
	

	

	

Halmstad University Post-Print

Manycore performance analysis using
timed configuration graphs

Jerker Bengtsson and Bertil Svensson

N.B.: When citing this work, cite the original article.

©2009 IEEE. Personal use of this material is permitted. However, permission to
reprint/republish this material for advertising or promotional purposes or for
creating new collective works for resale or redistribution to servers or lists, or to
reuse any copyrighted component of this work in other works must be obtained
from the IEEE.

Bengtsson J, Svensson B. Manycore performance analysis using timed
configuration graphs. In: International Symposium on Systems, Architectures,
Modeling, and Simulation, 2009. SAMOS '09. Piscataway, N.J.: IEEE; 2009. p.
108-117.

DOI: http://dx.doi.org/10.1109/ICSAMOS.2009.5289221
Copyright: IEEE

Post-Print available at: Halmstad University DiVA
http://urn.kb.se/resolve?urn=urn:nbn:se:hh:diva-5987

Manycore Performance Analysis using Timed
Configuration Graphs

Jerker Bengtsson
Centre for Research on Embedded Systems

Halmstad University
Halmstad, Sweden

Email: jerker.bengtsson@hh.se

Bertil Svensson
Centre for Research on Embedded Systems

Halmstad University
Halmstad, Sweden

Email: bertil.svensson@hh.se

Abstract—The programming complexity of increasingly par-
allel processors calls for new tools to assist programmers in
utilising the parallel hardware resources. In this paper we present
a set of models that we have developed to form part of a tool
which is intended for iteratively tuning the mapping of dataflow
graphs onto manycores. One of the models is used for capturing
the essentials of manycores that are identified as suitable for
signal processing and which we use as target architectures.
Another model is the intermediate representation in the form
of a timed configuration graph, describing the mapping of a
dataflow graph onto a machine model. Moreover, this IR can be
used for performance evaluation using abstract interpretation.
We demonstrate how the models can be configured and applied
in order to map applications on the Raw processor. Furthermore,
we report promising results on the accuracy of performance
predictions produced by our tool. It is also demonstrated that
the tool can be used to rank different mappings with respect to
optimisation on throughput and end-to-end latency.

I. INTRODUCTION

For efficient handling of the programming complexity of
manycore processors, domain specific development tools are
needed. One concrete example is the signal processing re-
quired in radio base stations (RBS), which is naturally highly
parallel and described by computations on streams of data [1].
Many user channels have to be processed concurrently, each
including fast and adaptive coding and decoding of digital
signals. Hard real-time constraints imply that parallel hard-
ware, including processors and accelerators is a prerequisite
for coping with these tasks in a satisfactory manner.

One candidate technology for building flexible high-
performance processing platforms is manycores. However,
there are many issues regarding development of complex
signal processing software for manycore hardware. One such is
the need for tools that reduce the programming complexity and
abstract hardware details of a particular manycore processor.
We believe that, if industry is to adopt commercial-off-the-
shelf (COTS) manycore technology, the application software,
the tools and the programming models need to a high degree
be portable.

Research has produced specialised compiler techniques for
programming languages based on streaming models of com-
putation, achieving good speedup and high throughput for
parallel benchmarks [2]. However, even though a compiler can
generate optimised code, the programmer is typically left with

very little control of how the source program is transformed
and mapped on the cores. This means that, if the code output
does not meet the non- functional requirements of the system,
the only choice is to try to restructure the source program. We
argue that in order to increase performance gain experienced
application programmers must be able to control the parallel
mapping strategy.

We are developing an iterative code mapping tool that
allows the programmer to tune a mapping by:

• analysing the result of a parallel mapping using inter-
preted performance feedback

• giving timing, clustering and core allocation constraints
as input to the tool

Figure 1 outlines the modular architecture of our tool.
The tool is designed for using well defined dataflow models
of computation. One special case of dataflow, synchronous
dataflow (SDF), is very suitable for describing signal process-
ing flows [3]. It is also a good source for code generation to
parallel hardware, because it has a natural form of parallelism
that is a good match to manycores. The programmer provides
a manycore machine specification (using our machine model)
and the program (using SDF) as input to the tool. During
the model analysis stage, the tool will analyse the processing
requirements of the SDF model. As the second stage, we
compute a static dataflow schedule for the SDF graph (given
that the SDF model is consistent). The scheduled graph
is then passed through a model transformation. During the
model transformation, the tool generates a timed intermediate
representation, which represents an abstract mapping of the
application on a specific target processor. We call our inter-
mediate representation a timed configuration graph.

In this paper we present our achievements on the models
and the timed intermediate representation used by the tool to
compute performance feedback to the user. The interpreted
performance feedback enables a programmer to, early in the
development process, explore the run time performance of the
software and to find successively better mappings. We believe
that this iterative, machine assisted workflow, is advantageous
in order to keep the application portable while being able to
make trade-offs concerning throughput, latency and compli-
ance with real-time constraint on different platforms. More

978-1-4244-4501-1/09/$25.00 ©2009 IEEE 108

Model Analysis

Dataflow
Scheduling

Model
Transformation

Abstract
Interpretation

Code
Generation

User
feedback

Machine
specification SDF

Manycore
configuration

(Timed IR)

Fig. 1. Outline of the manycore code mapping tool.

specifically, the contributions of this paper are as follows:
• A parallel machine model usable for modelling array-

structured, tightly coupled manycore processors. The
model is presented in Section III, and in Section V we
demonstrate the configuration of it for modelling the Raw
processor[4].

• An intermediate representation (IR), used to describe a
mapping of an application on a particular manycore in
the form of a timed configuration graph. The use of this
IR is twofold: We can perform an abstract interpretation
that gives us feedback of performance during execution
of the system. Also, we can use it to generate target code.
We present the IR in Section IV.

• We make an evaluation of the accuracy and the usefulness
of our tool in Section VI. It is shown that our tool is able
to correctly rank different mappings of a graph by highest
throughput or shortest end-to-end latency.

