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Many Triangulated Spheres 

Gil  Kalai* 

Institute of Mathematics, Hebrew University, Jerusalem, Israel 

Abstract. Let s(d, n) be the number of triangulations with n labeled vertices 
of S 'l-*, the ( d - l ) - d i m e n s i o n a l  sphere. We extend a construction of Billera 
and Lee to obtain a large family of triangulated spheres. Our construction 
shows that logs(d,n)>-Ct(d)n ~d-I)/2J, while the known upper bound is 
log s( d, n)~ C2( d)n t ~/21 log n. 

Let c(d, n) be the number of combinatorial types of simplicial d-polytopes with 
n labeled vertices. (Clearly, c(d, n)~ s(d, n).) Goodman and Pollack have recently 
proved the upper bound: log c(d, n)<- d (d + 1 )n log n. Combining this upper bound 
for c(d, n) with our lower bounds for s(d, n), we obtain, for every d->5, that 
lim . . . . .  (c(d, n)/s(d, n) )=0 .  The case d =4 is left open. (Steinitz's fundamental 
theorem asserts that s(3, n )=c (3 ,  n), for every n.) We also prove that, for 
every b->- 4, l imd~( c( d, d + b)/s(d, d + b)) = 0. (Mani proved that s(d, d + 3) = 
c(d, d + 3 ) ,  for every d.) 

Let s(n) be the number of triangulated spheres with n labeled vertices. We prove 
that log s(n) = 2 0`69424 n(l+o(l)). The same asymptotic formula describes the number 
of triangulated manifolds with n labeled vertices. 

1. Introduction 

How many  t r i angula t ions  with n ( labe led)  vert ices of  S d ( the d -d imens iona l  
sphere)  are  the re?  Let s(d + 1, n) denote  the number  o f  such t r iangula t ions .  

Theorem 1.1. 

n - [ ( e  + 1 ) / 2 ] )  >_ log s(d, n)>- ( 1 / ( n  - d ) ( a +  1)) (  n - [ ( a  + 2)/2]'~ 
3 1 o g n  [ d / 2 ]  [ (d  + 1) /2]  ] 

(1.1) 

* Research done, in part, while the author visited the mathematics research center at AT&T Bell 
Laboratories. 
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The upper bound for s(d, n) follows from Stanley's upper bound theorem [41] 
for the numbers of faces of triangulated d-spheres with n vertices. (Compare, 
Klee [26] and McMullen [34].) 

Our main purpose is to construct a large family of triangulated spheres which 
demonstrates the lower bound. 

We indicate two special cases of Theorem 1.1. For fixed d -> 3, 

C,(d)n [a/2] log n >- s(d, n) >- C2(d)n ua-1~/2~. (1.2) 

Here, Ct(d) and C2(d) are constants depending on d. 
Define b(z)=(1-z)*-Z/zZ(1-2z)l-2L Let x be a real number, 0 < x < l .  

Theorem 1.1 implies that log s([xn], n)= (b(x/2)) "~l+°mJ. Note that b(x/2)> 0 
for every 0 < x < 1. b(x/2) is maximal and is equal to 1.61803... for x = (1 - 5-*/2) = 
0.5528 .... 

Let s(n) be the total number of triangulated spheres (of all dimensions) on n 
labeled vertices. The most accurate estimate we can give for s(n) is (C3, C4 are 
constants) 

C3 log nn-U21.61803..." >- log s(n) >- log s(0.5528.., n, n) -> C4n-21.61803... ". 
(1.3) 

Note that the number simp(n) of simplicial complexes on n labeled vertices 
satisfies log simp(n)= 2 "~+°m~. More precisely, Kleitman [30] proved 

rl 
log simp(n)=([n/2])(1 + o(1)). 

Recently, Korshunov [31] completely determined the asymptotic behavior of 
simp( n ) ! 

The boundary complex of a simplicial d-polytope is a triangulated ( d -  1)- 
sphere. A triangulated sphere is polytopat if it is isomorphic to the boundary 
complex of a simplicial polytope. 

Let c(d, n) be the number of polytopal (d - 1)-spheres with n labeled vertices. 
Thus c(d, n) <- s(d, n). Denote b = n - d. 

A fundamental theorem of Steinitz [44], [21, Chapter 13] asserts that every 
triangulated 2-sphere is polytopal. (Steinitz's theorem in its full generality asserts 
that every polyhedral 2-sphere is isomorphic to the boundary complex of a 
3-polytope.) Only a few decades after Steinitz's theorem was established, 
mathematicians have realized that nonpolytopal triangulated spheres do exist in 
higher dimensions. Simple examples of nonpolytopal triangulated 3-spheres with 
eight vertices were given by Griinbaum [20] and by Barnette [8]. The "Steinitz 
Problem"--the determination of polytopal spheres among all triangulated 
spheres--is one of the main problems in convex polytope theory. For a recent 
work on this subject, see Bokowski and Sturmfels [14]. 

