting 

liquid helium with cylindrical lateral boundaries. They observed a striking dependence 

of the qualitative behaviour on the aspect ratio (the ratio of radius to depth). For 

small aspect ratio, distinct periodic and quasi-periodic regimes precede the onset of 
non-periodic motion. However, for large aspect ratio non-periodic motion begins very 

near R with no intervening periodic regimes. Some aspect ratio dependence has also 

been found by Libchaber & Maurer ( 1  978) using a local temperature probe. 

The present study employs somewhat higher Prandtl numbers (2.5 and 5.0), rec- 

tangular cells of relatively small aspect ratio and a laser-Doppler probe for both local 

measurements and flow mapping. Some preliminary results of our work were reported 

in Gollub et al. (19771, Fenstermacher, Swinney, Benson & Gollub (1979) and Gollub 

& Benson (1978, 1979). 

3. Experimental techniques 

3.1. Convection cell 

In order to permit a range of Prandtl numbers t o  be investigated in a single system, we 

selected water as the working fluid. The strong temperature dependence of the vis- 

cosity of water allows P to be varied between 9 and 2 by varying the mean working 

temperature between I 0  and 90°C. High Rayleigh numbers can be reached with a 

relatively thin cell, a fact that permits the entire system to be small and thermally 

stable. However, the Oberbeck-Boussinesq approximation (Busse 1978) was not 

particularly well satisfied. The viscosity (or locally defined Prandtl number) varied by 

+_ 10 o/o over the fluid layer under the most extreme conditions we employed; more 

typically the variation was 

The cell was designed with an emphasis on temperature stability and horizontal 

temperature uniformity, because external perturbations can obscure the onset of 

intrinsic dynamical noise in the fluid, and non-uniformities can blur sharp transitions. 

The system design is shown in figure 1. Two copper plates of horizontal dimensions 

9.3 by 6.7 cm and thickness 2.54 cm (upper) and 1.27 cm (lower), are separated by a 

Plexiglas spacer of variable interior size containing the fluid. The space around the 

cell is evacuated in order to eliminate convective heat loss from the sides of the cell, 

and the surrounding vacuum can is kept at  the mean working temperature to minimize 

radiative heat loss. The temperature gradient a t  the lateral fluid boundary cannot be 

2 yo. 
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FIGURE 1. Schematic diagram of convection cell showing vacuum space and optical access. 

assumed to be uniform, although good thermal contact between the copper and 

Plexiglas was maintained by silicone grease. 

Results for two aspect ratios are reported in this paper. The first cell has interior 

dimensions 16.42 by 27-72 by 7.90 mm high (aspect ratio I? = 3.51) and the second is 

14-66by28.85by 11-94mmhigh(I? = 2-42). Some preliminary observations on a larger 

rectangular cell (F  = 10.0) and a circular cell (radius to height ratio of 3.14) were pre- 

viously reported (Gollub et al. 1977; Fenstermacher, Swinney, Benson & Gollub 1979). 

The temperatures of the two copper plates are controlled by a.e bridges using sensi- 

tive thermistors and lock-in amplifiers. The d.c. output of each lock-in drives a resistive 

film heater via an operational power supply. There are three feedback loops altogether: 

two a.c. bridges for the copper plates, and a commercial d.c. bridge controller for the 

vacuum can and heat shield. Temperatures were measured using four additional 

matched and calibrated thermistors embedded in the copper near the fluid. 

The long term (4 h) thermal stability of this system is within about 1-2 mK, corres- 

ponding to effective fluctuations in AT of about 0.05 yo. (At  R/Rc  = 25, AT was 

typically several k.) It is difficult to do much better than this in a system that cannot 

be completely isolated owing to the necessary heat flux through it. The readings of 

the different thermistors on each plate indicate a horizontal temperature uniformity 

of better than 0-5 yo of AT. 

3.2. Laser-Doppler velocimetry ( L D  V )  

A dual beam forward scatter LDV system is used for both flow mapping and local 

velocity measurements in real time. The optical arrangement is shown in figure 2 (a ) .  A 

vertically polarized 15 mW laser beam at 6328 is first split into two beams of equal 

intensity, and then each part is frequency shifted by scattering from an acoustic wave 

in a liquid. Each beam is shifted by about 40 MHz, but the frequency difference bet- 

ween the two shifts is accurately maintained at  2000.0 Hz by electronic feedback 

techniques. The two shifted beams are then focused by a lens of focal length 12 cm to a 

point inside the convecting fluid, which is doped with polystyrene latex spheres of 
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diameter 0.369 pm. The scattering volume is the ellipsoidal region of intersection of 

the two beams, and has major (x) and minor (y) axes of about 500pm and 60pm 

respectively. Since the beam profiles are actually gaussian, the boundaries of the 
scattering volume are not precisely defined. Scattered light from a small solid angle of 

about 5 x sr is collected by a lens and focused on a 200 ,um pinhole in front of a 
photomultiplier. 