We conclude the paper with a discussion of the results of the
evaluation and we point to improvements in order to increase
the accuracy of some of the predictions.

II. RELATED WORK

The problem of mapping task graphs in the form of acyclic
precedence graphs (APG) to a parallel processor has been a
widely addressed problem. Heuristic solutions are required
since this is for a long time known to be an NP complete
problem [5]. Sarkar introduced the two step mapping method,
where clustering is performed in a first step independently
from the second step of scheduling and processor allocation,
which can be applied at compile time [6]. A number of leading
algorithms, for both single step and two step clustering and
merging, with objectives of transforming and mapping task
graphs for multiprocessor systems are reviewed in [7].

The dynamic level scheduling algorithm proposed by Sih
and Lee is an heuristic taking inter-processor communication
overhead into account during clustering. Similar to our work,
this scheduling algorithm can be used to produce feedback
to the programmer for iterative refining of the task graph
and the architecture [8]. However, it has been demonstrated

by Kianzad and Bhattacharyya that two step methods tend to
produce more qualitative schedules than single step methods
[7]. Unfortunately, expanding an SDF graph to an acyclic
precedence graph – which are the assumed representation for
many scheduling and mapping algorithms – can lead to an
explosion of nodes. This problem can partly be reduced using
clustering techniques before the SDF graph is transformed to
an APG [9]. However, we are interested in techniques for
analysis and mapping of SDF graphs without conversion to
an APG

The StreamIt language implements a restricted set of SDF.
The StreamIt compiler implements a two phase mapping
(dataflow scheduling and clustering, followed by core al-
location) using direct representation of SDF graphs [2][4].
However, the StreamIt compiler uses a static and location inde-
pendent cost model for clustering and core allocation. Further,
neither the language nor the compiler provides any means to
express non-functional constraints or other application specific
optimisation criteria to tune the parallel mapping and code
generation. Programs have to be restructured in attempts to
improve a mapping.

Throughput is one important non-functional requirement in
the real-time applications we are addressing. Ghamarian et al.
provide methods for throughput using state space analysis on
direct representation of multi-rate SDF graphs [10]. Further,
Stuijk et al. have developed a multiprocessor resource alloca-
tion strategy for throughput constrained SDF graphs [11]. We
are addressing techniques that allow combinations of timing
constraints and show how to use them to direct the mapping
process.

Bambha and Battacharyya provide a good review of dif-
ferent intermediate representations for different objectives on
optimisation and synthesis for self-timed execution of SDF
programs to multiprocessor DSP systems [12]. They assume
homogenous representation of SDF graphs, which exposes a
higher degree of task parallelism based on the rate signatures.
Our work is similar, but we are mainly interested intermediate
representations on multi-rate SDF and in minimising transfor-
mation between different representations during the mapping
process.

III. MODEL SET

In this section we present the model set for constructing
timed configuration graphs. First we discuss the application
model, which describes the application processing require-
ments, and then the machine model, which is used to describe
computational resources and performance of manycore targets.

A. Application Model

We model an application using multi-rate SDF. An SDF
graph constitutes a network of actors – atomic or composite
of variable granularity – which compute on data distributed via
synchronous unidirectional channels. Each channel input and
output of an actor has an a priori specified token consumption
and production rate. By definition, memory and computations
in an SDF graph are distributed, and actors fire (compute)

109

in parallel when there are enough tokens available on the
input channels. An SDF graph is computable if there exists at
least one periodical repetition schedule. A periodical repetition
schedule specifies in which order and how many times each
actor fires. If a repetition schedule exists, buffer boundedness
and deadlock free execution is guaranteed. One significant
advantage with SDF is that the execution order can be de-
termined at compile-time. This enables generation of compact
code and elimination of run-time scheduling overhead [13].
The properties of SDF and the formal theory for scheduling
of SFD graphs are in detail described in [3].

The Ptolemy modelling framework provides an excellent
basis for implementing SDF analysis and code generation
tools [14]. Besides serving as input to a code generator, the
application model is an executable specification. However, for
our work it is not the correctness or the functional properties of
the application that is in focus. We are interested in techniques
for analysing the non-functional properties of the system. For
this we rely on measures like worst case execution time,
communication and memory requirements. We assume that
these data have been analysed and that each actor is associated
with a tuple

< rp, rm, Rs, Rr >

where
• rp is the worst case execution time, in number of opera-

tions.
• rm is the requirement on memory allocation, in words.
• Rs = [rs1 , rs2 , ..., rsn

] is a sequence where rsi
is the

number of words produced on channel i each firing.
• Rr = [rr1 , rr2 , ..., rrm

] is a sequence where rrj
is the

number of words consumed on channel j each firing.

B. Machine Model

Scheduling and core allocation algorithms need to take
inter processor (core) communication into account to provide
realistic cost measures. These costs in general comprise a
static cost for sending and receiving and a dynamic cost
determined by the resource location and/or the amount of
data to be communicated. However, for reasonably near clock-
cycle accurate modelling of dynamic network behaviour it is
necessary to use a fine grained cost model for communication.
We discuss this further in conjunction with our experimental
results in Section VI.

One well-studied and reasonably realistic model for dis-
tributed memory multiprocessors is LogP [15]. During the
past, much work has been done to refine this model, for exam-
ple taking into account hardware support for long messaging
[16], and capturing network contention [17]. A more recent
parallel machine model targeting fine-grained and large scale
multicores is developed as a part of the SimpleFit framework
[18]. SimpleFit considers variable core granularities and re-
quirements on on-chip and off-chip communication. However,
it was derived with the purpose of exploring optimal grain
size and balance between memory, processing, communication

and global I/O, given a VLSI budget and a set of computation
problems. Since it is not intended for modelling the dynamic
behaviour of a program, it does not include a fine-granular
model of the communication. Taylor et al. propose a taxonomy
(AsTrO) for comparison of scalar operand networks [19]. This
taxonomy includes a five parameter tuple for comparing and
evaluating performance sensitivity of on-chip scalar operand
networks.

