Many-to-Many Disjoint Path Covers in

Hypercube-Like Interconnection Networks with Faulty Elements*

Jung-Heum Park
The Catholic University of Korea, Korea
Email: j.h.park@catholic.ac.kr

Hee-Chul Kim
Hankuk University of Foreign Studies, Korea
Email: hckim@hufs.ac.kr

Hyeong-Seok Lim
Chonnam National University, Korea
Email: hslim@chonnam.ac.kr

Abstract

A many-to-many k-disjoint path cover (k-DPC) of a graph G is a set of k disjoint paths joining k distinct source-sink pairs in which each vertex of G is covered by a path. We deal with the graph $G_{0} \oplus G_{1}$ obtained from connecting two graphs G_{0} and G_{1} with n vertices each by n pairwise nonadjacent edges joining vertices in G_{0} and vertices in G_{1}. Many interconnection networks such as hypercube-like interconnection networks can be represented in the form of $G_{0} \oplus G_{1}$ connecting two lower dimensional networks G_{0} and G_{1}. In the presence of faulty vertices and/or edges, we investigate many-to-many disjoint path coverability of $G_{0} \oplus G_{1}$ and $\left(G_{0} \oplus G_{1}\right) \oplus\left(G_{2} \oplus G_{3}\right)$, provided some conditions on the hamiltonicity and disjoint path coverability of each graph G_{i} are satisfied, $0 \leq i \leq 3$. We apply our main results to recursive circulant $G\left(2^{m}, 4\right)$ and a subclass of hypercubelike interconnection networks, called restricted HL-graphs. The subclass includes twisted cubes, crossed cubes, multiply twisted cubes, Möbius cubes, Mcubes, and generalized twisted cubes. We show that all these networks of degree m with f or less faulty elements have a many-to-many k-DPC joining any k distinct source-sink pairs for any $k \geq 1$ and $f \geq 0$ such that $f+2 k \leq m-1$.

Index Terms: Fault tolerance, network topology, graph theory, fault-hamiltonicity, embedding, strong hamiltonicity, recursive circulants, restricted HL-graphs.

[^0]
1 Introduction

One of the central issues in various interconnection networks is finding node-disjoint paths concerned with the routing among nodes and the embedding of linear arrays. Node-disjoint paths can be used as parallel paths for an efficient data routing among nodes. Also, each path in node-disjoint paths can be utilized in its own pipeline computation. An interconnection network is often modelled as a graph, in which vertices and edges correspond to nodes and communication links, respectively. In this paper, node(vertex)-disjoint paths are abbreviated to disjoint paths. In the rest of this paper, we will use standard terminology in graphs (see ref. [2]).

Disjoint paths can be categorized as three types: one-to-one, one-to-many, and many-to-many. One-to-one type deals with the disjoint paths joining a single source s and a single sink t. One-tomany type considers the disjoint paths joining a single source s and k distinct sinks $t_{1}, t_{2}, \ldots, t_{k}$. Most of the works done on disjoint paths deal with the one-to-one or one-to-many type. One-to-one and one-to-many disjoint paths were constructed for a variety of networks such as hypercubes[3, 11], star graphs[5], etc. Many-to-many type deals with the disjoint paths joining k distinct sources $s_{1}, s_{2}, \ldots, s_{k}$ and k distinct sinks $t_{1}, t_{2}, \ldots, t_{k}$. In many-to-many type, several problems can be defined depending on whether specific sources should be joined to specific sinks or a source can be freely matched to a sink. The works on many-to-many type have a relative paucity because of its difficulty and some results can be found in $[13,18]$.

All of three types of disjoint paths in a graph G can be accommodated with the covering of vertices in G. A disjoint path cover in a graph G is a set of disjoint paths containing all the vertices in G. A disjoint path cover problem that originated from an interconnection network is concerned with the application where the full utilization of nodes is important. For an embedding of linear arrays in a network, the cover implies every node can be participated in a pipeline computation. As the disjoint path covers which have been studied for interconnection networks, there are one-to-one disjoint path covers in recursive circulants without faulty elements $[20,30]$ and hypercubes with faulty edges[3], and one-tomany disjoint path covers with faulty elements in some hypercube-like interconnection networks[21]. As the authors know, no results on many-to-many disjoint path covers appeared in the literature with an exception of the earlier version of this paper in [24]. A one-to-one disjoint path cover consisting of k disjoint paths is also known as a k^{*}-container $[3,30]$.

Given a set of k sources $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$ and a set of k sinks $T=\left\{t_{1}, t_{2}, \ldots, t_{k}\right\}$ in a graph
G such that $S \cap T=\emptyset$, we are concerned with many-to-many disjoint paths $P_{1}, P_{2}, \ldots, P_{k}$ in G, P_{i} joining s_{i} and $t_{i}, 1 \leq i \leq k$, that cover all the vertices in the graph, that is, $\bigcup_{1 \leq i \leq k} V\left(P_{i}\right)=V(G)$ and $V\left(P_{i}\right) \cap V\left(P_{j}\right)=\emptyset$ for all $i \neq j$. Here $V\left(P_{i}\right)$ and $V(G)$ denote the vertex sets of P_{i} and G, respectively. We call such a set of k disjoint paths a many-to-many k-disjoint path cover (in short, many-to-many k-DPC) of G. We call a source or a sink a terminal.

The disjoint path cover problems are closely related to well-known hamiltonian problems in graph theory. Since the HAMILTONIAN PATH BETWEEN TWO VERTICES problem is NP-complete[12], so is the MANY-TO-MANY k-DPC problem for all fixed $k \geq 1$. Notice that a graph G has a hamiltonian path between two vertices s and t if and only if the graph G^{\prime} has a many-to-many k-DPC, where $V\left(G^{\prime}\right)=V(G) \cup\left\{s_{i}, t_{i} \mid 2 \leq i \leq k\right\}, E\left(G^{\prime}\right)=E(G) \cup\left\{\left(s, s_{i}\right),\left(s_{i}, t_{i}\right),\left(t_{i}, t\right) \mid 2 \leq i \leq k\right\}, s_{1}=s$, and $t_{1}=t$. The ONE-TO-MANY k-DPC and ONE-TO-ONE k-DPC problems are also NP-complete for all fixed $k \geq 1$. They can be reduced straightforwardly from HAMILTONIAN PATH BETWEEN TWO VERTICES.

On the other hand, embedding of linear arrays and rings into a faulty interconnection network is one of the important problems in parallel processing. The embedding problem can be modelled as finding as long fault-free paths and cycles as possible in the graph with some faulty vertices and/or edges. Fault-hamiltonicity of various interconnection networks was investigated in the literature; for example, arrangement graphs[15, 17], recursive circulants[29], hypercubes[26, 28], star graphs[16, 23, 31], and hypercube-like interconnection networks[25]. A graph G is called f-fault hamiltonian (resp. f-fault hamiltonian-connected) if there exists a hamiltonian cycle (resp. if each pair of vertices are joined by a hamiltonian path) in $G \backslash F$ for any set F of faulty elements with $|F| \leq f$. For a graph G to be f-fault hamiltonian (resp. f-fault hamiltonian-connected), it is necessary that $f \leq \delta(G)-2$ (resp. $f \leq \delta(G)-3$), where $\delta(G)$ is the minimum degree of G.

To a graph G with a set of faulty elements F, the definition of a many-to-many disjoint path cover can be extended. Given a set of k sources $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$ and a set of $k \operatorname{sinks} T=\left\{t_{1}, t_{2}, \ldots, t_{k}\right\}$ in $G \backslash F$ such that $S \cap T=\emptyset$, a many-to-many k-disjoint path cover joining S and T is a set of k disjoint paths P_{i} joining s_{i} and $t_{i}, 1 \leq i \leq k$, such that (a) $\bigcup_{1 \leq i \leq k} V\left(P_{i}\right)=V(G) \backslash F,(\mathrm{~b}) V\left(P_{i}\right) \cap V\left(P_{j}\right)=\emptyset$ for all $i \neq j$, and (c) every edge on each path P_{i} is fault-free. Such a many-to-many k-DPC is denoted by k-DPC $\left[\left\{\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right), \ldots,\left(s_{k}, t_{k}\right)\right\} \mid G, F\right]$.

Definition $1 A$ graph G is called f-fault many-to-many k-disjoint path coverable if $f+2 k \leq|V(G)|$

Figure 1: Examples of $G_{0} \oplus G_{1}$ and $H_{0} \oplus H_{1}$
and for any set F of faulty elements with $|F| \leq f, G$ has k-DPC $\left\{\left\{\left(s_{1}, t_{1}\right),\left(s_{2}, t_{2}\right), \ldots,\left(s_{k}, t_{k}\right)\right\} \mid G, F\right]$ for any set of k sources $S=\left\{s_{1}, s_{2}, \ldots, s_{k}\right\}$ and any set of k sinks $T=\left\{t_{1}, t_{2}, \ldots, t_{k}\right\}$ in $G \backslash F$ such that $S \cap T=\emptyset$.

For a graph G to be f-fault many-to-many k-disjoint path coverable, it is necessary that $f+2 k \leq$ $\delta(G)+1$ (shown in Subsection 2.3). An f-fault many-to-many k-disjoint path coverable graph G can be shown to possess an interesting strong hamiltonicity, say the existence of a hamiltonian path containing a specified set of edges in a given order. Precisely speaking, for any fault set F with $|F| \leq f$ and for any sequence of pairwise nonadjacent $k-1$ edges $\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{k-1}, y_{k-1}\right)\right)$ in $G \backslash F$, there exists a hamiltonian path joining an arbitrary pair of vertices s and t in $G \backslash F$ with $\{s, t\} \cap\left\{x_{i}, y_{i}\right\}=\emptyset$ for all $1 \leq i \leq k-1$ that passes through the edges in the order given. That is, there exists a hamiltonian path of the form of $\left(s, \ldots, x_{1}, y_{1}, \ldots, x_{k-1}, y_{k-1}, \ldots, t\right)$.

We are given two graphs G_{0} and G_{1} with n vertices each. We denote by V_{i} and E_{i} the vertex set and edge set of $G_{i}, i=0,1$, respectively. We let $V_{0}=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $V_{1}=\left\{w_{1}, w_{2}, \ldots, w_{n}\right\}$. With respect to a permutation $M=\left(i_{1}, i_{2}, \ldots, i_{n}\right)$ of $\{1,2, \ldots, n\}$, we can "merge" the two graphs into a graph $G_{0} \oplus_{M} G_{1}$ with $2 n$ vertices in such a way that the vertex set $V=V_{0} \cup V_{1}$ and the edge set $E=E_{0} \cup E_{1} \cup E_{2}$, where $E_{2}=\left\{\left(v_{j}, w_{i_{j}}\right) \mid 1 \leq j \leq n\right\}$. We denote by $G_{0} \oplus G_{1}$ a graph obtained by merging G_{0} and G_{1} w.r.t. an arbitrary permutation M. Here, G_{0} and G_{1} are called components of $G_{0} \oplus G_{1}$. When we are given four graphs $G_{i}, 0 \leq i \leq 3$, with the same number of vertices, we can also merge them into a graph $H_{0} \oplus H_{1}$, where $H_{0}=G_{0} \oplus G_{1}$ and $H_{1}=G_{2} \oplus G_{3}$. Figure 1 shows examples of $G_{0} \oplus G_{1}$ and $H_{0} \oplus H_{1}$.

Definition $2 A$ graph G is called many-to-many (f, k)-disjoint path coverable if for any f^{\prime} and k^{\prime} such that $k^{\prime} \leq k$ and $f^{\prime}+2 k^{\prime} \leq f+2 k, G$ is f^{\prime}-fault many-to-many k^{\prime}-disjoint path coverable.

That is, a many-to-many (f, k)-disjoint path coverable graph G satisfies all of the following k conditions:

$$
\begin{array}{ll}
C(k): & G \text { is } f \text {-fault many-to-many } k \text {-disjoint path coverable; } \\
C(k-1): & G \text { is } f+2 \text {-fault many-to-many } k \text { - 1-disjoint path coverable; } \\
\vdots & \\
C(1): & G \text { is } f+2 k-\text { 2-fault many-to-many 1-disjoint path coverable. }
\end{array}
$$

For a graph G to be many-to-many (f, k)-disjoint path coverable, it is necessary that $f+2 k \leq \delta(G)-1$.
In this paper, provided G_{i} is many-to-many (f, k)-disjoint path coverable and $f+2 k-1$-fault hamiltonian for all $0 \leq i \leq 3$, we will show that $G_{0} \oplus G_{1}$ is many-to-many $(f+1, k)$-disjoint path coverable and $f+2 k$-fault hamiltonian for any $k \geq 2$ and $f \geq 0$ or for any $k=1$ and $f \geq 2$, and that $H_{0} \oplus H_{1}$ is many-to-many $(f, k+1)$-disjoint path coverable and $f+2 k+1$-fault hamiltonian for any $k \geq 1$ and $f \geq 0$, where $H_{0}=G_{0} \oplus G_{1}$ and $H_{1}=G_{2} \oplus G_{3}$. Note that $\delta\left(G_{0} \oplus G_{1}\right)=\min \left\{\delta\left(G_{0}\right), \delta\left(G_{1}\right)\right\}+1$ and $\delta\left(H_{0} \oplus H_{1}\right)=\min _{0 \leq i \leq 3} \delta\left(G_{i}\right)+2$. The fact that a graph G is f-fault many-to-many 1-disjoint path coverable is, by definition, equivalent to that G is f-fault hamiltonian-connected. To prove the main results, we utilize fault-hamiltonicity of $G_{0} \oplus G_{1}$ and $H_{0} \oplus H_{1}$ studied in [25] that provided G_{i} is f-fault hamiltonian-connected and $f+1$-fault hamiltonian for each $i, G_{0} \oplus G_{1}$ is $f+1$-fault hamiltonianconnected and $f+2$-fault hamiltonian for any $f \geq 2$ and $H_{0} \oplus H_{1}$ is $f+2$-fault hamiltonian-connected and $f+3$-fault hamiltonian for any $f \geq 0$.

