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Summary

The state of the art in coherent structure theory is driven by two assertions, both of which are

limiting: (1) all units of a system can exist in one of two states, failed or functioning; and (2) at

any point in time, each unit can exist in only one of the above states. In actuality, units can exist in

more than two states, and it is possible that a unit can simultaneously exist in more than one state.

This latter feature is a consequence of the view that it may not be possible to precisely define the

subsets of a set of states; such subsets are called vague. The first limitation has been addressed via

work labeled ‘multistate systems’; however, this work has not capitalized on the mathematics of

many-valued propositions in logic. Here, we invoke its truth tables to define the structure function

of multistate systems and then harness our results in the context of vagueness. A key contribution

of this paper is to argue that many-valued logic is a common platform for studying both multistate

and vague systems but, to do so, it is necessary to lean on several principles of statistical inference.
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1 Introduction and Overview

The calculus of coherent systems, innovated by Birnbaum et al. (1961) has served as a
mathematical foundation for a theory of systems. Here, one explores the effect that a system’s
components have on the system. The bulk of the effort, however, has been devoted to the case
of binary states with precise classification. That is, the components and the system can (at any
point in time) be in one of two unambiguously defined states, functioning or failed. In actuality,
items can function in degraded states, and these could be a discrete set or a continuum of states.
An example of the former is a load-sharing system, like a transmission line for power with r

strands. As the strands break, the rope transitions from its ideal load carrying capability to its
complete disintegration (Smith, 1983). An example of the latter is a precipitator for reducing air
pollution whose cleaning efficiency ranges from (almost) 100 to 0% (Matland & Singpurwalla,
1981). Systems that can exist in more than two states are called multistate systems.

There are two interrelated aims to this paper. The first is to contribute to the mathematics
of multistate systems with precise classification via many-valued logic. To set the stage for
this, we overview some key notions and results in the reliability theory of binary systems.
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Section 1.2 is archival; however, Section 1.3 is current in the sense that it incorporates the view
that, when discussing system reliability, one needs to distinguish between probability (which is
personal) and propensity (which is physical), and that the assumption of the independence is
conditional upon propensities. The second aim of this paper is to argue that multivalued logic also
provides a framework for assessing the reliability of binary or multistate systems with imprecise
classification. Imprecision (or vagueness) is articulated in Section 1.4; Section 1.5 is a guide to
the rest of this paper.

1.1 Preamble: Notation and Terminology

Consider a system with n components. The system and each of its components can exist in
several states in S ⊆ [0, 1]. Let Xi , i = 1, . . . , n denote the state of component i at time τ ≥

0, and denote X = (X1, . . . , Xn). Binary systems are those for which S = {0, 1}, where 1 (0)
denotes a functioning (failed) state. The state of the system is a function of X, called the ‘structure
function’. We denote by φ(X) the structure function for a binary system. The structure function
for a system with multiple states will be denoted by ψ(X). We assume that the component and
system states belong to the same set S; e.g. X i ∈ S and φ(X) ∈ S. However, it is possible that
the Xi ’s belong to [0,1] whereas φ(X) can only take values in {0,1}.

1.2 The Calculus of Binary Systems with Precise Classification

The following is an overview of the calculus of binary systems (Barlow & Proschan, 1975);
we generalize this construction in Sections 3 and 4. Let S = {0, 1} with Xi = 1 (0) if component
i functions (fails), i = 1, . . . , n; similarly, φ(X) : Sn → S equals 1 (0) if the system functions
(fails). φ is a binary coherent system if (1) φ is non-decreasing in each argument of X, and (2)
each component is relevant. Examples of binary coherent systems are a series system, a parallel
redundant system, and a k-out-of-n system. The dual of a binary coherent system φ(X) is defined
as φD(X) = 1 − φ(1 − X), where 1 − X = (1 − X1, 1 − X2, . . . , 1 − Xn). Any binary structure
function φ with n components can be decomposed as φ(X) = Xi φ(1i , X) + (1 − Xi ) φ(0i , X), for
all X, i = 1, . . . , n; this is later referred to as the pivotal decomposition. The following notation,
definitions and theorems are conventional (Barlow & Proschan, 1975):

X · Y = (X1 · Y1, X2 · Y2, . . . , Xn · Yn),

X ∐ Y = (X1 ∐ Y1, X2 ∐ Y2, . . . , Xn ∐ Yn),

where Xi ∐ Yi = 1 − (1 − Xi )(1 − Yi ), i = 1, 2, . . . , n.

THEOREM 1: For any binary coherent system φ, φS(X)
def

=
∏n

i=1 X i ≤ φ(X) ≤
∐n

i=1 X i
def

=

φP (X).

THEOREM 2: For any binary coherent system φ,

φ(X ∐ Y) ≥ φ(X) ∐ φ(Y) (1)

and

φ(X · Y) ≤ φ(X) · φ(Y), (2)

with equality holding in equation (1) ( equation 2) if and only if the structure function φ is

φP (φS). Proofs of Theorems 1 and 2 can be found in Barlow & Proschan (1975).
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1.3 Reliability of Binary Systems

Suppose that the Xi ’s are exchangeable, and that pi is the propensity of Xi being 1; that is, pi =

limn→∞

∑n
i=1 X i

n
[cf. Lindley & Singpurwalla (2002) or Spizzichino (2001)]. Then, conditional

on pi , our subjective probability that Xi = 1 is pi , i = 1, . . . , n. Unconditionally, P(X i = 1) =
∫ 1

0
piπ (pi )dpi = E(pi ), where π (pi ) encapsulates our uncertainty about the propensity pi ; i.e.

π (pi ) is our subjective probability of pi . The notions of propensity and subjective probability are
articulated in de Finetti’s theorem on exchangeable Bernoulli sequences; see Lindley & Phillips
(1976).

Much of the literature on the reliability of binary coherent systems is conditional on pi . An
exception is Lynn et al. (1998), in which the analysis is based on averaging out p1, . . . , pn with
respect to a joint distribution.

Conditional on p = (p1, . . . , pn), the reliability of the system is a function of p, say h(p), but
only if the Xi ’s are (conditionally) independent; i.e. (1) given p = (p1, p2, . . . , pn), Xi and X j are
independent, ∀ i �= j, and (2) given pi , Xi is independent of p j , ∀ j �= i. Consequently, P(φ(X) =

1 | p) = E(φ(X) | p) = h(p).
Analogues of the pivotal decomposition and Theorems 1 and 2 follow, asserting that the

reliability of any binary coherent system is bounded below (above) by that of a series (parallel)
system, if the Xi ’s are conditionally (given p) independent, and redundancy at the component
level is superior to redundancy at the system level when the systems are connected in parallel;
vice versa if in series; see Barlow & Proschan (1975).

1.4 Vagueness or Imprecision

For purposes of discussion, consider a generic element of S = [0, 1], say x. At any point, we
may be able to inspect the system and declare that ψ(X) = x. If we are able to place this x in a
well-defined subset ofS, then we say that the states of the system can be classified with precision.
There are scenarios, however, where the identification of a state can be done unambiguously, but
the classification cannot; this is the case of classification with ‘vagueness’.

In the context of coherent systems, vagueness is not synonymous with uncertainty of
performance. Uncertainty of performance is lack of knowledge about the future state of the
system, e.g. will the system be functioning 5 hours from now? Vagueness pertains to uncertainty
about classification, i.e. an inability to place any outcome x in a subset ofS because the boundaries
of the subset cannot be sharply delineated. Some examples illustrate this point.