Steinitz's theorem asserts that s(3, n ) =  c(3, n). Works of Tutte [45], [46], 
Brown [15], and Richmond and Wormald [39] give good asymptotic estimates 
for s(3, n) and exact formulas for related enumeration problems. 
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An important result of  Mani [33] asserts that every triangulated (d - H-sphere 
with at most (d+3)-ver t ices  is polytopal. (Kleinschmidt [28] extended Mani's 
result and proved that every polyhedral (d - l)-sphere with at most d +3 vertices 
is polytopal.) There are exactly [d /2]  simplicial d-polytopes with d + 2 vertices 
and the value of c(d, d + 3)(= s(d, d + 3)) was determined by Perles. (See Chapter 
6 of [21].) 

In the last 20 years extensive work has been done on the enumeration of  
triangulated 3-spheres and simplicial 4-polytopes with few vertices. It was proved 
that c(4, 8 )=  37 (Grfinbaum and Sreedharan [22], correcting Briickner [16]), 
s(4, 8)= 39 [9], c (4 ,9 )=  1142, and s(4, 9 )=  1296 [3], [6]. For further results of 
this type, see [2], [4], and [5]. 

It was conjectured by several people that for every fixed d -> 4, "most"  triangu- 
lated ( d - 1 ) - s p h e r e s  are not polytopal, i.e., that l i m , ~ ( c ( d ,  n) /s (d ,  n) )=0 .  
Similarly, it was believed that for every b, b ->4, l imd~(c (d ,  d + b) /s(d,  d + b)) = 
0. 

Goodman and Pollack [18], [19] have recently proved that log c(d, n) ~ - 
d (d + 1)n log n. This remarkable result is proved using a theorem of Milnor which 
gives bounds on the sum of the Betti numbers of real algebraic varieties. Alon 
[1] extended their result to arbitrary polytopes. 

Goodman and Pollack's upper bound on c(d, n) combined with our lower 
bound on s (d ,n )  imply (in a very strong sense) that for every d->5, 
l i m , ~ ( c ( d ,  n)/s(d,  n)) = 0. A proof that most triangulations of the 3-sphere are 
not polytopal is still unknown. 

Our construction gives the bound I o g s ( d , d + b ) >  D ( b ) .  d b 2, while the 
method of  proof of Goodman and Pollack's theorem gives log c(d, d + b)<- 
b ( b - 1 ) d  log d (see [1]). This shows that for every b->4, 

l imd~(c (d ,  d + b)/s(d,  d + b)) = O. 

By Goodman and Pollack's bound the total number of polytopal triangulated 
spheres with n labeled vertices is bounded by 2 ~"+~:. (Alon's result gives the 
same bound for the nonsimplicial case.) Thus, the gap between the numbers of  
triangulated spheres and polytopal spheres is most striking when d = [xn] for 
some constant x. 

For example, the number of triangulated spheres with 1000 labeled vertices 
• 650 230 
is more than 2 2 , but less than 2 out of them are polytopal. The number of 

. . . .  2694~200 2694.250 
triangulated spheres with 1 000 000 vertices is between 2 and 2 , but less 
than 22~2 out of them are polytopal. 

Our construction is a modification of a construction of Billera and Lee [10], 
[11]. For a simplicial complex C, fk(C) denotes the number of  k-dimensional 
faces of C. The vector f ( C ) =  ( f o ( C ) , f l ( C ) , . . . )  is called the f-vector of C. The 
same definition applies for polytopes. McMullen [35] proposed a complete 
characterization off-vectors  of simplicial d-polytopes. Billera and Lee built, for 
every vector f of  nonnegative integers which satisfies McMullen's conditions, a 
shellable ( d -  D-sphere with f as its f-vector. They further realized this sphere 
as a boundary complex of  a simplicial d-polytope, thus proving the sufficiency 
part of McMullen's conjecture. Stanley [43] proved the necessity part of 
McMullen's conjecture using deep results from algebraic-geometry. 