We apply our main results to recursive circulant $G\left(2^{m}, 4\right)$ and a subclass of hypercube-like interconnection networks, called restricted HL-graphs. The subclass includes twisted cubes[14], crossed cubes[9], multiply twisted cubes[8], Möbius cubes[7], Mcubes[27], and generalized twisted cubes[4]. We will show that all these networks of degree m are f-fault many-to-many k-disjoint path coverable for every $k \geq 1$ and $f \geq 0$ such that $f+2 k \leq m-1$. Also, we will discuss that "near" bipartite graphs which belong to hypercube-like interconnection networks can have only limited disjoint path coverability by the illustration of twisted m-cubes.

The organization of this paper is as follows. In the next section, we will consider some interesting properties on f-fault many-to-many k-disjoint path coverable graphs, including relationships among the three types of disjoint path covers, sufficiency for some strong-hamiltonicity, and some necessary conditions. In Section 3, we will construct many-to-many disjoint path covers in $G_{0} \oplus G_{1}$ and $H_{0} \oplus H_{1}$, provided each G_{i} is many-to-many (f, k)-disjoint path coverable and $f+2 k-1$-fault hamiltonian. Many-to-many disjoint path coverability of hypercube-like interconnection networks will be considered
in Section 4. Finally in Section 5, concluding remarks of this paper and algorithmic aspects of our construction schemes will be discussed.

Remark 1 Even when there are $p(<k)$ source-sink pairs such that each source is identical with its corresponding sink, that is, when $s_{i}=t_{i}$ for all $1 \leq i \leq p$ and $S^{\prime} \cap T^{\prime}=\emptyset$, where $S^{\prime}=\left\{s_{p+1}, \ldots, s_{k}\right\}$ and $T^{\prime}=\left\{t_{p+1}, \ldots, t_{k}\right\}$, we can construct f-fault many-to-many k-DPC as follows: (a) we first let $P_{i}=\left(s_{i}\right), 1 \leq i \leq p$, a path with one vertex, and then (b) regarding them as virtual faulty vertices, find $f+p$-fault many-to-many k - p-DPC. Note that if G is many-to-many (f, k)-disjoint path coverable, then G is $f+p$-fault many-to-many k - p-disjoint path coverable for any $p<k$, as well as G is f-fault many-to-many k-disjoint path coverable.

2 Many-to-Many Disjoint Path Coverable Graphs

2.1 Disjoint path covers

First, we are going to discuss about some interesting properties on disjoint path covers of the three types: many-to-many, one-to-many, and one-to-one. Let G be a graph with a set F of faulty elements. Throughout this paper, a path in a graph is represented as a sequence of vertices. A $v-w$ path refers to a path from a vertex v to a vertex w.

Proposition 1 (a) G is f-fault many-to-many 1-disjoint path coverable if and only if G is f-fault hamiltonian-connected.
(b) If G is f-fault many-to-many $k(\geq 2)$-disjoint path coverable, then G is f-fault many-to-many k-1-disjoint path coverable.

Proof By definition, (a) holds true. To prove (b), we construct an f-fault many-to-many $k-1$-DPC using f-fault many-to-many k-DPC as follows. Given a set of $k-1$ source-sink pairs $\left\{\left(s_{1}, t_{1}\right), \ldots,\left(s_{k-1}, t_{k-1}\right)\right\}$, letting (x, y) be an edge in $G \backslash F$ such that both x and y are not terminals, we find a k-DPC for $\left\{\left(s_{1}, x\right),\left(y, t_{1}\right),\left(s_{2}, t_{2}\right), \ldots,\left(s_{k-1}, t_{k-1}\right)\right\}$, and then the $s_{1}-x$ path and the y - t_{1} path are merged with the edge (x, y) into an $s_{1}-t_{1}$ path, which results in an f-fault many-to-many $k-1$-DPC for the given pairs.

Given a source s and a set of k sinks $T=\left\{t_{1}, t_{2}, \ldots, t_{k}\right\}$ with $s \notin T$ in $G \backslash F$, a one-to-many k disjoint path cover joining s and T is a set of k disjoint paths P_{i} joining s and $t_{i}, 1 \leq i \leq k$, such
that $\bigcup_{1 \leq i \leq k} V\left(P_{i}\right)=V(G) \backslash F, V\left(P_{i}\right) \cap V\left(P_{j}\right)=\{s\}$ for all $i \neq j$, and every edge on each path P_{i} is fault-free. A graph G is called f-fault one-to-many k-disjoint path coverable if $f+k+1 \leq|V(G)|$ and for any set F of faulty elements with $|F| \leq f, G$ has a one-to-many k-disjoint path cover joining every source s and every set T of k distinct sinks in $G \backslash F$ such that $s \notin T$. For a graph G to be f-fault one-to-many k-disjoint path coverable, it is necessary that $f+k \leq \delta(G)$. In a similar way, we can also define f-fault one-to-one k-disjoint path coverable graphs.

Proposition 2 The following statements are equivalent (by definition).
(a) G is f-fault many-to-many 1-disjoint path coverable.
(b) G is f-fault one-to-many 1-disjoint path coverable.
(c) G is f-fault one-to-one 1-disjoint path coverable.

Proposition 3 (a) If G is f-fault many-to-many k-disjoint path coverable, then G is f-fault one-tomany k-disjoint path coverable.
(b) If G is f-fault one-to-many k-disjoint path coverable, then G is f-fault one-to-one k-disjoint path coverable[21].

Proof When we are given a single source s and a set of sinks $\left\{t_{1}, \ldots, t_{k}\right\}$, letting $\left\{x_{2}, \ldots, x_{k}\right\}$ be the set of $k-1$ vertices in $G \backslash F$ which are adjacent to s via fault-free edges, we find an f-fault many-to-many k-DPC for a set of pairs $\left\{\left(s, t_{1}\right),\left(x_{2}, t_{2}\right), \ldots,\left(x_{k}, t_{k}\right)\right\}$, and then the edge $\left(s, x_{j}\right)$ and the $x_{j}-t_{j}$ path are merged into an s - t_{j} path for each $j, 2 \leq j \leq k$, which results in an f-fault one-to-many k-DPC for the given source and sinks.

2.2 Strong hamiltonicity

In an f-fault many-to-many k-disjoint path coverable graph G, if G has no faulty elements, then we can always construct a many-to-many k^{\prime}-disjoint path cover for any $k^{\prime} \leq k$ in G which does not pass through a specified set of vertices and edges (by regarding them virtual faulty elements) when the number of such vertices and edges are at most f. On one occasion of $k^{\prime}=1$, the disjoint path cover is interpreted as a hamiltonian path.

On the contrary, we can think of a hamiltonian path containing a given set of edges. In this subsection, we are concerned with a hamiltonian path (and cycle) which passes through a specified set of edges in a given order. Given two distinct vertices s and t, a sequence of l edges $\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{l}, y_{l}\right)\right)$
in a graph is called s-t path extendable if for any two vertices v and w in a multiset $\{s, t\} \cup\left\{x_{j}, y_{j} \mid 1 \leq\right.$ $j \leq l\}$, either $v \neq w$ or $v=w$ and the unordered pair (v, w) is one of $\left(s, x_{1}\right),\left(y_{l}, t\right)$, or $\left(y_{j}, x_{j+1}\right)$ for some $1 \leq j<l$. The sequence of edges is necessarily s - t path extendable for the graph to have an s - t path $\left(s, \ldots, x_{1}, y_{1}, \ldots, x_{l}, y_{l}, \ldots, t\right)$ passing through the edges in the order given. In [33], the existence of a hamiltonian path containing a given set of directed edges in an orientation of a complete multipartite graph was considered.

Theorem 1 (Strong-hamiltonicity) (a) If G is f-fault many-to-many $k(\geq 2)$-disjoint path coverable, then for any fault set F with $|F| \leq f$ and for any vertices s, t and any sequence of $k-1$ edges $\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{k-1}, y_{k-1}\right)\right)$ in $G \backslash F$ such that $v \neq w$ for any pair of vertices v and w in a multiset $\{s, t\} \cup\left\{x_{j}, y_{j} \mid 1 \leq j \leq k-1\right\}$ (thus, s-t path extendable), there exists an s-t hamiltonian path in $G \backslash F$ that passes through the edges in the order given. That is, there exists a hamiltonian path of the form of $\left(s, \ldots, x_{1}, y_{1}, \ldots, x_{k-1}, y_{k-1}, \ldots, t\right)$.
(b) If the sequence of edges is s-t path extendable and the number of pairs in $\left\{\left(s, x_{1}\right) \mid s=x_{1}\right\} \cup$ $\left\{\left(y_{k-1}, t\right) \mid y_{k-1}=t\right\} \cup\left\{\left(y_{j}, x_{j+1}\right) \mid y_{j}=x_{j+1}, 1 \leq j<k-1\right\}$ is $p(<k)$, then every $f+p$-fault many-tomany k - p-disjoint path coverable graph has such a hamiltonian path.

Proof To prove (a), we first find an f-fault many-to-many k-DPC for a set of k source-sink pairs $\left\{\left(s, x_{1}\right),\left(y_{1}, x_{2}\right), \ldots,\left(y_{k-2}, x_{k-1}\right),\left(y_{k-1}, t\right)\right\}$, and then the k disjoint paths are merged with the $k-1$ edges $\left(x_{j}, y_{j}\right), 1 \leq j \leq k-1$, into a hamiltonian path joining s and t, which is a desired one. For (b), regarding the p pairs (that is, p vertices) as virtual faulty vertices, in a similar way to (a), we find an $f+p$-fault many-to-many $k-p$-DPC for $k-p$ pairs, and then the $k-p$ disjoint paths and p paths with one vertex are merged with the $k-1$ edges into an $s-t$ hamiltonian path.

A sequence of l edges $\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{l}, y_{l}\right)\right)$ in a graph is called cycle extendable if for any two vertices v and w in a multiset $\left\{x_{j}, y_{j} \mid 1 \leq j \leq l\right\}$, either $v \neq w$ or $v=w$ and the unordered pair (v, w) is one of $\left(y_{l}, x_{1}\right)$ or $\left(y_{j}, x_{j+1}\right)$ for some $1 \leq j<l$. Obviously, an edge sequence $\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{l}, y_{l}\right)\right)$ is cycle extendable if and only if the subsequence $\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{l-1}, y_{l-1}\right)\right)$ is $y_{l}-x_{l}$ path extendable.

Corollary 1 (a) If G is f-fault many-to-many $k(\geq 1)$-disjoint path coverable, then for any fault set F with $|F| \leq f$ and for any sequence of k edges $\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{k}, y_{k}\right)\right)$ in $G \backslash F$ such that $v \neq w$ for any pair of vertices v and w in a multiset $\left\{x_{j}, y_{j} \mid 1 \leq j \leq k\right\}$ (thus, cycle extendable), there exists a hamiltonian cycle in $G \backslash F$ that passes through the edges in the order given. That is, there exists a
hamiltonian cycle of the form of $\left(y_{k}, \ldots, x_{1}, y_{1}, \ldots, x_{k-1}, y_{k-1}, \ldots, x_{k}\right)$.
(b) If the sequence of edges is cycle extendable and the number of pairs in $\left\{\left(y_{l}, x_{1}\right) \mid y_{l}=x_{1}\right\} \cup$ $\left\{\left(y_{j}, x_{j+1}\right) \mid y_{j}=x_{j+1}, 1 \leq j<k-1\right\}$ is $p(<k)$, then every $f+p$-fault many-to-many k - p-disjoint path coverable graph has such a hamiltonian cycle.

2.3 Necessary conditions

We let G be a graph with n vertices. If G is f-fault many-to-many k-disjoint path coverable, then by definition, $f+2 k \leq n$. Let S and T be the sets of sources and sinks in G, respectively. One might expect that a necessary condition in terms of connectivity can be derived as follows.

Lemma 1 (Connectivity) If G is f-fault many-to-many k-disjoint path coverable, then $\kappa(G) \geq f+$ $2 k-1$, where $\kappa(G)$ is connectivity of G.

Proof Suppose that $\kappa(G) \leq f+2 k-2$. If G is a complete graph K_{n}, then $\kappa(G)=n-1 \leq f+2 k-2$, which is a contradiction to that $f+2 k \leq n$. Otherwise, there is an $s-t$ vertex cut C with $|C| \leq f+2 k-2$. We let $s_{1}=s$ and $t_{1}=t$, and let S, T, and F be sets of vertices in G so that $C \subseteq S \backslash s_{1} \cup T \backslash t_{1} \cup F$. Then, there can not exist an $s_{1}-t_{1}$ path which does not pass through any vertex in $S \backslash s_{1} \cup T \backslash t_{1} \cup F$, and thus G is not f-fault many-to-many k-disjoint path coverable. This completes the proof.

Corollary 2 (Degree) For a graph G to be f-fault many-to-many k-disjoint path coverable, it is necessary that $f+2 k \leq \delta(G)+1$.

Every bipartite graph is not hamiltonian-connected, and thus for any $f \geq 0$ and $k \geq 1$, it is not f-fault many-to-many k-disjoint path coverable. We are to derive necessary conditions which say that a "near" bipartite graph is not f-fault many-to-many k-disjoint path coverable for large f and k. A set X of vertices and edges in G is called bipartization set if $G \backslash X$ is bipartite. A bipartization number $b(G)$ of G is the minimum cardinality among all the bipartization sets of G. In connection with bipartization number, minimum vertex/edge deletion bipartite subgraph problems were studied in the literature[1, 34], with applications in computer-aided design of VLSI systems, specifically via minimization problem[6].