We propose a manycore machine model based on SimpleFit
and the AsTrO five parameter tuple. This model allows a fairly
fine-grained modelling of performance, including the overhead
of operations associated with communication and off-chip
resources. The machine model comprises a set of parameters
describing the computational resources and a set of abstract
performance functions, which describe the performance of
computations, communication and memory transactions.

We assume that cores are tightly coupled via a mesh
network. Further that each core has individual instruction se-
quencing capability and that transactions between core private
and shared memory is software managed. The resources of
such an abstract manycore architecture are described using two
tuples, M and F . M consists of a set of parameters describing
the resources:

M =< (x, y), p, bg, gw, gr, o, so, sl, c, hl, rl, ro >

where
• (x, y) is the number of rows and columns of cores.
• p is the processing power (instruction throughput) of each

core, in operations per clock cycle.
• bg is global memory bandwidth, in words per clock cycle
• gw is the penalty for global memory write, in words per

clock cycle
• gr is the penalty for global memory read, in words per

clock cycle
• o is software overhead for initiation of a network transfer,

in clock cycles
• so is core send occupancy, in clock cycles, when sending

a message.
• sl is the latency for a sent message to reach the network,

in clock cycles
• c is the bandwidth of each interconnection link, in words

per clock cycle.
• hl is network hop latency, in clock cycles.
• rl is the latency from network to receiving core, in clock

cycles.
• ro is core receive occupancy, in clock cycles, when

receiving a message
F is a set of abstract common functions describing the
performance of computations, global memory transactions and
local communication as functions of M :

F (M) =< tp, ts, tr, tc, tgw, tgr >

where

110

• tp is a function evaluating the time to compute a sequence
of instructions

• ts is a function evaluating the core occupancy when
sending a data stream

• tr is a function evaluating the core occupancy when
receiving a data stream

• tc is a function evaluating network propagation delay for
a data stream

• tgw is a function evaluating the time for writing a stream
to global memory

• tgr is a function evaluating the time for reading a stream
from global memory

A specific manycore processor is modelled by giving values
to the parameters of M and by defining the functions F (M).

IV. MANYCORE INTERMEDIATE REPRESENTATION

In this section we describe the manycore intermediate
representation (IR). We call the IR a timed configuration graph
because the usage of the IR is twofold:

• Firstly, the IR is a graph representing an SDF pro-
gram that is transformed and partitioned for a specific
manycore target. We can use the IR as input to a code
generator, in order to configure each core as well as the
interconnection network and plan global memory usage
of a specific manycore target.

• Secondly, by introducing the notion of time in the graph,
we can use the same IR as input to an abstract interpreter,
in order to predict performance and evaluate the dynamic
behaviour of the application when executed on a specific
manycore target. The output of the evaluator can be used
either directly by the programmer or by an auto-tuner for
suggesting a better mapping.

A. Relations Between Models and Configuration Graphs

A timed configuration graph GA
M (V,E) describes a single

connected SDF graph A, transformed and mapped on the
abstract machine described by the pair of tuples (M,F). The
set of vertices is a union V = P∪B|P∩B = ∅, where P is the
set of cores and B is the set of off-chip shared memories. We
use vp to denote a vertex of core type and vb to denote a vertex
of memory type. Edges e ∈ E are dataflow channels mapped
onto the interconnection network of (M, F). To obtain a GA

M ,
the vertices of A are clustered with respect to the integrity
of the dataflow. Each cluster is assigned to a core in M . The
edges of the SDF that end up in one cluster are implemented
using local memory in the core, so they do not appear as edges
in GA

M . The edges of the SDF that reach between clusters can
be implemented in two different ways:

1) as network connection between the two cores. Such
connection is represented by an edge (vpi , vpj) in GA

M

2) as a buffer in global memory. In this case, a vertex vbk

is introduced. Further the edge (vpi
, vpj

) is replaced by
a pair of edges (vpi

, vbk
) and (vbk

, vpj
) between the two

cores in GA
M .

When GA
M has been constructed, each vp, vb ∈ V has been

assigned costs for computation and communication, calculated

using the machine description (M, F) described in Section
III-B. These costs reflect the relative costs for each specific
operation when computing A on (M,F). We will now discuss
how we use A and M to construct and assign costs to the
vertices, the edges and the computation costs of GA

M .
1) Vertices.: Memory vertices, B, allow us to represent a

set of buffers mapped in shared memory. A memory vertex can
be specified by the programmer, for example to store initial
data. Memory vertices can also be automatically generated.

For core vertices, P , we abstract the firing of an actor by
means of a sequence S of abstract receive, compute and send
operations:

S = tr1 , tr2 . . . trn
, tp, ts1 , ts2 , . . . , tsm

The cost for a receive operation depends on whether the source
is another core or a shared memory. Let the source vertex of
channel e be source(e). Then for each incoming edge of a
vertex p we add a receive operation with a cost bound to:

• tr ∈ F (M), if source(e) is of type vp

• tgr ∈ F (M), if source(e) is of type vb

The cost for a compute operation is calculated using the
performance function tp, which represents the time required
to execute the computations of an actor when it fires.

Finally, for each outgoing edge of a vertex p we add a send
operation. Let the sink vertex of channel e be sink(e). The
send operation has a cost bound to:

• ts ∈ F (M), if sink(e) is of type vp

• tgw ∈ F (M), if sink(e) is of type vb

Read and write requests on memory vertices are served by
the first come first served policy. For a vertex vb we assign
read and write costs calculated using gr ∈ M and gw ∈ M ,
to account for memory read- and write latencies when serving
an incoming request.

When constructing GA
M , multiple channels sharing the same

source and destination can be orderly merged and represented
by a single edge, treating them as a single stream of data.