4 G. Kalai 

Billera and Lee's ( d -  1)-spheres as well as our more general class of  spheres 
are obtained as the boundaries of  shellable balls spanned by some of the facets 
(=d-faces)  of  a cyclic (d + 1)-polytope. Specifically, let C(d + 1, n) denote the 
cyclic (d + 1)-polytope with n vertices. Billera and Lee considered the (reverse) 
lexicographic order on the facets of  C(d  + 1, n), and studied simplicial complexes 
spanned by initial sets of  facets. They proved that simpliciat complexes obtained 
in this way are actually shellable d-balls, and their boundaries are polytopal 
(d - l)-spheres.  We consider a certain partial order of  the facets of  C(d + 1, n), 
and study simplicial complexes which are spanned by initial sets of  facets. All 
these complexes are shellable d-balls and their boundaries form a large class of  
triangulated ( d - l ) - s p h e r e s ,  which we call squeezed spheres. Squeezed spheres 
demonstrate the lower bounds in (1.1). 

McMullen's  conditions are conjectured to hold for arbitrary triangulated 
spheres. They hold almost trivially for squeezed spheres. Results by Lee [32] on 
the diameter of  the Billera-Lee polytopes (related to the "Hirsch conjecture") 
also extend to arbitrary squeezed spheres. 

We hope that squeezed spheres will play a role among triangulated spheres 
similar to that which shifted complexes play among simplicial complexes. (See 
[24] and [13].) In particular, a squeezing operation for spheres is now desirable. 

Problems which remains open are to construct many triangulations (say, 2 cn2) 
for the three-dimensional sphere, and to give an explicit example of  a nonpoly- 
topal (say, four-dimensional) squeezed sphere. 

2. Preliminaries 

2.1. Orderings 

For an integer n, [n] denotes the set {1, 2 . . . .  , n}. ~ will denote the set of  positive 
integers. For a set A and a nonnegative integer d, A (d) is the set of  d-subsets of  
A. The partial order <p on N (d) is defined as follows: if S, T c I~1 ~d 1, S = { i~ . . . .  , id }, 
i~<'" "<id, and T = { j l , . . . , j d } , j ~ < ' "  "<Ja, then S<-pT iff for every 1 - < k -  < 
d, ik <-- jg. 

Define the lexicographic order <L on N (d) as follows: for S, T e N  (d), S <L T 
if min(SAT)  ~ S. The reverse lexicographic order <RL is defined by S <RL T if 
max(SAT)  ~ T. 

2.2. Simplicial Complexes 

We follow the definitions and notation of Billera and Lee [11]. We repeat here 
some basic definitions. 

Let C be a simplicial complex, and let v be a vertex not in C. The cone over 
C with apex v is defined by 

cone(C, v)= Cw{Su{v}: S~ C}. 
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A simplicial complex is pure if all its maximal faces have the same size. 
Maximal faces of a pure simplicial complex are called facets. Two facets S and 
T of a pure simplicial complex are adjacent if they intersect in a maximal proper 
face of each. 

Let C be a pure simplicial complex and let S and T be two facets of C. The 
distance between S and T, d(S, T), is the minimal integer k such that there exists 
a sequence of facets S = Fo, F~ . . . . .  Irk = T with the property that F~ is adjacent 
to F~÷I for every 1 <-i< k. (If no such sequence exists d(S, T) = ~.)  The diameter 
of C, A(C), is the maximal value of d(S, T) taken over all pairs of facets of C. 
A pure simplicial complex C is strongly connected if it has a finite diameter. 

A d-pseudomanifold C is a strongly connected d-dimensional simplicial com- 
plex, such that every ( d -  1)-face is included in at most two facets. The bound- 
ary of C, aC, is the ( d -  1)-dimensional simplicial complex spanned by those 
( d -  1)-faces of C which are included in exactly one facet of C. 

2.3. Shelling 

A pure (d - 1)-dimensional simplicial complex C is shellable if its maximal faces 
can be ordered Fi, F2, • • . ,  F,, so that for every i and k, t -< i < k -< t, there exists 
j, 1 -<j <- k, such that F, n Irk c ~ n Fk and Fj is adjacent to Fk. Such an ordering 
is called a shelling order of C. 

2.4. Vertex Decomposability and the Hirsch Condition (needed for Section 5) 

Let C be a pure d-dimensional simplicial complex. C satisfies the Hirsch condition 
if A(C) <-fo(C) - d. (Recall that f0(C) is the number of vertices of C.) The Hirsch 
conjecture asserts that every polytopal sphere satisfies the Hirsch condition. (See 
Klee and Kleinschmidt [27] for a recent survey on this conjecture.) 

Provan and Billera [38] related the Hirsch condition to a strong form of 
shellability called vertex-decomposability. 