Lemma 2 (Bipartization) If G is f-fault many-to-many k-disjoint path coverable, then $b(G)>f$. Proof Suppose otherwise, we let the minimum bipartization set be the faulty set. Then, $G \backslash F$ is bipartite, and thus G is not f-fault many-to-many k-disjoint path coverable.

Lemma 3 (Bicoloring) Let G be an f-fault many-to-many k-disjoint path coverable graph. Then for any fault set F with $|F| \leq f$ and for any two-coloring vertices in $G \backslash F$ black and white (not necessarily proper coloring, that is, two vertices with the same color may be adjacent), if $n_{w} \geq 2 k$ then $c_{b} \leq n_{w}-k$, where n_{w} is the number of white vertices in $G \backslash F$ and c_{b} is the number of connected components in the induced subgraph $G\langle B\rangle$ of $G \backslash F$ by the set B of black vertices.

Proof Suppose for some fault set F with $|F| \leq f$ and for some two-coloring vertices in $G \backslash F$, it holds true that $n_{w} \geq 2 k$ and $c_{b}>n_{w}-k$. Letting all the sources and sinks be white, we find a k-DPC in $G \backslash F$. If an $s_{j}-t_{j}$ path in the k-DPC passes through r white vertices as intermediate vertices, then it covers at most $r+1$ connected components in $G\langle B\rangle$. The k disjoint paths pass through $n_{w}-2 k$ white vertices in total as intermediate vertices, and thus they cover at most $k+\left(n_{w}-2 k\right)=n_{w}-k$ components in $G\langle B\rangle$. This leads to a contradiction.

3 Construction of Many-to-Many Disjoint Path Covers

In this section, we are to discuss about constructions of many-to-many disjoint path covers in $G_{0} \oplus G_{1}$ and $H_{0} \oplus H_{1}$ with some faulty elements, provided G_{i} is many-to-many (f, k)-disjoint path coverable and $f+2 k$ - 1 -fault hamiltonian for all $0 \leq i \leq 3$. Here, $H_{0}=G_{0} \oplus G_{1}$ and $H_{1}=G_{2} \oplus G_{3}$. Precisely speaking, we will prove the following two main theorems.

Theorem 2 For any $k \geq 2$ and $f \geq 0$ or for any $k=1$ and $f \geq 2$, if G_{i} is many-to-many (f, k) disjoint path coverable and $f+2 k-1$-fault hamiltonian for each $i=0,1$, then $G_{0} \oplus G_{1}$ is many-to-many $(f+1, k)$-disjoint path coverable and $f+2 k$-fault hamiltonian.

Theorem 3 For any $k \geq 1$ and $f \geq 0$, if G_{i} is many-to-many (f, k)-disjoint path coverable and $f+2 k-1$-fault hamiltonian for each $0 \leq i \leq 3$, then $H_{0} \oplus H_{1}$ is many-to-many $(f, k+1)$-disjoint path coverable and $f+2 k+1$-fault hamiltonian, where $H_{0}=G_{0} \oplus G_{1}$ and $H_{1}=G_{2} \oplus G_{3}$.

For a vertex v in $G_{0} \oplus G_{1}$, we denote by \bar{v} the vertex adjacent to v which is in a component different from the component in which v is contained. We let F be the set of faulty elements, and let S and T be the sets of sources and sinks, respectively. We denote by $H[v, w \mid G, F]$ a hamiltonian path in $G \backslash F$ joining a pair of fault-free vertices v and w in a graph G with a set F of faulty elements. When we find a hamiltonian path/cycle (or a many-to-many DPC), sometimes we regard some fault-free vertices and/or edges as faulty elements. They are called virtual faults.

Definition 3 A vertex v in $G_{0} \oplus G_{1}$ is called free if v is fault-free and not a terminal, that is, $v \notin F$ and $v \notin S \cup T$. An edge (v, w) is called free if v and w are free and $(v, w) \notin F$.

Definition $4 A$ free bridge of a fault-free vertex v in $G_{0} \oplus G_{1}$ is the path (v, \bar{v}) of length one if \bar{v} is free and $(v, \bar{v}) \notin F$; otherwise, it is a path (v, w, \bar{w}) of length two such that $w \neq \bar{v},(v, w) \notin F$, and (w, \bar{w}) is a free edge.

First of all, we will review results on fault-hamiltonicity of $G_{0} \oplus G_{1}$ and $H_{0} \oplus H_{1}$ studied in [25]. And then, we will consider the existence of pairwise disjoint free bridges for some terminals and will develop five basic procedures for constructing many-to-many disjoint path covers. They play a significant role in proving the main theorems.

3.1 Fault-hamiltonicity

We employ works on fault-hamiltonicity of $G_{0} \oplus G_{1}$ and $H_{0} \oplus H_{1}$ in [25]. They will be utilized later when we need to construct a many-to-many 1-DPC. The problems we are primarily concerned with are, provided G_{i} is f-fault hamiltonian-connected and $f+1$-fault hamiltonian for each i, whether $G_{0} \oplus G_{1}$ is $f+1$-fault hamiltonian-connected and $f+2$-fault hamiltonian and whether $H_{0} \oplus H_{1}$ is $f+2$-fault hamiltonian-connected and $f+3$-fault hamiltonian. The following two lemmas are concerned with fault-hamiltonicity of $G_{0} \oplus G_{1}$.

Lemma 4 [25] Let a graph G_{i} be f-fault hamiltonian-connected and $f+1$-fault hamiltonian, $i=0,1$. Then,
(a) for any $f \geq 2, G_{0} \oplus G_{1}$ is $f+1$-fault hamiltonian-connected,
(b) for $f=1, G_{0} \oplus G_{1}$ with $2(=f+1)$ faulty elements has a hamiltonian path joining s and t unless s and t are contained in the same component and \bar{s} and \bar{t} are the faulty elements(vertices), and (c) for $f=0, G_{0} \oplus G_{1}$ with $1(=f+1)$ faulty elements has a hamiltonian path joining s and t unless s and t are contained in the same component and the faulty element is contained in the other component.

Lemma 5 [25] Let a graph G_{i} be f-fault hamiltonian-connected and $f+1$-fault hamiltonian, $i=0,1$. Then,
(a) for any $f \geq 1, G_{0} \oplus G_{1}$ is $f+2$-fault hamiltonian, and
(b) for $f=0, G_{0} \oplus G_{1}$ with $2(=f+2)$ faulty elements has a hamiltonian cycle unless one faulty element is contained in G_{0} and the other faulty element is contained in G_{1}.

Contrary to the previous two lemmas, we can obtain fault-hamiltonicity of $G_{0} \oplus G_{1}$ which holds true for any $f \geq 0$, if we reduce the bound on the number of faulty elements in $G_{0} \oplus G_{1}$ by one. The last lemma is concerned with fault-hamiltonicity of $H_{0} \oplus H_{1}$, which also holds true for any $f \geq 0$.

Lemma 6 [25] Let a graph G_{i} be f-fault hamiltonian-connected and $f+1$-fault hamiltonian, $i=0,1$. Then,
(a) for any $f \geq 0, G_{0} \oplus G_{1}$ is f-fault hamiltonian-connected, and
(b) for any $f \geq 0, G_{0} \oplus G_{1}$ is $f+1$-fault hamiltonian.

Lemma 7 [25] Let a graph G_{i} be f-fault hamiltonian-connected and $f+1$-fault hamiltonian, $i=$ $0,1,2,3$, and let $H_{0}=G_{0} \oplus G_{1}$ and $H_{1}=G_{2} \oplus G_{3}$. Then,
(a) for any $f \geq 0, H_{0} \oplus H_{1}$ is $f+2$-fault hamiltonian-connected, and
(b) for any $f \geq 0, H_{0} \oplus H_{1}$ is $f+3$-fault hamiltonian.

3.2 Free bridges

Lemma 8 Let $G_{0} \oplus G_{1}$ have k source-sink pairs and at most f faulty elements such that $f+2 k \leq \Delta-1$, where Δ is the minimum degree of $G_{0} \oplus G_{1}$.
(a) For any terminal w in $G_{0} \oplus G_{1}$, there exists a free bridge of w.
(b) For any set of terminals $W_{l}=\left\{w_{1}, w_{2}, \ldots, w_{l}\right\}$ in G_{0} such that $l \leq 2 k$, there exist l pairwise disjoint free bridges of w_{i} 's, $1 \leq i \leq l$.
(c) For a single terminal w_{1} in G_{1} and a set of terminals $W_{l} \backslash w_{1}=\left\{w_{2}, w_{3}, \ldots, w_{l}\right\}$ in G_{0} such that $l \leq 2 k$, there exist l pairwise disjoint free bridges of $w_{i} ' s, 1 \leq i \leq l$.

Proof There are at least Δ candidates for a free bridge of w, and at most $f+2 k-1$ elements (f faulty elements and $2 k-1$ terminals other than w) can "block" the candidates. Since each element blocks at most one candidate, there are at least $\Delta-(f+2 k-1) \geq 2$ nonblocked candidates, and thus (a) is proved. We prove (b) by induction on l. Before going on, we need some definitions. We call vertices v and \bar{v} and an edge joining them collectively a column of v. When $(v, \bar{v})(\operatorname{resp} .(v, w, \bar{w}))$ is the free bridge of v, we say that the free bridge occupies a column of v (resp. two columns of v and w). We are to construct free bridges for W_{l} satisfying a condition that the number of occupied columns $c(l)$ is less than or equal to $f(l)+t(l)$, where $f(l)$ and $t(l)$ are the numbers of faulty elements and terminals contained in the $c(l)$ occupied columns, respectively. When $l=1$, there exists a free bridge
which satisfies the condition. Assume that there exist pairwise disjoint free bridges for $W_{l-1}=W \backslash w_{l}$ satisfying the condition. If $\left(w_{l}, \bar{w}_{l}\right)$ is the free bridge of w_{l}, we are done. Suppose otherwise. There are Δ candidates for a free bridge, and the number of blocking elements is at most $c(l-1)$ plus the number of terminals and faulty elements which are not contained in the $c(l-1)$ occupied columns. Thus, the number of blocking elements is at most $f+2 k-1$, which implies the existence of pairwise disjoint free bridges for W_{l}. Obviously, $c(l)=c(l-1)+2$ and $f(l)+t(l) \geq f(l-1)+t(l-1)+2$, and thus it satisfies the condition.

Now, let us prove (c). If $\left(w_{1}, \bar{w}_{1}\right)$ is the free bridge of w_{1}, it occupies one column. If (w_{1}, x, \bar{x}) is the free bridge of w_{1} and $\bar{w}_{1} \notin W_{l}$, it occupies two columns. For these cases, in the same way as the proof of (b), we can construct pairwise disjoint free bridges satisfying the above condition. When (w_{1}, x, \bar{x}) is the free bridge of w_{1} and $\bar{w}_{1} \in W_{l}$, letting $w_{2}=\bar{w}_{1}$ without loss of generality, we first find pairwise disjoint free bridges of w_{1} and w_{2}. They occupy three columns, that is, $c(2)=3$. We proceed to construct free bridges with a relaxed condition that $c(l) \leq f(l)+t(l)+1$. This relaxation does not cause any problem since the number of blocking elements is at most $f+2 k$, still less than the number of candidates for a free bridge, Δ.

Remark 2 According to the proof of Lemma 8 (a) and (b), we have at least two choices when we find free bridges of terminals contained in one component.

Remark 3 If G_{i} satisfies the conditions of Theorem 2 or 3 , then $f+2 k \leq \delta-1$, where $\delta=\min _{i} \delta\left(G_{i}\right)$. Concerned with Theorem 2, free bridges of type Lemma 8 (b) and (c) exist in $G_{0} \oplus G_{1}$ since $(f+1)+2 k \leq$ $\delta\left(G_{0} \oplus G_{1}\right)-1$. Concerned with Theorem 3, free bridges of the two types also exist in $H_{0} \oplus H_{1}$ since $f+2(k+1) \leq \delta\left(H_{0} \oplus H_{1}\right)-1$.

3.3 Five basic procedures

In a graph $C_{0} \oplus C_{1}$ with two components C_{0} and C_{1}, we are to define some notation. When we are concerned with Theorem 2, C_{0} and C_{1} correspond to G_{0} and G_{1}, respectively. When we are concerned with Theorem 3, C_{0} and C_{1} correspond to H_{0} and H_{1}, respectively. We denote by V_{0} and V_{1} the sets of vertices in C_{0} and C_{1}, respectively. We let F_{0} and F_{1} be the sets of faulty elements in C_{0} and C_{1}, respectively, and let F_{2} be the set of faulty edges joining vertices in C_{0} and vertices in C_{1}. Let $f_{i}=\left|F_{i}\right|$ for $i=0,1,2$.

We denote by R the set of source-sink pairs in $C_{0} \oplus C_{1}$. It is assumed that $|R| \geq 2$ in this subsection. We also denote by k_{i} the number of source-sink pairs in $C_{i}, i=0,1$, and by k_{2} the number of source-sink pairs between C_{0} and C_{1}. Without loss of generality, we assume that $k_{0} \geq k_{1}$. We let $I_{0}=\left\{1,2, \ldots, k_{0}\right\}$, $I_{2}=\left\{k_{0}+1, k_{0}+2, \ldots, k_{0}+k_{2}\right\}$, and $I_{1}=\left\{k_{0}+k_{2}+1, k_{0}+k_{2}+2, \ldots, k_{0}+k_{2}+k_{1}\right\}$. We assume that $\left\{s_{j}, t_{j} \mid j \in I_{0}\right\} \cup\left\{s_{j} \mid j \in I_{2}\right\} \subseteq V_{0}$ and $\left\{s_{j}, t_{j} \mid j \in I_{1}\right\} \cup\left\{t_{j} \mid j \in I_{2}\right\} \subseteq V_{1}$. Among the k_{2} sources s_{j} 's, $j \in I_{2}$, we assume that the free bridges of k_{2}^{\prime} sources are of length one and the free bridges of $k_{2}^{\prime \prime}\left(=k_{2}-k_{2}^{\prime}\right)$ sources are of length two.