Suppose that S = {0, 1, . . . , 10}, with each element representing a state in which the system
can exist, ranging from the ideal at 10, to the undesirable at 0. Then what is the subset of ‘good
states’ in S? This subset is not well defined; for example, is 7 a good state? If S were to be
partitioned into ‘good’ and ‘bad’ states, such partitioning being a feature of natural language

(Zadeh, 1965), would 5 qualify as a good state or a bad state? More likely, 5 qualifies as both
a good state and a bad state. Thus if ψ(X) = 5, then the state of the system is simultaneously
good and bad. As another scenario, consider an automobile that has 3000 miles on it. Should
this automobile be classified as a ‘new’ or a ‘used’ car? The question of classification arises in
the contexts of setting insurance rates, taxation and warranties. The subset of miles that go into
classifying a car as being ‘new’ is not sharply defined; it is imprecise. Most cars sold as being
new have anywhere from 20 to 100 miles—perhaps even more—on them. In actual practice,
decisions are often made on the basis of vague knowledge that is relevant, e.g. decisions about
health care, maintenance and replacements (see Section 6). As another illustration, medical
treatments are based on classification of ‘high blood pressure’ or ‘bad cholesterol,’ and such
classifications fluctuate due to the subjectivity of interpretation between ‘good’ and ‘bad’. The
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philosopher Black (1939) gives examples from other sciences. Of historical note is the famous
example of Schrodinger’s Cat [cf. Pagels (1982), p. 125] from quantum physics. Schrodinger’s
thought experiment pertains to a cat in a sealed radioactive box in outer space which, according to
one school of thought, is simultaneously alive and dead. Examples from the statistical sciences
wherein vague knowledge is relevant are most likely to arise from the behavioral and social
contexts, such as inferences based on political polling, and medical decisions based on a quality
of life questionnaire (Cox et al., 1992), wherein responses almost always tend to be vague.

The existing theory of both binary and multistate coherent systems with precise classification
as its underlying premise is unable to deal with the types of scenarios mentioned above. Some
other concerns have been voiced by Marshall (1994). One idea, namely to classify states by more
than one criterion, precedes ours and we applaud him for this foresight; it makes a case for
the viewpoint espoused here.

1.5 Overview of Paper

In Section 2, we give a synopsis of many-valued logic to include its connectives of negation,
conjunction, disjunction, implication, and equivalence. In Section 3, we extend the material of
Section 1.2 to the case of multistate systems; i.e. for those components and systems where S
consists of more than two elements. Here, we invoke Lukasiewicz’s (1930) many-valued logic to
define the structure function of multistate systems, and arrive upon results that are in agreement
with those currently available. The material of Section 3 serves two purposes. One, it shows how
many-valued logic provides a common platform via which the material on multistate systems
can be seen. Second, it sets the stage for developing the material of Sections 4 and 5, which is
entirely new. A use of many-valued logic is unlike that used by Baxter (1984), El-Neweihi et al.
(1978) and Griffith (1980), whose development centres around binary logic.

Sections 4 and 5 pertain to the scenarios wherein the classification of component and system
states is vague. In both sections, S consists of two vague subsets, and these serve as an analogue
to binary state systems with precise classification. A key tool here is the ‘consistency profile’
introduced by Black (1939). Zadeh’s (1965) ‘membership function’ parallels the notion of a
consistency profile. The harnessing of Lukasiewicz’s many-valued logic with Black’s consistency
profile provides a vehicle for the treatment of vague coherent systems. To do so, however, we
need to lean on aspects of statistical inference and the statistical treatment of expert testimonies.

Section 6 relates the material of Sections 4 and 5 to decision making in maintenance
management using natural language. Section 7 concludes the paper.

2 Many-valued Logic: An Overview

Binary logic, upon whose foundation the theory of coherent structures has been developed,
pertains to propositions that adhere to the ‘Law of Bivalence’ (or the ‘Law of the Excluded
Middle’): all propositions are either true or false. Lukasiewicz (1930) recognized the exis-
tence of propositions that can be both true and false simultaneously, and thus modified the
calculus of binary propositions to develop a calculus of three-valued propositions. Alternatives
exist to Lukasiewicz’s three-valued logic; however, for us, Lukasiewicz’s proposal is most
appealing.

It is important to distinguish between the calculus of probability and the calculus of
three-valued logic. Probability pertains to the quantification of uncertainty about events (or
propositions) that adhere to the Law of Bivalence. Thus we have, as a part of the calculus of
probability, the axiom of additivity. On the other hand, the calculus of many-valued logic is based
on a rejection of the Law of Bivalence. The two are therefore different constructs.
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Table 1

(a) Truth Table for Lukasiewicz’s Y ∧ Z. (b) Truth Table for Lukasiewicz’s Y ∨ Z.

Values of Values of
Y ∧ Z Proposition Z Y ∨ Z Proposition Z

0 1/2 1 0 1/2 1

Values of 0 0 0 0 Values of 0 0 1/2 1
Proposition Y 1/2 0 1/2 1/2 Proposition Y 1/2 1/2 1/2 1

1 0 1/2 1 1 1 1 1

Consider two propositions Y and Z, each taking one of three values: 0, 1
2

and 1. The negation
of Y is Y ′ = 1 − Y, as proposed by Lukasiewicz (1930). When the proposition Y takes the value
1 (0) in a truth table, it signals the fact that the proposition is true (false) with certainty. Values
of Y intermediate to 1 and 0 signal an uncertainty about the truth or the falsity of Y . The value
1
2

is chosen arbitrarily for convenience; any value between 0 and 1 could have been chosen. The
other logical connectives in the three-valued logic of Lukasiewicz are conjunction, disjunction,
implication and equivalence, denoted (Y ∧ Z), (Y ∨ Z), (Y → Z) and (Y ≡ Z), respectively.
The truth tables for the first two are given in Table 1, and we refer the interested reader to
Malinowski (1993) for further details. Generalizations from the three-valued to the many-valued
case to incorporate propositions that are true or false with various degrees of uncertainty are
straightforward.

3 Invoking Many-Valued Logic for Multistate Systems

3.1 Introduction

The aim of this section is to generalize the case of binary systems with precise classification
to systems that can exist in multiple (m + 1 with m > 1) states. The states are labeled j

m
, j =

0, 1, 2, . . . , m, with 1 representing a perfect state and 0, the state of total collapse. The intermittent
states of degradation range from m−1

m
to 1

m
, where 1

m
is the state which is penultimate to the total

failure of the system. Thus, the range of states now takes the form S = {
j

m
; j = 0, 1, 2, . . . , m}

and, by allowing m to be infinite, we are able to consider a continuum of degraded states, in
which case, S ⊆ [0, 1]. With S so defined for both the components and the system, what would
be the meaningful choices for the structure function when the system has a series, parallel, or
k-out-of-n architecture?

In the past, several proposed definitions of multistate systems have been made. An overview
of these is in El-Neweihi et al. (1978) and in Baxter (1984), which to the best of our knowledge
represents the latest endeavors. Considering the fact that these papers appeared over 20 years
ago, one may sense that a satisfactory answer to the above question is available. This may not be
true, however, because all the proposed approaches reduce to a representation in terms of binary
states and, thus, an adherence to binary logic. As an example, Baxter (1984), following Barlow
& Proschan (1975), defines the structure function of a multistate system in terms of the system’s
‘min-path’ and ‘min-cut’ sets, notions which can have an interpretation only within the context
of binary systems. By contrast, our proposal here is to use Lukasiewicz’s many-valued logic as
a basis for defining the structure function of multistate systems.