The optical system is sensitive to the velocity component %(r, t )  in the y direction 

in figure 2 .  Light scattered from one beam by particles moving in this direction is 

advanced in phase, while light scattered from the other beam is retarded in phase. 

Since the photocurrent is proportional to the square of the optical field, it contains a 

component oscillating at  the difference frequency of the light scattered by the two 

beams: 

v = 2000 Hz + V, nA&l  sin (SO) ,  

where A, is the vacuum wavelength, n is the index of refraction of the water, and 

8 = 13.6" is the angle between the two beams. The acoustic frequency shifters permit 

velocities of stationary or slow particles to be measured easily. The velocity component 

measured is horizontal and generally perpendicular to the axes of the convective rolls. 

The optical system is non-perturbative since very little of the light is absorbed by the 
fluid. 

3.3. Data acquis i t ion 

The photomultiplier signal is amplified and bandpass filtered to remove most of the 

high-frequency shot noise and the low-frequency amplitude fluctuations. A Schmidt 
trigger then precedes the input to a phase-locked loop, which locks the frequency of an 

external voltage-controlled oscillator (VCO) to the Doppler frequency, with some 
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reduction in the bandwidth of the frequency fluctuations and consequent noise 

reduction. Finally, the VCO frequency is determined by counting cycles over a time 

interval of 0.5-2 s with a commercial counter controlled by a Digital Equipment 

Corporation PDP 11/10 minicomputer. 

The minicomputer is used for experimental control, data acquisition, and analysis 

in two distinct modes. The fluid system is mounted on computer-controlled stepping- 

motor-driven translation stages with a resolution of about 0.005 mm for motion in 
either the x or y direction. Contour maps of the velocity fieId are obtained by measur- 

ing V, at each point in a rectangular grid of up to 450 points in a horizontal plane. 
Software is used both to perform the sampling and to plot contour maps of constant 

Doppler shift using linear interpolation between points. About 60 min are required to 
acquire the data to construct a contour map if the velocity field is time independent. 

If the field is oscillating in a periodic state, the velocity is averaged over one cycle at 

each grid point in order to  yield a map of the mean velocity. If the fluid motion is 

non-periodic, mean velocity contour maps are less precise unless very long averaging 

times are used to eliminate fluctuations due to low-frequency noise in the fluid. 

The second mode of data acquisition involves measuring the time-dependent velo- 

city at  a single location. Sampling times At are long enough (0.5-2 s) to obtain accurate 
measurements of the Doppler frequency, which is in the range 1500-2500 Hz, but 

much shorter than the characteristic frequencies of the fluid motion. The accuracy of 

the timing routines was found to  be better than 10-59, and fluctuations in timing are 

less than this. Typical runs consist of N = 4096 sequential data points. Longer runs 

require an inordinate amount of time without yielding much more information. 

Velocity power spectra are computed from the squared modulus of the fast Fourier 

transform of the sampled velocity. We use a Cooley-Tukey FFT algorithm, and apply 

a GEO window (Otnes & Enochson 1972) to suppress side lobes caused by the finite 

duration T = NAt of the record. Spectral estimates are obtained at  frequency intervals 
of 1/T = I/NAt up to the Nyquist frequencyf, = (ZAt)--l. The methods used to mini- 

mize aliasing are discussed by Fenstermacher, Swinney & Gollub (1979). 

The resolution of trhe computed spectra is approximately equal to the interval 1/T 
between spectral estimates. Often, the spectra show peaks with approximately this 

resolution. If one assumes that they are actually discrete spectral lines, their frequen- 

cies can be computed to an accuracy much better than 1/T. A power-weighted 

average of the frequencies of the two largest spectral estimates within a peak can be 

used to extract this information, and is accurate to about 5 yo of 1/T.  The deviations 
are a systematic function of the frequency of the peak and the frequencies a t  which the 

spectral estimates are computed, a function which we obtained from artificial data of 

known frequency. By employing this correction to the power-weighted average, we 

are able to obtain discrete frequencies to an accuracy of about 1 % of I/T (IO-”fiv) if 

there is little noise. We tested our procedure for computing spectral peaks on artificial 

data with and without background noise. The standard deviation uf of the frequency 

determination was found to  depend on the ratio A J A ,  of the integrated noise (up to 

fN) to the area under the peak, as shown in figure 3. The precision of frequencydetermi- 

nation is degraded when the peak height is not far above the background noise level. 
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FIGURE 3. Standard error crf (in units of the spacing T-l between spectral estimates) for fre- 
quency determination, as a function of the ratio AN/AP of the integrated area of the background 
noise to that of the peak. The crosses were obtained from empirical tests on artificial data having 
a single known frequency and broadband noise. The line is the estimated standard error actually 
used in analysing data. As an example, a peak 2 orders of magnitude above the noise typically 
yields AN/AP = 10 so uf = 0*05/T in this case. 

