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Many-valued Non-deterministic Semantics for
First-order Logics of Formal (In)consistency

Arnon Avron and Anna Zamansky

School of Computer Science, Tel Aviv University

Abstract. A paraconsistent logic is a logic which allows non-trivial in-
consistent theories. One of the oldest and best known approaches to the
problem of designing useful paraconsistent logics is da Costa’s approach,
which seeks to allow the use of classical logic whenever it is safe to do so,
but behaves completely differently when contradictions are involved. da
Costa’s approach has led to the family of Logics of Formal (In)consistency
(LFIs). In this paper we provide non-deterministic semantics for a very
large family of first-order LFIs (which includes da Costa’s original system
C∗

1 , as well as thousands of other logics). We show that our semantics
is effective and modular, and we use this effectiveness to derive some
important properties of logics in this family.

1 Introduction

The concept of paraconsistency was introduced more than half a century ago,
when several philosophers questioned the validity of classical logic with regard
to its ex contradictione quodlibet (ECQ) principle. According to this counterin-
tuitive principle, any proposition can be inferred from any inconsistent set of as-
sumptions. Now the philosophical objections to this principle have recently been
reinforced by practical considerations concerning information systems. Classical
logic simply fails to capture the fact that information systems which contain
some inconsistent pieces of information may produce useful answers to queries.
The obvious conclusion from this state of affairs is that a more appropriate logic
is needed for such systems. Thus [15] says:

Informally speaking, paraconsistency is the paradigm of reasoning in the
presence of inconsistency. Classical logic intolerantly invalidates any use-
ful reasoning if there is any inconsistency, no matter how irrelevant
it may be. However, inconsistencies, as unpleasant and dangerous as
they can be, are ubiquitous in information systems. For novel technol-
ogy which often is not sufficiently mature before being launched on the
market, the risk of inconsistencies is even higher. Hence, a thoroughly re-
vised inconsistency-tolerant logic is needed for databases and information
systems, also because many future applications (e.g., the self-organizing
cognitive evolution of networked information systems, involving negotia-
tion, argumentation, diagnosis, learning, etc.) are likely to deal directly
with inconsistencies as inherent constituents of real-life situations.



A paraconsistent logic is a logic that allows contradictory, yet non-trivial, the-
ories. There are several approaches to the problem of designing useful paracon-
sistent logics (see, e.g. [6, 9, 7]). One of the best known is da Costa’s approach
([12, 10, 11]), which has led to the family of Logics of Formal Inconsistency
(LFIs). This family is based on two main ideas. First of all, propositions are
divided into two sorts: the “normal” (or “consistent”) and the “abnormal” (or
“inconsistent”) ones. The second idea is to express the meta-theoretical notions
of consistency/inconsistency at the object language level, by including in it a
(primitive or defined) connective ◦, with the intended meaning of ◦ϕ being “ϕ is
consistent”. (Sometimes the dual connective •, expressing inconsistency is used,
see e.g. [8, 11]). Using the consistency operator, one can limit the applicability
of the rule ϕ,¬ϕ ⊢ ψ (capturing the ECQ principle) to the case when ϕ is con-
sistent (i.e., ϕ,¬ϕ, ◦ϕ ⊢ ψ).

Although the syntactic formulations of the LFIs are relatively simple, already
on the propositional level the problem of finding useful semantic interpretations
for them is rather complicated. Thus the vast majority of the propositional
LFIs cannot be characterized by means of finite multi-valued matrices. What
is more, for almost all of them no useful infinite characteristic matrix is known
either. Therefore other types of semantics, like bivaluations semantics and pos-
sible translations semantics, have been proposed for them ([10, 11]). However, it
is not clear how to extend these types of semantics to the first-order level.

An alternative framework for providing semantics for propositional paracon-
sistent logics was introduced in [1] (and used in [2, 3, 4]). This framework uses
a generalization of the standard multi-valued matrices, called non-deterministic
matrices (Nmatrices). Nmatrices are multi-valued structures, in which the value
assigned by a valuation to a complex formula can be chosen non-deterministically
out of a certain nonempty set of options. The framework of Nmatrices has a num-
ber of attractive properties. First of all, the semantics provided by Nmatrices
is modular: the main effect of each of the rules of a proof system is to reduce
the degree of non-determinism of operations, by forbidding some options. The
semantics of a proof system is obtained by combining in a rather straightforward
way the semantic constraints imposed by its rules. Secondly, this semantics is
effective. By this we mean that any legal partial valuation closed under sub-
formulas can be extended to a full valuation. This property is crucial for the
usefulness of semantics, in particular for constructing counterexamples 1.

This paper has two main goals. The first is to combine the results of [2]
and [3] (which treat different families of propositional LFIs) into one unified
framework. The second (and more important) goal is to extend this semantic
framework (and to generalize the corresponding results) to the full first-order
level. 2

1 No general theorem of effectiveness is available for the semantics of bivaluations or
for possible translations semantics. As a result, effectiveness has to be proven from
scratch for any instance of these types of semantics.

2 First steps in this direction have been taken in [20].



It turned out that one encounters severe complications when moving (in the
context of LFIs) from the propositional level to the first-order one. They are
mostly related to the lack of the IPE principle (intersubstitutability of provable
equivalents) in LFIs. This is an important principle of classical logic, according
to which ψ(A) ↔ ψ(B) is provable whenever A↔ B is provable. Unfortunately
this principle does not hold for the family of LFIs studied in this paper (see
[10, 11]). For instance, already on the propositional level one usually cannot infer
¬(A ∧ B) ↔ ¬(B ∧ A) from A ∧ B ↔ B ∧ A. This abnormality becomes really
harmful on the first-order level. Even the α-conversion principle (identifying
syntactic objects differing only in the names of their bound variables) does not
hold in the first-order systems which are obtained from the propositional LFIs
considered here by the addition of the usual rules and axioms for ∀ and ∃. Thus
although ∀xp(x) ↔ ∀yp(y) is provable in these systems, ¬∀xp(x) ↔ ¬∀yp(y) is
not. This is of course unacceptable in any reasonable logical system. A similar
problem occurs concerning vacuous quantification: although ∀x∀yp(x) ↔ ∀xp(x)
is provable, ¬∀x∀yp(x) ↔ ¬∀xp(x) is not.

The straightforward solution to this problem proposed by da Costa ([12, 13])
is to add an explicit axiom capturing the principles of α-equivalence and vacuous
quantification. However, the non-deterministic semantics for systems with such
axioms become more complicated. As a result, their effectiveness becomes less
evident. Nevertheless, we shall be able to prove the effectiveness of our semantics
for all the first-order LFIs studied in this paper. Then we show how this effec-
tiveness can be used in order to prove important proof-theoretical properties of
those LFIs.

2 Preliminaries

Notation: Given a first-order language L, FrmL is its set of wffs, Frmcl

L - its set
of sentences and Trmcl

L - its set of closed terms. Fv[ψ] (Fv[t]) is the set of vari-
ables occurring free in a formula ψ (a term t). ψ{t/x} is the formula obtained
from ψ by substituting the term t for every free occurrence of x in ψ. P+(V)
denotes the set of all non-empty subsets of the set V.

The following definition formalizes for first-order languages the notion of a sub-
stitution of subformulas in a sentence.

Definition 1 (Substitutable subformulas) Given a sentence ψ of L, the set
SSF (ψ) of its substitutable subformulas is inductively defined as follows:

– SSF (p(t1, ..., tn)) = {p(t1, ..., tn)}
– SSF (⋄(ψ1, ..., ψn)) = {⋄(ψ1, ..., ψn)} ∪ SSF (ψ1) ∪ ... ∪ SSF (ψn)
– If x 6∈ Fv[ψ], then SSF (Qxψ) = {Qxψ}∪SSF (ψ). Otherwise, SSF (Qxψ) =

{Qxψ}.

Denote by ϕ(ψ) an L-sentence ϕ, such that ψ ∈ SSF (ϕ). Let ϕ(ψ) and θ be
L-sentences. We denote by ϕ(θ) the result of substituting θ for ψ in ϕ.



For capturing the principles of α-conversion and void quantifiers, we need the
notion of a congruence relation.

Definition 2 (Congruence relation) Given a first-order language L, a binary
relation ∼ between L-formulas is a congruence relation if (i) ∼ is an equivalence
relation, (ii) If ψ1 ∼ ϕ1, ..., ψn ∼ ϕn then ⋄(ψ1, ..., ψn) ∼ ⋄(ϕ1, ..., ϕn) for every
n-ary connective ⋄ of L, and (iii) If ψ ∼ ϕ then Qxψ ∼ Qxϕ for Q ∈ {∀,∃}.