Vertex-decomposable simplicial complexes are defined recursively as follows: 
C = {0} is vertex-decomposable. A pure simplicial complex C is vertex-decom- 
posable if there exists a vertex ~ c C (called a shedding vertex) such that Ik(v, C) 
and ast(v, C) are vertex-decomposable. (Here, lk(v, C ) = { S \ { v } :  S~  C, v~ S} 
and ast(v, S) = {S~ C: v~ S}.) 

A pure simplicial (d - 1)-dimensional complex C is weakly vertex-decompos- 
able if C is a single ( d - l ) - s i m p l e x  together with its faces, or else there is a 
vertex v of C (a weak shedding vertex) such that ast(v, C) is a weakly vertex- 
decomposable (d - 1)-dimensional complex. 

Theorem 2.1 (Provan and Billera [38]). 

(i) Every vertex-decomposable simplicial complex satisfies the Hirsch condition. 
(ii) The diameter of  a weakly vertex-decomposable ( d - 1)-dimensional simplicial 

complex with n vertices is at most 2 ( n -  d), twice the Hirsch bound. 
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3. Squeezed Balls and Spheres 

Let d > 0 be a fixed odd integer. Define a collection Fd of  (d + 1)-subsets of  N 
as follows: put e = ( d + l ) / 2 .  For F ~ N  ~d÷~), FeFd  iff F={i l , i~+l}w  
{i2, i 2 + l } u "  • .w{i~,i~+l}, where i~->l and for every j, e > j  >_ 1, i~÷~>ij+l. 
Define Fd(n)=Fdn[n]  (d÷j~. Let I be an initial set of Fd with respect to the 
partial order <p on N ~d÷~ and let B(I) be the simplicial complex spanned b y / .  
We will prove that B(I) is a shellable (d + 1).ball. 

For d even put Fd = {{0} u F: F ~ Fd-~}. For an initial set I of  Fd with respect 
to the partial ordering, let B(I)  be the simplicial complex spanned by L We will 
show that in this case B(I)  is also a shellable ball. In fact, for d even and I an 
initial set o f  Fd, B(I) is easily seen to be a cone over some B(J), where J is an 
initial set o f  Fd-t. We call a simplicial complex B ( I )  of  the form described above 
a squeezed ball. The boundary of a squeezed ball is called a squeezed sphere. 

Remark. Fd(n) can be regarded as a subcollection of the facets of  the cylic 
(d + 1)-polytope with n vertices. 

Theorem 3.1. Let d >- 1 be a fixed integer. Let I be an initial set of Fd with respect 
to the partial order <p.  Let B( I) be the simplicial complex spanned by L Then any 
ordering Fl, F2, . . .  , F, of l which extends the partial order <p,  is a shelling order 
for B(I). 

Proof. The proof  is similar to the proof  of  Lemma 4 in Billera and Lee [11]. 
We will consider the case of  odd d. (The proof  for even d is the same.) Let F~, 
F2, . . . ,  F, be an ordering of I which extends the partial order <o.  Let Fk = 
[1, d + l - 2 p ] w { i ~ ,  i~+ l } u  ' '  • w{ip, ip+ 1} where i~> d + 2 - 2 p  and i1÷1> i j+ l  
for p > j - 1 .  Define, for l<-j<-p, G'k=Fk\{ij+l}. Cdk is a ( d - 1 ) - f a c e  of  Fk. I f  
uj is the maximal element in [i)]\Fk then C/kW{Uj} is a d-face in Fd which 
precedes Fk in the partial order. 

It remains to show that if S = Fk ~ Fi for i < k then S c G~ for some j, p >-j -> 1. 
I f  S ~  G]  for every j, p ->j --- 1 then S ~ R = {i~ + 1 , . . . ,  ip + 1}. But it is easy to see 
that every F ~ Fd which includes R satisfies F >-p Fk. Thus, F~-p  Fk. A contradic- 
tion. [] 

Corollary 3.2. B(I) is a shellable ball. 

Proof. It is easy to see that every ( d -  1)-face of  B(I) is included in at most 
two d-faces. Thus, B(I)  is a shellable pseudomanifold and as is well known (see 
Danaraj and Klee [17]). B(I)  is either a shellable sphere or a shellable ball. It 
is easy to see that there is a ( d - 1 ) - f a c e  of  B(I) which is included in exactly 
one d-face. Hence B(I)  is a shellable ball. [] 

Since squeezed spheres are boundaries of  shellable balls, they are PL-spheres. 
We do not know if they are, in general, shellable. (A recent result of  Pachner 
[37] asserts that every PL-sphere is the boundary  of  some shellable ball.) 
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The construction of Billera and Lee is the special case where I is an initial 
set of Fd, with respect to the reverse lexicographic order. (They also consider 
only a subset of Fd for odd d.) We will refer to the triangulated spheres considered 
by Billera and Lee as compressed spheres. Billera and Lee proved that compressed 
spheres are polytopal. We refer to the corresponding polytopes as Billera-Lee 
polytopes. 