First three procedures DPC-A, DPC-B, and DPC-C are applicable when $k_{0} \geq 1$, and the last two procedures DPC-D and DPC-E are applicable when $k_{2}=|R|$ (equivalently, $k_{0}=k_{1}=0$). We denote by B_{v} the free bridge of a vertex v.

Procedure DPC-A $\left(C_{0} \oplus C_{1}, R, F\right)$
UNDER the condition of $1 \leq k_{0}<|R|$. See Figure 2(a).

1. Find pairwise disjoint free bridges $B_{s_{j}}$ of s_{j} for all $j \in I_{2}$, and let $B_{s_{j}}=\left(s_{j}, \ldots, s_{j}^{\prime}\right)$.
2. Find k_{0} - $\operatorname{DPC}\left[\left\{\left(s_{j}, t_{j}\right) \mid j \in I_{0}\right\} \mid C_{0}, F_{0} \cup F^{\prime}\right]$, where $F^{\prime}=V_{0} \cap \bigcup_{j \in I_{2}} V\left(B_{s_{j}}\right)$.
3. Find $k_{1}+k_{2}$ - $\mathrm{DPC}\left[\left\{\left(s_{j}^{\prime}, t_{j}\right) \mid j \in I_{2}\right\} \cup\left\{\left(s_{j}, t_{j}\right) \mid j \in I_{1}\right\} \mid C_{1}, F_{1}\right]$.
4. Merge the two DPC's with the free bridges.

Procedure DPC-B $\left(C_{0} \oplus C_{1}, R, F\right)$
UNDER the condition of $k_{0}=|R|$. See Figure 2(b).

1. Let s_{1} and t_{1} be a pair such that $\left|X_{1}\right| \leq\left|X_{j}\right|$ for all $j \in I_{0}$, where $X_{j}=V_{0} \cap\left\{V\left(B_{s_{j}}\right) \cup V\left(B_{t_{j}}\right)\right\}$. Find pairwise disjoint free bridges $B_{s_{1}}$ and $B_{t_{1}}$, and let $B_{s_{1}}=\left(s_{1}, \ldots, s_{1}^{\prime}\right)$ and $B_{t_{1}}=\left(t_{1}, \ldots, t_{1}^{\prime}\right)$.
2. Find $k_{0}-1$-DPC $\left[\left\{\left(s_{j}, t_{j}\right) \mid j \in I_{0} \backslash 1\right\} \mid C_{0}, F_{0} \cup X_{1}\right]$.
3. Find $H\left[s_{1}^{\prime}, t_{1}^{\prime} \mid C_{1}, F_{1}\right]$.
4. Merge the $k_{0}-1-\mathrm{DPC}$ and the hamiltonian path with the free bridges.

Keep in mind that under the condition of procedure DPC-C below, for every $s_{j}, j \in I_{2}, \overline{s_{j}}=t_{j^{\prime}}$ for some $j^{\prime} \in I_{2}$, and thus for every other fault-free vertex v in $C_{0},(v, \bar{v})$ is the free bridge of v.

Procedure DPC-C $\left(C_{0} \oplus C_{1}, R, F\right)$
UNDER the condition that $k_{0} \geq 1, k_{1}=0, k_{2}^{\prime}=0$, and all the faulty elements are contained in C_{0}. See Figure 2 (c) and (d).

Figure 2: Illustration of the five basic procedures.

1. When $k_{0} \geq 2$, find pairwise disjoint free bridges $B_{t_{2}}, B_{s_{j}}$ and $B_{t_{j}}$ for all $j \in I_{0} \backslash\{1,2\}$, and $B_{s_{i}}$ for all $i \in I_{2}$, and let $B_{t_{2}}=\left(t_{2}, t_{2}^{\prime}\right), B_{s_{j}}=\left(s_{j}, s_{j}^{\prime}\right), B_{t_{j}}=\left(t_{j}, t_{j}^{\prime}\right)$, and $B_{s_{i}}=\left(s_{i}, \ldots, s_{i}^{\prime}\right)$. When $k_{0}=1$, find pairwise disjoint free bridges $B_{s_{j}}$ for all $j \in I_{2} \backslash 2$, and let $B_{s_{j}}=\left(s_{j}, \ldots, s_{j}^{\prime}\right)$.
2. Find $H\left[s_{2}, t_{1} \mid C_{0}, F_{0} \cup F^{\prime}\right]$, where $F^{\prime}=V_{0} \cap\left[V\left(B_{t_{2}}\right) \cup \bigcup_{j \in I_{0} \backslash\{1,2\}}\left(V\left(B_{s_{j}}\right) \cup V\left(B_{t_{j}}\right)\right) \cup \bigcup_{j \in I_{2}} V\left(B_{s_{j}}\right)\right]$ if $k_{0} \geq 2$; otherwise, $F^{\prime}=\left\{\left(s_{2}, s_{1}\right)\right\} \cup\left(V_{0} \cap \bigcup_{j \in I_{2} \backslash 2} V\left(B_{s_{j}}\right)\right)$. Let the hamiltonian path be $\left(s_{2}, \ldots, z, s_{1}, \ldots, t_{1}\right)$.
3. Let $u=t_{2}^{\prime}$ if $k_{0} \geq 2$; otherwise, $u=t_{2}$. Find $k_{0}+k_{2}-1-\operatorname{DPC}\left[\{(\bar{z}, u)\} \cup\left\{\left(s_{j}^{\prime}, t_{j}^{\prime}\right) \mid j \in I_{0} \backslash\{1,2\}\right\} \cup\right.$ $\left.\left\{\left(s_{j}^{\prime}, t_{j}\right) \mid j \in I_{2} \backslash 2\right\} \mid C_{1}, \emptyset\right]$.
4. Merge the hamiltonian path and the $k_{0}+k_{2}-1$-DPC with the free bridges and the edge (z, \bar{z}). Discard the edge $\left(z, s_{1}\right)$.

Procedures DPC-D and DPC-E are concerned with the case of $k_{2}=|R|$. Without loss of generality, we assume $f_{0} \geq f_{1}$. This does not conflict with the assumption of $k_{0} \geq k_{1}$.

Procedure DPC-D $\left(C_{0} \oplus C_{1}, R, F\right)$
UNDER the condition that $k_{2}=|R|\left(k_{0}=k_{1}=0\right)$. See Figure 2(e).

1. If $k_{2}^{\prime \prime} \geq 1$, we assume that $\left(s_{1}, \bar{s}_{1}\right)$ is not the free bridge of s_{1}. Find pairwise disjoint free bridges $B_{t_{1}}$ and $B_{s_{j}}$ for all $j \in I_{2} \backslash 1$, and let $B_{t_{1}}=\left(t_{1}, \ldots, t_{1}^{\prime}\right)$ and $B_{s_{j}}=\left(s_{j}, \ldots, s_{j}^{\prime}\right)$.
2. Find $H\left[s_{1}, t_{1}^{\prime} \mid C_{0}, F_{0} \cup F^{\prime}\right]$, where $F^{\prime}=V_{0} \cap \bigcup_{j \in I_{2} \backslash 1} V\left(B_{s_{j}}\right)$.
3. Find $k_{2}-1$ - DPC $\left[\left\{\left(s_{j}^{\prime}, t_{j}\right) \mid j \in I_{2} \backslash 1\right\} \mid C_{1}, F_{1} \cup F^{\prime \prime}\right]$, where $F^{\prime \prime}=V_{1} \cap V\left(B_{t_{1}}\right)$.
4. Merge the hamiltonian path and the $k_{2}-1$-DPC with the free bridges.

Observe that under the condition of procedure DPC-E below, for every source s_{j} in $C_{0}, \overline{s_{j}}=t_{j^{\prime}}$ for some $j^{\prime} \in I_{2}$, and thus for any free vertex v in $C_{0},(v, \bar{v})$ is a free edge.

Procedure DPC-E $\left(C_{0} \oplus C_{1}, R, F\right)$

UNDER the condition that $k_{2}=|R|, k_{2}^{\prime}=0$, and all the faulty elements are contained in C_{0}. See Figure 2(f).

1. Find pairwise disjoint free bridges $B_{t_{1}}$ and $B_{s_{j}}$ for all $j \in I_{2} \backslash\{1,2\}$, and let $B_{t_{1}}=\left(t_{1}, \ldots, t_{1}^{\prime}\right)$ and $B_{s_{j}}=\left(s_{j}, \ldots, s_{j}^{\prime}\right)$.
2. Find $H\left[s_{2}, t_{1}^{\prime} \mid C_{0}, F_{0} \cup F^{\prime}\right]$, where $F^{\prime}=\left\{\left(s_{1}, s_{2}\right)\right\} \cup\left(V_{0} \cap \bigcup_{j \in I_{2} \backslash\{1,2\}} V\left(B_{s_{j}}\right)\right)$. Let the hamiltonian path be $\left(s_{2}, \ldots, z, s_{1}, \ldots, t_{1}^{\prime}\right)$.
3. Find $k_{2}-1$-DPC $\left[\left\{\left(\bar{z}, t_{2}\right)\right\} \cup\left\{\left(s_{j}^{\prime}, t_{j}\right) \mid j \in I_{2} \backslash\{1,2\}\right\} \mid C_{1}, F^{\prime \prime}\right]$, where $F^{\prime \prime}=V_{1} \cap V\left(B_{t_{1}}\right)$.
4. Merge the hamiltonian path and the $k_{2}-1$-DPC with the free bridges. Discard the edge $\left(s_{1}, z\right)$.

3.4 Proof of Theorem 2

Since G_{i} is $f+2 k-2$-fault hamiltonian-connected and $f+2 k-1$-fault hamiltonian, by Lemma 5 (a), $G_{0} \oplus G_{1}$ is $f+2 k$-fault hamiltonian. To show that $G_{0} \oplus G_{1}$ is many-to-many $(f+1, k)$-disjoint path coverable, it suffices to prove that $G_{0} \oplus G_{1}$ is $f+1$-fault many-to-many k-disjoint path coverable. The fact that $G_{0} \oplus G_{1}$ is $f+3$-fault many-to-many k-1-disjoint path coverable can be derived from that each G_{i} is many-to-many $(f+2, k-1)$-disjoint path coverable and $f+2 k-1$-fault hamiltonian, and so forth. For $k=1$ and $f \geq 2$, the theorem is exactly the same as Lemma 4(a). Thus, we assume that

$$
k \geq 2, f_{0}+f_{1}+f_{2} \leq f+1, \text { and } k_{0}+k_{1}+k_{2}=k .
$$

Lemmas 9,10 , and 11 are concerned with $k_{0} \geq 1$, and Lemmas 12 and 13 are concerned with $k_{2}=k$.

Lemma 9 When $1 \leq k_{0}<k$, Procedure DPC- $A\left(G_{0} \oplus G_{1}, R, F\right)$ constructs an $f+1$-fault k-DPC unless $f_{0}=f+1, k_{1}=0$, and $k_{2}^{\prime}=0$.

Proof The existence of pairwise disjoint free bridges in step 1 is due to Lemma 8(b). Unless $f_{0}=f+1$, $k_{1}=0$, and $k_{2}^{\prime}=0, G_{0}$ is $f_{0}+k_{2}^{\prime}+2 k_{2}^{\prime \prime}$-fault k_{0}-disjoint path coverable since $2 k_{0}+f_{0}+k_{2}^{\prime}+2 k_{2}^{\prime \prime} \leq 2 k+f$, and thus there exists a k_{0}-DPC in step 2 . Similarly, G_{1} is f_{1}-fault $k_{1}+k_{2}$-disjoint path coverable since $2 k_{1}+2 k_{2}+f_{1} \leq 2 k+f$. This completes the proof of the lemma.

Lemma 10 When $k_{0}=k$, Procedure $D P C$ - $B\left(G_{0} \oplus G_{1}, R, F\right)$ constructs an $f+1$-fault k-DPC unless $f_{0}=f+1\left(k_{1}=0\right.$ and $\left.k_{2}^{\prime}=0\right)$.

Proof To prove the existence of a $k-1$-DPC in step 2, we will show that $f_{0}+\left|X_{1}\right| \leq f+2$. When $\left|X_{1}\right|=2$, the inequality holds true unless $f_{0}=f+1$. When $\left|X_{1}\right|=3$, the number $f_{1}+f_{2}$ of faulty elements in G_{1} or between G_{0} and G_{1} is at least $k(\geq 2)$, and thus $f_{0}+3 \leq f_{0}+f_{1}+f_{2}+1 \leq f+2$. When $\left|X_{1}\right|=4$, analogously to the previous case, $f_{0}+4 \leq f_{0}+f_{1}+f_{2}<f+2$ since $f_{1}+f_{2} \geq 2 k$. The existence of a hamiltonian path joining s_{1}^{\prime} and t_{1}^{\prime} is due to the fact that $f_{1} \leq f+2 k-2$.

Lemma 11 When $k_{0} \geq 1, f_{0}=f+1, k_{1}=0$, and $k_{2}^{\prime}=0$, Procedure DPC-C $\left(G_{0} \oplus G_{1}, R, F\right)$ constructs an $f+1$-fault k-DPC.