Lukasiewicz’s motivation for introducing a third value, namely 1
2
, and his calculus of three-

valued logic was prompted by an uncertainty about the truth or the falsity of a proposition. The
number 1

2
did not reflect—in any sense—a degree of uncertainty. Whereas Lukasiewicz did not

appear to have any motivation for his many-valued logic other than the need to generalize, the

International Statistical Review (2008), 76, 2, 247–267
C© 2008 The Authors. Journal compilation C© 2008 International Statistical Institute



252 K.F. SELLERS & N.D. SINGPURWALLA

degree of uncertainty interpretation provides a vehicle for extending the three-valued logic. With
this in mind, we may ask whether Lukasiewicz’s calculus can be directly imported to the scenario
of multistate systems when the degraded states can be specified with precision? Our examples
of Table 1 illustrating the three-valued logic suggest that this can be done. More importantly, our
results are consistent with those given in El-Neweihi et al. (1978). Consequently, the Lukasiewicz
logic can be seen as providing a rationale for the existing results on multistate systems, a rationale
that has been missing.

3.2 Definition and Structural Properties

Let Xi denote the state of component i, i = 1, . . . , n, and ψ = ψ(X) the state of the multistate
system ; X = (X1, . . . , Xn). The Xi ’s and ψ(X) take values in S = {

j

m
, j = 0, 1, . . . , m}.

Definition 1: (Griffith, 1980) ψ is a multistate coherent system if

1. ψ is non-decreasing in each argument of X,
2. for each i = 1, 2, . . . , n, there exist states 0 ≤ ai < bi ≤ m and a state vector (•i , X) such

that

ψ

(

ai

m
, X

)

< ψ

(

bi

m
, X

)

;

that is, each component is relevant, and
3. ψ( j

m
) =

j

m
where j

m
= ( j

m
,

j

m
, . . . ,

j

m
).

Properties 1 and 3 of Definition 1 are consistent with those of Barlow & Wu (1978), El-Neweihi
et al. (1978) and Natvig (1982). Property 2 generalizes the notion of relevance.

To use the logic of many-valued propositions for multistate systems, it is necessary to order
the state vector X. Since each X i ∈ {

j

m
, j = 0, 1, . . . , m}, we order the Xi ’s by the values they

take. Specifically, let 0 ≤ X(1:n) ≤ X(2:n) ≤ · · · ≤ X(i :n) ≤ · · · ≤ X(n:n) ≤ 1 denote the ordered
vectors, i.e. X(1:n) is the weakest of all the n components and X(n:n) the strongest. Consequently,
from Table 1(a), the structure function of a series system is ψ S = mini Xi = X(1:n); that is,
the performance of a multistate series system is no better than the performance of its weakest
component. If n = 2, and if each Xi can take only three values {0, 1

2
, 1} with 1

2
denoting the

degraded state, then Table 1(a) with Y ∧ Z replaced by ψ S(X) and Y (Z) replaced by X1(X2)
gives us a table for the states of the system, given the states of the components. Figure 1(a)
displays the state of φS(X) = φS(X1, X2) when X 1 and X 2 take binary values, 0 and 1. In contrast,
Figure 1(b) shows the behaviour of ψ S(X) when X 1 and X 2 are allowed to take all values in the
unit interval, showing the effect of continuously degrading components on the structure function.
Clearly, ψ S(X) provides more granularity than φS(X).

For a parallel redundant system, ψ P (X) = max i Xi = X(n:n); see Table 1(b). This suggests that
the performance of a multistate parallel system is no worse than the performance of its strongest
component. In the three-valued case, the entries of Table 1(b) provide us with a table for the
states of the system given the states of the components, when n = 2. The state of φP (X) when
X 1 and X 2 take binary values, 0 and 1, is displayed in Figure 2(a). In contrast, Figure 2(b) shows
the behaviour of ψ P (X) when X 1 and X 2 take all values in [0,1]. Again, ψ P (X) provides more
granularity than φP (X).

For multistate k-out-of-n systems, we define ψ K (X) = X(n−k+1:n); this definition ensures
consistency among systems, i.e. n-out-of-n systems are denoted ψ S(X) and 1-out-of-n systems
are denoted ψ P (X). Interestingly, our set-up and definition of a multistate coherent system
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Figure 1. (a) Two-component binary system, φS(X). (b) Two-component system, ψ S(X), with continuously degrading
components. The coordinates are labeled (X1, X2, φS(X)) and (X1, X2, ψ S(X)), respectively.

Figure 2. (a) Two-component binary system, φP (X). (b) Two-component system, ψ P (X), with continuously degrading
components. The coordinates are labeled (X1, X2, φP (X)) and (X1, X2, ψ P (X)), respectively.

permits the definition of a dual of a binary coherent system to hold. The dual of a k-out-of-n
system is ψ D

K (X) = ψ (n−k+1:n)(X), an (n − k + 1)-out-of-n system.
In Lemma 1, the pivotal decomposition for binary structure functions is generalized for (m +

1) precise categories through consideration of their associated indicator variables.

LEMMA 1: The following identity holds for every n-component multistate structure function ψ

with precise classification: ψ(X) =
∑m

j=0 ψ[( j

m
)i , X]I[X i =

j

m
], for i = 1, . . . , n where I[X i =

j

m
] =

1(0) if X i =
j

m
(X i �=

j

m
).

Proof. Any multistate structure function, ψ(X) can be decomposed into a representation that
considers the i-th component separately from the remaining (n − 1) components. In particular
for the multistate component, Xi takes only one value from {0, 1

m
, 2

m
, · · · , m−1

m
, 1}. The result

follows.

Theorems 1 and 2 of Section 1 can be generalized for multistate coherent systems. To do so,
we introduce the following additional notation. For X = {X1, . . . , Xn} and Y = {Y1, . . . , Yn},
X ≤ Y if Xi ≤ Yi for each i = 1, . . . , n. As a generalization of Theorem 1, we have:
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THEOREM 3: Let ψ be a multistate coherent system of order n; i.e. ψ has n components. Then

X(1:n) ≤ ψ(X) ≤ X(n:n).

THEOREM 4: Let ψ be a multistate coherent system of order n. Then

ψ(X ∨ Y) ≥ ψ(X) ∨ ψ(Y), (3)

and

ψ(X ∧ Y) ≤ ψ(X) ∧ ψ(Y). (4)

The equality in (3) and (4) hold for all X and Y if and only if the system’s architecture is parallel
and series, respectively.

Thus, for a multistate coherent system, equation (3) reiterates the result that, structurally,
component-level redundancy is superior to system level redundancy, and vice versa in equa-
tion (4). Theorems 3 and 4 and Lemma 1 are also in El-Neweihi & Proschan (1984). They are
stated here for completeness.

Since X(1:n) = ψ S(X) and X(n:n) = ψ P (X), we have the result that the structure function of
any multistate coherent structure is bounded by the structure functions of multistate series and
parallel systems.