Proposition 3.3. Let Bi, B2 be two squeezed d-balls. I f  aB~ = aB2 then B1 = B2.  

Proof. Let B be a squeezed d-ball and let S be a facet of aB. S is included in 
exactly one facet of B. Note that S is included in at most two members of Fd. 
Note also that if S is included in two members of Fd, say F~ and F2, then they 
are comparable with respect to the partial order <p. Define F(S) to be the 
minimal set in Fd with respect to <p which contains $. From the discussion above 
it follows that F(S) is defined and belongs to B. Define now /~= 
iF(S): ISl -- d - 1, s eaB} c B. Let F be a facet of B which is maximal in B with 
respect to <p and let u = min F. Then S = (F\{u}) eaB and F = F(S) e B. There- 
fore, B = { F e  Fd: F--<p/~, ]3c/~}. [] 

Proposition 3.4. Let S ( I )=OB(I )  be a squeezed sphere. Then if i is a vertex of 
S(I)  andj<-i then j is a vertex of S(I). 

Proof Since I contains a set which contains i, I also contains a set which 
contains j. Consider F e I, which is maximal (with respect to the partial order) 
among sets in I which contain j. It is easy to see that for some k e S, k ~j,  F\{k} e 
S(I).  [] 

Remark. Let P be a ranked poset. A subset Q of P is a ranked subposet of P 
if Q forms a ranked poset whose rank function is the restriction from P to Q of 
the rank function of P. Clearly every initial set in P is a ranked subposet. 

Let I be a ranked subposet of Fd and let B(I)  be the simplicial complex 
spanned by L The proof of Theorem 3.1 can be directly extended to show that 
B(I)  is a shellable ball. This construction does not improve substantially the 
lower bounds for s(d, n). 

4. The Number of Triangulated Balls and Spheres 

In this section we will estimate the number s(d, n) of triangulated ( d - 1 ) -  
spheres with n vertices. We will also consider the number re(d, n) of triangu- 
lated (d -1 ) -man i fo lds  with n vertices. 

We need the following lemma. The proof is an easy application of Stirling's 
estimation of n! 
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Lemma 4.1. 

(i) Define b ( x ) = ( 1 - x ) l - X / x ~ ( 1 - 2 x )  1-2x. Then for a fixed real number 
x, 0 < x < ½ ,  (~(~i~n~)=c(x)n-<'/2~(b(x))~(l+o(1)). (Here, c ( x ) =  
(1 - x)I/2(2"rrx ( 1 - 2x))-1/2.) 

(ii) b(x) attains its maximum at Xma~ = ( 1 -  5-1/2)/2. 

4.1. The Lower Bounds 

We now give the lower bounds obtained by the family of  squeezed spheres. 
Let f (d ,  n) be the number  of  initial sets in Fd(n). It is clear that for even d, 

f (d ,  n ) = f ( d -  1, n -  1). We will therefore assume that d is odd. As before let 
e = (d + 1)/2. Let sq(d, n) be the number of squeezed (d - l )-spheres with n 
vertices. 

F d is a ranked poset, for F = {il, i1+ l } w . .  "w{ie, ie+l} E Fd. r(F) = ~ = l  i~ -e2. 
Thus, for F e  Fd(n), O~ r(F) < - (n -2e )e .  

Let a( n, k, r) be the number  of  ways to represent r as a sum r = a~ + a2 +" • • + ak 
where 0 <-- al <-- a2 <~" " "<- ak <-- n. Define a (n, k) = max{ a (n, k, r): r -> 0}. Clearly, 

a(n ,k , r )=O for r>kn.  Also ~ r ~ o a ( n , k , r ) = ( n k l ~ ) .  Therefore a(n,k)>_ 

Remark. It is well known (see, for example, Chapter 3 of Andrews [7] that 

a(n,k ,r )  i s t h e c o e f f i c i e n t o f q ' i n [  n + k ]  k (q). It is also known that the sequence 

a( n, k, 0), a( n, k, 1) . . . .  , a( n, k, kn ) is symmetric and unimodal, hence, a( n, k) = 
a(n, k, [kn/2]). 