Proof Whether $k_{0} \geq 2$ or not, it holds true that $f_{0}+\left|F^{\prime}\right| \leq f+1+2(k-2)+1=f+2 k-2$, which implies the existence of a hamiltonian path in step 2. By the construction, (z, \bar{z}) is the free bridge of z. Note that $z \neq s_{2}$ when $k_{0}=1$. The existence of a $k-1$-DPC in step 3 is straightforward.

Lemma 12 When $k_{2}=k$, Procedure $D P C-D\left(G_{0} \oplus G_{1}, R, F\right)$ constructs an $f+1$-fault k-DPC unless $f_{0}=f+1$ and $k_{2}^{\prime}=0$.

Proof The existence of pairwise disjoint free bridges is due to Lemma 8(c). To prove the existence of the hamiltonian path, we will show that $f_{0}+\left|F^{\prime}\right| \leq f+2 k-2$. When $k_{2}^{\prime \prime} \geq 1, f_{0}+\left|F^{\prime}\right|=f_{0}+2\left(k_{2}^{\prime \prime}-\right.$ 1) $+k_{2}^{\prime} \leq f+2 k-2$ unless $f_{0}=f+1$ and $k_{2}^{\prime}=0$. When $k_{2}^{\prime \prime}=0, f_{0}+\left|F^{\prime}\right|=f_{0}+k_{2}^{\prime}-1 \leq f+2 k-2$. The existence of $k_{2}-1$-DPC in step 3 is due to that $f_{1}+\left|F^{\prime \prime}\right| \leq f+2$. Note that the assumption of $f_{0} \geq f_{1}$ implies that $f_{1}<f+1$.

Lemma 13 When $k_{2}=k, f_{0}=f+1$, and $k_{2}^{\prime}=0$, Procedure $\operatorname{DPC}-E\left(G_{0} \oplus G_{1}, R, F\right)$ constructs an $f+1$-fault k-DPC.

Proof The existence of the hamiltonian path is due to the fact that $f_{0}+\left|F^{\prime}\right|=f_{0}+2\left(k_{2}-2\right)+1 \leq$ $f+2 k-2$. Note that z is different from s_{1} and s_{2}, and thus (z, \bar{z}) is a free edge. The existence of the $k_{2}-1$-DPC is straightforward.

3.5 Proof of Theorem 3 for $k \geq 2$ and $f \geq 0$ or for $k=1$ and $f \geq 2$

By Lemma 7, $H_{0} \oplus H_{1}$ is $f+2 k$-fault hamiltonian-connected and $f+2 k+1$-fault hamiltonian since each G_{i} is $f+2 k-2$-fault hamiltonian-connected and $f+2 k-1$-fault hamiltonian. To show that
$H_{0} \oplus H_{1}$ is many-to-many $(f, k+1)$-disjoint path coverable, it is sufficient to prove that $H_{0} \oplus H_{1}$ is f-fault many-to-many $k+1$-disjoint path coverable. From that each G_{i} is many-to-many $(f+2, k-1)$ disjoint path coverable and $f+2 k$ - 1 -fault hamiltonian, we can conclude that $H_{0} \oplus H_{1}$ is $f+2$-fault many-to-many k-disjoint path coverable, and so forth.

For any $k \geq 2$ and $f \geq 0$ or for any $k=1$ and $f \geq 2, H_{i}, i=0,1$, is many-to-many $(f+1, k)$-disjoint path coverable and $f+2 k$-fault hamiltonian by Theorem 2 . In this subsection, by utilizing mainly these properties of H_{i}, we are to prove Theorem 3 for any $k \geq 1$ and $f \geq 0$ except only when $k=1$ and $f=0,1$. We assume that

$$
f_{0}+f_{1}+f_{2} \leq f \text { and } k_{0}+k_{1}+k_{2}=k+1
$$

Similar to the proof of Theorem 2, Lemmas 14, 15, and 16 are concerned with $k_{0} \geq 1$, and Lemmas 17 and 19 are concerned with $k_{2}=k+1$.

Lemma 14 When $1 \leq k_{0}<k+1$, Procedure DPC- $A\left(H_{0} \oplus H_{1}, R, F\right)$ constructs an f-fault $k+1$-DPC unless $f_{0}=f, k_{1}=0$, and $k_{2}^{\prime}=0$.

Proof Unless $f_{0}=f, k_{1}=0$, and $k_{2}^{\prime}=0, H_{0}$ is $f_{0}+k_{2}^{\prime}+2 k_{2}^{\prime \prime}$-fault k_{0}-disjoint path coverable since $2 k_{0}+f_{0}+k_{2}^{\prime}+2 k_{2}^{\prime \prime} \leq 2 k+f+1$, and thus there exists a k_{0}-DPC in step 2 . Similarly, H_{1} is f_{1}-fault $k_{1}+k_{2}$-disjoint path coverable since $2 k_{1}+2 k_{2}+f_{1} \leq 2 k+f+1$.

Lemma 15 When $k_{0}=k+1$, Procedure $D P C-B\left(H_{0} \oplus H_{1}, R, F\right)$ constructs an f-fault $k+1$-DPC unless $f_{0}=f\left(k_{1}=0\right.$ and $\left.k_{2}^{\prime}=0\right)$.
Proof To prove the existence of a k-DPC in step 2, we will show that $f_{0}+\left|X_{1}\right| \leq f+1$. When $\left|X_{1}\right|=2$, the inequality holds true unless $f_{0}=f$. When $\left|X_{1}\right|=3$, it holds true that $f_{1}+f_{2} \geq k+1$, and thus $f_{0}+3 \leq f_{0}+f_{1}+f_{2}+1 \leq f+1$. When $\left|X_{1}\right|=4, f_{0}+4 \leq f_{0}+f_{1}+f_{2}<f+1$ since $f_{1}+f_{2} \geq 2(k+1)$. Obviously, there exists a hamiltonian path in H_{1} joining s_{1}^{\prime} and t_{1}^{\prime}.

Lemma 16 When $k_{0} \geq 1, f_{0}=f, k_{1}=0$, and $k_{2}^{\prime}=0$, Procedure $\operatorname{DPC}-C\left(H_{0} \oplus H_{1}, R, F\right)$ constructs an f-fault $k+1$-DPC.

Proof There exists a hamiltonian path in H_{0} joining s_{2} and t_{1} since $f_{0}+\left|F^{\prime}\right| \leq f+2(k-1)+1=$ $f+2 k-1$. The existence of a k-DPC in step 3 is straightforward.

Hereafter in this subsection, we have $k_{2}=k+1\left(k_{0}=k_{1}=0\right)$. Due to Lemma 8(a) and Remark 2, we assume that $F^{\prime \prime}$ defined in step 3 of Procedures DPC-D and DPC-E is a subset of $V\left(G_{2}\right)$ or $V\left(G_{3}\right)$. That is, $F^{\prime \prime} \cap V\left(G_{2}\right) \neq \emptyset$ if and only if $F^{\prime \prime} \cap V\left(G_{3}\right)=\emptyset$.

Lemma 17 When $k_{2}=k+1$, Procedure $D P C-D\left(H_{0} \oplus H_{1}, R, F\right)$ constructs an f-fault $k+1$-DPC unless $f_{0}=f$ and $k_{2}^{\prime}=0$.

Proof To prove the existence of a hamiltonian path in H_{0}, we will show that $f_{0}+\left|F^{\prime}\right| \leq f+2 k-1$. When $k_{2}^{\prime \prime} \geq 1, f_{0}+\left|F^{\prime}\right|=f_{0}+2\left(k_{2}^{\prime \prime}-1\right)+k_{2}^{\prime} \leq f+2 k-1$ unless $f_{0}=f$ and $k_{2}^{\prime}=0$. When $k_{2}^{\prime \prime}=0$, $f_{0}+\left|F^{\prime}\right|=f_{0}+k_{2}^{\prime}-1 \leq f+2 k-1$. Now, let us consider the existence of a $k_{2}-1$-DPC in step 3. When $f \geq 1$ or $\left|F^{\prime \prime}\right|=1$, there exists a $k_{2}-1$-DPC in H_{1} since $f_{1}+\left|F^{\prime \prime}\right| \leq f+1$. Note that from the assumption of $f_{0} \geq f_{1}$, if $f \geq 1$, then $f_{1}<f$. When $f=0$ and $\left|F^{\prime \prime}\right|=2(k \geq 2$ by the assumption of $k \geq 2$ and $f \geq 0$ or $k=1$ and $f \geq 2$), the existence of a $k_{2}-1$-DPC is due to the following Lemma 18.

Lemma 18 For any $k \geq 2$, if G_{i} is many-to-many $(0, k)$-disjoint path coverable and $2 k-1$-fault hamiltonian for each $i=0,1$, then $G_{0} \oplus G_{1}$ with two faulty vertices in G_{0} and no other faulty elements is many-to-many k-disjoint path coverable.

The proof of Lemma 18 is omitted due to space limit. Of course, Lemma 18 does not say that $G_{0} \oplus G_{1}$ is 2-fault many-to-many k-disjoint path coverable. Note that the total number $2+2 k$ of faulty elements and terminals is not always less than or equal to $\delta\left(G_{0} \oplus G_{1}\right)-1$. However, we can prove the lemma by utilizing the fact that the fault distribution is restrictive, that is, the two faulty elements are vertices contained in G_{0}. Furthermore, Remark 2 is useful when we are to find pairwise disjoint free bridges of some terminals in $G_{0} \oplus G_{1}$.

Lemma 19 When $k_{2}=k+1, f_{0}=f$, and $k_{2}^{\prime}=0$, Procedure $\operatorname{DPC}-E\left(H_{0} \oplus H_{1}, R, F\right)$ constructs an f-fault $k+1-D P C$.

Proof There exists a hamiltonian path in H_{0} joining s_{2} and t_{1}^{\prime} since $f_{0}+\left|F^{\prime}\right|=f_{0}+2\left(k_{2}-2\right)+1=$ $f+2 k-1$. When $f \geq 1$, there exists a $k_{2}-1$-DPC in H_{1} since $\left|F^{\prime \prime}\right|=2 \leq f+1$. When $f=0$ (and $\left|F^{\prime \prime}\right|=2$), the existence of a $k_{2}-1$-DPC is due to Lemma 18 .

3.6 Proof of Theorem 3 for $k=1$ and $f=0,1$

In $H_{0} \oplus H_{1}$, where $H_{0}=G_{0} \oplus G_{1}$ and $H_{1}=G_{2} \oplus G_{3}, H_{0}$ and H_{1} are called components and G_{i} 's, $0 \leq i \leq 3$, are called subcomponents. Throughout this paper, when we are concerned with $H_{0} \oplus H_{1}$, we denote by V_{0} and V_{1} the sets of vertices in H_{0} and in H_{1}, respectively, and E_{2} the set of edges joining vertices in H_{0} and vertices in $H_{1} . V\left(G_{i}\right)$ denotes the set of vertices in G_{i}, and $E_{i, j}$ denotes the set
of edges joining vertices in G_{i} and vertices in $G_{j}, i \neq j$. We denote by F_{0} and F_{1} the sets of faulty elements in H_{0} and in H_{1}, respectively, F_{2} the set of faulty edges in E_{2}, and let $f_{i}=\left|F_{i}\right|, i=0,1,2$. We let $l_{i, j}=\left|E_{i, j}\right|$ and $n=\left|V\left(G_{i}\right)\right|$. Observe that $l_{0,1}=l_{2,3}=n, l_{0,2}+l_{0,3}=l_{1,2}+l_{1,3}=n, l_{0,2}=l_{1,3}$, and $l_{0,3}=l_{1,2}$. For a vertex v in $H_{0} \oplus H_{1}$, we denote by \bar{v} the vertex adjacent to v which is in a component different from the component in which v is contained, and denote by \hat{v} the vertex which is adjacent to v and contained in the same component with v and in a different subcomponent from v.

Contrary to the proofs given in Subsection 3.5, we can not employ Theorem 2. Instead, Lemma 4 (b) and (c) and Lemma 6 are utilized repeatedly in this subsection. By Lemma 7, it remains to show that $H_{0} \oplus H_{1}$ is f-fault many-to-many $k+1$-disjoint path coverable. We assume that

$$
f_{0}+f_{1}+f_{2} \leq f \leq 1 \text { and } k_{0}+k_{1}+k_{2}=k+1=2
$$

It is also assumed that $k_{0} \geq k_{1}$. Lemmas 20, 21, and 22 are concerned with $k_{0} \geq 1$, and Lemmas 23 and 24 are concerned with $k_{2}=2\left(k_{0}=k_{1}=0\right)$.

Lemma 20 When $k_{0}=1$, an f-fault 2-DPC can be constructed unless $f_{0}=f, k_{1}=0$, and $k_{2}^{\prime}=0$.
Proof We are going to utilize Procedure DPC-A $\left(H_{0} \oplus H_{1}, R, F\right)$. Note that $f_{0}+\left|F^{\prime}\right| \leq f+1$ unless $f_{0}=f, k_{1}=0$, and $k_{2}^{\prime}=0$. When there exists $P_{0}=H\left[s_{1}, t_{1} \mid H_{0}, F_{0} \cup F^{\prime}\right]$, we are done since due to Lemma 6 , there exists $H\left[s_{2}, t_{2} \mid H_{1}, F_{1}\right]$ or $H\left[s_{2}^{\prime}, t_{2} \mid H_{1}, F_{1}\right]$ depending on whether $k_{1}=1$ or not. If $k_{1}=1$, then $F^{\prime}=\emptyset$ and P_{0} always exists by Lemma 6. Thus, we assume that $k_{1}=0$ and $k_{2}=1$. Suppose P_{0} does not exist. By Lemma $4(\mathrm{~b})$ and (c), both s_{1} and t_{1} are contained in the same subcomponent, say G_{0}, and $F_{0} \cup F^{\prime}$ is contained in G_{1}. Let (x, \bar{x}) be a free edge such that x is in G_{1}. Three hamiltonian paths $H\left[s_{1}, t_{1} \mid G_{0}, F_{0}\right], H\left[s_{2}, x \mid G_{1}, F_{0}\right], H\left[\bar{x}, t_{2} \mid H_{1}, F_{1}\right]$, and the edge (x, \bar{x}) constitute a 2-DPC.