4. Experimental results 

4.1. Mean flow patterns 

Although the main purpose of this work was to study the time-dependent regimes, 

the non-uniqueness of spatial states (9 2.1) made it necessary to monitor the mean flow 
using the contour mapping technique of 5 3.3. Several distinct mean flows were found 

to  be stable in each of the convection cells, and examples are shown in figure 4. Con- 

tours of constant Doppler shift represent the velocity component parallel to the y axis 

(figure 2a) ,  in a horizontal plane above the centre of the cell. The geometry is such that 

the rolls generally align parallel to x, which is the short cell dimension. Positive and 

negative shifts correspond to motion in the positive and negative y directions, res- 

pectively. In the flow of figure 4(a)  fluid rises (out of the page) in the centre of the cell, 

moves toward the edges and descends. The line of zero shift (dashed) marks the vertical 

boundary between convective rolls. The contour line labelled 400 Hz corresponds to a 

velocity component of 0.082 cm s-l. (The lines do not extend to the edges of the cell 
because optical distortions reduce the accuracy of measurement there.) These contour 

maps are reproducible after a day with very little change. 

In both of the cells that were studied in detail, the most stable mean flow (figure 4a) 

can be qualitatively summarized as two symmetrical rolls oriented with axes parallel 

to the short side of the cell. For I? = 3.5 i t  is stable over the entire range of Rayleigh 

number studied (2 < R/Rc < 100). For I? = 2.4 this flow is stable up to R/Rc = 85 

when P = 5 ,  and stable up to R/R, = 110 when P = 2.5. The velocity field is approxi- 

mately two-dimensional away from the ends of the rolls. The variation of V, with y 
(figure 5a) is a distorted sinusoid with harmonics that become relatively more promi- 

nent as R is increased. However, even a t  RIR, = 17.7, only the first four terms of the 

Fourier expansion for V,(y) are significant, as shown in figure 5 ( 6 ) .  This observation 
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FIGURE 4. Contour maps of constant Doppler shift for the mean velocity component rv, meas- 
ured in a horizontal plane slightly above the centre of the convection cell (see text). (a)  Two 
symmetrical rolls ( P  = 2.5, I? = 3-5, R/Ro = 17.1); ( b )  two rolls persist in the mean flow, 
although the fluid is strongly non-periodic (P  = 5.0, r = 3.5, R/Rc = 65.4); (c) a distorted but 
stable two-roll flow ( P  = 2.5, r = 3.5, R/Ro = 18.1); ( d )  three rolls ( P  = 5.0, I? = 3.5, RIR, 
= 30.9) ; ( e )  a complex mean flow for a periodic state in which the rolls are also inclined to the 
vertical ( P  = 5.0, I' = 2.4, R/Rc = 84.7). 

indicates that a truncated normal-mode expansion would probably not require an 

inordinate number of terms to represent even the full three-dimensional velocity 

fie1d.t Even a t  R/Rc = 84.7, where the flow is chaotic, the contour map of figure 4 ( b )  

shows that the two-roll flow persists in a time-averaged sense. Some of the irregularities 
in this figure may be artifacts of the finite averaging time ( 8  s) at  each grid point. 

Further detailed study of these maps is intended. 
Other mean flows that are also stable over a wide range in R can be obtained from 

different initial conditions. For example, cooling the upper plate rather than heating 

the lower one to attain the desired Rayleigh number yields a mean flow almost identi- 

cal to figure 4 ( a )  but with signs reversed, indicating that the fluid descends at the 

centre of the cell and rises a t  the edges. 

Somewhat surprising is the observation of stable mean flows differing in relatively 

small but still significant ways from the basic two-roll Aow. By stability, we mean that 

a flow persists without noticeable change for a time long compared to the horizontal 

t The functional form of the velocity field in time-independent convection has recently been 
studied by Dubois & Berg4 (1978). The amplitudes of the first few spatial Fourier components 
were found to be in good agreement with theoretical predictions for R/Ro < 10. 
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thermal diffusion time, which is about lo4 s for our cells. In this sense, the flow of. 

figure 4(c), in which one roll appears distorted, is stable at least over the range 

18 < R/R, < 40 (at I? = 3.5). This flow evolves into a sequence of time-dependent 

states substantially different from those associated with figure 4 (a). 

A mean flow with three rolls was observed in the larger cell (r = 3.5)) and its contour 
map appears in figure 4(d). It loses stability with respect to  the two-roll flow when 

RIR, exceeds a threshold somewhat above 50 a t  P = 5.  

In the cell with smaller aspect ratio (I’ = 2.4) yet another distinct mean flow was 

observed in which the two rolls become highly inclined to the vertical, and an eddy 

forms in a corner. This behaviour is shown in figure 4 (e), and occur8 for R/Rc > 85 at 

P = 5.  It can also appear with signs reversed. 