2.1 A Taxonomy of First-order LFIs

Let L+
cl be a first-order language with the propositional connectives {∧,∨,⊃} and

the quantifiers {∀,∃}. Lcl is the language obtained from L+
cl by extending its set

of propositional connectives with the unary connective ¬. LC is the language
obtained from Lcl by the addition of the unary connective ◦.

Definition 3 Let HCL+ be some propositional Hilbert-type system which has
Modus Ponens as the sole inference rule, and is sound and strongly complete
for the positive fragment of CPL (classical propositional logic). The first-order
system HCL+

FOL over L+
cl is obtained from it by adding the following axioms

and inference rules:

(∀f ) ∀xψ → ψ{t/x}
(∃t) ψ{t/x} → ∃xψ

(ϕ→ ψ)

(ϕ→ ∀xψ)
(∀t)

(ψ → ϕ)

(∃xψ → ϕ)
(∃f )

where t is free for x in ψ, and x 6∈ Fv[ϕ].

Remark: It can be shown that HCL+
FOL is an axiomatization of the negation-

free fragment of classical first-order logic (in fact, a proof of this can be extracted
from the proof of theorem 24 below). It is also easy to see that the usual deduction
theorem of classical first-order logic (If ϕ is a sentence then ψ is derivable from
T ∪ {ϕ} iff ϕ→ ψ is derivable from T ) is true for any extension of HCL+

FOL by
axiom schemata.

Definition 4 The system QB0 is obtained from HCL+
FOL by adding the schemata:

(t) ¬ϕ ∨ ϕ
(p) ◦ϕ ⊃ ((ϕ ∧ ¬ϕ) ⊃ ψ)

Remark: It is not difficult to provide semantics for QB0. However, in this paper
we concentrate on da Costa’s systems, which include the additional explicit ax-
iom (mentioned in the introduction) for capturing the principles of α-conversion
and of vacuous quantifiers. For this purpose we define the following congruence
relation between L-formulas:



Definition 5 (∼dcL ) Given a first-order language L, ∼dcL is the minimal congru-
ence relation between L-formulas, which satisfies:

– If ψ{z/x} ∼L ψ
′{z/y}, where z is a fresh variable, then Qxψ ∼dcL Qyψ′ for

Q ∈ {∀,∃}.
– If ψ ∼dcL ψ′ and x 6∈ Fv[ψ], then Qxψ ∼dcL ψ′ for Q ∈ {∀,∃}.

In other words, ψ ∼dcL ψ′ if ψ′ can be obtained from ψ by renaming of bound
variables and deletion/addition of void quantifiers.

Definition 6 The system QB is obtained from QB0 by adding the axiom schema
ψ ⊃ ψ′, where ψ ∼dcLC ψ

′.

Next we obtain a large family of first-order systems by adding different com-
binations of the following schemata, studied in the literature of LFIs (see, e.g.
[10, 11, 8]).

Definition 7 Let Ax be the set consisting of the following schemata: 3

(c) ¬¬ϕ ⊃ ϕ
(e) ϕ ⊃ ¬¬ϕ
(w) ◦(¬ϕ)
(i1) ¬◦ϕ ⊃ ϕ
(i2) ¬◦ϕ ⊃ ¬ϕ
(k1) ◦ϕ ∨ ϕ
(k2) ◦ϕ ∨ ¬ϕ
(a¬) ◦ϕ ⊃ ◦(¬ϕ)
(a♯) (◦ϕ ∧ ◦ψ) ⊃ (◦(ϕ♯ψ)) for ♯ ∈ {∧,∨,⊃}
(o♯) (◦ϕ ∨ ◦ψ) ⊃ (◦(ϕ♯ψ)) for ♯ ∈ {∧,∨,⊃}
(v♯) ◦(ϕ♯ψ) for ♯ ∈ {∧,∨,⊃}
(aQ) ∀x◦ϕ⊃ (◦(Qxϕ)) for Q ∈ {∀,∃}
(oQ) ∃x◦ϕ⊃ (◦(Qxϕ)) for Q ∈ {∀,∃}
(vQ) ◦(Qxψ) for Q ∈ {∀,∃}

For X ⊆ Ax, QB[X] is the system obtained by adding the schemata in X to QB.

The set Ax′ consists of the following schemata:

(l) ¬(ϕ ∧ ¬ϕ) ⊃ ◦ϕ
(d) ¬(¬ϕ ∧ ϕ) ⊃ ◦ϕ
(b) (¬(ϕ ∧ ¬ϕ) ∨ ¬(¬ϕ ∧ ϕ)) ⊃ ◦ϕ

3 The schemata (c), (e) , (i1), (i2), (k1), (k2), (a¬), (a♯) and (o♯) were treated
for the propositional case in [3] ((k1) and (k2) were called there (d1) and (d2)).
The schemata (aQ) and (oQ) were treated in [20] (for the three-valued case). The
schemata (w), (v♯) and (vQ) are treated in the context of Nmatrices for the first
time. It might have been more natural to refer to the schema (w) as (v¬), but we
keep the name used in [8].



For y ∈ {(l), (d), (b)} and X ⊆ Ax, QBy[X] is the system obtained from QB[X]
by adding the schema y.

Notation: We shall usually denote QB[X] (QBy[X]) by QBs (QBys), where s
is a string consisting of the names of the axioms in X. Thus we’ll write QBic
instead of QB[{(i), (c)}] and QBlic instead of QB(l)[{(i), (c)}]. If both (x1)
and (x2) are in X for x ∈ {i,k}, we abbreviate it by x. Also, if xy is in X for
every y ∈ {⊃,∧,∨} and some x ∈ {a,o,v}, we shall write xp. Similarly, if xy

is in X for every y ∈ {∀,∃} and some x ∈ {a,o,v}, we shall write xQ. For both
xp and xQ we shall write x.

Remark: Denote by QC1 the system QBlcia. If we take ◦ψ to be an abbre-
viation of ¬(ψ ∧ ¬ψ), then QC1 becomes da Costa’s original system C∗

1 from
[12, 13]. 4 Note that C∗

1 is over the language of {¬,∨,∧,⊃,∀,∃}.

2.2 Non-deterministic Matrices

Our main semantic tool in what follows will be the following generalization of
the concept of a multi-valued matrix given in [1, 2, 3, 21, 20].

Definition 8 (Non-deterministic matrix) A non-deterministic matrix (Nma-
trix) for a language L is a tuple M = 〈V,D,O〉, where: V is a non-empty set of
truth values, D (designated truth values) is a non-empty proper subset of V and
O includes the following interpretation functions:

– ⋄̃M : Vn → P+(V) for every n-ary connective ⋄.
– Q̃M : P+(V) → P+(V) for every quantifier Q.

Definition 9 (L-structure) Let M be an Nmatrix. An L-structure for M is
a pair S = 〈D, I〉 where D is a (non-empty) domain and I is a function inter-
preting constants, function symbols, and predicate symbols of L, satisfying the
following conditions: I[c] ∈ D if c is a constant, I[f ] : Dn → D if f is an n-ary
function, and I[p] : Dn → V if p is an n-ary predicate.
I is extended to interpret closed terms of L as follows:

I[f(t1, ..., tn)] = I[f ][I[t1], ..., I[tn]]

Here a note on our treatment of quantification in the framework of Nmatrices
is in order. The standard approach to interpreting first-order formulas is by
using objectual (or referential) semantics, where the variable is thought of as
ranging over a set of objects from the domain (see. e.g. [16, 17]). An alternative
approach is substitutional quantification ([18]), where quantifiers are interpreted
substitutionally, i.e. a universal (an existential) quantification is true if and only
if every one (at least one) of its substitution instances is true (see. e.g. [19, 14]).
[21] explains the motivation behind choosing the substitutional approach for the
framework of Nmatrices, and points out the problems of the objectual approach

4 The name C∗

1 is used in [10] for another, different, first-order paraconsistent system.



in this context. The substitutional approach assumes that every element of the
domain has a closed term referring to it. Thus given a structure S = 〈D, I〉, we
extend the language L with individual constants, one for each element of D.