Lemma 21 When $k_{0}=2$, an f-fault 2-DPC can be constructed unless $f_{0}=f\left(k_{1}=0, k_{2}^{\prime}=0\right)$.
Proof We utilize Procedure DPC-B $\left(H_{0} \oplus H_{1}, R, F\right)$. Observe $\left|X_{1}\right|=2$. Unless $f_{0}=f$, it holds true that $f_{0}+\left|X_{1}\right| \leq f+1$. When there exists $P_{0}=H\left[s_{2}, t_{2} \mid H_{0}, F_{0} \cup X_{1}\right]$, we are done. Suppose P_{0} does not exist. By Lemma $4(\mathrm{~b})$ and (c), we assume that s_{1} and t_{1} are contained in G_{0}, and that s_{2} and t_{2} are contained in G_{1}. A hamiltonian path $H\left[s_{2}, t_{2} \mid G_{1}, F_{0}\right]$ forms an $s_{2}-t_{2}$ path. It remains to construct an $s_{1}-t_{1}$ path. Find a hamiltonian cycle C_{0} in $G_{0} \backslash F_{0} \cup\left\{s_{1}\right\}$ and let $C_{0}=\left(t_{1}, x, \ldots, y\right)$. Assuming (x, \bar{x}) is a free edge, an $s_{1}-t_{1}$ path is $\left(s_{1}, H\left[\overline{s_{1}}, \bar{x} \mid H_{1}, F_{1}\right], C_{0} \backslash\left(t_{1}, x\right)\right)$. Note that by the choice of s_{1} and t_{1}, $\left(s_{1}, \overline{s_{1}}\right)$ is the free bridge of s.

Lemma 22 When $k_{0} \geq 1, f_{0}=f, k_{1}=0$, and $k_{2}^{\prime}=0$, an f-fault $2-D P C$ can be constructed.
Proof We utilize DPC-C $\left(H_{0} \oplus H_{1}, R, F\right)$. If there exists $P_{0}=H\left[s_{2}, t_{1} \mid H_{0}, F_{0} \cup F^{\prime}\right]$, the proof is completed. Note that when $k_{0}=1, P_{0}$ always exists since it is impossible that s_{2} and t_{1} are contained in one subcomponent and the virtual faulty edge $\left(s_{2}, s_{1}\right)$ is contained in the other subcomponent. Suppose P_{0} does not exist. Then, $k_{0}=2$. We assume that s_{2} and t_{1} are contained in G_{0} and that t_{2} is contained in G_{1}. If we reutilize Procedure DPC-C with the roles of s_{2} and t_{2} interchanged, we can construct an f-fault 2-DPC. To be specific, we find a hamiltonian path $P_{0}^{\prime}=H\left[t_{2}, t_{1} \mid H_{0}, F_{0} \cup\left\{s_{2}\right\}\right]$, letting $P_{0}^{\prime}=\left(t_{2}, \ldots, z, s_{1}, \ldots, t_{1}\right)$, and then find $H\left[\bar{s}_{2}, \bar{z} \mid H_{1}, \emptyset\right]$ and merge them. Since t_{2} and t_{1} are contained in different subcomponents, P_{0}^{\prime} always exists.

Now, let us consider the case when $k_{2}=2\left(k_{0}=k_{1}=0\right)$. Remember that $n \geq f+4$ since each G_{i} is f-fault hamiltonian-connected and $f+1$-fault hamiltonian. We denote by P^{R} the reverse of a path P, that is, $P^{R}=\left(v_{l}, v_{l-1}, \ldots, v_{1}\right)$ for $P=\left(v_{1}, v_{2}, \ldots, v_{l}\right)$. Hereafter in this subsection, we denote by P_{j} an $s_{j}-t_{j}$ path, $j=1,2$.

Lemma 23 When $k_{2}=2$, an f-fault 2-DPC can be constructed unless $f_{0}=f$ and $k_{2}^{\prime}=0$.
Proof We assume $f_{0} \geq f_{1}$. It follows that $f_{1}=0$. We will utilize $\operatorname{DPC}-\mathrm{D}\left(H_{0} \oplus H_{1}, R, F\right)$. Unless $f_{0}=f$ and $k_{2}^{\prime}=0$, it holds true that $f_{0}+\left|F^{\prime}\right| \leq f+1$. Except for the case that $f=0$ and $\left|F^{\prime \prime}\right|=2$, it also holds true that $f_{1}+\left|F^{\prime \prime}\right|=\left|F^{\prime \prime}\right| \leq f+1$. The exceptional case is equivalent to that $f=0,\left(s_{1}, t_{1}\right)$ is an edge, and $k_{2}^{\prime}=1$ since (i) we need not consider the case that $f=0$ and $k_{2}^{\prime}=0$ in this proof and (ii) Procedure DPC-D chooses s_{1} such that $\left(s_{1}, \bar{s}_{1}\right)$ is not the free bridge of s_{1}, if possible. For the exceptional case, employing Lemma $7\left(\right.$ a), we have $P_{1}=\left(s_{1}, t_{1}\right)$ and $P_{2}=H\left[s_{2}, t_{2} \mid H_{0} \oplus H_{1}, F^{*}\right]$, where $F^{*}=\left\{s_{1}, t_{1}\right\}$.

Now, we have $f_{0}+\left|F^{\prime}\right| \leq f+1$ and $f_{1}+\left|F^{\prime \prime}\right| \leq f+1$. Keep in mind that $F^{\prime}=V_{0} \cap V\left(B_{s_{2}}\right)$ and $F^{\prime \prime}=V_{1} \cap V\left(B_{t_{1}}\right)$. From now on, the assumption of $f_{0} \geq f_{1}$ will never be applied to obtain symmetry. If both $H\left[s_{1}, t_{1}^{\prime} \mid H_{0}, F_{0} \cup F^{\prime}\right]$ and $H\left[s_{2}^{\prime}, t_{2} \mid H_{1}, F_{1} \cup F^{\prime \prime}\right]$ exist, the proof is completed. Suppose otherwise, by Lemma 6 and Lemma 4 (b) and (c), at least one of the following two conditions is satisfied:

A1: $f_{0}+\left|F^{\prime}\right|=f+1, s_{1}$ and t_{1}^{\prime} are in one subcomponent, and $F_{0} \cup F^{\prime}$ is in the other subcomponent;
A2: $f_{1}+\left|F^{\prime \prime}\right|=f+1, t_{2}$ and s_{2}^{\prime} are in one subcomponent, and $F_{1} \cup F^{\prime \prime}$ is in the other subcomponent.
First, we assume that A1 is satisfied and that s_{1} and t_{1}^{\prime} are in G_{0} and s_{2} is in G_{1}. If t_{1} and t_{2} are contained in the same subcomponent of H_{1}, then $P_{1}=\left(H\left[s_{1}, t_{1}^{\prime} \mid G_{0}, F_{0}\right], B_{t_{1}}^{R}\right)$ and for some free edge (x, \bar{x}) with
$x \in V\left(G_{1}\right), P_{2}=\left(H\left[s_{2}, x \mid G_{1}, F_{0}\right], H\left[\bar{x}, t_{2} \mid H_{1}, F_{1} \cup F^{\prime \prime}\right]\right)$. Now, we assume that t_{1} is contained in one subcomponent, say G_{2}, and t_{2} is in the other subcomponent G_{3}. If there is a free edge (y, \bar{y}) $\in E_{1,2}$ with $y \in V\left(G_{1}\right)$, then $P_{1}=\left(H\left[s_{1}, t_{1}^{\prime} \mid G_{0}, F_{0}\right], B_{t_{1}}^{R}\right)$ and $P_{2}=\left(H\left[s_{2}, y \mid G_{1}, F_{0}\right], H\left[\bar{y}, t_{2} \mid H_{1}, F_{1} \cup F^{\prime \prime}\right]\right)$. Otherwise, there exist a pair of free edges $(a, \bar{a}) \in E_{0,2}$ and $(b, \bar{b}) \in E_{1,3}$ with $a \in V\left(G_{0}\right)$ and $b \in V\left(G_{1}\right)$. Then, $P_{1}=\left(H\left[s_{1}, a \mid G_{0}, F_{0}\right], H\left[\bar{a}, t_{1} \mid G_{2}, F_{1}\right]\right)$ and $P_{2}=\left(H\left[s_{2}, b \mid G_{1}, F_{0}\right], H\left[\bar{b}, t_{2} \mid G_{3}, F_{1}\right]\right)$. When A2 is satisfied, symmetrically to that A 1 is satisfied, we can also construct an f-fault 2 -DPC. Thus, we have the lemma.

Lemma 24 When $k_{2}=2, f_{0}=f$, and $k_{2}^{\prime}=0$, an f-fault 2 -DPC can be constructed.
Proof It follows that $k_{2}^{\prime \prime}=2$ and $f_{1}=f_{2}=0$, and thus we have $\left\{\overline{s_{1}}, \overline{s_{2}}\right\}=\left\{t_{1}, t_{2}\right\}$. When $\overline{s_{1}}=t_{1}$, we have $P_{1}=\left(s_{1}, t_{1}\right)$ and $P_{2}=H\left[s_{2}, t_{2} \mid H_{0} \oplus H_{1}, F \cup F^{*}\right]$, where $F^{*}=\left\{s_{1}, t_{1}\right\}$. Thus, we assume that $\overline{s_{1}}=t_{2}$ and $\overline{s_{2}}=t_{1}$. To obtain utmost symmetry, we will never apply the assumption of $f_{0}=f$. Instead, we assume $f_{2}=0$. Therefore, we have three cases.

Case 1: $s_{1}, s_{2} \in V\left(G_{0}\right), t_{1} \in V\left(G_{2}\right)$, and $t_{2} \in V\left(G_{3}\right)$.
When $l_{0,3} \geq f+2$, there exists a free edge $(x, \bar{x}) \in E_{0,3}$ with $x \in V\left(G_{0}\right)$. Letting $F^{*}=\left\{\left(s_{2}, v\right) \mid v \in V\left(G_{0}\right)\right.$ and either \hat{v} or (v, \hat{v}) is faulty $\}$, we find $H\left[s_{1}, x \mid G_{0}, F_{0} \cup F^{*}\right]$. The existence of the hamiltonian path in G_{0} is due to that the number of faulty elements in G_{0} including the virtual faults is at most f. Let the hamiltonian path be $\left(s_{1}, Q_{1}, z, s_{2}, Q_{2}, x\right)$. Observe that both \hat{z} and (z, \hat{z}) are fault-free. Then, let $P_{2}=$ $\left(s_{2}, Q_{2}, x, H\left[\bar{x}, t_{2} \mid G_{3}, F_{1}\right]\right)$. We are to construct P_{1}. There exists a free edge $(y, \bar{y}) \in E_{1,2}$ with $y \in V\left(G_{1}\right)$ such that $y \neq \hat{z}$ since $l_{1,2}=l_{0,3} \geq f+2$. Then, we have $P_{1}=\left(s_{1}, Q_{1}, z, H\left[\hat{z}, y \mid G_{1}, F_{0}\right], H\left[\bar{y}, t_{1} \mid G_{2}, F_{1}\right]\right)$. When $l_{0,3} \leq f+1$, we have $l_{0,2} \geq f+2$. In a symmetric way, we can also construct a 2 -DPC.