Other mean flows can be obtained in these cells in addition to the ones we have dis- 

cussed, but they are not stable over a large range in R. Because of the multiplicity of 
spatial states, we adopted the following procedure for studying time-dependent 

phenomena. After selecting the aspect ratio and ,Prandtl number, one of the stable 

mean flows was chosen by manipulation of the boundary temperatures, and verified by 

taking a contour map. Then the time dependence was studied at  a single location in the 

cell by spectral analysis. The Rayleigh number was increased and then decreased in 
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small steps, with occasional verification that the mean flow structure had not changed. 

Several weeks of data taking were required to complete such a sequence. 

4.2. Transition to turbulence 

We have observed several qualitatively different types of time-dependent flow. It will 

be useful in describing them to introduce a simple set of abbreviations. Periodic time 

dependence (P) evolves from a stationary flow (S) and is recognized by a velocity power 

spectrum containing a single instrumentally sharp peak and perhaps harmonics, but 

no broadband noise, except for instrumental noise. It is possible for a periodic motion 

to undergo a subharmonic bifurcation to another periodic state (P2) or (P4) in which 

the fundamental frequency is half or one quarter of the original frequency. Quasi- 

periodic states (QPJ and (QP,) are recognized by spectra containing respectively two 

or three incommensurate frequencies, along with sums and differences of these fre- 

quencies, but no broadband noise. The two frequencies in a state QPz can lock to a 

rational ratio. The resulting flow, denoted (L), is actually periodic. If the velocity 

spectrum contains any broadband noise, the motion is non-periodic (N) even if 

relatively sharp spectral peaks are also present. We regard non-periodic motion as 

being weakly turbulent. However, some workers reserve the latter term for flows that 
are known to vary randomly in space as well as time (Monin 1979). 

The sequence of instabilities leading to non-periodic flow depends on the aspect 

ratio, Prandtl number, and mean flow. The major sequences we have observed are 

summarized by the bar graphs in figure 6. Each graph is labelled by a Roman numeral 

specifying a route to non-periodicity described in the following sections, and by a 

letter denoting one of the mean flows of figure 4. 

4.3. Route I : quasi-periodicity and phase locking 

Non-periodicity preceded by quasi-periodicity and phase locking is observed under 
several different conditions, as shown in figure 6. The basic path is specified by the 

symbolic sequence P+QP,-+L-tN. We describe the observations in detail for the 

case I' = 3.5 and P = 5.0. The mean flow is that of figure 4(a) throughout the time- 

dependent regimes studied. 

A sequence of velocity records and corresponding power spectra for increasing R is 

shown in figure 7 .  The duration of each velocity record is 6144 s, only a small portion 

of which is shown. Power spectra are plotted on a logarithmic vertical scale. The 

instrumental background noise is that of figure 7 (a )  and corresponds to a root mean 

square noise in the Doppler shifts of only 2 Hz. The spectral peaks are instrumentally 

sharp even when the duration of the run is doubled, and the strongest peak is four 

orders of magnitude above the instrumental noise. The integrated noise to peak ratio 

A, /A ,  defined in $3.3 is 0.1, and figure 3 then implies that the frequencies of the peaks 

can be determined to an accuracy of O.OiT-' = loe6 Hz. However, peaks in the 

plotted spectra are broadened because four adjacent spectral estimates have been 

averaged in order to reduce the background fluctuations. The observed sequence of 

instabilities is as follows: 
1.  A bifurcation leads to a transfer of stability from time-independent flow to 

periodic flow a t  R/R,  = 27.2. This instability (like the others described in this section) 

has a hysteresis of about Q-15Rc depending on the direction in which R is changed. 

The frequency labelledf, (for historical reasons) in figure 7 (a )  appears at all points in 
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FIGURE 6. Bar graphs of the various instabilities leading to non-periodicity as a function of the 
aspect ratio r, the Prandtl number P, and the mean flow pattern. Roman numerals denote the 
routes to non-periodicity we have identified, and are keyed to the subheadings of 3 4. The lower- 
case letters refer to the mean flows of figure 4, except that  a prime indicates sign reversal. 

the cell, along with harmonics at integral multiples of the fundamental. The amplitudes 

of the fundamental and harmonics vary with position in the cell, but the frequencies 
are invariant. 

2. At R/R,  = 32 a second frequency appears in the spectrum (throughout the cell), 

as shown in figure 7 ( b ) .  All of the peaks have been identified, to within the estimated 

standard error vf, as linear combinations of two basic frequencies of the form 

f = m,f1+m,f,, 

where m, and m2 are integers, f, = 0.03082 Hz and f2 = 0.08348 Hz. The presence of 

high-order mixing components in the spectrum indicates that these time-dependent 
processes are strongly nonlinear. The ratio f 2 / f ,  decreases smoothly with increasing 

Rayleigh number, suggesting that the two frequencies are at  least sometimes 

incommensurate and hence that the spectrum corresponds to a quasi-periodic 
motion.? 