Definition 10 ( L(D) ) Let S=〈D, I〉 be an L-structure for an Nmatrix M.
L(D) is the language obtained from L by adding to it the set of individual con-
stants {a | a ∈ D}. S′ = 〈D, I ′〉 is the L(D)-structure, such that I ′ is the
extension of I satisfying: I ′[a] = a.

Given an L-structure S = 〈D, I〉, we shall refer to the extended L(D)-structure
〈D, I ′〉 as S and to I ′ as I when the meaning is clear from the context.

Next we define the congruence relation ∼S , which is the semantic counterpart
of the syntactic congruence relation ∼dcL (see Definition 5).

Definition 11 (∼S) Let S be an L-structure for an Nmatrix M. The relation
∼S between terms of L(D) is defined inductively as follows:

– x ∼S x
– For closed terms t, t′ of L(D): t ∼S t

′ when I[t] = I[t′].
– If t1 ∼S t

′
1, ..., tn ∼S t

′
n, then f(t1, ..., tn) ∼

S f(t′1, ..., t
′
n).

The relation ∼S between formulas of L(D) is the minimal congruence relation,
satisfying:

– If t1 ∼S t
′
1, t2 ∼S t

′
2, ..., tn ∼S t

′
n, then p(t1, ..., tn) ∼

S p(t′1, ..., t
′
n).

– If ψ{z/x} ∼S ϕ{z/y}, where x, y are distinct variables and z is a new vari-
able, then Qxψ ∼S Qyϕ for Q ∈ {∀,∃}.

– If ψ ∼S ϕ and x 6∈ Fv[ϕ], then ψ ∼S Qxϕ.

The proofs of the following two easy lemmas are left for the reader:

Lemma 12 Let S be an L-structure, and t1, t2 closed terms of L(D), such that
t1 ∼S t2. Let ψ1, ψ2 be L(D)-formulas, such that ψ1 ∼S ψ2. Then ψ1{t/x} ∼S

ψ2{t2/x}.

Lemma 13 Let S = 〈D, I〉 be an L-structure.

1. Let A,B be two L-formulas. If A ∼dcL B, then A ∼S B.
2. Let A,B be two L-formulas such that I[t1] 6= I[t2] for any two closed terms

t1 6= t2 occurring in A and B respectively. Then A ∼dcL B iff A ∼S B.

Remark: The difference between ∼dcL and ∼S is as follows:

1. ∼dcL is a relation between formulas of L, while ∼S is a relation between
formulas of L(D).

2. ∼S is defined with respect to some structure S, while ∼dcL is purely syntactic.



3. Unlike ∼dcL , ∼S identifies two sentences ψ,ψ′ such that ψ′ is obtained from
ψ by substituting any number of closed terms for closed terms with the same
denotation in S. For instance, let S be an L-structure, such that I[d] = I[c]
for two constants d 6= c. Then p(c)6∼dcL p(d), but p(c) ∼S p(d). The motivation
for this is purely technical and is related to extending the language with the
set of individual constants {a | a ∈ D}. Suppose we have a closed term t,
such that I[t] = a ∈ D. But a also has an individual constant a referring to
it. We would like to be able to substitute t for a in every context, as will be
shown in the sequel.

Definition 14 (S-valuation) Let S = 〈D, I〉 be an L-structure for an Nmatrix
M. An S-valuation v : Frmcl

L → V is legal in M if it satisfies the following
conditions:

– v respects the ∼S relation, i.e. v[ψ] = v[ψ′] for every two L-sentences ψ,ψ′,
such that ψ ∼S ψ′.

– v[p(t1, ..., tn)] = I[p][I[t1], ..., I[tn]].
– v[⋄(ψ1, ..., ψn)] ∈ ⋄̃M[v[ψ1], ..., v[ψn]].
– v[Qxψ] ∈ Q̃M[{v[ψ{a/x}] | a ∈ D}].

Definition 15 Let S = 〈D, I〉 be an L-structure for an Nmatrix M.

1. An M-legal S-valuation v is a model of a formula ψ in M, denoted by
S, v |=M ψ, if v[ψ′] ∈ D for every closed instance ψ′ of ψ in L(D).

2. A formula ψ is M-valid in S if for every M-legal S-valuation v, S, v |=M ψ.
ψ is M-valid if ψ is M-valid in every L-structure for M.

3. The consequence relation ⊢M between sets of L-formulas and L-formulas is
defined as follows: Γ ⊢M ψ if for every L-structure S and every M-legal
S-valuation v: S, v |=M Γ implies that S, v |=M ψ.

4. An Nmatrix M is sound for a proof system S if ⊢S⊆⊢M. M is complete
for S if ⊢M⊆⊢S. M is a characteristic Nmatrix for S if it is sound and
complete for S.

The following is an extension of Definition 2.9 and Theorem 2.10 from [3] to
first-order languages:

Definition 16 (Reduction, refinement) Let M1 = 〈V1,D1,O1〉 and M2 =
〈V2,D2,O2〉 be Nmatrices for L.

1. A reduction of M1 to M2 is a function F : V1 → V2, such that:

– For every x ∈ V1, x ∈ D1 iff F (x) ∈ D2.
– F (y) ∈ ⋄̃M2

[F (x1), ..., F (xn)] for every n-ary connective ⋄ of L and every
x1, ..., xn, y ∈ V1, such that y ∈ ⋄̃M1

[x1, ..., xn].
– F (y) ∈ Q̃M2

[{F (z) | z ∈ H}] for Q ∈ {∀,∃} and every y ∈ V1 and
H ⊆ P+(V1), such that y ∈ Q̃M1

[H].

2. M1 is a refinement of M2 if there exists a reduction of M1 to M2.



3. M1 is a simple refinement of M2 if it is a refinement of M2, V1 ⊆ V2,
D1 = D2∩V1, ⋄̃M1

[−→x ] ⊆ ⋄̃M2
[−→x ] for every n-ary connective ⋄ of L and every

−→x ∈ Vn1 , and Q̃M1
[H] ⊆ Q̃M2

[H] for Q ∈ {∀,∃} and every H ⊆ P+(V1).

Theorem 1. If M1 is a refinement of M2, then ⊢M2
⊆⊢M1

.

Proof: a straightforward extension of the proof of theorem 2.10 from [3].

3 Effectiveness of First-order Nmatrices

One of the most important properties of the semantic framework of Nmatrices
is its effectiveness, in the sense that for determining whether Γ ⊢M ϕ (where M
is an Nmatrix) it always suffices to check only partial valuations, defined only
on subformulas of Γ ∪ {ϕ}.

Definition 17 Let S be an L-structure. A set of sentences WS ⊆ Frmcl

L(D) is
closed under subformulas if it satisfies the following conditions:

– For every n-ary connective ⋄: ψ1, ..., ψn ∈WS whenever ⋄(ψ1, ..., ψn) ∈WS.
– For Q ∈ {∀,∃} and every a ∈ D: ψ{a/x} ∈WS whenever Qxψ ∈WS.

Definition 18 Let S be an L-structure and M - an Nmatrix for L. Let WS ⊆
Frmcl

L(D) be a set closed under subformulas. A partial M-legal S-valuation on
WS is a function v : WS → V, satisfying:

– ψ ∼S ψ′ implies v[ψ] = v[ψ′] for every ψ,ψ′ ∈WS.
– v[p(t1, ..., tn)] = I[p][I[t1], ..., I[t1]] whenever p(t1, ..., tn) ∈WS.
– v[⋄(ψ1, ..., ψn)] ∈ ⋄̃[v[ψ1], ..., v[ψn]] whenever ⋄(ψ1, ..., ψn) ∈WS.
– v[Qxψ] ∈ Q̃[{v[ψ{a/x}] | a ∈ D}] whenever Qxψ ∈WS.

Definition 19 An Nmatrix M for L is effective if for every L-structure S and
every set of L(D)-sentences WS which is closed under subformulas: if vp is a
partial M-legal S-valuation on WS, then it can be extended to a full M-legal
S-valuation.