2) Edges.: The weight w of an edge e(vi, vj) corresponds
to the link propagation. The value of the weight w corresponds
to the value of the function tc ∈ F (M). Further, edges in SDF
can be specified with a sample delay. Given an edge e(vi, vj),
a unit delay is defined to mean that the nth sample consumed
by vj corresponds to the (n−1)th sample produced by vertex
vi [3]. An edge delay is simply represented by a buffer offset
value, needing no further treatment when constructing GA

M .
Figure 2 shows an example of a simple SDF graph, A, after

it has been transformed to one possible GA
M . One static firing

schedule for A in this example is 3(2abcd)e. The schedule
should be interpreted as: actor a fires 6 times, actors b, c and
d fire 3 times, and actor e 1 time. The firing of A is repeated
indefinitely by this schedule. Thus, no runtime scheduling
supervision is required. The feedback channel from actor c
to actor b is buffered in core local memory. The edge from
actor a to actor d is a buffer in shared (off-chip) memory and
the others are mapped as point-to-point connections on the
network. The integer values represent the send and receive

111

a

b c

e

2

d
20

4

40

1 1

20 20

3
9

15
5

6a 3b 3c

1e3d

12 12

120
120

9 9

15
15

120
120

Fig. 2. The graph to the right is one possible graph GA
M for the application

graph A to the left.

rates of the channels (rs and rr), before and after A has been
clustered and transformed to GA

M , respectively. Note that these
values in GA

M are the values in A multiplied by the number
of times an actor fires, as given by the firing schedule.

B. Interpretation of Timed Configuration Graphs

In order to implement and interpret timed configurations
graphs, we need a computational model and a notion of
time [20]. We have used dataflow process network (PN) to
implement interpretable timed configuration graphs [21]. A
process network very well mimics the behaviour of the types
of parallel hardware we are studying. The PN domain in
Ptolemy is a super set of the SDF domain. The main difference
in PN, compared to SDF, is that actors are processes which
fire asynchronously. If a process tries to read from an empty
channel, it will block until there is new data available. The
PN domain implemented in Ptolemy is a special case of Kahn
process networks [22]. But, unlike in a Kahn process network,
PN channels have bounded buffer capacity, which implies that
a process also temporarily blocks when attempting to write to
a buffer that is full. This property enables easy modelling of
link occupancy on the network.

Each of the core and memory vertices of GA
M is assigned

to its own process. Each of the processes has a local clock,
t, which iteratively maps the absolute start and stop time, as
well as periods of blocking, to each operation in the sequence
S.

Send and receive are blocking operations. A read operation
blocks until data is available on the edge and a write operation
blocks until the edge is free for writing. Currently, our machine
model does not allow modelling of link concurrency. All
cores experience the network as a collision free resource.
To minimise the risk of providing optimistic performance
predictions, we have taken a rather pessimistic approach; only
one message is allowed to be sent over an edge during a
segment of time, independently of the length of the messages
and the network’s buffer capacity.

There is no notion of global time in PN. We manage
clock synchronisation between the communicating processes
by means of communicating discrete events. Send and re-
ceive operations generate a discrete event bound to current
time. It should be noted that each edge in A needs to be
represented by a pair of oppositely directed edges in GA

M to
manage synchronisation. Further, edges in Ptolemy have no

ability to perform computations. For each edge, we generate
a delay actor, which adds a delay corresponding to the link
propagation time (w ∈ e ∈ E).

V. MODELLING THE RAW PROCESSOR

In this section we demonstrate how we configure the
machine model in order to model the Raw processor for
performance evaluation [4]. Raw is a tiled, moderately parallel
MIMD architecture with 16 (4× 4) programmable tiles. Each
tile has a MIPS core and is equipped with 32 KB of data and
96 KB instruction caches. The tiles are tightly interconnected
via two different types of communication networks: two
statically and two dynamically routed.

A. Parameter Settings

We assume a Raw set-up with four off-chip, non-coherent
shared memories, and that software managed cache mode is
used. Furthermore, we concentrate on modelling the usage of
one of the dynamic networks (which are dimension-ordered,
wormhole-routed, message-passing types of networks). The
parameters of M for Raw with this configuration are set as
follows:

M =< (4, 4), 1, 1, 1, 6, 2, 5, 1, 1, 1, 1, 3 >

In our model, we assume a core instruction throughput of p
operations per clock cycle. We set p = 1. The four shared off-
chip DRAMs are connected to four separate I/O ports located
on the east-side of the chip. Thus, the DRAMs can be accessed
in parallel, each having a bandwidth of bg = 1 words per clock
cycle. The latency penalty for a DRAM write is gw = 1 cycle
and for a read operation gr = 6 cycles.

The overhead for initiating communication includes sending
a header and possibly an address (when addressing any of the
off-chip memories). We set the overhead o = 2. The four on-
chip networks on Raw are mapped to the core’s register files,
meaning that after a header has been sent, the network can
be treated as destination or source operand of an instruction.
Ideally, this means that the receive and send occupancy is zero.
In practice, when multiple input and output dataflow channels
are merged and physically mapped on a single network link,
data needs to be buffered locally. We have measured and
estimated an average send and receive occupancy to be so = 5
and ro = 3 respectively. Note that we then also include the
overhead for reading and writing via buffers in local memory.
The network hop-latency on Raw is hl = 1 cycles per router
hop and the link bandwidth is c = 1. Furthermore, the send
and receive latency is one clock cycle when injecting and
extracting data to and from the network: sl = 1 and rl = 1.

B. Performance Functions

The performance functions have been formulated by study-
ing the specification of the Raw processor [23].

112

a) Compute: The time required to process the fire code
of an actor on a core is defined as

tp(rp, p) =
⌈

rp

p

⌉
which is a function of the requested number of operations rp

and core processing power p. To rp we count all instructions
except those related to network send and receive operations.

b) Send: The time required for a core to issue a network
send operation is defined as

ts(Rs, o, so) =
⌈

Rs

framesize

⌉
× o + Rs × so

Send is a function of the requested amount of words to be
sent, Rs, the software overhead o ∈ M when initiating a
network transfer, and a possible send occupancy so ∈M . The
framesize is a Raw specific parameter. The dynamic networks
allow message frames of length within the interval [0, 31]
words. For global memory read and write operations, we use
the Raw cache line protocol with framesize = 8 words
per message. Thus, the first term of ts captures the software
overhead for the number of messages required to send the
complete stream of data. For connected actors that are mapped
on the same core, we can choose to map channels in local
memory (if the local memory capacity is enough). In that case
we set ts to zero.

c) Receive: The time required for a core to issue a
network receive operation is defined as

tr(Rr, o, ro) =
⌈

Rr

framesize

⌉
× o + Rr × ro

d) Network Propagation: Providing means for modeling
communication accurately for an abstract parallel target is
difficult: high accuracy requires the use of a low machine
abstraction level. We chose the approach of modeling com-
munication as collision free.