3.3 Multistate System Reliability under Precise Classification

Suppose that the component state vectors X1, . . . , Xn are (conditionally) independent and
identically distributed with P(X i =

j

m
| p̃ j+1) = p̃ j+1, for i = 1, . . . , n and j = 0, . . . , m, where

p̃ j+1 ≥ 0 and
∑m

j=0 p̃ j+1 = 1. That is, each Xi has a multinomial distribution over {
j

m
; j =

0, 1, 2, . . . , m} with parameter p̃ j+1, j = 0, . . . , m. Let p̃ = ( p̃1, . . . , p̃m+1). Clearly for each

j, P(ψ(X) =
j

m
) depends on p̃ alone, since the Xi ’s are assumed to be conditionally (given p̃)

independent. Thus, we let P(ψ(X) =
j

m
| p̃) = h j (p̃), where h j is some function of p̃. Suppose

that the architecture of ψ is a (n − k + 1)-out-of-n system. Then

h j (p̃) = P

(

ψn−k+1(X) =
j

m

∣

∣

∣

∣

p̃

)

=

n
∑

a=k

(

n

a

)

{(

j+1
∑

b=1

p̃b

)a(
m+1
∑

b= j+2

p̃b

)n−a

−

(

j
∑

b=1

p̃b

)a (

m+1
∑

b= j+1

p̃b

)n−a}

.

Example 1: Let m, n = 2. Therefore, we consider a two-component system with three possible
states: total failure (0), degradation ( 1

2
), and perfect functioning (1), with associated probabilities

p̃1, p̃2, and p̃3, respectively. Then, the probability that the parallel system is totally failed is
h0(p̃) = P(ψP (X) = 0 | p̃) = p̃2

1 . i.e. the parallel system is totally failed when all its components
are totally failed. The probability that a series system totally fails is h0(p̃) = P(ψS(X) = 0 |

p̃) = 2 p̃1 p̃2 + 2 p̃1 p̃3 + p̃2
1; thus, a series system fails completely when at least one component

is totally failed.

When X1, . . . , Xn are independent but not identically distributed, we may generalize the above
properties by introducing P(X i =

j

m
| pi j+1

) = pi j+1
, j = 0, . . . , m where for each i, pi j+1

≥ 0

and
∑m

j=0 pi j+1
= 1. We define pi = (pi1

, . . . , pim+1
) to be the reliability vector associated with

the i-th component and p = (p1, . . . , pn). Given the conditional independence of the Xi ’s, a
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(n − k + 1)-out-of-n system has

h j (p) = P

(

ψn−k+1(X) =
j

m

∣

∣

∣

∣

p

)

=
∑

a

(

∏

i∈Ja

j+1
∑

b=1

pib

)(

∏

i∈J ′
a

m+1
∑

b= j+2

pib

)

−
∑

a

(

∏

i∈(J−1)a

j
∑

b=1

pib

)(

∏

i∈(J−1)′a

m+1
∑

b= j+1

pib

)

,

where Ja is the subset of (1, 2, . . . , n) where at least k components are performing within level
j

m
and J ′

a is the complement of Ja . Similarly, (J − 1)a is the subset of (1, 2, . . . , n) where at least

k components function within level j−1

m
and (J − 1)′a

′
a is the complement of (J − 1)a .

Lemma 2 provides the pivotal decomposition for the reliability function, h j (p).

LEMMA 2: The following identity holds for the pivotal decomposition of h j (p):

h j (p) =

m
∑

a=0

h j

[

( a

m

)

i
, p

]

· pia+1
, f or j = 0, . . . , m; i = 1, . . . , n, (5)

where h j [(
a
m

)i , p] = P(ψ(X) =
j

m
| X i = a

m
, p).

Proof. Follows from the Law of Total Probability.

4 Components with Imprecise State Classification

Binary state systems with precise classification were overviewed in Section 1.2, and the
concept of vagueness introduced in Section 1.4. Sections 4 and 5 serve to combine these two
notions to develop a mechanism for the treatment of vague coherent systems, with Section 4
devoted to the case of components in vague states, and Section 5 to the case of coherent systems
in vague states.

The terms ‘coherence’ and ‘vagueness’ may seem contradictory; however, they do not pertain
to the same object. The first is associated with the truth values of logical connectives, whereas
the second pertains to the partitioning of a set into subsets. We start with some background on
vagueness and then discuss approaches for quantifying it.

4.1 Vagueness: General Background

Vagueness has been discussed by philosophers like Bertrand Russell, and by physicists like
Albert Einstein. To Russell (1923), ‘all language is more or less vague’ so that the Law of the
Excluded Middle ‘is true when precise symbols are employed but it is not true when symbols
are vague, as, in fact, all symbols are.’ Black (1939) recognized the inability of binary logic
to satisfactorily represent propositions that are neither perfectly true nor false. He attempted to
rectify this by analyzing the concept of vagueness in order to establish an ‘appropriate symbolism’
by which binary logic can be viewed as a special case. Unlike Lukasiewicz (1930), who was
also concerned about the Law of the Excluded Middle, Black did not introduce three-valued
propositions. Rather, he defined a vague proposition as one where the possible states of the
proposition are not clearly defined with respect to inclusion, and introduced the mechanism of
‘consistency profiles’ as a way of treating vagueness. Black’s consistency profile is a graphical
portrayal of the degree of membership of some proposition in a set of imprecisely defined
states, with 1 representing absolute membership in a state and 0 an absolute lack of membership.
Precise propositions are treated via step functions as consistency profiles, and vague propositions
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Figure 3. Example of Consistency Profiles: (a) for a precise set. (b) for a vague set. The consistency profile is 0 after x∗.

Table 2

Membership table for precise set, A1, versus fuzzy set, A2.

x 1 2 3 4 5 6 7 8 9 10

μA1 (x) 0 0 0 0 0 0 1 1 1 1
μA2 (x) 0 0 0 0 0 0.2 0.5 0.9 1 1

by consistency profiles that tend gradually from one extreme to another; see Figure 3. The
scaling between 0 and 1 is arbitrary; other convenient limits could have been used. Further, the
consistency profile which is specified by an individual, or a group of individuals, need not be
unique.

4.2 Membership Functions and Probabilities of Fuzzy Sets

Black’s (1939) consistency profile precedes Zadeh’s (1965) membership function. For each x,
a normalized membership function 0 ≤ μA(x) ≤ 1 describes a belief of containment of x in a set
A. When μA(x) = 1 or 0, A is a crisp (or precise) set; when 0 ≤ μA(x) ≤ 1, A is a fuzzy set. To
illustrate the concept of a fuzzy set, consider

Example 2: Let A1 = {x ∈ {1, 2, . . . , 10} | x ≥ 7}. For any specified x, there is no ambiguity as
to whether x belongs to A1 or not. By definition, μA1

(x) = 1 when x = 7, 8, 9, or 10; otherwise,
it is zero (see Table 2). Thus A1 is a precise set, since μA1

(x) = 1 or 0. By contrast, consider the
set A2 = {x ∈ {1, 2, . . . , 10} | x is large}. The term ‘large’ is vague; thus, we cannot precisely
ascertain the containment of any x in A2. A possible membership function for A2, μA2

(x), is
given in Table 2; this assignment is not unique.

For fuzzy sets, A and B in a basic set M , with membership functions μA(x) and μB(x)
respectively, Zadeh (1965) defined set operations that parallel those of precise sets. For any
x in a given basic set M ,

1. μA∪B(x) = max[μA(x), μB(x)],
2. μA∩B(x) = min[μA(x), μB(x)],
3. μA′(x) = 1 − μA(x),
4. A ⊆ B ⇔ μA(x) ≤ μB(x), and
5. A ≡ B ⇔ μA(x) = μB(x).