3. Phase locking of the two frequencies occurs when R/Rc exceeds 44.4. This can be 

seen as a step in the ratio f2/fi, as shown in figure 8. The ratio decreases smoothly until 

the step is reached, where f2/fl = 2.333 f 0.001 = %. It is interesting to note that the 

locking ratio is not exactly reproducible from experiment to experiment. The cause of 

this is unknown. A spectrum corresponding to locking at the ratio 8 is shown in 

figure 7 ( c ) .  Because of the locking, the spectrum corresponds to periodic motion a t  a 

t There is some ambiguity in the choice of the second frequency fi because it is not the strong- 
est line a t  all locations in the cell. One could choose the peak at 0.1 1430 Hz instead asfi, but this 
change would not have any important effect. 
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FIGURE 7. Velocity records and power spectra showing the sequence of instabilities leading to 
non-periodic flow (route l a ) .  The sequence consists of: ( a )  a periodic state with a single peak and 
its harmonics, R/Rc = 31.0; (b)  a quasi-periodic state with two incommensurate frequencies fi and 
fi and many of' their linear combinations, R / R c  = 35.0; ( c )  phase locking at the integer ratio 
fi/fi = z, R/Rc = 45.2; (d )  a non-periodic state with relatively sharp peaks just above the 
onset of noise, R/Rc = 46-8; and ( e )  a strongly non-periodic state with no sharp peaks showing 
the broadband noise far above its onset, R/Rc = 6 5 - 4 .  

frequency f L  = +fi = ifi. Strong mixing induced by &he locking creates strong peaks 

at all multiples of fL. No locking has been observed a t  lower R, suggesting that the 

strength of the nonlinear interaction between the two oscillations is weaker there. 

4. The spectra develop broadband noise and the peaks begin t o  broaden a t  R/Rc 

= 46.0, indicating the onset of non-periodic motion. At the same Rayleigh number, to 
within experimental error, the ratio f2/fi starts to  decrease again. Thus, the onset 

of non-periodicity coincides with the loss of entrainment of the two oscillations. The 

ratio of the two frequencies is not measurable with high accuracy beyond R/R, = 46.5, 
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FIQURE 8. Frequency ratiofa/jl plotted as a function of R for route Ia. The ratio has a step indi- 
cating phase locking in the range 44.4 < R/RO < 46.0. The errors in the values are approxi- 
mately equal to the size of the symbols. 
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FIQIJRE 9. Linewidth of the spectral peaks beyond the onset of noise, with the instrumental 
linewidth subtracted. The variation is linear in R/Rc above the threshold. 
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FIQIJRE 9. Linewidth of the spectral peaks beyond the onset of noise, with the instrumental 
linewidth subtracted. The variation is linear in R/Rc above the threshold. 

so the data in figure 8 end at this point. The spectrum in figure 7 (d )  shows the broad- 
band noise near its onset, where relatively sharp (but not instrumentally sharp) peaks 

still exist, but the high-order mixing peaks of the phase-locked regime have disap- 

peared. As R is increased, the peaks gradually broaden and the gaps between them 

become shallower, until nearly featureless spectra are produced, as in figure 7 ( e ) .  
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In this spectrum, the power falls as f--4.3*@5, in agreement with the observations of 

Ahlers & Behringer (1979) a t  larger aspect ratio. 

In order to describe the growth of noise quantitatively, we determined the linewidth 

of spectral peaks as a function of R/R, above the onset of noise. As figure 9 demon- 

strates, the linewidth is approximately linear in (R - R,)/R,, where the extrapolated 

turbulent threshold R,/R, is about 45, slightly below the value 46.0 where the non- 

periodicity becomes obvious from examination of a single spectrum. We conclude from 

figure 9 that the non-periodic motion has a well-defined onset (answering a question 

posed in the introduction) and that the noise grows smoothly with Rayleigh number 

above this onset. 

The frequencies fi and f2 increase with R, a.s shown in figure 10. All of the statistically 

significant peaks are plotted and labelled with the integers (ml,m2) specifying the 

linear combinations ; for example, ( - 2 , l )  denotes the peak a t  ( - 2f1 +fi). The symbols 

in the figure are differentiated to indicate the distinct dynamical regimes P, QP2 or L, 
and N. The frequencies in the non-periodic regime are only known to about 1 yo 
because of the broadening of spectral features. 
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FIGURE 11. (a)  Spectrum showing subharmonic (period doubling) bifurcation to frequencies 
+f2 and ifi (see discussion of route 11), EIR, = 27.0. In ( b ) ,  the motion has just become non- 
periodic and the peak a t  &f2 is quite strong, R/Rc  = 28.0. 
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4.4. Route II: subharmonic (period doubling) bifurcations 

Non-periodicity can be obtained after several successive subharmonic bifurcations a t  

r = 3.5 and P = 2.5, and perhaps under other conditions as well. A similar process 

had been seen earlier in mathematical models as simple as mappings of the unit 
interval of the form x,+~ = f(Xn). 