In the network propagation time, we consider a possible
network injection and extraction latency at the source and
destination in addition to the link propagation time. The
network propagation time is defined as

tc(Rs, xs, ys, xd, yd, sl, hl, rl) =
sl + d(xs, ys, xd, yd)× hl + nturns(xs, ys, xd, yd) + rl

Network injection and extraction latency is captured by sl

and rl respectively. Further, the propagation time depends
on the network hop latency hl and the number of network
hops d(xs, ys, xd, yd), which is a distance function of the
source and destination coordinates. Routing turns add an extra
cost of one clock cycle. This is captured by the value of
nturns(xs, ys, xd, yd) which, similar to d, is a function of the
source and destination coordinates.

e) Streamed Global Memory Read: Reading from global
memory on the Raw machine requires first one send operation
(the core overhead which is captured by ts), in order to con-
figure the memory controller and set the address of memory
to be read. The second step is to issue a receive operation to
receive the memory contents on that address. The propagation
time when streaming data from global memory to the receiving
core is defined as

tgr(rl, xs, ys, xd, yd, hl) =
rl + d(xs, ys, xd, yd)× hl + nturns(xs, ys, xd, yd)

Note that memory read latency penalty is not included in
this expression. This is accounted for in the memory model
included in the IR (GA

M).
f) Streamed Global Memory Write: Like the memory

read operation, writing to global memory requires two send
operations: one for configuring the memory controller (set
write mode and address) and one for sending the data to be
stored. The time required for streaming data from the sending
core to global memory is evaluated by

tgw(sl, xs, ys, xd, yd, hl) =
sl + d(xs, ys, xd, yd)× hl + nturns(xs, ys, xd, yd)

Like in stream memory read, the memory write penalty is
accounted for in the memory model.

VI. EXPERIMENTAL EVALUATION

In this section we present an evaluation of our tool with
two purposes:

• to evaluate the accuracy of the tool’s performance pre-
dictions with respect to actual performance.

• to investigate whether the predictions can be used to rank
different mappings of an application with respect latency
and throughput.

We have selected two applications with different relations
between communication and computation demands to evaluate
the accuracy and sources of possible inaccuracy. For the Raw
implementations, we have used BEETLE, which is a cycle-
accurate Raw simulator.

A. Matrix Multiplication

Our first case study is matrix multiplication, which requires
fairly large amounts of data to be communicated over the
network. Furthermore, it provides an excellent case for testing
the tool on large amounts of communication between the cores
and global memory. The input matrices are partitioned into
overlapping sub-matrices and the computations are distributed
equally on four cores. Thus there is no exchange of data
between the cores. Both the input matrices and the result
are stored in off-chip memory. Figure 3 shows three different
mappings of a 32 × 32 matrix multiplication used in the
experiments. Note that we kept the algorithm the same in all
three cases.

113

1

3

4

2

1

3

4

2

1

3

4

2

Matrix1 Matrix2 Matrix3

Fig. 3. Three different mappings of the 32× 32 elements matrix multipli-
cation using four cores.

In Matrix1, all cores read their assigned input data from the
upper memory bank and store the result in the lower memory
bank. In Matrix2, we assume that the input data has been
arranged and distributed over four separate banks. Thus, in
this case, each core has collision-free access to the network
and off-chip memory. Finally, in Matrix3, input and output
data are all stored in the same memory bank.

We expect the performance prediction for Matrix2 to be
more accurate than the predictions for Matrix1 and Matrix3
since our model assumes a collision-free network. Further-
more, by comparing the predictions for Matrix1 with Matrix2
and Matrix3, we expect to get an indication of how sensitive
the prediction accuracy is to contention effects. The main
difference between Matrix1 and Matrix3 is that, in Matrix3,
all communication to the off-chip memory controller is using
the same network links. In short, we expect there to be
fewer collisions in Matrix1 compared with Matrix3, but the
performance should still be relatively close to the performance
of Matrix3. This further provides an interesting test case to
evaluate whether the tools predictions can be used to determine
which mapping performs better.

B. Parallel Merge Sort

Our second case study is merge sort. Compared to matrix
multiplication, the merge sort algorithm has very low require-
ments on computation and communication. Figure 4 shows
two different mappings of the merge sort algorithm using 7
and 5 cores, respectively. The computation and communication
load, for each vertex in the tree, increases with the level as the
tree narrows down. Each vertex in the tree consumes a sorted
sub-list from preceding nodes via two channels and produces
a merged sorted output. The input data is distributed over the
leaf vertices, and the result, a sorted list, is stored locally in the
root vertex. In the first of the mappings (called Merge) each of
the vertices is mapped to one core. This mapping is illustrated
to the left in Figure 4. In the second mapping (called Merge
fused, shown to the right in Figure 4), the four leaf vertices
have been pair-wise clustered in order to obtain an improved
load and communication balance compared to Merge.

C. Accuracy of Predicted Core Communication Costs

In the first experiment, we have studied the accuracy of
the predicted performance on send and receive operations.

1 2 3 4

6

J J
1 2 3 4

65 7

Merge Merge fused

Fig. 4. The graph to the left is a fully parallel mapping of the merge sort
(denoted Merge) and in the graph to the right, leaf nodes have been pair-wise
clustered and mapped to the same core. The smaller node denoted J, in core
1 and 4, symbolise a join operation performed on the output channels.