For the propositional case, the proof of effectiveness of an Nmatrix M is very
simple (see proposition 2 in [2]). However, in the first-order case effectiveness
becomes less evident because any M-legal S-valuation has to respect the ∼S

relation. In fact, given an Nmatrix M for L and a partial M-legal S-valuation
vp on some set WS ⊆ Frmcl

L(D) closed under subformulas, it is not necessarily
guaranteed that vp can be extended to a full S-valuation legal in M. Consider,
for instance, a first-order language L with a constant c and a unary predicate p.
Let M = 〈{t, f}, {t},O〉 be an Nmatrix for L with the following non-standard
interpretation of ∀: ∀̃[H] = {t} for every H ⊆ P+({t, f}). Let S = 〈{a}, I〉 be the
L-structure in which I[c] = a and I[p][a] = f . Let W = {p(c)} (obviously, W is
closed under subformulas). Then no partial valuation on W can be extended to a
full M-legal valuation v, respecting both the ∼S relation and the interpretation
of ∀, because such v should assign f to p(c) and t to ∀xp(c), while ∀xp(c) ∼S p(c).
Thus in order to be effective, an Nmatrix has to satisfy a certain condition:



Definition 20 An Nmatrix M for L is suitable for ∼dcL if for every a ∈ V and
every quantifier Q of L: a ∈ Q̃[{a}].

For instance, an Nmatrix M′ = 〈V ′,D′,O′〉 with the following natural interpre-
tations of ∀ and ∃ is suitable for ∼dcL :

∀̃[H] =

{
D′ if H ⊆ D′

V ′ −D′ otherwise
∃̃[H] =

{
D′ if H ∩ D′ 6= ∅

V ′ −D′ otherwise

Proposition 21 Any Nmatrix M = 〈V,D,O〉 for L which is suitable for ∼dcL ,
is effective.

Proof: Let S be an L-structure and let WS be a set of L(D)-sentences, closed
under subformulas. Let vp be some partial S-valuation on WS which is M-legal.
We show that it can be extended to a full S-valuation v which is legal in M.
For every n-ary connective ⋄ of L and every a1, ..., an ∈ V, choose a truth-value
b⋄
a1,...,an ∈ ⋄̃[a1, ..., an]. For Q ∈ {∀,∃} of L and every B ⊆ P+(V), choose a

truth-value bQB ∈ Q̃[B], so that for every a ∈ V: bQ{a} = a (this is possible, since

M is suitable for ∼dcL ).
Denote by H∼S the set of all equivalence classes of Frmcl

L(D) under ∼S . Denote

by [[ψ]] the equivalence class of ψ. Define the function χ : H∼S → V as follows:

χ[[[p(t1, ..., tn)]]] = I[p][I[t1], ..., I[tn]]

χ[[[⋄(ψ1, ..., ψn)]]] =

{
vp[ϕ] ϕ ∈ [[⋄(ψ1, ..., ψn)]] ∩WS

b⋄
χ[[[ψ1]]],...,χ[[[ψn]]] [[⋄(ψ1, ..., ψn)]] ∩WS = ∅

χ[[[Qxψ]]] =

{
vp[ϕ] ϕ ∈ [[Qxψ]] ∩WS

bQ{χ[[[ψ{a/x}]]] | a∈D} [[Qxψ]] ∩WS = ∅

Note that because vp is M-legal, the value of vp[ϕ] in the above definition does
not depend on the choice of ϕ (among those satisfying the relevant condition).
Hence χ is well-defined. Next define

v[ψ] = χ[[[ψ]]]

The proof that v is M-legal is not difficult and is left to the reader. Obviously,
v is an extension of vp. ✷

4 Non-deterministic Semantics for First-order LFIs

4.1 Finite Non-deterministic Semantics

In this section we provide five-valued (or less) non-deterministic semantics for
first-order LFIs obtained from the basic system QB by adding various combina-
tions of schemata from Ax (not including the schemata (l), (b) and (d). We deal
with systems including these schemata in the next subsection). The semantics



presented below is an extension to first-order languages of the semantics from [3].

The system QB treats the connectives ∧,∨,⊃ and the quantifiers ∀,∃ simi-
larly to classical logic. The treatment of ◦ and ¬ is different: intuitively, the
truth/falsity of ¬ψ or ◦ψ is not completely determined by the truth/falsity of
ψ. More data is needed for it. The central idea is to include all the relevant data
concerning a sentence ψ in the truth-value from V which is assigned to ψ. In our
case the relevant data beyond the truth/falsity of ψ is the truth/falsity of ¬ψ
and of ◦ψ. This leads to the use of elements from {0, 1}3 as truth-values, where
the intended meaning of assigning 〈x, y, z〉 to ψ is as follows:

– x = 1 iff ψ is true
– y = 1 iff ¬ψ is true
– z = 1 iff ◦ψ is true

However, the axioms (t) and (b) rule out some of the truth-values. By (t), at
least one of the sentences ψ,¬ψ should be true, thus ruling out 〈0, 0, 1〉 and
〈0, 0, 0〉. Similarly, (b) rules out 〈1, 1, 1〉. We are left with the following five
truth-values:

– t = 〈1, 0, 1〉
– tI = 〈1, 0, 0〉
– I = 〈1, 1, 0〉
– f = 〈0, 1, 1〉
– fI = 〈0, 1, 0〉

Note that since the first component of a truth-value assigned to a formula should
indicate whether that formula is true, the designated truth-values should be those
whose first component is 1. Thus we are led to the following definition (which is
an extension to first-order languages of Definition 3.1 from [3]):

Definition 22 The Nmatrix QM5 = 〈V,D,O〉 for LC is defined as follows:

– V = {t, tI , I, f, fI}, D = {t, tI , I}.
– Let F = V − D. The operations in O are defined as follows:

a∨̃b =

{
D if either a ∈ D or b ∈ D,
F if a, b ∈ F

a⊃̃b =

{
D if either a ∈ F or b ∈ D
F if a ∈ D and b ∈ F

a∧̃b =

{
F if either a ∈ F or b ∈ F
D if a, b ∈ D

¬̃a =

{
F if a ∈ {t, tI}
D if a ∈ {f, fI , I}

◦̃a =

{
D if a ∈ {t, f}
F if a ∈ {tI , fI , I}

∀̃[H] =

{
D if H ⊆ D

F otherwise
∃̃[H] =

{
D if H ∩ D 6= ∅

F otherwise



Note that the non-deterministic truth tables in QM5 corresponding to the op-
erations ¬ and ◦ are:

¬̃ f fI I t tI
{I, t, tI} {I, t, tI} {I, t, tI} {f, fI} {f, fI}

◦̃ f fI I t tI
{t, I, tI} {f, fI} {f, fI} {t, I, tI} {f, fI}

Lemma 23 (Effectiveness of QM5) QM5 is effective.

Proof: This follows from the suitability of QM5 for ∼dcL , and proposition 21.

The following theorem is a generalization of theorem 3 of [20].

Theorem 24 (Soundness and completeness) Let Γ ∪ {ψ0} be a set of LC-
formulas. Γ ⊢QB ψ0 iff Γ ⊢QM5

ψ0.

The proof of soundness is not hard and is left to the reader.
For completeness, we first note that by definition of the interpretation of ∀

in QM5, ∀xϕ ⊢QM5
ϕ and ϕ ⊢QM5

∀xϕ for every formula ϕ and every variable
x. Obviously the same relations hold between ϕ and ∀xϕ in HCL+

FOL, and so in
⊢QB. It follows that we may assume that all formulas in Γ∪{ψ0} are sentences. It
is also easy to see that we may restrict ourselves to Lr, the subset of L consisting
of all the constants, function, and predicate symbols occurring in Γ ∪{ψ0}. Now
suppose that Γ 6 ⊢QBψ0. We will construct an LC-structure S and an QM5-legal
S-valuation v, such that S, v |=M5

Γ , but S, v 6|=QM5
ψ0. Let L′ be the language

obtained from Lr by adding a countably infinite set of new constants. It is a
standard matter to show (using a usual Henkin-type construction) that Γ can
be extended to a maximal set Γ ∗ of sentences in L′, such that:

– Γ ∗ 6⊢QBψ0.
– Γ ⊆ Γ ∗.
– For every L′-sentence ∃xψ ∈ Γ ∗ there is a constant c of L′, such that
ψ{c/x} ∈ Γ ∗.

– For every L′-sentence ∀xψ 6∈ Γ ∗, there is a constant c of L′, such that
ψ{c/x} 6∈ Γ ∗.

(The last property follows from property 3, the deduction theorem for QB,
and the fact that for any x 6∈ Fv[ϕ], (∀xψ ⊃ ϕ) ⊃ ∃x(ψ ⊃ ϕ) is provable
in the positive fragment of first-order classical logic, and so also in QB). It
is now straightforward to show that Γ ∗ has the following properties for every
L′-sentences ψ,ϕ, and ∀xθ:

1. If ψ 6∈ Γ ∗, then ψ ⊃ ψ0 ∈ Γ ∗.
2. ψ ∨ ϕ ∈ Γ ∗ iff either ϕ ∈ Γ ∗ or ψ ∈ Γ ∗.
3. ψ ∧ ϕ ∈ Γ ∗ iff both ϕ ∈ Γ ∗ and ψ ∈ Γ ∗.
4. ϕ ⊃ ψ ∈ Γ ∗ iff either ϕ 6∈ Γ ∗ or ψ ∈ Γ ∗.