We observe the following sequence of instabilities leading to turbulence via sub- 

harmonic bifurcations. The periodic state has an onset at RIR, = 17, substantially 

lower that that at P = 5-0 described in $4.3. The amplitudes of the peak (again 

denoted by f2) and its harmonics grow with increasing R, until a subharmonic bifurca- 

tion at RIR, = 21-5 doubles the period of the oscillation. This instability is indicated 

by a peak at +f2 (and harmonics) which grows rapidly with Rand eventually dominates 

f2. A second subharmonic bifurcation occurs a t  R/Rc = 26-5, and produces peaks at 

t f2 and harmonics in the spectrum, as shown in figure 11. The peak at  t f2 is again very 

weak at first, but grows quickly and continues to grow even after the onset of non- 

periodicity at  R/Rc 2 28. There may also be a small region near R/Rc = 28 where the 

motion is quasi-periodic (QP2). The spectrum shows many closely spaced peaks 

resulting from a slow modulation in the time domain, but the presence of noise cannot 

be ruled out. Hence the existence of a quasi-periodic regime is uncertain. At R/R, = 29, 

the spectra are clearly broadband, and they are nearly featureless at  RIR, = 40. 

Each of the transitions described in this section has hysteresis of about unity in 

R/R, and average values are quoted above. 

4.5. Route 111: three frequencies 

Quasi-periodic states characterized by three distinct frequencies were found in several 
cases (see figure 6). We summarize here the evidence obtained at r = 3.5 and P 5. 

The mean flow in each case is characterized by three rolls, but we do not know if this is 

significant. The flow becomes periodic at R/Rc 30 with a frequency (0.1 10 Hz) that 
is higher than in the previous sections because of the higher wavenumber. Instabilities 

leading to the second and third frequencies occur at  RIR, = 39.5 and 41.5, and a 

typical spectrum containing all three is shown in figure 12. Broadband noise begins to 

grow at RIR, = 43 and the peaks also become broadened. 

In order to verify that three basic frequencies are both necessary and sufficient to 
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FIGURE 12. Spectrum showing presence of three incommensurate frequencies (route IIId), 
R / R c  = 42.3. All peaks are linear combinations of the three frequencies fi, fi, and f3. 

describe figure 12, we used the following procedure. Pirst, the three highest peaks were 

selected and their frequencies f,, f2, and f, were determined by the method of $3.3.  

Integers m,, m2, and m3 (less than 20) were chosen for each spectral line by matching 

its frequency to  the equation F = m, fi + m2 f2 + m, f 3  as closely as possible. Now 

holding the integers fixed, a least squares fit to  all of the lines was performed, with the 

f i  as adjustable parameters. This slightly modified the fi from the original estimates, 

and provided an estimate of the goodness of fit by the chi-squared criterion. We found 

2% to be 34.5 with 20 degrees of freedom, which is acceptable in view of the limited 

accuracywith which we know uf, the standard error of the measured frequencies. The 

resulting fit is given in table 1. For each spectral line, the measured frequency f, its 

estimated standard error, the fitted frequency F ,  and the three integers mi are listed. 

In order to  demonstrate that  three frequencies are not only sufficient but also 

necessary, we followed this fitting procedure with various combinations of two basic 

frequencies. No value of chi squared less than 1700 could be obtained when the integers 

were restricted to values less than 20. This clearly rules out the possibility of a satis- 

factory two-frequency fit to the peaks in figure 12. We also eliminated the possibility 

of aliasing in the spectrum, and verified that no combination o f  integer multiples of the 

fi was equal to  zero, for integers less than 20. These facts, combined with the observa- 

tion that the three ratios f2/fl, f2/f3, and f3/fl vary smoothly with R, provide strong 

evidence that the f, are in general incommensurate. 

A QP, regime was also found for I' = 2.4 and P = 5.  The mean flow was similar to 

figure 4 ( e )  but with signs reversed. In  this case we did not attempt to  find the onset of 

time dependence, but the flow is periodic above R/Rc = 97. There may be a narrow 

QP2 regime near R/Rc = 109, and three frequencies are definitely present in the range 

110 < R/Rc  < 117.  Above this point, the noise grows rapidly and the spectra a t  

R/Rc = 120 are almost featureless. Three frequencies were never observed for the 

mean flow of figure 4(a)  (two rolls). 