For the applications used in the experiments, the programs
generated for each core consist of a receive phase, followed
by a compute, and then a send phase. We use Rawmm to
denote predicted performance (using our tool) and Raw to
denote the performance measured on Raw. All predictions
and corresponding measurements are made during steady state
execution of the dataflow graphs.

Table I shows the predicted receive times, for each used
core, compared to the measured receive times for Matrix1,
Matrix2 and Matrix3 respectively. The receive time includes
possible read blocked time. For each of the three test cases
it can be seen that the predicted receive times are slightly
pessimistic (which is preferred compared to optimistic). The
differences between the predicted and the measured receive
times vary between +2, 3% and +12, 6%.

In Matrix1, cores 1 and 2 have shorter distance than 3 and
4 to the memory holding the input, which leads to lower
read blocking time in the Raw measurements. Because the
timed configuration graph views the network as a collision
free resource, the receive performance is evaluated more fairly
for all cores in Rawmm. Similarly, in Matrix3, cores 3 and 4
have shorter distance to off-chip memory than cores 1 and
2. However, in Matrix3 the unfairness in distance to memory
has less importance. Since both read and write request have
to compete for the same physical links on the network, the
read and write blocking becomes more fairly distributed on
the cores.

In the Matrix2 mapping there are no collisions. The main
reason for the pessimistic predictions (9,5%) is that we have
used averaged measures to configure the send and receive
occupancy for Raw. We can probably to some extent tune these
parameters to get slightly better accuracy. However, to get a
fully accurate prediction we would need to model execution
at instruction-level, which would be very costly in terms of
modelling performance.

Table II shows the predicted send times compared to the
measured send times for Matrix1, Matrix2 and Matrix3. As
can be seen, for all three mappings the predicted send time
using Rawmm is accurate compared to the measured send time
on Raw. The unfairness in distance from the off-chip input
memory forces a relative skew between cores during execution
(as later explained in section VI-D). Moreover, the send phase
comprises much fewer messages to be sent, compared to the
receive phase: there are simply no (or very few) collisions
during send.

114

TABLE I
MATRIX STEADY STATE RECEIVE TIME (CLOCK CYCLES)

Application Core ID Rawmm Raw diff.
Matrix1 1 1790 1589 +12,6%

2 1790 1589 +12,6%
3 1790 1750 +2,3%
4 1790 1750 +2,3%

Matrix2 1 1600 1461 +9,5%
2 1600 1461 +9,5%
3 1600 1461 +9,5%
4 1600 1461 +9,5%

Matrix3 1 1828 1701 +7,5%
2 1814 1626 +11,6%
3 1800 1716 +4,9%
4 1786 1716 +4,1%

TABLE II
MATRIX STEADY STATE SEND TIME (CLOCK CYCLES)

Application Core ID Rawmm Raw diff.
Matrix1 1 408 408 0%

2 408 408 0%
3 408 408 0%
4 408 408 0%

Matrix2 1 408 408 0%
2 408 408 0%
3 408 408 0%
4 408 408 0%

Matrix3 1 408 408 0%
2 408 408 0%
3 408 408 0%
4 408 408 0%

We will now discuss our corresponding experiment on send
and receive times for the merge sort application. In this
experiment only core-to-core communication is utilised and
the communication consists of very small messages (1 to 4
words). Furthermore, we have deliberately designed one of the
mappings (Merge) to force unbalanced core communication
and computation loads. This experiment is expected to give an
indication on how accurately Rawmm models short messaging
and unbalanced communication. The predicted send times
compared to the measured ones can be seen in Table III. For
Merge, the predicted times are exact or very accurate. Cores
1,2,4, and 7 compute the leaf vertices, which also generate the
input in the parallel merge tree. Thus, no receive operations are
issued by these cores. However, for Merge fused, we see that
Rawmm has evaluated the receive time 75% higher, compared
to the measurements on Raw for cores 2 and 3. The reason
is that the computation times for cores 2 and 3, after the
clustering, are now shorter than for the preceding leaf vertices.
Since Rawmm models communication pessimistically – in the
sense that we only allow one message at a time on a network
link – communication is tighter synchronised in our model.
This can introduce blocking times in communication between
cores with unbalanced workloads, which are not experienced
on Raw.

In Table IV we compare send times for the two different
mappings of the merge sort algorithm. As can be seen in the
table, the predicted send times are fairly close to the measured

TABLE III
MERGE STEADY STATE RECEIVE TIME (CLOCK CYCLES)

Application Core ID Rawmm Raw diff.
Merge 1 0 0 +0%

2 16 16 +0%
3 16 16 +0%
4 0 0 +0%
5 0 0 +0%
6 29 28 +3,6%
7 0 0 +0%

Merge fused 1 0 1461 +9,5%
2 42 24 +75%
3 42 24 +75%
4 0 0 +0%
5 0 0 +0%
6 29 28 +3,6%
7 0 0 +0%

times (the difference is 9,1% or less).

TABLE IV
MERGE STEADY STATE SEND TIME (CLOCK CYCLES)

Application Core ID Rawmm Raw diff.
Merge 1 85 79 +7,6%

2 22 22 +0%
3 22 22 +0%
4 85 79 +7,6%
5 85 79 +7,6%
6 0 0 +0%
7 85 79 +7,6%

Merge fused 1 24 22 +9,1%
2 22 22 +0%
3 22 22 +0%
4 24 22 +9,1%
5 0 0 +0%
6 0 0 +0%
7 0 0 +0%

D. Latency and Throughput Measurements

In the second part of the experiments, we have used the
same mappings to compare predicted and measured end-to-
end-latency and throughput. We also evaluate whether the
predictions, despite potential inaccuracy, can be used to rank
the mappings correctly with respect to shortest latency and
highest throughput.

The mappings are self-timed, meaning that synchronisation
is handled at run-time [24]. Initially, a self-timed graph exe-
cutes a non-steady state and later, after a number of iterations,
converges to a steady-state schedule.