5. Either ψ ∈ Γ ∗ or ¬ψ ∈ Γ ∗.
6. If ψ and ¬ψ are both in Γ ∗, then ◦ψ 6∈ Γ ∗.
7. If ψ ∈ Γ ∗, then for every L′-sentence ψ′ such that
ψ′ ∼dcL ψ: ψ′ ∈ Γ ∗.

8. If ∀xθ ∈ Γ ∗, then for every closed L′-term t: θ{t/x} ∈ Γ ∗. If ∀xθ 6∈ Γ ∗, then
there is some closed term tθ of L′, such that θ{tθ/x} 6∈ Γ ∗.

9. If ∃xθ ∈ Γ ∗, then there is some closed term tθ of L, such that θ{tθ/x} ∈ Γ ∗.
If ∃xθ 6∈ Γ ∗, then for every closed term t of L′: θ{t/x} 6∈ Γ ∗.

The L′-structure S = 〈D, I〉 is defined as follows:

– D is the set of all the closed terms of L′.
– For every constant c of L′: I[c] = c.
– For every t1, ..., tn ∈ D: I[f ][t1, ..., tn] = f(t1, ..., tn).
– For every t1, ..., tn ∈ D: I[p][t1, ..., tn] = 〈x, y, z〉, where x, y, z ∈ {0, 1} and:

• x = 1 iff p(t1, ..., tn) ∈ Γ ∗.
• y = 1 iff ¬p(t1, ..., tn) ∈ Γ ∗.
• z = 1 iff ◦p(t1, ..., tn) ∈ Γ ∗.

Lemma 25 I∗[t] = t for every t ∈ D.

Proof: by induction on the structure of t.

Note that in the extended language L′(D) we now have an individual constant
t for every term t ∈ D. For any L′-term t, define t̃ as follows:

t̃ =

{
s if t = s for some s ∈ D

t otherwise

Given an L′(D)-sentence ψ, define the sentence ψ̃ inductively as follows:

– ˜p(t1, ..., tn) = p(t̃1, ..., t̃n)

– ˜⋄(ψ1, ..., ψn) = ⋄(ψ̃1, ..., ψ̃n)

– Q̃xψ = Qxψ̃

In other words, ψ̃ is obtained by replacing all individual constants t occurring
in ψ by the respective (closed) term t.

Lemma 26 1. For any L′(D)-sentence ψ, ψ ∼S ψ̃.

2. For any ψ,ϕ ∈ Frmcl

L′(D): if ψ ∼S ϕ, then ψ̃ ∼dcL ϕ̃.

3. For every L′(D)-sentence ψ and every t ∈ D: ψ̃{t/x} = ψ̃{t/x}.

Proof: The proofs of part 1 and 3 are straightforward. Part 2 follows from
Lemma 13-2 and Lemma 25.

Next we define the refuting S-valuation v : Frmcl

L′(D) → V as follows:

v[ψ] = 〈xψ, yψ, zψ〉

where xψ, yψ, zψ ∈ {0, 1} and:



– xψ = 1 iff ψ̃ ∈ Γ ∗.

– yψ = 1 iff ¬̃ψ ∈ Γ ∗.

– zψ = 1 iff ◦̃ψ ∈ Γ ∗.

Let ψ,ψ′ be two L′(D)-sentences, such that ψ ∼S ψ′. Then by lemma 26-2,

ψ̃ ∼dcL ψ̃′, and by property 7 of Γ ∗, ψ̃ ∈ Γ ∗ iff ψ̃′ ∈ Γ ∗. Similarly, since ¬ψ ∼S

¬ψ′ and ◦ψ ∼S ◦ψ′, (¬ψ̃ =)¬̃ψ ∼dcL ¬̃ψ′(= ¬ψ̃′) and ◦̃ψ ∼dcL ◦̃ψ′. Thus ¬̃ψ ∈ Γ ∗

iff ¬̃ψ′ ∈ Γ ∗ and ◦̃ψ ∈ Γ ∗ iff ◦̃ψ′ ∈ Γ ∗. Hence v[ψ] = v[ψ′] and so v respects the
∼S relation.
It remains to check that v respects the interpretations of the connectives and
quantifiers in QM5. This is guaranteed by the properties of Γ ∗. We prove this
for the cases of ◦ and ∀:

– Let v[ψ] ∈ {t, f}. Then ◦̃ψ ∈ Γ ∗ and so v[◦ψ] ∈ D. Similarly for the case of
v[ψ] ∈ {tI , fI , I}.

– Let ∀xψ be an L′(D)-sentence, such that {v[ψ{a/x}] | a ∈ D} ⊆ D. Suppose

by contradiction that v[∀xψ] 6∈ D. Then ∀̃xψ = ∀xψ̃ 6∈ Γ ∗. By property 8

of Γ ∗, there exists some closed L′-term t, such that ψ̃{t/x} 6∈ Γ ∗. Then

v[ψ̃{t/x}] 6∈ D. Since ψ ∼S ψ̃, ψ{t/x} ∼S ψ̃{t/x} by lemma 12. We have
already shown that v respects the ∼S relation, and so v[ψ{t/x}] 6∈ D. By
lemma 12 again, ψ{t/x} ∼S ψ{t/x}, and so v[ψ{t/x}] 6∈ D. A contradiction.

– Let ∀xψ be an L′(D)-sentence, such that {v[ψ{a/x}] | a ∈ D} ∩ F 6= ∅.

Suppose by contradiction that v[∀xψ] 6∈ F . Then ∀xψ̃ ∈ Γ ∗. By property

8 of Γ ∗, for every closed L′-term t: ψ̃{t/x} ∈ Γ ∗. Then v[ψ̃{t/x}] ∈ D.
Similarly to the previous case, we get that v[ψ{a/x}] ∈ D for every a ∈ D,
in contradiction to our assumption.

Now for every L′-sentence ψ: v[ψ] ∈ D iff ψ ∈ Γ ∗. So S, v |=QM5
Γ (recall that

Γ ⊆ Γ ∗), but S, v 6|=QM5
ψ0. ✷

Next we turn to the semantics of the systems obtained from the basic system
QB by adding various combinations of the schemata from Ax. As explained in
the introduction, the main idea is modularity: each schema induces some semantic
condition, leading to a certain refinement of the basic Nmatrix QM5.

Definition 27 The refining conditions induced by the schemata from Ax are:

Cond(c) : if x ∈ {f, fI} then ¬̃x ⊆ {t, tI}
Cond(e) : ¬̃I = {I}
Cond(w) : ¬̃x ⊆ {t, f}
Cond(i1) : fI should be deleted, and ◦̃f ⊆ {t, tI}
Cond(i2) : tI should be deleted, and ◦̃t = {t}
Cond(k1) : fI should be deleted.
Cond(k2) : tI should be deleted.
Cond(a¬) : ¬̃t = {f} and ¬̃f = {t}
Cond(a♯) : if a, b ∈ {t, f}, then a♯̃b ⊆ {t, f}



Cond(o♯) : if a ∈ {t, f} or b ∈ {t, f}, then a♯̃b ⊆ {t, f}

Cond(v♯) : x♯̃y ⊆ {t, f} for every x, y ∈ V.

Cond(aQ) : for every H ⊆ {t, f}, Q̃[H] ⊆ {t, f}

Cond(oQ) : if H ∩ {t, f} 6= ∅ then Q̃[H] ⊆ {t, f}

Cond(vQ) : Q̃[H] ⊆ {t, f} for every H ⊆ V.

Definition 28 For X ⊆ Ax, let QM5(X) be the weakest simple refinement
(see Definition 16) of QM5, in which the conditions of the schemata from X
are satisfied. In other words, QM5(X) = 〈VX ,DX ,OX〉, where:

– If both (e) and (w) are in X, then I is deleted.
– VX is the set of values from {t, f, tI , fI , I} which are not deleted either by a

combination of both (e) and (w), or by any condition of a schema from X.
– DX = VX ∩ {t, tI , I}.
– For any connective ⋄ and any a1, ..., an ∈ VX , ⋄̃QM5(X) assigns to −→a the set

of all truth-values in ⋄̃QM5
which are not forbidden by any condition of a

schema from X.
– For Q ∈ {∀,∃} and any H ⊆ P+(VX), Q̃QM5(X) assigns to −→a the set of all

truth-values in Q̃QM5
which are not forbidden by any condition of a schema

from X.