Let b(n, d, r) = I{S e Fd(n): r(S)= r}l and b(n, d) = max{b(n, d, r): r -  > 0}. A 
simple inspection shows that b(n, d, r) = a ( n -  l - d ,  e, r). Thus, b(n, d)= 
a ( n - l - d ,  e). 

Theorem 4,2. Put e = [(d + 1)/2] and e ' =  [(d +2) /2] .  

log s(d, n)>_log sq(d, n)>--(1/ (n-d)e)  ( n e e ' ) -  t. (4.1) 

In particular: 

(i) Let d >- 2 be a fixed integer. Then log sq( d, n) >- C2( d )n ttd÷ll/21-j. 
(ii) Let b>-2 be a fixed integer. Then log sq(d, d + b )  >- C4(b)d h-2. 

(iii) log sq([xn], n) >- C6(x)n-t5/2)(b(x/2)) ". 

Proof. To prove (4.1) it is enough to consider the case that d is odd. The number  
of  squeezed d-balls with at most n vertices is exactly f (d ,  n). By Proposition 3.3, 
this is also the number  of  squeezed ( d -  1)-spheres with at most n vertices. By 
Proposition 3.4, the number  sq(d, n) of  squeezed ( d -  1)-spheres with exactly n 
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vertices is equal to the number of squeezed d-balls with exactly n vertices, namely 
f ( d , n ) - f ( d , n - 1 ) .  Now, f(d,n)>-2b(n'a~=2 a~"-l-d'e). Since, for n > k > l ,  
a(n, k ) >  a(n - 1, k) we obtain, for odd d >-3, 

I o g s ( d , n ) > - l o g s q ( d , n ) > a ( n - l - d , e ) - l ~ ( 1 / ( n - d ) e ) ( n e e  ) - 1 .  [] 

Remark. With some more effort it can be shown that 

log sq([xn], n) >- a(n - 1 - d, e) - 1 >- C8(x)n-2(b(x/2))"( l  + o(1)). (4.2) 

4.2. The Upper Bounds 

Here are the upper bounds on s(d, n) and re(d, n) which follow from the upper 
bound for the number of facets (=maximal faces) of triangulated spheres. 
The upper bound theorem for triangulated spheres (proved by Stanley [41]) 
asserts that a triangulated (d -1) - sphere  C with n vertices has at most 

(n-[(d+n_dl)/2)]) +(n-[(d+2)/2]~n_d ] (d-1)-faces .  This expression is smaller 

than 2( n - [ ( d +  1)/2]~ 
[d/2] 1" 

The number of pure ( d -  1)-dimensional simplicial complexes with n labeled 
/ / n \ \  

vertices and u facets is clearly l~du)). This gives log s(d ,n)  ~- 

[ n - [(d + 1)/2]'~ 
2d log n~ [d/2]  ,] + 1. We can gain a factor of d in this expression by 

using the following: 

Proposition 4.3. Let pro(d, n, u) be the number of  ( d - 1)-pseudomanifoMs with 
u+d n vertices and u facets. Then pro(d, n, u) < - n 

Proof Put t = d + u - t .  Let C be a (d-1)-pseudomanifold  on the vertex set 
[n]. Associate to C an integral vector x (C)  = ( x ~ , . . . ,  x,) which satisfies 1 -< xi <- n 
for every 1 -< i -< t and a chain of subcomplexes C~ , . . . ,  C,, as follows: x ~ , . . . ,  Xd 
are the vertices of the lexicographically first facet F of t2, and C~ is the complex 
spanned by F. Assume that xi, i -< k, and C,  j -< k - d + 1, are defined. Let R be 
the lexicographically minimal (d -2 ) - f ace  in the boundary of Ck-d+l and let S 
be the facet of C, not in Ck-d+l which contains R. Define Xk+~ by {Xk+l} = S \ R  
and define Ck-d+2 to be the complex spanned by Ck-d+l W {S}. AS easily seen, 
x (C)  determines C. [] 

Stanley's theorem implies that a triangulated (d - 1)-manifold with n vertices 
._,[ n - [ d / 2 ] - I  'X 

has at most zna k [ ( d -  1 ) /2 ] -  1] facets. 
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We summarize the asymptotic upper bounds for s(d, n) and m(d, n) which 
are obtained from the upper bound theorems by Proposition 4.3: 

Theorem 4.4. 

n - [(d + 1)/2]'~ +d. 
log s(d, n) -< 2 log n [d/2]  ] 

(n-td/2]-l)+d. 
log re(d, n)<-2nd -I log n \ [(d - 1)/2] ] 

(4.3) 

(4.4) 

In particular; 

(i) Let d >>-2 be a fixed integer. Then log s(d, n ) ~  C~(d) log nn td/zl and 
log re(d, n) <- C3(d) log nn t~d+l)/21. 