Thus, the union of fuzzy sets A and B is the fuzzy set A ∪ B, whose membership function is max
[μA(x), μB(x)]; similarly for the intersection and the complement. There is a parallel between
operations with fuzzy sets and the conjunction and disjunction connectives of Lukasiewicz
(1930). In Section 5.1, we use these operations to define structure functions of vague binary
state systems. Thus, we claim that Lukasiewicz’s logic provides a unifying framework via which
both multistate as well as vague systems can be studied.
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4.2.1 Probabilities of fuzzy sets

In the context of this paper, statistical inference plays a key role. This role comes into effect
when we endow a probability measure for a fuzzy set, say A. There are two key ideas that drive
this development, namely that (1) vague sets are a consequence of one’s uncertainty about the
boundaries of sharp sets, and (2) the membership function μA(x) is to be interpreted as data (or
information) whose role is to help induce a likelihood function, just like the role of an observation
in traditional statistical inference. The above ideas can be best exposited by envisioning the
scenario of expert testimonies and information integration that has gained current popularity in
statistical practice (cf. Reese et al. 2004).

Accordingly, we consider the actions of D, an assessor of probabilities (or a decision maker),
who quantifies his (her) uncertainty about any outcome of X , say x, being classified in A via a prior
probability π D(x ∈ A). The thesis here is that all uncertainties, including those of classification,
be quantified via probability. In order to sharpen the prior probability, D consults an expert,
say Z, and elicits from Z a membership function μA(x). This μA(x) can be seen as additional
information about the nature of x’s membership in A, and de facto serves a role analogous to that
of observed data in statistical inference about outcomes. In essence, observed data are evidence
about outcomes whereas membership functions are evidence about classification. In principle,
D may consult several experts and elicit from each membership functions as a way to further
sharpen the analysis.

With μA(x) at hand, D constructs his (her) likelihood function that x ∈ A; we denote this
likelihood by L[x ∈ A; μA(x)]. The construction of this likelihood follows standard statistical
procedures for formally incorporating expert testimonies, and should include things such as
D’s view of the expertise of Z and, in the case of several experts, correlations between them
(cf. Lindley, 1991; Clarotti & Lindley, 1988). Since L[x ∈ A; μA(x)] is D’s likelihood that Z

declares μA(x) when x ∈ A, the specification of this likelihood is a subjective exercise on the part
of D. Conventionally, in statistical inference, likelihoods for unknown parameters are prescribed
via probability models (for outcomes) using the observed data as fixed quantities. By contrast,
what we have done here is prescribed a likelihood about classification using the membership as
a fixed entity, but without the benefit of a probability model. In so doing, we have interpreted
the likelihood in a broader sense, namely as a weighting function (Basu, 1975). In addition to
L[x ∈ A; μA(x)], D also needs to specify L[x /∈ A; μA(x)], which is D’s likelihood that x /∈ A

when Z declares a μA(x), and PD(x) which is D’s subjective probability that an outcome x will
occur. Thus D needs to specify two probability measures π D(x) and π D(x ∈ A), one for outcomes
and one for classification, and two likelihoods, L[x ∈ A; μA(x)] and L[x /∈ A; μA(x)].

With the above in place, D uses standard statistical methodology involving Bayes’ Law, Bayes’
Factors, and prior to posterior odds (cf. Kass, 1993) to obtain a probability measure for a fuzzy
set A (cf. Singpurwalla & Booker, 2004) as

PD[X ∈ A; μA(x)] =
∑

x

[

1 +
L[x /∈ A; μA(x)]

L ∈ A; μA(x)
·
πD(x /∈ A)

πD(x ∈ A)

]−1

PD(x). (6)

Equation (6) above is the essence of the material of this section; it is to play a key role in
what is to follow. In obtaining the above, we have leaned heavily on the statistical notion of
likelihood and the likelihood ratio. Equation (6) simplifies if D chooses to use Z’s declared
μA(x) as the sole basis for constructing his (her) likelihood, so that L[x ∈ A; μA(x)] = μA(x),
and L[x /∈ A; μA(x)] = 1 − μA(x). In this case,

PD[X ∈ A; μA(x)] =
∑

x

[

1 −

(

1 −
1

μA(x)

)

·
πD(x /∈ A)

πD(x ∈ A)

]−1

PD(x). (7)
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4.2.2 The role of precise and fuzzy data in vague systems

In equations (6) and (7), PD(x) encapsulates D’s prior uncertainty about an outcome x. Were
D to have at his (her) disposal x = (x1, . . . , xn), data on X , then PD(x) would get replaced by a
posterior probability, say PD(x; x). The calculation of this posterior would be a routine exercise
were D to invoke a probability model for outcomes, and were the actual observations x1, . . . , xn

sharp (i.e. precisely stated). What must D do to update PD(x) if the data x is itself fuzzy?
To address this question, we first need to clarify as to what one means by fuzzy data, a term

that has appeared in several book and article titles; see, for example Bertoluzza et al. (2002), and
Viertl (2006). If by fuzzy data, we mean imprecision of observation (i.e. observation error), then
the treatment of such data can be routinely handled via standard statistical technology, provided
that an error distribution can be specified. The literature on ‘calibration’ adequately deals with
this issue; see, for example, Huang (2002). If by fuzzy data, we mean a statement such as ‘the
outcome does or does not belong to the fuzzy set A’, then the incorporation of such information
for updating PD(x) is no more a standard matter. In other words, when the actual value taken by
X , say xi , is not declared, but what is declared is whether the actual value belongs or not to A,
an assessment of PD(x; observed value belongs (does not belong) to A) poses a challenge. This
can be addressed if a likelihood for X = xi with the knowledge that the ‘observed value belongs
(does not belong) to A’ can be specified by D. The specification of such a likelihood will entail
several issues such as who provides D the said knowledge, Z or someone other than Z. If it is
Z, then μA(x) provides some guidance to D about specifying the likelihood. If it is someone
other than Z, then D needs to contemplate the knowledge provider’s actions. These and other
issues remain to be addressed, including the matter of calibrating Z and updating membership
functions.

4.3 Components in Vague Binary States

The notion that units can exist in states that are vaguely defined was introduced in
Section 1.4. Specifically, let X denote the state of a component at some time τ > 0, and let
X take values in S = {x ; 0 ≤ x ≤ 1}, with one representing the perfectly functioning state.
Consider G ⊂ S, where G = {x ; x is a ‘desirable’ state}. Suppose that interest centres around
X ∈ G. Suppose also that we are unable to specify an x∗ such that X ≥ x∗ implies that X ∈ G
and, otherwise, X /∈ G. Thus, the boundary of G is not sharp; i.e. G is a fuzzy set. Let μG(x)
be the membership function of G. Figure 4 illustrates plausible forms for μG(x). Interest may
centre around G for several reasons, a relevant one being a desire to use ‘natural language’ for
communication with others on matters such as repair and replacement. Another possibility is
that it may not be possible to observe the actual value of x, but one may be able to make a general
statement about the state of the component.

The complement of G, say GC , is that fuzzy set whose membership function is 1 − μG(x). It
is important to note that, if another subset B ⊂ S was defined as B = {x; x is an ‘undesirable’
state}, then GC may or may not be B unless μB(x), the membership function of B, was such that
μB(x) = 1 − μG(x). In principle, one is free to choose a μB(x) that need not bear a relationship
to μG(x). For example, in Figure 4(a), μB(x) is symmetric to μG(x), whereas in Figure 4(b),
μB(x) and μG(x) are not symmetric. There is precedent in the statistical sciences for choosing
asymmetric likelihood functions. For example, one need not specify likelihood functions that
are symmetrical for competing hypotheses.