Notation: We write QM5s instead of QM5(X), where s is the string of all the
names of the schemata from X.

Remarks:

1. Assume that X ⊆ Ax, and that either (w) 6∈ X or (e) 6∈ X. It is not difficult
to see that in this case {t, f, I} ⊆ VX , {t, I} ⊆ DX , and both ⋄̃QM5(X)[

−→a ]

and Q̃QM5(X)[H] are not empty (where ⋄ is an n-ary connective, −→a ∈ VnX ,
Q ∈ {∀,∃}, and H ⊆ P+(VX)). The case when both (w) and (e) are in X
is different, since these conditions are not coherent in the presence of I. It
is easy to see that in this case X is equivalent to classical logic (and so it
is not paraconsistent). An adequate semantics for it can be obtained simply
by deleting I. Alternatively, one may delete all truth values except t and f .

2. Note the following dependencies between the conditions:

(a) (kj) follows from (ij) for j ∈ {1, 2}.
(b) (c) follows from (a¬) and (k1) (taken together).
(c) (a¬) follows from (c), (k1) and (k2) (taken together), and from (w).
(d) (ax) follows from (ox) and (ox) follows from (vx) for x ∈ {∨,∧,⊃,∀,∃}.

Examples:

1. The non-deterministic truth table for ¬ in QM5c is:

¬̃ f fI I t tI
{t, tI} {t, tI} {I, t, tI} {f, fI} {f, fI}



2. The only truth-values which are retained in QM5ci are t, f , and I. The non-
deterministic truth tables in this Nmatrix corresponding to the operations
¬, ◦, ∀, and ∃ are :

◦̃ f I t
{t} {f} {t}

¬̃ f I t
{t} {I, t} {f}

H ∀̃[H] ∃̃[H]
{t} {t, I} {t, I}
{f} {f} {f}
{I} {t, I} {t, I}
{t, f} {f} {t, I}
{t, I} {t, I} {t, I}
{f, I} {f} {t, I}
{t, f, I} {f} {t, I}

3. In QM5cio the tables for ∀,∃ change to:

H ∀̃[H] ∃̃[H]
{t} {t} {t}
{f} {f} {f}
{I} {t, I} {t, I}
{t, f} {f} {t}
{t, I} {t} {t}
{f, I} {f} {t}
{t, f, I} {f} {t}

4. In QM5cia the tables for ∀,∃ change to:

H ∀̃[H] ∃̃[H]
{t} {t} {t}
{f} {f} {f}
{I} {t, I} {t, I}
{t, f} {f} {t}
{t, I} {t, I} {t, I}
{f, I} {f} {t, I}
{t, f, I} {f} {t, I}

5. The truth table for ∧ in QM5v∧ becomes fully deterministic:

∧̃ f fI I t tI
f {f} {f} {f} {f} {f}
fI {f} {f} {f} {f} {f}
I {f} {f} {t} {t} {t}
t {f} {f} {t} {t} {t}
tI {f} {f} {t} {t} {t}



Theorem 29 (Soundness and completeness) Let X ⊆ Ax. Let Γ ∪{ψ0} be
a set of LC-formulas. Γ ⊢B[X] ψ0 iff Γ ⊢QM5(X) ψ0.

Proof: a straightforward modification of the proof of theorem 24. We only have
to check that the conditions imposed by the schemata in X are respected by the
valuation v defined in the proof. We prove this for (aQ) and (oQ):

– Suppose that (aQ) ∈ X. Then from the definition of Γ ∗ it follows that
that ∀x◦ψ 6∈ Γ ∗ in case ◦Qxψ 6∈ Γ ∗. Let Qxψ be an L′(D)-sentence, such
that Hψ = {v[ψ{a/x}] | a ∈ D} ⊆ {t, f}. Suppose by contradiction that

v[Qxψ] 6∈ {t, f}. Then ◦̃Qxψ = ◦Qx(ψ̃) 6∈ Γ ∗ and so ∀x◦(ψ̃) = ∀x(◦̃ψ) 6∈
Γ ∗. By property 8 of Γ ∗, there exists some closed term t of L′, such that

(◦̃ψ){t/x} 6∈ Γ ∗. By lemma 26-3, (◦̃ψ){t/x} = ( ˜◦(ψ{t/x})). By definition
of v, v[ψ{t/x}] 6∈ {t, f}. By lemma 12, ψ{t/x} ∼S ψ{t/x}. Since v respects
the ∼S relation (this is proved like in theorem 24), v[ψ{t/x}] 6∈ {t, f}, in
contradiction to our assumption about Hψ.

– Suppose that (oQ) ∈ X. Then ∃x◦ψ 6∈ Γ ∗ in case ◦Qxψ 6∈ Γ ∗. Let Qxψ be an
L′(D)-sentence, such that Hψ∩{t, f} 6= ∅, where Hψ = {v[ψ{a/x}] | a ∈ D}.

Suppose by contradiction that v[Qxψ] 6∈ {t, f}. Then (◦̃Qxψ) = ◦Qx(ψ̃) 6∈

Γ ∗ and so ∃x◦(ψ̃) = ∃x(◦̃ψ) 6∈ Γ ∗. By property 9 of Γ ∗, for every closed

term t of L′, ◦̃ψ{t/x} 6∈ Γ ∗. By lemma 26-3, (◦̃ψ){t/x} = ( ˜◦(ψ{t/x})). By
definition of v, v[ψ{t/x}] 6∈ {t, f}. By lemma 12, ψ{t/x} ∼S ψ{t/x}. Since
again v respects the ∼S relation, v[ψ{t/x}] 6∈ {t, f} for every t ∈ D, in
contradiction to our assumption.

Lemma 30 (Effectiveness of QM5(X)) For every X ⊆ Ax, QM5(X) is
effective.

Proof: This follows from proposition 21.

4.2 Infinite Non-deterministic Semantics

We turn now to the extensions of the systems handled in the previous section
by the schemata (l),(d) and (b) (see Definition 7). It is easy to see that any
of these schemata entails in QB both (k1) and (k2). Recall that the semantic
effect of the latter two axioms is to delete tI and fI from the basic Nmatrix
QM5. Thus the infinite Nmatrices provided in this section are all refinements
(see Definition 16) of the three-valued Nmatrix M5k.

To provide some informal intuition about the infinite semantics, note that
what all of the above schemata have in common is a conjunction of a formula
with its negation. Consider for instance the schema (l) ¬(ϕ ∧ ¬ϕ) ⊃ ◦ϕ. Its
validity is guaranteed only if v[¬(ϕ ∧ ¬ϕ)] 6∈ D whenever v[◦ϕ] 6∈ D. Informally,
to ensure this, we need to be able to isolate a conjunction of an “inconsistent”
formula ψ with its own negation from conjunctions of ψ with other formulas.
This can be done by enforcing an intimate connection between the truth-value



of an “inconsistent” formula and the truth-value of its negation. This, in turn,
requires a supply of infinitely many truth-values.

The following definition is a generalization of Definition 8 in [2]:

Definition 31 Let T = {tji | i ≥ 0, j ≥ 0}, I = {Iji | i ≥ 0, j ≥ 0}, F = {f}.
Define the following Nmatrices for the language LC :

QM3l: This is the Nmatrix 〈V,D,O〉 where:
1. V = T ∪ I ∪ F
2. D = T ∪ I
3. O is defined by:

a∨̃b =

{
D if either a ∈ D or b ∈ D,
F if a, b ∈ F

a⊃̃b =

{
D if either a ∈ F or b ∈ D
F if a ∈ D and b ∈ F

¬̃a =





F if a ∈ T
D if a ∈ F

{Ij+1
i , tj+1

i } if a = Iji

∀̃[H] =

{
D if H ⊆ D

F otherwise

∃̃[H] =

{
D if H ∩ D 6= ∅

F otherwise

◦̃a =

{
D if a ∈ F ∪ T
F if a ∈ I

a∧̃b =





F if either a ∈ F or b ∈ F

T if a = Iji and b ∈ {Ij+1
i , tj+1

i }
D otherwise

QM3d: This is defined like QM3l, except that ∧̃ is defined as follows:

a∧̃b =





F if either a ∈ F or b ∈ F

T if b = Iji and a ∈ {Ij+1
i , tj+1

i }
D otherwise

QM3b: This is defined like QM3l, except that ∧̃ is defined as follows:

a∧̃b =





F if either a ∈ F or b ∈ F

T (if a = Iji and b ∈ {Ij+1
i , tj+1

i }) or (b = Iji and a ∈ {Ij+1
i , tj+1

i })
D otherwise



Theorem 32 (Soundness and completeness) Let Γ ∪ {ψ0} be a set of LC-
formulas. For y ∈ {l,d,b}, Γ ⊢QBy ψ0 iff Γ ⊢QM3y ψ0.