Figure 5 illustrates the dynamic behaviour for the self-
timed mapping of the Merge application. Cores computing the
upstream actors in the dataflow graph with lower workload
finish faster and can proceed with the next iteration of the
schedule, as long as the network buffer is large enough to
store the produced data. As shown in the figure, core 1 has
started its fourth iteration when core 6 begins computing its
first iteration. When network buffers are full, a steady state
execution is naturally forced.

Figure 6 shows the predicted latencies (in clock cycles), for
Merge and Merge fused, compared to the measured latencies

115

1

1

1

1

2

3

4

5

6

7

2 3 4 5

2 3 4 5

2 3 4 5

t

Co
re

20 21 22

20 21 22

20 21 22

Fig. 5. Skewing experienced in the unbalanced Merge algorithm. The
numbers represent the firing count of each actor, and the distance in time
between the firings is dependent on the network buffer capacity.

Fig. 6. Comparison of predicted (Rawmm) and measured (Raw) end-to-end
latency for Merge and Merge fused.

as a function of the current iteration. The figure shows at
which iteration each of the mappings reaches a steady state of
execution, i.e. when the latency curve levels out. We see that,
for Merge, the measured latency is underestimated by a factor
of 2. This is explained by the fact that the machine model
is currently not able to model buffer capacity of the on-chip
network. Thus, the difference in iteration count between the
first upstream actor and the last actor in the graph is larger
on Raw than in the modelled execution of Raw. To tighten
the latency predictions for graphs with unbalanced communi-
cation, we need to account for network buffer capacity in the
machine model.

For Merge fused, we see that the latency has rather been
overestimated, but is closer to the measured latency. The
reason is that both the workload and the communication in
Merge fused is better balanced than in Merge (after clustering
core 1 with 5 and core 3 with 7), which forces Merge fused
to reach a steady state after fewer iterations.

If we rank the predicted latencies of Merge and Merge
fused, even if the predictions have varying accuracy, we still
see that an optimisation decision based on the predictions
would (for this case) correctly identify Merge fused as the
better mapping.

Figure 7 shows the predicted end-to-end latencies for

Fig. 7. Comparison of the modelling accuracy of the computation latency
of three different mappings of the parallel matrix multiplication.

Matrix1, Matrix2 and Matrix3, compared to the measured
latencies on Raw. We see that the different mappings of
the matrix multiplication converge to steady state at different
numbers of iterations. Unlike in the merge sort experiment, the
computation tasks distributed on the cores is naturally load
balanced. The reason that the different implementations of
the matrix multiplication reach steady state at different points
in time is that the cores used in the different mappings are
affected by different communication delays due to network
contention. Contention effects is a large contributing factor
causing an underestimate of the latencies for Matrix1 and
Matrix3. This can be verified by observing that the plot for
Matrix2 on Rawmm and Raw (which is a contention free
mapping), is fairly accurate compared to the predictions for
Matrix1 and Matrix3. However, if we rank the predicted steady
state latencies for all mappings, we see that an optimisation
decision based on latency minimisation would in this case
correctly suggest Matrix3 better than Matrix 1 and Matrix2
as the best alternative of the three.

Table V shows the predicted and the measured throughputs
for Merge (with 4,4% difference) and Merge fused (with 10%
difference). The predictions are fairly close to the measure-
ments on Raw for both Merge and Merge fused. We also
see that both the predicted and the measured throughputs
show that Merge has a higher throughput than Merge fused.
When optimising for throughput, our predictions correctly rank
Merge better than Merge fused.

Finally, Table VI shows the corresponding comparisons for
Matrix1, Matrix2 and Matrix3. Note that, unlike in all the
other experiments, our model has predicted slightly optimistic
throughputs. However, if we rank both the predicted through-
puts and the measured throughputs, we see that the predictions
will be ranked in the same order as for the measured ones.
Thus, if using the predictions for throughput optimisation, our
tool finds the best cases for this example as well.

VII. CONCLUSION

In this paper we have presented our achievements on
building an iterative manycore code mapping tool. In order

116

TABLE V
MERGE STEADY STATE PERIODICITY (CLOCK CYCLES)

Application Rawmm Raw diff
Merge 119 104 +4,4%
Merge fused 132 120 +10%

TABLE VI
MATRIX STEADY STATE PERIODICITY IN (CLOCK CYCLES)

Application Rawmm Raw diff
Matrix1 19249 19434 -0,9%
Matrix2 19059 19143 -0,4%
Matrix3 19248 19401 -0,8%

to provide estimates of performance, we have developed a
machine model which abstracts a certain category of manycore
architectures. We model the applications using synchronous
dataflow, and the performance estimates are computed using
an executable intermediate representation called timed config-
uration graph.

We have presented an evaluation in terms of the prediction
accuracy of our tool and whether the predictions can be used
to identify a better mapping. It is shown that communication
times between cores are predicted slightly pessimistic, still
fairly close to measured performance, with respect to the high
level of modelling. Our comparisons indicate that, for the small
set of mappings so far explored in the experiments, the tool
can correctly rank different mappings with respect to highest
throughput or shortest latency. However, the comparisons also
reveal that the predictions of end-to-end latency for graphs
with unbalanced communication can be quite inaccurate. This
was demonstrated to mainly depend on the high abstraction
level of on-chip communication implemented by the IR,
which currently does not capture the buffer capacity or link
concurrency of the network.

To increase the accuracy and the reliability of end-to-
end latency measurements on dataflow graphs, we plan to
investigate inclusion of network buffer capacity and modelling
link concurrency in the intermediate representation. We are
especially interested in exploring automatised tuning methods,
using feedback information from the abstract interpreter, in
order to direct and improve the mapping of application graphs.

ACKNOWLEDGEMENT

The authors would like to thank Dr. Veronica Gaspes at
Halmstad University and the anonymous reviewers whose
comments helped improving this paper. This work has been
funded by research grants from the Knowledge Foundation
under the CERES contract.

REFERENCES

[1] E. Dahlman, S. Parkvall, J. Skold, and P. Beming, 3G Evolution: HSPA
and LTE for Mobile Broadband, 2nd ed. Academic Press, 2008.