Example 3: An assessor D wants to assess the probability that a component will be in a
‘desirable’ state G at some future time τ . That is, D wishes to specify PD[X ∈ G; μG(x)], where
a membership function of the form μG(x) = x4, 0 ≤ x ≤ 1 has been elicited by D from an expert,
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Figure 4. Membership functions of G and B: (a) Symmetric case. (b) Asymmetric case.
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Figure 5. Component state at time τ , PD(x).
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Figure 6. Two possible prior forms of classifying X = x, P1(x ∈ G) and P2(x ∈ G), supplied by the assessor D.

Z. Suppose that PD(x), D’s personal probability that the state of the component at time τ will be x

is of the form given in Figure 5; it is a Beta(6,2) density. Furthermore, suppose that D’s belief that
nature will classify any x inG, namely PD(x ∈ G), is of the general form illustrated in Figure 6 with
the label, P1(X ∈ G). Then, it can be seen—via equation (7)—that PD[X ∈ G; μG(x)] = 0.6605.
As a consequence, PD[X /∈ G; μG(x)] = 1 − 0.6605 = 0.3395. By contrast, suppose now that,
if D were to specify PD(x ∈ G) via the label P2(x ∈ G) of Figure 6 and keep everything else the
same; then PD[X ∈ G; μG(x)] would increase to 0.7486. Thus, even a small change in the form
of PD(x ∈ G) produces a noticeable change in D’s final answer.

4.4 Reliability of Components in Vague Binary States

We say that a component’s state is ‘vague and binary’ if interest centres around a single vague
set of the kind G or B in our illustrations. As was mentioned before, we should bear in mind that,
in general, GC need not be B and vice versa, unless of course G and B are precise sets. For G =

{x; x is a ‘desirable’ state} and μG(x) specified, it is reasonable to define the reliability of the
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component as PD[X ∈ G; μG(x)]. Equation (6) can now be used to evaluate this probability. With
B = {x; x is an ‘undesirable’ state}, and μB(x) specified, we may define the unreliability of the
component as PD[X ∈ B; μB(x)]. We could have also defined the unreliability of the component
as PD[X ∈ GC ; μG(x)], whereGC is that fuzzy set whose membership function equals 1 − μG(x).
With either choice for the definition of unreliability, we see that, when a component’s state is
vague and binary, its unreliability is not necessarily the complement of its reliability! This result
is in contrast to that of binary coherent systems.

Example 4: The case of components that can exist in precise binary states can be en-
compassed within the above framework; μG(x) = 1 for x ≥ x∗ and πD(x ∈ G) = 1 if x ≥

x∗, and zero otherwise. Furthermore, B = GC , thus PD[X ∈ G; μG(x)] = 1 − FD(x∗) and
PD[X ∈ B; μG(x)] = PD[X /∈ G; μG(x)] = FD(x∗), where FD(x∗) is the cumulative distribution
function (cdf) associated with pD(x) evaluated at x∗.

5 Binary State Systems with Imprecise Classification

The purpose of this section is to extend the development of Section 4.3 on binary state
components with imprecise classification to the case of binary state, n-component systems with
imprecise classification. By ‘binary state systems with imprecise classification’, we mean those
systems whose component states are vague and binary, and whose structure functions satisfy
the logical connectives of Lukasiewicz; see Section 2. Our motivation for choosing this as a
definition of structure functions is that the structure functions of binary state coherent systems
with precise classification are exactly the membership functions of certain precise sets. The
case of multistate systems with imprecise classification, though not discussed here, follows by
analogy.

5.1 Structure Functions as Membership Functions of Precise Sets

Let Xi be the state of component i taking a particular value xi , i = 1, . . . , n. Suppose that
each Xi can take values in S = {x ; 0 ≤ x ≤ 1}. Let Gi = {xi ; xi is a ‘desirable’ state}, Gi ⊂ S.
Let μGi

(xi ) denote the membership function of Gi , i = 1, . . . , n. For now, suppose that Gi is
precise for all i. That is, for each i, there exists an x∗

i such that μGi
(xi ) = 1(0) when xi ≥ x∗

i

(xi < x∗
i ). For ease of notation, this section focuses solely on the subspace Gi ; therefore, we use

μi (xi ) to denote the representation of the above membership functions, with the understanding
that the membership function assigned is dependent on the fuzzy classification, Gi , which itself
depends on component i. For the remainder of this paper, we let L[X /∈ Gi ; μi (x)] = 1 − μi (x)
and L[X /∈ Gφ(X); μφ(X)(x)] = 1 − μφ(X)(x), where φ(X) is as defined in Section 1.2.

Let X = (X1, . . . , Xn) and suppose that the n components are in series. Thus the system’s
structure function is 1 if and only if xi ≥ x∗

i for all i = 1, . . . , n. However, xi ≥ x∗
i implies that

μi (xi ) = 1 for each i. Thus we may write

φS(X) =

n
∏

i=1

μi (X i ) = min
i

[μi (X i )]
.
= μ(1:n)(X), (8)

where μ(1:n)(X) is the membership function of the intersection of the n precise sets Gi , i =

1, . . . , n. Thus, the structure function of a series system with precise classification can also be
interpreted as the membership function of the intersection of n precise sets. Similarly, if the
n components were to be connected in parallel redundancy, then the structure function of the
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system would be

φP (X) =

n
∐

i=1

μi (X i ) = max
i

[μi (X i )]
.
= μ(n:n)(X), (9)

which is the membership function of the union of Gi , i = 1, . . . , n. Finally, for a k-out-of-n
system, we could write

φK (X) =

{

1, if
∑n

i=1 μi (X i ) ≥ k

0, otherwise.
(10)

Whereas the relationships of equations (8) and (9) have an interpretation within the calculus of
fuzzy sets, equation (10) does not. Sums of membership functions are not a part of the calculus
of fuzzy sets. We therefore seek an alternate way of expressing φK (X). We do this as follows.

Suppose that the μi (Xi ) terms are relabeled so that μ(1:n)(X) is the minimum and μ(n:n)(X) is
the maximum; i.e. μ(1:n)(X) ≤ μ(2:n)(X) ≤ · · · ≤ μ(n−k+1:n)(X) ≤ · · · ≤ μ(n:n)(X). Since each
μi (Xi ) is either zero or one, the above ordering will result in equalities for many of the above
terms. Once the above is done, we see that φK (X) = μ(n−k+1:n)(X). Thus, in general, the structure
function of a k-out-of-n system is the membership function of the precise set intersecting the k

smallest Gi sets.

5.2 Structure Functions of Vague Binary State Systems

Motivated by the material of the previous section, we define the structure function of series,
parallel, and k-out-of-n systems whose component states are vague and binary as

φS(X) = min
i

[μi (X i )] = μ(1:n)(X),

φP (X) = max
i

[μi (X i )] = μ(n:n)(X), and

φK (X) = μ(n−k+1:n)(X).

These structure functions are identical to those for the case of binary precise sets, except that
now, μi (Xi ) is a membership function of an associated vague set Gi , i = 1, . . . , n.

Finally, if πD(xi ∈ Gi ) denotes D’s probability that a particular xi gets classified in Gi , then by
analogy with equation (7), we have

PD[X i ∈ Gi ; μi (xi )] =

∫

xi

[

1 −

(

1 −
1

μi (xi )

)

·
πD(xi /∈ Gi )

πD(xi ∈ Gi )

]−1

dPD(xi ), (11)

where PD(xi ) is D’s probability that Xi ≤ xi .
Our development thus far has assumed that the membership functions μi (xi ), i = 1, . . . , n,

are all distinct. Simplification occurs if μi (xi ) = μ(x) for i = 1, . . . , n. We limit our attention
to the case of series and parallel systems because more complicated systems, such as networks
can be represented as a combination of series-parallel systems.