Proof: We do the proof for the case of QBl. The proofs in the other two cases
are similar.
Soundness: Define the function F : T ∪ I ∪ F → {t, I, f} as follows:

F (x) =





f x ∈ F

t x ∈ T

I x ∈ I

It is easy to see that F is a reduction of QM3l to QM5k, and so QM3l is
a refinement of QM5k. By theorem 1, ⊢QM5k⊆⊢QM3l. To prove soundness,
it remains to show that (l) is QM3l-valid. Let S be an L-structure and v an
QM3l-legal S-valuation, such that v[◦ψ] ∈ F . Then v[ψ] = Iij for some i, j.

Hence v[¬ψ] ∈ {Ii+1
j , ti+1

j } and so v[ψ ∧ ¬ψ] ∈ T and v[¬(ψ ∧ ¬ψ)] ∈ F .

Completeness: Assume that Γ 6⊢QBl ψ0. Again we may assume that all ele-
ments of Γ ∪ψ0 are sentences. Like in the proof of theorem 24, we proceed with
a Henkin construction to get a maximal theory Γ ∗, such that Γ ∗ 6⊢QBl ψ0 over
the extended language L′, and Γ ∗ satisfies the properties from the proof of theo-
rem 24. Let D be the set of all the closed terms of L′, and let Cl be the set of all
the equivalence classes of L′(D)-sentences under ∼S . For every E ∈ Cl, choose
the minimal representative of E , Min(E), to be a sentence with the least num-
ber of quantifiers of all the sentences in E . (For instance, the sentences ∀xp(c)
and p(c) are in the same equivalence class, but Min(E) 6= ∀xp(c) since p(c) has
less quantifiers). Let λi.αi be an enumeration of all the equivalence classes of
LC(D)-sentences under ∼S , such that the minimal representatives of which do
not begin with ¬ (for instance, the minimal representative of [[∀x¬p(c)]] begins
with ¬). It is easy to see that for any equivalence class [[ψ]], there are unique
n[[ψ]], k[[ψ]] such that for every A ∈ [[ψ]], A = ¬kψϕ for some ϕ ∈ αn[[ψ]]

, where

¬kθ is a sentence obtained from θ by adding k preceding negation symbols and
any number of preceding void quantifiers (Note that for any atomic sentence
p(t1, ..., tn), k([[p(t1, ..., tn)]]) = 0). An L′-structure S = 〈D, I〉, and an L′(D)

valuation v in QM3l are now defined as follows (where ψ̃ is defined as in the
proof of Lemma 25):

– For every constant c of L′: I[c] = c.

– For every t1, ..., tn ∈ D: I[f ][t1, ..., tn] = f(t1, ..., tn).

– For every t1, ..., tn ∈ D:

I[p][t1, ..., tn] =





f p(t1, ..., tn) 6∈ Γ ∗

t0n([[p(t1, ..., tn)]]) ¬p(t1, ..., tn) 6∈ Γ ∗

I0
n([[p(t1, ..., tn)]]) p(t1, ..., tn) ∈ Γ ∗,¬p(t1, ..., tn) ∈ Γ ∗



v[ψ] =





f ψ̃ 6∈ Γ ∗

t
k([[ψ]])
n([[ψ]]) (¬̃ψ) 6∈ Γ ∗

I
k([[ψ]])
n([[ψ]]) ψ̃ ∈ Γ ∗, (¬̃ψ) ∈ Γ ∗

It is easy to see that v is well-defined. Obviously, v[ψ] ∈ D for every ψ ∈ Γ ∗,
while v[ψ0] = f . It remains to show that v is QM3l-legal.

Let A,B be L′(D)-formulas such that A ∼S B. Then n[[A]] = n[[B]], and

k[[A]] = k[[B]]. Also, ¬A ∼S ¬B, and by Lemma 26-2 Ã ∼dcL B̃ and ¬̃A ∼dcL ¬̃B.

By property 7 of Γ ∗, Ã ∈ Γ ∗ iff B̃ ∈ Γ ∗ and ¬̃A ∈ Γ ∗ iff ¬̃B ∈ Γ ∗. Thus by
definition of v, v[A] = v[B] and so v respects the ∼S relation.
The proof that v respects the operations corresponding to ∨, ⊃, ∀ and ∃ is like
in the proof of Theorem 24. We consider next the cases of ◦, ¬ and ∧:

◦: That v[◦ψ] = f in case v[ψ] ∈ I is shown as in the proof of Theorem 24.

Assume next that v[ψ] ∈ T ∪F . Then either ψ̃ 6∈ Γ ∗, or ¬̃ψ 6∈ Γ ∗. It follows

that ψ̃ ∧ ¬ψ 6∈ Γ ∗, and so ¬(ψ̃ ∧ ¬ψ̃) ∈ Γ ∗. Hence ◦ψ̃ ∈ Γ ∗ by (l), and so
v[◦ψ] ∈ D.

¬: The proofs that v[ψ] = f implies v[¬ψ] ∈ D and that v[ψ] ∈ T implies
v[¬ψ] = f are like in the proof of Theorem 24. Assume next that v[ψ] = Ikn.

Then both ψ̃ and ¬̃ψ are in Γ ∗, and ψ = ¬kϕ where ϕ ∈ αn. Thus ¬ψ =
¬k+1ϕ for ϕ ∈ αn, and so n[[¬ψ]] = n, k[[¬ψ]] = k + 1. It follows by definition

of v that v[¬ψ] is either Ik+1
n or tk+1

n (depending whether ¬¬ψ is in Γ ∗ or
not).

∧: The proofs that if v[ψ1] = f or v[ψ2] = f then v[ψ1 ∧ ψ2] = f , and that
v[ψ1 ∧ ψ2] ∈ D otherwise, are like in the proof of Theorem 24. Assume next

that v[ψ1] = Ikn and v[ψ2] ∈ {Ik+1
n , tk+1

n }. Then both ψ̃1 and ψ̃2 are in Γ ∗,

and so ψ̃1 ∧ ψ2 ∈ Γ ∗. Also, ψ1 = ¬kϕ1, ψ2 = ¬k+1ϕ2 for ϕ1, ϕ2 ∈ αn. It

follows that ψ2 ∼S ¬ψ1 and ψ1∧ψ2 ∼S ψ1∧¬ψ1. By lemma 25-2, ψ̃1 ∧ ψ2 ∼dcL
˜ψ1 ∧ ¬ψ1. By property 7 of Γ ∗, ˜ψ1 ∧ ¬ψ1 ∈ Γ ∗, and so ψ̃1, ¬̃ψ1 ∈ Γ ∗. This

entails that ◦̃ψ1 6∈ Γ ∗. Hence schema (l) implies that ¬( ˜ψ1 ∧ ¬ψ1) 6∈ Γ ∗.
Hence v[ψ1 ∧ ψ2] ∈ T .