466 J .  P .  Gollub and S .  V .  Benson 

f (Hz) F (Hz) a, (Hz) m1 ma m3 
0.026704 0.026693 0.000005 1 0 0 
0.039810 0.039817 0~000002 0 1 -1 
0.046 183 0.0461 79 0*000017 0 -1 2 
0.053409 0.053386 0.000016 2 0 0 
0.066547 0.066510 0.000028 1 1 -1 
0-072381 0.072427 0.000037 - 2  1 0 
0.085991 0.085996 0~000002 0 0 1 
0.093232 0.093203 0.00003 7 2 1 -1 
0.099121 0.099120 0~000001 -1 1 0 
0.112690 0.112689 0.000072 1 0 1 
0,125813 0.125813 0~000001 0 1 0 
0.15252 1 0.152506 0*000009 1 1 0 
0.165637 0.165630 0~000008 0 2 - 1  
0.17 1985 0.17 1992 0.000047 0 0 2 
0.179197 0-1 79 199 0-000006 2 1 0 
0.192336 0.192323 0.000026 1 2 -1 
0.198224 0.198240 0.000018 - 2  2 0 
0.205467 0.205447 0.000074 0 3 - 2  
0.211805 0.21 1809 0.000007 0 1 1 
0.2 19048 0.2 19016 0.000060 2 2 -1 
0.251626 0.251626 0.000003 0 2 0 
0.278288 0.278319 0.000025 ' 1  2 0 
0.291445 0.291443 0.0000 16 0 3 -1 

TABLE 1. Least squares fit of the function P = m, fl+mz fi+m3 f3  to the frequencies f of the 
peaks in figure 12. The integers m, and the estimated error u, in f are also listed. 

4.6. Route I V :  intermittent noise 

A. Libchaber & J. Maurer (1979, private communication) recently observed in liquid 
helium a type of intermittent noise that is qualitatively different from the non- 

periodic flows described in earlier sections. We have found that it also occurs a t  

P = 5.0, in a cell (r = 2.4) of the same proportions as theirs. The stable mean flow 

above R/Rc = 85 is that of figure 4(e) .  It becomes quasi-periodic (QP,) a t  R / R ,  = 95 

(see the bar graph labelled IVd  in figure 5 ) ,  and the second frequency is visible as an 

extremely slow but regular modulation in the time record of figure 13(a). The spec- 

trum (not shown) has many closely spaced peaks that overlap somewhat. The low 

frequency increases slowly with increasing R until intermittent noise appears at  

R/Rc = 102. The dynamical behaviour appears to switch at  irregular intervals bet- 

ween a non-periodic state and the quasi-periodic state. Examples of this dynamical 

discontinuity are clearly visible in figure 13 ( b ) .  As R is increased, the formerly quasi- 
periodic regions of the time record become irregular and eventually the entire record 

appears non-periodic, with a featureless spectrum. 

5. Discussion 

The various sequences of instabilities are all repeatable, but we have discerned no 
simple rules for predicting which sequence will occur for a given aspect ratio, Prandtl 

number, and mean flow. However, several generalizations are supported by the evi- 

dence. First, quasi-periodicity with more than two frequencies seems to be associated 

only with rather complex mean flow patterns. Secondly, phase locking occurs a t  
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FIGURE 13. Velocity records showing the presence of intermittent noise (route IV). In  (a), 
R/Rc = 100.4, the fluid is quasi-periodic with frequencies fi = 0.0023 3 and fi = 0.0756 3 Hz. 
In ( b ) ,  at R/Rc  = 102.8, intervals of quasi-periodic motion are interspersed between very noisy 
intervals. 

relatively small integer ratios between two characteristic frequencies, and only near 

the onset of non-periodicity. Thirdly, intermittent noise occurs only for flows that 

attain rather high Rayleigh number while remaining periodic. Fourthly, quasi- 

periodicity or subharmonic bifurcation generally precedes non-periodic motion in 

these experiments. 

Not all of our observations fit neatly into the sequences describedin Q 4. For example, 

the mean flow of figure 4 (a)  undergoes the sequence S + P -+ QP,+ S at I’ = 2.4. This 

observation of a reversion to stationary flow a t  RIR, = 60 is in striking contrast to the 

general pattern of increasing complexity of time-dependent motion as the Rayleigh 

number is increased. 

The information contained in figure 6 may be incomplete. For example, it  is possible 

that phase locking occurs more frequently than is noted in the bar graphs, but was 

missed because of the necessary coarseness of the Rayleigh number scans. Further- 

more, some instabilities that do not produce dramatic changes in the spectrum may 

have entirely escaped detection. We can reliably conclude, however, that some pheno- 

mena are pervasive in the transition to turbulent convection a t  small aspect ratio: 

quasi-periodicity with as many as three independent frequencies; phase locking; and 

subharmonic bifurcation. 

Because of the large number of parameters needed to characterize the fluid, the 

geometry, and the boundary conditions, it  is difficult to make quantitative compari- 

sons between the observations of different investigators. However, quasi-periodicity 
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has also been found in circular cells at low aspect ratio by Ahlers & Behringer (1979). 