5.3 Reliability of Vague Binary State Systems

If the state of each component in a system is a desirable state, will the system itself be in
a desirable state? The answer to this question need not be in the affirmative. This is because
requirements on the system could be more stringent than those on each component of the system.
This is unlike the case of binary state systems with precise classification wherein a series system
is judged to be reliable if all its components are reliable. Thus, there are two possible ways in
which the reliability of a vague coherent system can be defined. The first is to assume that a
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series system is reliable if all its components are in a desirable state. The second is to require that
for a system to be judged reliable, its state—say x—be a desirable state. Specifically, we require
that x ∈ Gφ(X), where Gφ(X) = {x ; x is a ‘desirable’ system state} and Gφ(X) ⊂ S. Associated with
Gφ(X) is its membership function, μGφ(X)

(x). Similarly, in the case of a parallel system, we have
two possibilities for defining reliability—the first one being that the system is reliable if at least
one of its components is in a desirable state, and the second being the requirement that its state
x ∈ Gφ(X). We simplify notation by letting μφ(X)(x) = μGφ(X)

(x) and focusing the discussion on
the subspace G(·).

For assessing reliability, let us consider the first case for series and parallel systems. Assuming
the Xi ’s independent, the reliability of a series system would be

∏n
i=1[PD[X i ∈ Gi ; μi (xi )]] where

PD[X i ∈ Gi ; μi (xi )] is given by equation (11). The reliability of a parallel redundant system
is PD(

⋃n
i=1{X i ∈ Gi }; μi (xi ), i = 1, . . . , n); it can be evaluated by the Inclusion-Exclusion

formula of probability (Feller, 1968). The computations simplify when the Xi ’s are assumed
identically distributed. The case of k-out-of-n systems follows along similar lines.

With regard to the above, a question arises as to what we mean by independence of the Xi ’s,
when the Xi ’s take values in a vague set. In the context of equation (11), Xi and X j , i �= j, will be
judged independent if

PD(X i ≤ xi , X j ≤ x j ) = PD(X i ≤ xi ) · PD(X j ≤ x j ), and if

PD(xi ∈ Gi , x j ∈ G j ) = PD(xi ∈ Gi ) · PD(x j ∈ G j ) and

PD(xi /∈ Gi , x j /∈ G j ) = PD(xi /∈ Gi ) · PD(x j /∈ G j ).

The more interesting case is the second one, wherein a system is reliable if the state in which
it resides is a desirable one. We start with the case of a series system with structure function
φS(X). Its reliability is PD(φS(X) ∈ GφS (X); μφS [X)(x)] which, from equation (11), is of the form

PD(φS(X) ∈ GφS (X); μφS [X)(x)] =

∫

x

[

1 −

(

1 −
1

μφS (X)(x)

)

·
πD(x /∈ GφS (X))

πD(x ∈ GφS (X))

]−1

dPD(x),

(12)

where πD(x ∈ GφS (X)) is D’s probability that x is classified in GφS (X) were φS(X) = x, and PD(x)
is D’s probability that φS(X) ≤ x.

Since φS(X) = min i μi (Xi ) = μ(1:n)(X), we obtain PD(x) as follows:

PD(φS(X) ≥ x) = PD(μ(1)(X) ≥ x)

= PD(μi (X i ) ≥ x, i = 1, . . . , n)

= PD(X i ≥ μ−1
i (x), i = 1, . . . , n),

=

n
∏

i=1

PD[X i ≥ μ−1
i (x)], if X i ’s are assumed independent,

(13)

where μ−1
i (·) denotes the inverse of μi (·). Subsequently, dPD(x) can be obtained. If the Xi ’s

cannot be judged independent with respect to D’s distribution for the Xi ’s, we need to specify
a joint distribution for these, such as Marshall & Olkin’s (1967) multivariate exponential, or
any of its variants. In the case of parallel systems, the development will proceed along similar
lines, save that now PD(x) will be obtained via

∏

n
i=1 PD[Xi ≤ μ−1

i (x)]. Finally, the case of
(n − k + 1)-out-of-n would follow by considering the distribution of the k-th order membership
function, μ(k:n)(x).

Example 5: Consider a two-component series system where the component performances are
independent and identically distributed. D wishes to assess PD[φS(X) ∈ GφS (X); μφS (X)(x)]. The
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first option is to compute the product of the component probabilities. Let μGi
(x) = x2, and PD(x)

and PD(x ∈ Gi ) be as shown in Figures 5 and 6, respectively, for i = 1, 2. Then, PD[φS(X) ∈

GφS (X); μφS (X)(x)] = 0.6232. The second option is to compute the system reliability directly,
through the use of Z’s membership function for the entire system. Supposing that the expert
holds a stronger standard for the system to be in a desirable state than that for the compo-
nents, we let μφS (X)(x) = x10. Meanwhile, D considers PD(x) and PD(x ∈ Gi ) as specified in
Figures 5 and 6 for φS(X), implying that PD[φS(X) ∈ GφS (X); μφS (X)(x)] = 0.4321. Thus, by
holding the system to a more stringent standard, D’s assessment of the system reliability is lower
when considered directly, as opposed to that when using a more relaxed membership function
to represent belief at the component level.

6 Maintenance Management in a Vague Environment

Examples 3–5 illustrate how D is able to assess the probability that the state of a unit will
be in a ‘desirable’ state, or its complement. Why would D be interested in such a probability
instead of the probability that the state of the unit will be x, 0 ≤ x ≤ 1? Reasons were given in
Section 4.3, the one pertaining to communication using ‘natural language’ being the most
relevant. This point is best underscored via the scenario of maintenance wherein one must decide
whether to repair, replace, or simply continue to monitor the unit. In practice, judgments about
maintenance are not based on assessments of uncertainty about x; they are based on conjectures
about whether or not the unit will be in a ‘desirable’ state.

Consider the following: a unit is required to perform service for some time period. The unit
can exist in one of three states: G (for good), B (for bad), and A (for acceptable). When the unit is
in state G, the utility to D provided by the unit is U(G); analogously, we define U(A) and U(B). It
is reasonable to suppose that U(A) < U(G) and, in principle, −U(B) could be greater than U(G),
i.e. the cost for being in state B could dominate the reward for being in state G. With the above
in place, D’s problem is to make a decision whether to replace the unit, denoted R, or to repair
the unit, denoted M, or do nothing, denoted N . There is a cost associated with each of these
three actions, and these are denoted −U(R), −U(M), and −U(N ), respectively. Presumably,
−U(N ) < −U(M) < −U(R). Which of the above three actions should D take?

The problem is solved by using maximization of expected utility (MEU) [cf. Lindley (1991),
p. 58]. The decision tree of Figure 7 facilitates an implementation of this recipe; the rectangle
represents D’s decision node and the three circles denoted R1, R2, and R3 represent the three
nodes corresponding to the three actions R,M and N , respectively. Each (random) node results
in one of three outcomes, ⋆ = G,A or B, and these are portrayed in Figure 7 only for the node
R3. At the terminus of the tree are the utilities. For example, U(N ,G) denotes the utility to D,
when D’s decision is to monitor the unit and the outcome is G.