Case 2: $s_{1} \in V\left(G_{0}\right), s_{2} \in V\left(G_{1}\right), t_{1} \in V\left(G_{2}\right)$, and $t_{2} \in V\left(G_{3}\right)$.
We assume w.l.o.g. $f_{0} \geq f_{1}\left(f_{1}=0\right)$. If there exist a pair of free edges $(x, \bar{x}) \in E_{0,2}$ and $(y, \bar{y}) \in$ $E_{1,3}$ with $x \in V\left(G_{0}\right)$ and $y \in V\left(G_{1}\right)$, then we have $P_{1}=\left(H\left[s_{1}, x \mid G_{0}, F_{0}\right], H\left[\bar{x}, t_{1} \mid G_{2}, \emptyset\right]\right)$ and $P_{2}=$ $\left(H\left[s_{2}, y \mid G_{1}, F_{0}\right], H\left[\bar{y}, t_{2} \mid G_{3}, \emptyset\right]\right)$. Suppose otherwise, it follows that $l_{0,2} \leq 1$. When $l_{0,2}=1$, letting $(p, \bar{p}) \in E_{0,2}$ and $(q, \bar{q}) \in E_{1,3}$ with $p, q \in V_{0}$, we assume w.l.o.g. that p is faulty. There exist a pair of free edges (a, \hat{a}) and (b, \hat{b}) with $a, b \in V\left(G_{0}\right)$. Two hamiltonian paths $H\left[a, b \mid G_{0}, F_{0}\right]$ and $H\left[\hat{a}, \hat{b} \mid G_{1}, F_{0}\right]$ are merged with (a, \hat{a}) and (b, \hat{b}) into a hamiltonian cycle C_{0} in $H_{0} \backslash F_{0}$. Let $C_{0}=\left(s_{1}, z_{1}, Q, u_{2}, s_{2}, u_{1}, Q^{\prime}, z_{2}\right)$. By the construction, we have $z_{1}, z_{2} \in V\left(G_{0}\right)$ and $u_{1}, u_{2} \in V\left(G_{1}\right)$. Observe that both $\left(z_{1}, \overline{z_{1}}\right)$ and $\left(z_{2}, \overline{z_{2}}\right)$ are free edges in $E_{0,3}$, and that at least one of $\left(u_{1}, \overline{u_{1}}\right)$ and $\left(u_{2}, \overline{u_{2}}\right)$ is a free edge in $E_{1,2}$. Assuming w.l.o.g. that $\left(u_{2}, \overline{u_{2}}\right)$ is a free edge in $E_{1,2}$, we have $P_{1}=\left(s_{1}, z_{1}, Q, u_{2}, H\left[\overline{u_{2}}, t_{1}, \mid G_{2}, \emptyset\right]\right)$ and
$P_{2}=\left(s_{2}, u_{1}, Q^{\prime}, z_{2}, H\left[\overline{z_{2}}, t_{2} \mid G_{3}, \emptyset\right]\right)$.
Case 3: $s_{1}, s_{2} \in V\left(G_{0}\right)$ and $t_{1}, t_{2} \in V\left(G_{2}\right)$.
We assume w.l.o.g. $f_{0} \geq f_{1}\left(f_{1}=0\right)$. When there exists a free edge $(x, \bar{x}) \in E_{0,2}$ with $x \in V\left(G_{0}\right)$, letting $F^{*}=\left\{\left(s_{1}, v\right) \mid v \in V\left(G_{0}\right)\right.$ and either \hat{v} or (v, \hat{v}) is faulty $\}$, we find $H\left[s_{2}, x \mid G_{0}, F_{0} \cup F^{*}\right]$ and let the hamiltonian path be $\left(s_{2}, Q_{1}, z, s_{1}, Q_{2}, x\right)$. There exists a free edge $(y, \bar{y}) \in E_{1,3}$ with $y \in V\left(G_{1}\right)$ such that $y \neq \hat{z}$ since $l_{0,2}=l_{1,3} \geq 3$. Letting $F^{+}=\left\{\left(t_{1}, w\right) \mid w \in V\left(G_{2}\right)\right.$ and $\left.\hat{w}=\bar{y}\right\}$, we find $H\left[\bar{x}, t_{2} \mid G_{2}, F^{+}\right]$and let the hamiltonian path be $\left(\bar{x}, Q_{3}, t_{1}, u, Q_{4}, t_{2}\right)$. By the construction, $\hat{u} \neq \bar{y}$. Then, $P_{1}=\left(s_{1}, Q_{2}, x, \bar{x}, Q_{3}, t_{1}\right)$ and $P_{2}=\left(s_{2}, Q_{1}, z, H\left[\hat{z}, y \mid G_{1}, F_{0}\right], H\left[\bar{y}, \hat{u} \mid G_{3}, \emptyset\right], u, Q_{4}, t_{2}\right)$. Suppose there does not exist such a free edge (x, \bar{x}). There exists $s_{i}, i=0,1$, such that \hat{s}_{i} and $\left(s_{i}, \hat{s}_{i}\right)$ are fault-free. We assume s_{1} is such a source. We first find a hamiltonian cycle C_{0} in $G_{0} \backslash F_{0} \cup\left\{s_{1}\right\}$. Let $C_{0}=\left(s_{2}, a, \ldots, b\right)$ and assume that $\bar{b} \neq \hat{t_{2}}$. Of course, we have $\bar{a}, \bar{b} \in V\left(G_{3}\right)$. Then, we have $P_{2}=\left(C_{0} \backslash\left(s_{2}, b\right), H\left[\bar{b}, \hat{t_{2}} \mid G_{3}, \emptyset\right], t_{2}\right) . P_{1}$ is constructed in different ways depending on whether $f=0$ or not. When $f=0$, we find a hamiltonian cycle $C_{2}=\left(t_{1}, c, \ldots, d\right)$ in $G_{2} \backslash t_{2}$, assuming $\bar{d} \neq \hat{s_{1}}$, we have $P_{1}=\left(s_{1}, H\left[\hat{s_{1}}, \bar{d} \mid G_{1}, F_{0}\right], C_{2} \backslash\left(t_{1}, d\right)\right)$. When $f=1$, we choose a free edge $(w, \bar{w}) \in E_{1,2}$ with $w \in V\left(G_{1}\right)$ such that $w \neq \hat{s_{1}}$. The existence of (w, \bar{w}) is due to that $l_{1,2} \geq 3$ or $l_{1,2}=2$ and G_{1} is fault-free. Then, we have $P_{1}=\left(s_{1}, H\left[\hat{s_{1}}, w \mid G_{1}, F_{0}\right], H\left[\bar{w}, t_{1} \mid G_{2}, F^{*}\right]\right)$, where $F^{*}=\left\{t_{2}\right\}$. This completes the proof.

4 Hypercube-Like Interconnection Networks

Vaidya et al.[32] introduced a class of hypercube-like interconnection networks, called HL-graphs, which can be defined by applying the \oplus operation repeatedly as follows: $H L_{0}=\left\{K_{1}\right\}$; for $m \geq 1, H L_{m}=$ $\left\{G_{0} \oplus G_{1} \mid G_{0}, G_{1} \in H L_{m-1}\right\}$. Then, $H L_{1}=\left\{K_{2}\right\}, H L_{2}=\left\{C_{4}\right\}$, and $H L_{3}=\left\{Q_{3}, G(8,4)\right\}$. Here, C_{4} is a cycle graph with 4 vertices, Q_{3} is a 3 -dimensional hypercube, and $G(8,4)$ is a recursive circulant which is isomorphic to twisted cube $T Q_{3}$ and Möbius ladder as shown in Figure 3. An arbitrary graph which belongs to $H L_{m}$ is called an m-dimensional HL-graph. Recently, it was shown by Park and Chwa in [19] that every nonbipartite HL-graph is hamiltonian-connected and every bipartite HL-graph is hamiltonian-laceable.

Obviously, some m-dimensional HL-graphs such as an m-dimensional hypercube are bipartite. They are not f-faulty many-to-many k-disjoint path coverable for any $f \geq 0$ and $k \geq 1$. Thus, we are to define a subclass of HL-graphs which seems "highly" nonbipartite, and then consider their many-to-

(a) $G(8,4)$

(b) $T Q_{3}$

(c) Möbius ladder

Figure 3: Isomorphic graphs.
many disjoint path coverability.

Definition 5 A subclass of nonbipartite HL-graphs, called restricted HL-graphs, is defined recursively as follows:

- $R H L_{m}=H L_{m}$ for $0 \leq m \leq 2$;
- $R H L_{3}=H L_{3} \backslash Q_{3}=\{G(8,4)\} ;$
- RH $L_{m}=\left\{G_{0} \oplus G_{1} \mid G_{0}, G_{1} \in R H L_{m-1}\right\}$ for $m \geq 4$.

A graph which belongs to $R H L_{m}$ is called an m-dimensional restricted HL-graph.

It was shown in [25] that many of the nonbipartite hypercube-like interconnection networks such as twisted cube[14], crossed cube[9], multiply twisted cube[8], Möbius cube[7], Mcube[27], generalized twisted cube[4], etc. proposed in the literature are restricted HL-graphs, with the exception of recursive circulants $G\left(2^{m}, 4\right)$ [22] and "near" bipartite interconnection networks such as twisted m-cube[10]. Fault-hamiltonicity of restricted HL-graphs was studied in [25] as follows.

Lemma 25 [25] Every m-dimensional restricted HL-graph, $m \geq 3$, is m-3-fault hamiltonian-connected and m-2-fault hamiltonian.

In this section, we consider many-to-many disjoint path coverability of restricted HL-graphs, recursive circulants $G\left(2^{m}, 4\right)$, and twisted m-cube. To show that all of them except the twisted m-cube have very good properties in disjoint path coverability, we need a definition.

Definition $6 A$ graph G is called fully many-to-many disjoint path coverable if for any $k \geq 1$ and $f \geq 0$ such that $f+2 k \leq \delta(G)-1, G$ is f-fault many-to-many k-disjoint path coverable.

4.1 Restricted HL-graphs

We now consider many-to-many disjoint path coverability of restricted HL-graphs. We rely on Theorem 3. From Lemma 25, we know that the 3 -dimensional HL-graph $G(8,4)$ is (0 -fault) hamiltonianconnected and 1-fault hamiltonian and every 4-dimensional restricted HL-graph $G(8,4) \oplus G(8,4)$ is 1 -fault hamiltonian-connected and 2 -fault hamiltonian. An arbitrary m-dimensional restricted HLgraph, $m \geq 5$, is isomorphic to $\left[G_{0} \oplus_{M_{1}} G_{1}\right] \oplus_{M}\left[G_{2} \oplus_{M_{2}} G_{3}\right]$ for some permutations M_{1}, M_{2}, and M, where G_{0}, G_{1}, G_{2}, and G_{3} are m - 2-dimensional restricted HL-graphs. Therefore, by an inductive argument utilizing Theorem 3, we can get a theorem as follows.

Theorem 4 Every m-dimensional restricted HL-graph, $m \geq 3$, is fully many-to-many disjoint path coverable and $m-2$-fault hamiltonian.

Corollary 3 Let G be an arbitrary m-dimensional restricted HL-graph, $m \geq 3$. There exists an s-t hamiltonian path in $G \backslash F$ that passes through the edges in the order given for any fault set F with $|F| \leq f$ and for any pair of vertices s and t and any s-t path extendable sequence of $k-1$ edges $\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{k-1}, y_{k-1}\right)\right)$ in $G \backslash F$ such that $f+2 k \leq m-1$ and $v \neq w$ for at least one pair (v, w) in $\left\{\left(s, x_{1}\right),\left(y_{k-1}, t\right),\left(y_{j}, x_{j+1}\right) \mid 1 \leq j<k-1\right\}$.

4.2 Recursive circulants $G\left(2^{m}, 4\right)$

The recursive circulant $G(N, d)[22]$ is defined as follows: the vertex set $V=\left\{v_{0}, v_{1}, \ldots, v_{N-1}\right\}$, and the edge set $E=\left\{\left(v_{a}, v_{b}\right) \mid\right.$ there exists $i, 0 \leq i \leq\left\lceil\log _{d} N\right\rceil-1$, such that $\left.a+d^{i} \equiv b(\bmod N)\right\} . G(N, d)$ can also be defined as a circulant graph with N vertices and jumps of powers of $d, d^{0}, d^{1}, \cdots, d^{\left[\log _{d} N\right\rceil-1}$. When $N=2^{m}$ and $d=4$, recursive circulant $G\left(2^{m}, 4\right)$ is an m-regular graph with 2^{m} vertices. According to their recursive structure[22], we can observe that $G\left(2^{m}, 4\right)$ is isomorphic to $\left[G\left(2^{m-2}, 4\right) \times K_{2}\right] \oplus_{M}$ $\left[G\left(2^{m-2}, 4\right) \times K_{2}\right]$ for some M. Obviously, every $G\left(2^{m}, 4\right)$ is an HL-graph. Furthermore, every $G\left(2^{m}, 4\right)$ with odd m is a restricted HL-graph. However, not every $G\left(2^{m}, 4\right)$ is a restricted HL-graph. One can check without difficulty that $G(16,4)$ is not isomorphic to $G(8,4) \oplus_{M} G(8,4)$ for any M, and even $G(16,4)$ does not have $G(8,4)$ as a subgraph. Fault-hamiltonicity of recursive circulants $G\left(2^{m}, 4\right)$ was considered in [25, 29].

Lemma 26 [25, 29] $G\left(2^{m}, 4\right), m \geq 3$, is m-3-fault hamiltonian-connected and m-2-fault hamiltonian.

By an inductive argument employing Theorem 3, we can conclude many-to-many disjoint path coverability of $G\left(2^{m}, 4\right)$ as follows.

Theorem $5 G\left(2^{m}, 4\right), m \geq 3$, is fully many-to-many disjoint path coverable and $m-2$-fault hamiltonian.

Corollary 4 There exists an s-t hamiltonian path in $G\left(2^{m}, 4\right) \backslash F, m \geq 3$, that passes through the edges in the order given for any fault set F with $|F| \leq f$ and for any pair of vertices s and t and any s-t path extendable sequence of $k-1$ edges $\left(\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{k-1}, y_{k-1}\right)\right)$ in $G\left(2^{m}, 4\right) \backslash F$ such that $f+2 k \leq m-1$ and $v \neq w$ for at least one pair (v, w) in $\left\{\left(s, x_{1}\right),\left(y_{k-1}, t\right),\left(y_{j}, x_{j+1}\right) \mid 1 \leq j<k-1\right\}$.

4.3 Twisted m-cube

Let $\left(v_{0}, v_{1}\right)$ and $\left(v_{2}, v_{3}\right)$ be two nonadjacent edges in an arbitrary cycle $\left(v_{0}, v_{1}, v_{2}, v_{3}\right)$ of length four in hypercube Q_{m}. The twisted m-cube[10] is constructed as follows. Delete edges $\left(v_{0}, v_{1}\right)$ and $\left(v_{2}, v_{3}\right)$ from Q_{m}. Then connect, via an edge, v_{0} to v_{2} and v_{1} to v_{3}. Obviously, twisted m-cube is an HL-graph. Due to [19] and [25], we have the following lemma.

Lemma 27 (a) Twisted m-cube, $m \geq 3$, is hamiltonian-connected, or equivalently, it is 0 -fault many-to-many 1-disjoint path coverable[19].
(b) Twisted m-cube, $m \geq 3$, is 1 -fault hamiltonian and not f-fault hamiltonian for any $f \geq 2$ [25].