[2] M. I. Gordon, W. Thies, and S. Amarasinghe, “Exploiting Coarse-
Grained Task, Data, and Pipeline Parallelism in Stream Programs,” in
Proc. of Twelfth Int’l. Conf. on Architectural Support for Programming
Languages and Operating Systems, 2006, pp. 152–162.

[3] E. A. Lee and D. G. Messerschmitt, “Static Scheduling of Synchronous
Data Flow Programs for Signal Processing,” IEEE Trans. on Computers,
vol. 36, no. 1, pp. 24–35, January 1987.

[4] M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald,
H. Hoffman, P. Johnson, J.-W. Lee, W. Lee, A. Ma, A. Saraf, M. Seneski,
N. Shnidman, V. Strumpen, M. Frank, S. Amarasinghe, and A. Agar-
wal, “The Raw Microprocessor: A Computational Fabric for Software
Circuits and General-Purpose Programs,” IEEE Micro, vol. 22, no. 2,
pp. 25–35, 2002.

[5] H. El-Rewini, H. Ali, and T. Lewis, “Task Scheduling in Multiprocessing
Systems,” IEEE Computer, vol. 28, no. 12, pp. 27–37, Dec 1995.

[6] V. Sarkar, Partitioning and Scheduling Parallel Programs for Multipro-
cessors. Cambridge, MA, USA: MIT Press, 1989.

[7] V. Kianzad and S. Bhattacharyya, “Efficient Techniques for Clustering
and Scheduling onto Embedded Multiprocessors,” IEEE Trans. on
Parallel and Distributed Systems, vol. 17, no. 7, pp. 667–680, July 2006.

[8] G. C. Sih, “Multiprocessor Scheduling to Account for Interprocessor
Communication,” Ph.D. dissertation, EECS Department, University of
California, Berkeley, CA 94720, USA, April 1991.

[9] J. L. Pino and E. A. Lee, “Hierarchical Static Scheduling of Dataflow
Graphs onto Multiple Processors,” in Proc. of IEEE Int’l Conf. on
Acoustics, Speech, and Signal Processing, 1995, pp. 2643–2646.

[10] A. Ghamarian, M. Geilen, S. Stuijk, T. Basten, B. Theelen, M. Mousavi,
A. Moonen, and M. Bekooij, “Throughput Analysis of Synchronous
Data Flow Graphs,” Proc. of Int’l Conf. on Application of Concurrency
to System Design, pp. 25–36, 2006.

[11] S. Stuijk, T. Basten, M. C. W. Geilen, and H. Corporaal, “Multiprocessor
Resource Allocation for Throughput-Constrained Synchronous Dataflow
Graphs,” in Proc. of the 44th annual conf. on Design automation. New
York, NY, USA: ACM, 2007, pp. 777–782.

[12] N. Bambha, “Intermediate Representations for Design Automation of
Multiprocessor DSP Systems,” in Design Automation for Embedded
Systems. Kluwer Academic Publishers, 2002, pp. 307–323.

[13] S. S. Battacharyya, “Optimization Trade-offs in the Synthesis of Soft-
ware for Embedded DSP,” in Workshop on Compiler and Architecture
Support for Embedded Systems, Washington, D.C, 1999.

[14] C. Brooks, E. A. Lee, X. Liu, S. Neuendorffer, Y. Zhao, and H. Zheng,
“Heterogeneous Concurrent Modeling and Design in Java (Volume 1:
Introduction to Ptolemy II),” EECS Dept., University of California,
Berkeley, Tech. Rep. UCB/EECS-2008-28, Apr 2008.

[15] D. Culler, R. Karp, and D. Patterson, “LogP: Towards a Realistic Model
of Parallel Computation,” in in Proc. of ACM SIGPLAN Symp. on
Principles and Practices of Parallel programming, May 1993, pp. 1–
12.

[16] A. Alexandrov, M. F. Ionescu, K. E. Schauser, and C. J. Scheiman,
“LogGP: Incorporating Long Messages into the LogP Model - One
Step Closer Towards a Realistic Model for Parallel Computation.” in
Proc. of the seventh annual ACM Symp. on Parallel Algorithms and
Architectures, 1995, pp. 95–105.

[17] C. A. Moritz and M. I. Frank, “LoGPC: Modeling Network Contention
in Message-Passing Programs,” IEEE Trans. on Parallel and Distributed
Systems, vol. 12, no. 4, pp. 404–415, 2001.

[18] C. A. Moritz, D. Yeung, and A. Agarwal, “SimpleFit: A Framework
for Analyzing Design Tradeoffs in Raw Architectures,” IEEE Trans. on
Parallel and Distributed Systems, vol. 12, no. 6, pp. 730–742, June 2001.

[19] M. B. Taylor, W. Lee, S. P. Amarasinghe, and A. Agarwal, “Scalar
Operand Networks,” IEEE Trans. on Parallel and Distributed Systems,
vol. 16, no. 2, pp. 145–162, 2005.

[20] J. Bengtsson, “A Set of Models for Manycore Performance Evaluation
Through Abstract Interpretation of Timed Configuration Graphs,” School
of IDE, Tech. Rep. IDE0856, 2008.

[21] T. M. Parks, “Bounded Scheduling of Process Networks,” Ph.D. disser-
tation, EECS Department, University of California, Berkeley, CA 94720,
USA, 1995.

[22] G. Kahn, “The Semantics of a Simple Language for Parallel Program-
ming,” in Proc. of IFIP Congress 74, J. L. Rosenfeld, Ed. Stockholm,
Sweden: North-Holland Publishing Company, August 5-10 1974, pp.
471–475.

[23] M. B. Taylor, “The Raw Processor Specification,” CSAIL, MIT, Cam-
bridge, MA, Tech. Rep., 2003.

[24] E. Lee and S. Ha, “Scheduling Strategies for Multiprocessor Real-time
DSP,” in Proc. of IEEE Glob’l. Telecomm. Conf., 1989, and Exhibition.
Communications Technology for the 1990s and Beyond., Nov 1989, pp.
1279–1283 vol.2.

117