(ii) Let b>-2 be fixed. Then log s ( d , d + b ) < - l o g m ( d , d + b )  < - 
Cs(b) log dd b+l. 

(iii) Let x be a fixed real number 0 < x < l .  Then, log s([xn], n)<_ 
log m([xn], n) <- C7(x)n~-~/2)(b(x/2))"(1 + o(1)). 

Theorem 1.1 is a combination (in a weaker but more elegant form) of (4.1) 
and (4.3). 

5. Further Properties of Squeezed Balls and Spheres 

5.I. Squeezed Spheres and the "Hirsch Conjecture" 

Proposition 5.1 (Compare Lee [32]). 

(i) Squeezed balls satisfy the Hirsch condition. 
(ii) Let d be even. For a squeezed (d - 1)-sphere S, A(S) -<-fo(S) - d + 1. 

(iii) Let d be odd. For a squeezed (d - 1)-sphere S, A ( S ) < - 2 ( f o ( S ) - d ) .  
(iv) Squeezed 3-spheres satisfy the Hirsch condition. 

Proof The proofs of Lee [32] of the special case of compressed spheres extend 
directly. By the Provan-Billera's theorem (Theorem 2.1(i)) in order to prove part 
(i) it is enough to show that squeezed balls are vertex-decomposable. Indeed, if 
B is a squeezed d-ball then lk(1, B) and ast(1, B) are combinatorially isomorphic 
to squeezed balls (of dimensions d -  1 and d, respectively). 

For the proof of (ii) see the argument in Lee [32]. (The argument applies to 
boundaries of those squeezed balls which are cones.) 

To prove (iii) it is left by Theorem 2.1(ii) to show that squeezed spheres are 
weakly vertex-decomposable. The proof is identical to the following unpublished 
proof by Lee for compressed spheres, which preceded his stronger published 
result. Let I be an initial set of Fd and let n be the maximal vertex of L We 
prove by induction on n. The case n = d + 1 is easy, so assume n > d + 1. Let 
be an initial set in Fd consisting of those F in I that do not contain n. Compare 
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the facets o f  aB(I)  and 0B(I).  It is easy to see from the construction that each 
facet o f  OB(I) that is not in OB(I) contains n -  1, and that each facet of  aB(1) 
that is not in aB( l )  contains n. Hence the facets of  ast(n - 1, ast(n, aB( I ) ) )  are 
precisely those of  ast(n - 1, aB( I ) ) ,  the latter being weakly vertex-decomposable 
by induction. So ast(n, aB( l ) )  is weakly vertex-decomposable with a weak shed- 
ding vertex n. 

Squeezed 3-spheres are obtained from squeezed 3-balls by forming a cone 
over the boundary. Part (iv) is therefore a consequence of (i) and the fact that 
every triangulated 2.sphere satisfies the Hirsch condition. [] 

5.2. Squeezed Spheres and the "g-Conjecture" 

Our next results are of  a technical nature. We point out that f-vectors of  squeezed 
spheres satisfy McMullen's  conditions (which are conjectured to hold for all 
triangulated spheres.) For the definitions of  the h-vector, an M-vector, and the 
assertion of  the "g-conjecture" we refer the reader to Billera and Lee [11] or 
Stanely [43]. 

Let d be fixed. Let e = [(d + 1)/2], and let qb ~ be the set of  all monomials of  
degree at most e in the variables Y~, Y2 . . . . .  Put Yo = 1. 

A bijection a :  Fd ~ )  is defined as in Billera and Lee [11]: for F e  F(n),  
F =  VdU{il ,  i~+I}w " ' "  w{ie, i~+1}. (Here, Vd = { 9 }  for odd d and I'd ={0} 
for d even.) o t ( F ) = Y , .  Y-2"'"  Y,, where u j = i ~ - 2 j + l .  Note that if 
F= V a w { 1 , 2 e - 2 p } u { j l , j ~  + l } w .  . .W{jp,jp+ l} where j~> 2 e - 2 p +  l then 
deg or(F) = p. 

Proposition 5.2. The f-vector of squeezed spheres satisfies McMullen' s conditions. 