Oscillations that may be quasi-periodic have been noted by Olson & Rosenberger 

(1979). Experiments conducted with cells of larger aspect ratio generally do not show 

the noise-free quasi-periodic regimes described in this paper (Ahlers 1974; Ahlers & 

Behringer 1978; Berg6 & Dubois 1978; Gollub et al. 1977). The transition to turbulent 

Taylor vortex flow is also characterized by distinct periodic and quasi-periodic regimes 

(Fenstermacher, Swinney & Gollub 1979). Intermittent noise was first discovered by 

Libchaber & Maurer (1979, private communication) in rectangular cells of convecting 

liquid helium (P = 1). Libchaber & Maurer (1979) and Maurer & Libchaber (1979) 

also noted the phenomena of phase locking and subharmonic bifurcation described in 

$94.3 and 4.4. Quasi-periodic convection with three incommensurate frequencies has 

not been reported previously. Finally, the idea that different flow structures can show 

different routes to tiirbulence has also been discussed by Berg6 (1979). 

Quantitative theoretical explanations of the complete sequences of instabilities 

observed in this work are probably not possible owing to the complexity of the mean 

flows, the sensitivity to small changes in geometrical parameters and Prandtl number, 

and the strong nonlinearity of the equations of motion. However, models consisting 

of a small number of coupled time-dependent amplitudes may be useful even if they 

do not provide quantitative explanations. Curry’s (1 978) generalized Lorenz model is 

particularly interesting in this context because it manifests so many of the phenomena 

we observe, including subharmonic bifurcation and quasi-periodic motion. It is 

possible that the lateral boundaries in small aspect ratio experiments restrict the 

number of modes enough to justify the use of strongly truncated models. 

One phenomenon that can probably be successfully explained with simple models is 

the onset of non-periodicity via phase locking. The entrainment of one oscillator by 

another is well known in many contexts. One example is the forced Van der Pol 

oscillator discussed extensively by Flaherty & Hoppensteadt (1978). A system of two 

coupled tunnel diode relaxation oscillators was also found to exhibit phase locking 

(Gollub, Brunner & Danly 1978). This simple electronic system has only four dynami- 

cal variables, yet i t  also manifests non-periodic motion. Both the phase locking and 

the non-periodic motion have been successfully modelled numerically (Gollub, Romer 

& Socolar 1980). It seems quite likely that the onset of non-periodic convection can 

also be explained by modelling it as a system of interacting nonlinear oscillators. 

The observation of quasi-periodic convection with three generally incommensurate 

frequencies may have interesting theoretical implications. This motion can be des- 

cribed by a trajectory covering the surface of a three-dimensional torus T 3  in the phase 

space spanned by the time-dependent Fourier amplitudes of the velocity field (see 

Fenstermacher, Swinney & Gollub 1979). An interesting theorem about such tori has 

been proven recently by Newhouse, Ruelle & Takens (1978). It states (paraphrased) 

that, in every suitably differentiable neighbourhood of a vector field on the torus Tm, 
there is a vector field having a non-periodic attractor if m 2 3. If this theorem is 
applicable to the Navier-Stokes equations, it suggests that infinitesimal perturba- 

tions of a quasi-periodic motion with three incommensurate frequencies may result 

in non-periodic motion. Such quasi-periodic motion would then probably not be 

observable over a significant range in the relevant parameters. The fact that we do 

observe this behaviour over a finite interval in R means that the physical relevance 

of this theorem is as yet obscure. However, the basic prediction of Ruelle & Takens 
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(1971) t ha t  non-periodic motion should occur after a small number of time-dependent 

instabilities is generally consistent with our observations. 

Finally, quantitative predictions for the amplitudes of spectral peaks have been 

obtained recently (Feigenbaum 1980) for the case of a cascade of subharmonic bifurca- 

tions. The theory contains universal scaling parameters and may be applicable 

to a variety of hydrodynamic problems. A more detailed description of the sub- 

harmonic route to turbulence, including maps of the spatial structure of the oscilla- 

tions and a comparison with the theoretical predictions, appears elsewhere (Gollub, 

Benson & Steinman 1980) .  

The diversity of processes involved in the transition to turbulent convection is very 

great. However, the prevalence of relatively simple phenomena (period doubling 

bifurcations, quasi-periodic motion, and phase locking) does offer some hope for the 

possibility of achieving qualitative understanding of the basic processes. 

It is a pleasure to acknowledge the contributions of R. Swinney to the planning and 

execution of this work. We also appreciate extremely helpful discussions with G. 
Ahlers, P. Hohenberg, D. Joseph, and A. Libchaber. J. Steinman assisted 11s with 

recent experiments. This work was supported by the National Science Foundation and 

the Research Corporation. 
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