Obviously, v[ψ] ∈ D for every ψ ∈ Γ , while v[ψ0] = f . Hence Γ 6⊢QM3l ψ0. ✷

Definition 33 For X ⊆ Ax, QM3l(X) is obtained from QM3l through the
following modifications:

1. If (i1)∈ X: a ∈ F ⇒ ◦̃(a) = T
2. If (i2)∈ X: a ∈ T ⇒ ◦̃(a) = T
3. If (c)∈X or (a¬)∈X: ¬̃f = T
4. If both (e) and (w) are in X, delete all the truth-values in I. Otherwise, if

(e)∈X: ¬̃Iji = {Ij+1
i }. If (w)∈X: a ∈ F ⇒ ¬̃a = T and ¬̃Iij = {tij}

5. If (a∧)∈ X: a ∈ T and b ∈ T ⇒ a∧̃b = T
6. If (a∨)∈ X: a ∈ T , b 6∈ I or b ∈ T , a 6∈ I ⇒ a∨̃b = T



7. If (a⊃)∈ X: a ∈ F , b 6∈ I or b ∈ T , a 6∈ I ⇒ a⊃̃b = T
8. If (o∧)∈ X: a ∈ T or b ∈ T and a, b ∈ D ⇒ a∧̃b = T
9. If (o∨)∈ X: a ∈ T or b ∈ T ⇒ a∨̃b = T

10. If (o⊃)∈ X: a ∈ F or b ∈ T ⇒ a⊃̃b = T
11. If (v∧)∈X: a, b ∈ T ∪ I ⇒ a∧̃b = T
12. If (v∨)∈X: a 6∈ F or b 6∈ F ⇒ a∨̃b = T
13. If (v⊃)∈X: a ∈ F or b ∈ T ∪ I ⇒ a⊃̃b = T
14. If (a∀)∈X: H ⊆ T ⇒ Q̃[H] = T
15. If (a∃)∈X: H ⊆ T ∪ F and H ∩ T 6= ∅ ⇒ Q̃[H] = T
16. If (o∀)∈X: H ∩ T 6= ∅ and H ⊆ D ⇒ ∀̃[H] = T
17. If (o∃)∈X: H ∩ T 6= ∅ ⇒ Q̃[∃] = T

18. If (v∀)∈X: H ⊆ T ∪ I ⇒ ∀̃[H] = T

19. If (v∃)∈X: (H ∩ (T ∪ I)) 6= ∅ ⇒ ∃̃[H] = T

The Nmatrices QM3d(X) and QM3b(X) are defined similarly.

Remark: it is easy to see that for any X ⊆ Ax and y ∈ {(l), (d), (b)}, the
set of conditions in X is coherent, the interpretations of the connectives and
the quantifiers of QM3y(X) never return empty sets and so QM3y(X) is well-
defined.

Theorem 34 (Soundness and completeness) Let Γ ∪ {ψ0} be a set of LC-
formulas. Let X ⊆ Ax and y ∈ {l,d,b}. Then Γ ⊢QBy[X] ψ0 iff Γ ⊢QM3y(X) ψ0.

Proof: It is easy to show that QM3y(X) is a (simple) refinement of QM3(X)
and so by theorem 1, ⊢QM3(X)⊆⊢QM3y(X). It is also easy to check that for any
schema in X, the relevant condition guarantees its validity in QM3y(X), and
so soundness follows. The proof of completeness is a straightforward extension
of the proof of theorem 32.

Corollary 35 Let Γ ∪ ψ be a set of LC-formulas, in which ◦ does not occur.
Then Γ ⊢QBlca ψ iff Γ ⊢QBlcia ψ.

Proof: It can be easily checked that the only difference between the Nmatrices
QM3lcia and QM3lca is in their interpretation of ◦.

Corollary 36 Let the Nmatrix QM3C
∗
1 for Lcl be obtained from the Nma-

trix QM3lcia for LC (or QM3lca) by discarding the interpretation of ◦. Then
QM3C

∗
1 is a characteristic Nmatrix for C∗

1 .

Proof: similar to the proof of theorem 34. (Another alternative is to use a
translation of C∗

1 to QBlcia, similar to the translation of the proof of theorem
107 of [11] for the propositional case.)

Remark: da Costa’s C1 is usually considered to be the ◦-free analogue of the
propositional fragment of QBlcia (called Cila in [8, 11]). However, from the
above corollaries it follows that it is equally justified to identify it with Cla, the
propositional fragment of QBlca. A similar observation applies to C∗

1 .



Lemma 37 (Effectiveness) For every X ⊆ Ax and every y ∈ {(l), (d), (b)},
QM3y(X) is effective.

Proof: This follows from proposition 21, and the suitability of QM3y(X) for
∼dcL .

5 Logical Indistinguishability in First-order LFIs

In this section we apply the framework of Nmatrices and in particular their
effectiveness to prove a very important proof-theoretical property of the first-
order LFIs investigated here.

Definition 38 Let S be a system which includes positive classical logic. Two
sentences A and B are logically indistinguishable in S if ϕ(A) ⊢S ϕ(B) and
ϕ(B) ⊢S ϕ(A) for every sentence ϕ(ψ) in the language of S.

Theorem 39 Let S be a system over a first-order language L which includes
{¬,⊃}, and assume that A ⊢S B whenever A ∼dcL B. If one of the following
holds, then two sentences A,B are logically indistinguishable in S iff A ∼dcL B:

1. QBbciapwvQ is an extension of S.
2. QBbciapevQ is an extension of S.
3. QBbive is an extension of S

Proof: For all the parts one direction is trivial: assume that A ∼dcL B. Then
since ∼dcL is a congruence relation, ψ(A) ∼dcL ψ(B) for every ψ and so A,B are
logically indistinguishable by our assumption about S.

For the converse, let A,B be two sentences, such that A6∼dcL B.
For the first and the second parts, let q be an atomic propositional sentence5,
such that q does not occur in A or B. Let S = 〈D, I〉 be some L-structure,
such that I[q] = I0

0 , and for every two closed terms t1 6= t2 occurring in A
and B respectively, I[t1] 6= I[t2]. Let WS be the minimal set of L(D)-sentences
closed under subformulas, such that A,B, q ∈ WS . Let v be some partial S-
valuation on WS , satisfying: v[q] = I0

0 , v[q ⊃ (B ⊃ B)] = I0
0 , v[◦(q ⊃ (B ⊃

B))] = f , v[q ⊃ (A ⊃ A)] = t00, and v[◦(q ⊃ (A ⊃ A))] = t00 (such v exists,
since both v[A ⊃ A] and v[B ⊃ B] are in D, and by lemma 13, q ⊃ (A ⊃
A)6∼dcL q ⊃ (B ⊃ B) iff q ⊃ (A ⊃ A)6∼S q ⊃ (B ⊃ B)). It is easy to check that
v is legal in QM3bciapwvQ and in QM3bciapevQ. By lemma 37 it follows
that ◦(q ⊃ (A ⊃ A)) 6⊢S ◦(q ⊃ (B ⊃ B)). Hence A and B are not logically
indistinguishable in S.

For the third part, assume without a loss in generality that A ⊃ A is not a
subformula of B ⊃ B. Let S = 〈D, I〉 be an L-structure, such that for every two
closed terms t1 6= t2 occurring in A and B respectively, I[t1] 6= I[t2]. Let WS be
the minimal set of L(D)-sentences closed under subformulas, such that ¬¬¬(B ⊃

5 For simplicity we assume that we have propositional sentences in L, but it is not
difficult to replace q by a suitable first-order sentence.



B) ∈ WS . Let v be some partial S-valuation on WS , satisfying: v[B ⊃ B] = t00,
v[¬(B ⊃ B)] = f , v[¬¬(B ⊃ B)] = I0

0 , v[¬¬¬(B ⊃ B)] = I1
0 . Extend v to a

partial valuation defined also on the subformulas of ¬¬¬(A ⊃ A), which satisfies:
v[A ⊃ A] = t00, v[¬(A ⊃ A)] = f , v[¬¬(A ⊃ A)] = t00, v(¬¬¬(A ⊃ A)) = f .
Again this is possible since by lemma 13. It is easy to see that v is legal in
QM3bive. By lemma 37, it follows that ¬¬¬(B ⊃ B) 6⊢S ¬¬¬(A ⊃ A). Hence
A and B are not logically indistinguishable in S. ✷

Remarks:

1. This theorem extends similar theorems from [2] and [20]. In [2] it is proved for
propositional systems weaker than the propositional fragments of QBbciape
and QBbiope. In [20] a similar theorem for the first-order case is proved for
systems weaker than QBbciape. This theorem extends these results in the
following aspects:
– Covering first-order systems stronger than QBbciap and weaker than

QBbciapwvQ.
– Covering first-order systems stronger than QBbciape and weaker than

QBbciapevQ.
– Extending to the first-order case the propositional results of [2] for sys-

tems weaker than QBbiope and generalizing them to systems weaker
than QBbive.

2. Extensions of QBcio do not have the property described above. In fact,
it can be shown that ◦(A ⊃ A) and ◦(B ⊃ B) are logically indistinguish-
able in QBcio for any two sentences A and B (it is shown in [11] for the
propositional case).

3. Extensions of QBiew also do not have the above property. In fact, it is easy
to see that QBiew collapses into classical logic, where any two equivalent
formulas are logically indistinguishable.
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