It is hard to expect that twisted m-cube is good in disjoint path coverability since its bipartization number is only two. If we adopt the coloring induced by proper bicoloring (without two adjacent vertices having the same color) of hypercube Q_{m}, there are exactly two edges joining vertices with the same color in twisted m-cube: one joining two black vertices and the other joining two white vertices.

Theorem 6 Twisted m-cube, $m \geq 3$, is not f-fault many-to-many k-disjoint path coverable for any $f \geq 0$ and $k \geq 1$ except only for $f=0$ and $k=1$.

Proof The bipartization number of twisted m-cube is two. By Lemma 2, twisted m-cube is not f-fault k-disjoint path coverable for any $f \geq 2$ and $k \geq 1$. Thus, we assume $f=0,1$. We rely on Lemma 3. Let us consider the induced coloring of twisted m-cube such that $n_{w}=n_{b}=2^{m-1}$ and $c_{w}=c_{b}=2^{m-1}-1$. When $f=0, c_{b}>n_{w}-k$ for every $k \geq 2$. When $f=1$, assuming the edge joining two black vertices is faulty, we have that $c_{b}=2^{m-1}$ and $c_{b}>n_{w}-k$ for every $k \geq 1$. Thus, the proof is completed.

5 Concluding Remarks

We studied some interesting properties on f-fault many-to-many k-disjoint path coverable graphs such as relationships among the three types of disjoint path covers, sufficiency for some strong-hamiltonicity, and some necessary conditions. And then, we presented construction schemes for many-to-many disjoint path covers in the graphs $G_{0} \oplus G_{1}$ and $H_{0} \oplus H_{1}$ with faulty elements, where $H_{0}=G_{0} \oplus G_{1}$ and $H_{1}=G_{2} \oplus G_{3}$, provided some conditions on G_{i} are satisfied for all $0 \leq i \leq 3$. The conditions are constituted with the hamiltonicity and disjoint path coverability in the presence of faulty elements. One of the main results is that in most cases with the exception of $k=1$ and $f=0,1$, the bound on the number of faulty elements in $G_{0} \oplus G_{1}$ is one larger than the minimum bound of G_{0} and G_{1} to preserve disjoint path coverability. Also, without exception, the bound on the number of disjoint paths in $H_{0} \oplus H_{1}$ is one larger than the minimum bound over all G_{i} 's and the bound on the number of faulty elements in $H_{0} \oplus H_{1}$ is two larger than the minimum bound over all G_{i} 's. By applying the main results to restricted HL-graphs and recursive circulant $G\left(2^{m}, 4\right)$, we concluded that all these networks of degree $m(\geq 3)$ are fully many-to-many disjoint path coverable.

According to the constructions presented in this paper, we can design efficient algorithms for finding many-to-many disjoint path covers in $G_{0} \oplus G_{1}$ and $H_{0} \oplus H_{1}$. We need a bit careful implementation. It is assumed that (i) $G_{0} \oplus G_{1}$ is represented as an adjacency list structure, (ii) $V\left(G_{0}\right)=\left\{v_{1}, \ldots, v_{n}\right\}$ and $V\left(G_{1}\right)=\left\{v_{n+1}, \ldots, v_{2 n}\right\}$, (iii) the first node in the linked list of v_{i} representing vertices adjacent to v_{i} is \bar{v}_{i} for every i, (iv) whether a given vertex (or an edge) once located is faulty or not can be determined in a constant time (a status field in each node representing a vertex (or an edge) is sufficient), (v) whether a given vertex is a source s_{i} or a $\operatorname{sink} t_{j}$ or none can be determined in a constant time, and (vi) the number of faulty edges incident to each vertex is known in advance. We also have such assumptions in $H_{0} \oplus H_{1}$. The first and second nodes in the linked list of v_{i} are assumed to be $\overline{v_{i}}$ and $\hat{v_{i}}$, respectively. We let $T_{1}(G)$ be the time complexity of an algorithm for finding a hamiltonian cycle or a hamiltonian path between an arbitrary pair of fault-free vertices in a graph G. It can be derived from [25] that
(a) $T_{1}\left(G_{0} \oplus G_{1}\right)=T_{1}\left(G_{0}\right)+T_{1}\left(G_{1}\right)+O(n)$, where $n=\left|V\left(G_{i}\right)\right|$,
(b) $T_{1}\left(H_{0} \oplus H_{1}\right)=\max \left\{\begin{array}{l}T_{1}\left(H_{0}\right)+T_{1}\left(H_{1}\right)+O(n), \\ T_{1}\left(H_{0}\right)+T_{1}\left(G_{2}\right)+T_{1}\left(G_{3}\right)+O(n), \\ T_{1}\left(G_{0}\right)+T_{1}\left(G_{1}\right)+T_{1}\left(H_{1}\right)+O(n), \\ T_{1}\left(G_{0}\right)+T_{1}\left(G_{1}\right)+T_{1}\left(G_{2}\right)+T_{1}\left(G_{3}\right)+O(n) .\end{array}\right.$

We let $T_{2}(G)$ be the maximum of $T_{1}(G)$ and the time complexity for finding an f-fault many-to-many k disjoint path cover in G for any pair of f and k satisfying $f+2 k \leq \delta(G)-1$. Then, all the constructions given in this paper (containing the omitted one of the proof of Lemma 18) can be accomplished in time
(c) $T_{2}\left(G_{0} \oplus G_{1}\right)=T_{2}\left(G_{0}\right)+T_{2}\left(G_{1}\right)+O\left(n+\delta^{2}\right)$, where $\delta=\min _{i} \delta\left(G_{i}\right)$,
(d) $T_{2}\left(H_{0} \oplus H_{1}\right)=\max \left\{\begin{array}{l}T_{2}\left(H_{0}\right)+T_{2}\left(H_{1}\right)+O\left(n+\delta^{2}\right), \\ T_{2}\left(H_{0}\right)+T_{2}\left(G_{2}\right)+T_{2}\left(G_{3}\right)+O\left(n+\delta^{2}\right), \\ T_{2}\left(G_{0}\right)+T_{2}\left(G_{1}\right)+T_{2}\left(H_{1}\right)+O\left(n+\delta^{2}\right), \\ T_{2}\left(G_{0}\right)+T_{2}\left(G_{1}\right)+T_{2}\left(G_{2}\right)+T_{2}\left(G_{3}\right)+O\left(n+\delta^{2}\right) .\end{array}\right.$

The construction of pairwise disjoint free bridges given in the proof of Lemma 8 leads to a simple greedy algorithm running in time $O(k \delta)$, which is at most $O\left(\delta^{2}\right)$. Therefore, we can conclude that in an arbitrary m-dimensional restricted HL-graph or in recursive circulant $G\left(2^{m}, 4\right)$, an f-fault many-tomany k-disjoint path covers with $f+2 k \leq m-1$ can be found in time $O\left(m 2^{m}\right)$, which is linear to the size of the graphs.

References

[1] A. Abdullah, "On Graph Bipartization," in Proc. of the IEEE International Symposium on Circuits and Systems ISCAS'92, San Diego, USA, pp. 1847-1850, 1992.
[2] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, 5th printing, American Elsevier Publishing Co., Inc., 1976.
[3] C.-H. Chang, C.-K. Lin, H.-M. Huang, and L.-H. Hsu, "The super laceability of the hypercubes," Inform. Proc. Lett. 92(1), pp. 15-21, 2004.
[4] F.B. Chedid, "On the generalized twisted cube," Inform. Proc. Lett. 55, pp. 49-52, 1995.
[5] C.C. Chen and J. Chen, "Nearly optimal one-to-many parallel routing in star networks," IEEE Trans. on Parallel and Distributed Systems 8(12), pp. 1196-1202, 1997.
[6] H.-A. Choi, K. Nakajima, and C.S. Rim, "Graph bipartization and via minimization," SIAM J. Discrete Math. 2(1), pp. 38-47, 1989.
[7] P. Cull and S. Larson, "The Möbius cubes," in Proc. of the 6th IEEE Distributed Memory Computing Conf., pp. 699-702, 1991.
[8] K. Efe, "A variation on the hypercube with lower diameter," IEEE Trans. on Computers 40(11), pp. 1312-1316, 1991.
[9] K. Efe, "The crossed cube architecture for parallel computation," IEEE Trans. on Parallel and Distributed Systems 3(5), pp. 513-524, 1992.
[10] A.-H. Esfahanian, L.M. Ni, and B.E. Sagan, "The twisted n-cube with application to multiprocessing," IEEE Trnas. Computers 40(1), pp. 88-93, 1991.
[11] S. Gao, B. Novick and K. Qiu, "From hall's matching theorem to optimal routing on hypercubes," Journal of Combinatorial Theory, Series B. 74, pp. 291-301, 1998.
[12] M.R. Garey and D.S. Johnson, Computers and Intractability: A Guide to the Theory of NPCompleteness, W.H. Freeman \& Co., San Francisco, 1979.
[13] Q.P. Gu and S. Peng, "Cluster fault-tolerant routing in star graphs," Networks 35(1), pp. 83-90, 2000.
[14] P.A.J. Hilbers, M.R.J. Koopman, J.L.A. van de Snepscheut, "The Twisted Cube," in J. Bakker, A. Nijman, P. Treleaven, eds., PARLE: Parallel Architectures and Languages Europe, Vol. I: Parallel Architectures, Springer, pp. 152-159, 1987.
[15] S.-Y. Hsieh, G.-H. Chen, and C.-W. Ho, "Fault-free hamiltonian cycles in faulty arrangement graphs," IEEE Trans. Parallel and Distributed Systems 10(3), pp. 223-237, Mar. 1999.
[16] S.-Y. Hsieh, G.-H. Chen, and C.-W. Ho, "Longest fault-free paths in star graphs with edge faults," IEEE Trans. Computers 50(9), pp. 960-971, Sep. 2001.
[17] H.-C. Hsu, T.-K. Li, J.J.M. Tan, and L.-H. Hsu, "Fault hamiltonicity and fault hamiltonian connectivity of the arrangement graphs," IEEE Trans. Computers 53(1), pp. 39-53, Jan. 2004.
[18] S. Madhavapeddy and I.H. Sudborough, "A topological property of hypercubes: node disjoint paths," in Proc. of the 2th IEEE Symposium on Parallel and Distributed Processing SPDP 1990, pp. 532-539, 1990.
[19] C.-D. Park and K.Y. Chwa, "Hamiltonian properties on the class of hypercube-like networks," Inform. Proc. Lett. 91, pp. 11-17, 2004.
[20] J.-H. Park, "One-to-one disjoint path covers in recursive circulants," Journal of KISS 30(12), pp. 691-698, 2003 (in Korean).
[21] J.-H. Park, "One-to-many disjoint path covers in a graph with faulty elements," in Proc. of the International Computing and Combinatorics Conference COCOON 2004, pp. 392-401, Aug. 2004.
[22] J.-H. Park and K.Y. Chwa, "Recursive circulants and their embeddings among hypercubes," Theoretical Computer Science 244, pp. 35-62, 2000.
[23] J.-H. Park and H.-C. Kim, "Longest paths and cycles in faulty star graphs," J. Parallel Distrib. Comput. 64(11), pp. 1286-1296, 2004.
[24] J.-H. Park, H.-C. Kim, and H.-S. Lim, "Many-to-many disjoint path covers in a graph with faulty elements," in Proc. of the International Symposium on Algorithms and Computation ISAAC 2004, Hong Kong, pp. 742-753, Dec. 2004.
[25] J.-H. Park, H.-C. Kim, and H.-S. Lim, "Fault-hamiltonicity of hypercube-like interconnection networks," in Proc. of the IEEE International Parallel and Distributed Processing Symposium IPDPS 2005, Denver, Apr. 2005.
[26] A. Sengupta, "On ring embedding in hypercubes with faulty nodes and links", Inform. Proc. Lett. 68, pp. 207-214, 1998.
[27] N.K. Singhvi and K. Ghose, "The Mcube: a symmetrical cube based network with twisted links," in Proc. of the 9th IEEE Int. Parallel Processing Symposium IPPS 1995, pp. 11-16, 1995.
[28] C.-H. Tsai, "Linear array and ring embeddings in conditional faulty hypercubes," Theoretical Computer Science 314, pp. 431-443, 2004.
[29] C.-H. Tsai, J.J.M. Tan, Y.-C. Chuang, and L.-H. Hsu, "Hamiltonian properties of faulty recursive circulant graphs," Journal of Interconnection Networks 3, pp. 273-289, 2002.
[30] C.-H. Tsai, J.J.M. Tan, and L.-H. Hsu, "The super-connected property of recursive circulant graphs," Inform. Proc. Lett. 91(6), pp. 293-298, 2004.
[31] Y.-C. Tseng, S.-H. Chang, and J.-P. Sheu, "Fault-tolerant ring embedding in a star graph with both link and node failures," IEEE Trans. Parallel and Distributed Systems 8(12), pp. 1185-1195, 1997.
[32] A.S. Vaidya, P.S.N. Rao, S.R. Shankar, "A class of hypercube-like networks," in Proc. of the 5th IEEE Symposium on Parallel and Distributed Processing SPDP 1993, pp. 800-803, Dec. 1993.
[33] L. Volkmann and A. Yeo, "Hamiltonian paths, containing a given path or collection of arcs, in close to regular multipartite tournaments," Discrete Mathematics 281(1-3), pp. 267-276, 2004.
[34] M. Yannakakis, "Node- and edge-deletion NP-complete problems," in Proc. of the 10th ACM Symposium on Theory of Computing STOC 1978, San Diego, California, pp. 253-264, 1978.

[^0]: *This work was supported by grant No. R01-2003-000-11676-0 from the Basic Research Program of the Korea Science \& Engineering Foundation.