The MEU principle requires that, at each random node, D compute an expected utility of
an action that leads to that node. For this, D needs to assess the probabilities that at τ , the
state of the unit will be in G,A, and B, respectively. These probabilities would depend on three
ingredients: membership functions of the kind μ⋆(x), μA(x), and μB(x); D’s prior probability
that an x is classified (by nature) in G,A, and B (i.e. PD(x ∈ ⋆), ⋆ = G,A,B), and PD(x), D’s
subjective probability that the state of the unit will be x. Since

∑

⋆=G,A,B PD(x ∈ ⋆) = 1, D need
only specify any two probabilities. Once these are at hand, D invokes equation (7) to obtain
the required probabilities. All of the above is straightforward except that PD(x) depends on the
action that D takes. Both repair and replacement actions tend to right-skew the form of PD(x)
toward one. Thus, with respect to the illustration of Figure 5, a repair action will tend to shift the
probability mass closer to one, and moreso with replacement. To summarize, the impact of D’s
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Figure 7. D’s decision tree for maintenance actions.

actions on D’s probabilities of the state of the unit are reflected only in PD(x). The membership
functions and the classification probabilities are unaffected. To denote such a dependence, we
shall replace the PD(x) of equation (7) by PD(x;•), and PD[X ∈ ⋆; μ⋆(x)] by PD(X ∈ ⋆; μ⋆(x), •)

for • = R,M and N ; ⋆ = G, A, B.
Whereas the development in Sections 4 and 5 pertained to the binary case involving two

vague sets B and G, our example here involves three vague sets A,B, and G, and their respective
membership functions, μ•(x), • = A,B and G. Of these, only μA(x) warrants comment since
the general nature of the other two has been discussed before; see Figures 4(a) and (b). It is
reasonable to suppose that the general form of μA(x) is either bell-shaped or an inverted U.

Finally, a question arises as to whether μA(x), μB(x), and μG(x) can take any arbitrary form
independent of each other. The answer to this question is in the negative because the membership
functions go to determine the quantities PD[X ∈ A; μA(x)], PD[X ∈ B; μB(x)] and PD[X ∈

G; μG(x)], and these must sum to one. Thus, D needs to ensure coherence of the membership
functions just like how D needs to ensure a coherence of the classification and state probabilities.
Since D elicits membership functions from Z, it is incumbent on D to ensure that membership
functions do not lead to results that violate the countable additivity axiom of probability. This
important point has not been addressed in Singpurwalla & Booker (2004).

The utilities at the terminus of a tree, U(N ,G),U(N ,A) and U(N ,B) are straightforward to
write out. Thus, for example, U(N ,G) = U(N ) + U(G), which is the sum of the disutility due to
monitoring and the utility of the unit being in state G. Similarly, U(N ,B) = U(N ) + U(B), and
U(N ,A) = U(N ) + U(A). With this in place, we compute the expected utility at each node.
Thus, for example,U(N ), the expected utility at node R3 isU(N ) =

∑

⋆=G,A,B U(N , ⋆) · PD(X ∈

⋆; μ⋆(x),N ), where PD(X ∈ ⋆; μ⋆(x),N ) is the right-hand side of equation (7) with PD(x)
replaced by PD(x ;N ); similarly, the other terms of U(N ). The expected utilities at nodes R1

and R3 are analogously computed as U(R) and U(M), respectively, mutatis mutandis. Once the
above are done, D’s maintenance decision is to choose that action for which the expected utility is
a maximum. Thus, for example, if U(N ) > U(R) > U(M), then D’s decision would be simply
to do nothing.

How does the above material differ from that which is currently available in the literature
on maintenance planning? The current literature would require each node to be binary and,
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to compute the expected utility at each node, all we need is the probability that x ≥ x∗. This
probability can be had once D specifies PD(x ; •), • = R,N and M. By contrast, we allow an
x to exist in three vaguely defined sets, and allow x to simultaneously exist in more than one of
these. The advantage is flexibility and a facility to entertain an analysis that facilitates natural
language communication. Further, in the existing literature, uncertainties are assessed about
times to failure via probabilistic failure models, and failure is viewed as a sharply defined event.
Consequently, the analysis is forced into a binary framework. By contrast, our uncertainties are
focused on x which can encapsulate degradation of a unit.

7 Summary and Conclusions

The term ‘complex stochastic systems’ is well entrenched into the vocabulary of statisticians,
though it generally pertains to a use of the Markov Chain Monte Carlo method. This paper takes
a broader view of this term by embedding within it the theory of vague coherent structures.
This theory, which is generally associated with work in applied probability and reliability is
germane to statisticians, especially those whose focus is on biostatistics, genetics, graphical
models, and neural nets. With that in mind, we have devoted Section 1 to an overview of the
key notions and ideas of binary state systems whose two states can be precisely delineated.
The mathematics which drives the development of results for such systems is binary logic. In
Section 1, we also set the stage for the material of Sections 4 and 5 by introducing the idea
of imprecise or vague sets. The need for such sets has been acknowledged by physicists,
philosophers, and logicians. More recently, their need has also been recognized by those involved
in decision making and natural language processing. Section 2 is devoted to multivalued
logic in the context of multivalued propositions. The focus here is on the connectives of
conjunction and disjunction; these connectives can be used to define the structure function
of multistate systems, a topic treated in Section 3. In Section 3, it is assumed that the
classification of states is precise. This topic has been covered before via the literature on
multistate reliability; however, what is new here is the departure from binary logic to multivalued
logic.

Sections 4 and 5 impart to this paper a feature that is novel. Specifically, they pertain to the
development of reliability for components and systems whose state space is vague. In actuality,
vague state spaces are more realistic than the usual zero-one states, which are an idealization. In
Sections 4 and 5, we also show that the usual notions of reliability do not always hold when the
state space is vague. For example, the unreliability of a unit is not one minus its reliability, and
that there is more than one way to define system reliability.

There is another aspect of this paper that warrants comment. In the existing theory of coherent
structures with precise classification, statistical principles have no role to play. All that is needed is
the calculus of probability. By contrast, when dealing with vague systems, membership functions
and consistency profiles create a role for the likelihood function and, in so doing, mandate a
consideration of the principles of Bayesian statistical inference.

The illustrative examples of Sections 4 and 5, and the maintenance management architecture
of Section 6 should give the reader an inkling of the practical import of the material here. For
example, in maintenance and replacement actions pertaining to decision making uncertainty, the
usual strategy is to assume that the state space is binary—functioning and failed. In actuality,
functioning can occur at different levels whose boundaries cannot be sharply delineated. Thus,
it makes more sense to study maintenance and replacement when the state space is vague for, in
actuality, this is how such decisions are made.
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Résumé

L’état de l’art dans la théorie de structure cohérente est guidé par deux assertions qui sont tous deux limitants : (1)

toutes les unités d’un système peuvent exister dans un de deux états, défaillant ou fonctionnant; et (2) à n’importe quel

moment, chaque unité peut seulement exister dans un des susdits états. En réalité, les unités peuvent exister dans plus de

deux états et c’est possible qu’une unité puisse simultanément exister dans plus d’un état. Cette dernière caractéristique

est une conséquence de l’opinion qu’il ne soit peut-être pas possible de définir avec précision les sous-ensembles d’un

ensemble d’états; on appelle de tels sous-ensembles vagues. La première restriction a été adressée par les méthodes

appelées “systèmes multi-états”; pourtant, ces méthodes n’ont pas pris avantage des mathématiques sur les propositions

multivalues en logique. Ici, nous invoquons ses tables de vérité pour définir la fonction des systémes multi-états et

exploiter ensuite nos résultats dans le contexte d’ambiguı̈té. Une contribution clé de ce papier est d’argumenter que la

logique de plusieurs values est une plateforme commune pour étudier tant les systèmes multi-états que les systémes

vagues, mais pour faire ceci, il est nécessaire de se baser sur plusieurs principes d’inférence statistique.
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