Proof. Let I be an initial set in F. Let M ( I ) =  a ( I ) c  c~t"}. M ( I )  is an order 
ideal of  monomials. Let k~ = I{m ~ M ( / ) :  deg m = i}1. kl,  k 2 , . . . ,  is an M-vector. 
The shelling of B(I)  demonstrates that h~(B)(I)) = ki for o -& i -< e and hi(B(I))  = 
0 for i>e .  The h-vector of  S( I )=OB(I )  is determined by the h-vector 
of  B(I)  by h,(S(I))  - h~_~(S(l)) = h,(B(I))  - hd÷~_~(B(l)) = h,(B(I)).  (See [11].) 
This proves that (1, h ~ ( S ( l ) ) - h o ( S ( l ) ) , h 2 ( S ( l ) ) - h ~ ( S ( I ) ) , . . . , h e - , ( S ( l ) ) -  
he(S(l)))  is an M-vector. [] 

A triangulated (d - 1 )-sphere is k-stacked if it is the boundary of a triangulated 
d-ball with the same ( d - k - 1 ) - s k e l e t o n .  

Proposition 5.3. Let S be a squeezed (d - 1)-sphere, then (i) S is e-stacked, and 
(ii) i f  hk(S  ) = hk+l(S ) for some 0 <-- k <- [ d / 2 ] -  1, then S is k-stacked. 

The proofs are the same as the proofs for the compressed case by Billera and 
Lee [11] (for (i)) and by Kleinschmidt and Lee [29] (for (ii)). 

Remarks. 1. Stanley [42] proved that every e-stacked ( d - 1 ) - s p h e r e  satisfies 
McMullen's conditions. 
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2. A d-polytope P is k-stacked if it can be triangulated without introducing 
new j-faces for j-< d -  k -  1.McMullen and Walkup [36] conjectured that every 
simplicial d-polytope P that satisfies hk(P) = hk+~(P) for some k, i -< k -< [d /2]  - 1, 
is a k-stacked polytope. Kleinschmidt and Lee [29] proved the assertion of this 
conjecture for the Billera-Lee polytopes. 

6. Open Problems 

6.1. Properties of Squeezed Spheres 

1. Which squeezed d-spheres are polytopal? For d---4 very few of them are. 
Yet, I do not know, at present, any explicit example of  a nonpolytopal squeezed 
sphere. 

Perhaps all squeezed 3-spheres are polytopal (in analogy with Proposition 9.2 
of  [23].) 

2. Are squeezed spheres shellable? 

6.2. More Precision 

3. For fixed d and n --> oo there is still a substantial gap between the lower and 
upper  bounds of log s(d, n), especially for d even. I believe that the value of 
s(d, n) is closer to the upper  bounds in (1.2). It can be shown that our lower 
bounds cannot be substantially improved by considering balls spanned by subsets 
of  facets of  cyclic polytopes. 

We left a large gap between the lower and upper bounds for m(d, n). I believe 
that in this case also the truth is closer to the upper  bound. 

Most urgently, we would like to estimate the number of traingulated 3-spheres 
with n vertices and the number  of triangulated 2-manifolds with n vertices. I 
expect that 2 C"2 is a lower bound for both these questions. 

4. How many topologically distinct triangulated d-manifolds on n vertices are 
there? For d = 2 the answer is Cn 2. For d = 3 the answer is somewhere between 
n 2 and 2 "2. 

6.3. Greater Generality 

5. Let f =  (fo . . . .  ,fd-1) be a vector of  nonnegative integers. Let s(f)  be the 
number of triangulated ( d -  1)-spheres with f as their f-vector. Estimate s(f). 

Note that for d even there is only one neighborly squeezed ( d -  1)-sphere, 
namely, that corresponding to the cyclic d-polytope. We expect, however, that 
the number  sn(d, n) of neighborly ( d -  1)-spheres with n vertices is very large. 
Perhaps for fixed even d, lim,~oo(log sn(d, n) / Iog s(d, n)) = 1. A large number of 
neighborly polytopes was constructed by Shemer [40]. 

In some cases, estimating s(f) is related to structural properties of  triangulated 
spheres with f as their f -vector  [25]. 
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6. It is poss ib le  tha t  the  u p p e r  b o u n d s  for  s ( n )  and  s ( d ,  n )  app ly  to a rb i t ra ry  

r anked  E u l e r i a n  pose ts  (o f  r ank  d + 1 and  n a toms) .  This  r equ i res  a f a r - r each ing  

ex t ens ion  o f  the  u p p e r  b o u n d  t h e o r e m  wh ich  is still u n k n o w n .  By K l e e ' s  u p p e r  

b o u n d  t h e o r e m  [26], t he  u p p e r  b o u n d  in (1.2) app l i e s  to a rb i t r a ry  E u l e r i a n  

( d -  1 ) - d i m e n s i o n a l  s impl i c i a l  c o m p l e x e s .  
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