
Scientific Programming 20 (2012) 89–114 89

DOI 10.3233/SPR-2012-0343

IOS Press

Manycore performance-portability: Kokkos

multidimensional array library

H. Carter Edwards a,∗, Daniel Sunderland b, Vicki Porter b, Chris Amsler c and Sam Mish d

a Computing Research Center, Sandia National Laboratories, Livermore, CA, USA
b Engineering Sciences Center, Sandia National Laboratories, Albuquerque, NM, USA
c Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS, USA
d Department of Mathematics, California State University, Los Angeles, CA, USA

Abstract. Large, complex scientific and engineering application code have a significant investment in computational kernels to

implement their mathematical models. Porting these computational kernels to the collection of modern manycore accelerator

devices is a major challenge in that these devices have diverse programming models, application programming interfaces (APIs),

and performance requirements. The Kokkos Array programming model provides library-based approach to implement compu-

tational kernels that are performance-portable to CPU-multicore and GPGPU accelerator devices. This programming model is

based upon three fundamental concepts: (1) manycore compute devices each with its own memory space, (2) data parallel kernels

and (3) multidimensional arrays. Kernel execution performance is, especially for NVIDIA® devices, extremely dependent on

data access patterns. Optimal data access pattern can be different for different manycore devices – potentially leading to different

implementations of computational kernels specialized for different devices. The Kokkos Array programming model supports

performance-portable kernels by (1) separating data access patterns from computational kernels through a multidimensional ar-

ray API and (2) introduce device-specific data access mappings when a kernel is compiled. An implementation of Kokkos Array

is available through Trilinos [Trilinos website, http://trilinos.sandia.gov/, August 2011].

Keywords: Multicore, manycore, GPGPU, data-parallel, thread-parallel

1. Introduction

Manycore compute devices provide a potential gain

in computational performance with respect to both run-

time and energy consumption. Porting large, complex

scientific and engineering high-performance comput-

ing (HPC) applications to these devices is challenging

in that it introduces an additional layer (or two) of par-

allelism, it can be difficult to obtain good performance

on these devices, and the diversity of device-specific

programming models. Many projects have successfully

addressed these challenges by writing distinct versions

of their codes that are specialized for particular com-

pute devices (e.g., CUDA™ [10]). However, this ap-

proach incurs the cost of developing, verifying, and

maintaining a special version for each class of compute

device. For large, complex scientific and engineering

applications this may be an unacceptable cost.

*Corresponding author: H. Carter Edwards, Computing Research

Center, Sandia National Laboratories, Livermore, CA, USA. E-mail:

hcedwar@sandia.gov.

1.1. Programming model

The Kokkos Array programming model provides

library-based approach to implement computational

kernels that are performance-portable to manycore and

GPGPU accelerator devices. This approach uses C++

template meta-programming [1], as opposed to a new

or extended language, for compile-time specialization

of kernels to the target manycore device. The data

parallel programming model and API focuses on two

responsibilities: (1) managing multidimensional array

data on the manycore device and (2) executing paral-

lel_for and parallel_reduce operations on that data.

This programming model is similar to the Thrust

library [13] in that it uses C++ template meta-pro-

gramming for manycore device portability, it pro-

vides parallel_for and parallel_reduce operations, and

it manage data on the manycore device. The Kokkos

Array programming model is unique in that it provides

multidimensional array semantics with parameterized

data structures such that computational kernels may be

performance-portable compiled to execute on multiple

1058-9244/12/$27.50 2012 – IOS Press and the authors. All rights reserved

90 H.C. Edwards et al. / Manycore performance-portability: Kokkos multidimensional array library

devices within the same application. Aggregation of

data via multidimensional arrays has a solid history in

engineering and scientific computations; as is evident

by decades of Fortran use in this computational do-

main. In contrast, when using the Thrust library com-

putations must use “zip_iterator” objects to bind

individually declared one dimensional vectors into an

aggregated data structure.

Kokkos Array is similar to Blitz++ arrays [17],

NumPy arrays [15], PyCuda arrays [9] and Haskell

Repa [12] in that multidimensional arrays have a

flexible storage order (i.e., multi-index space map in

Section 2.2). Blitz++ has significantly greater func-

tionality with array subsets and slices, and a rich ex-

pression template library for efficient memory traver-

sal during common array operations [16]. However,

Blitz++ is not designed for parallel computing [18]

and its flexibility and rich functionality would be

very difficult to port to coalesced memory access pat-

terns requires by NVIDIA accelerators. NumPy is also

not designed for parallel computing but can be used

in conjunction with python multicore-CPU capabili-

ties. PyCuda includes the GPUArray NumPy “work-

alike” multidimensional arrays on NVIDIA accelera-

tors; however, this implementation is CUDA-specific.

Haskell Repa is parallel; however, it is embedded

within the Haskell programming language. In contrast

the Kokkos Array programming model is a minimalis-

tic, standard C++ implementation focused on applica-

tion kernel performance-portability to multicore-CPU

and manycore-accelerator devices.

1.2. Performance portability

Performance-portability includes source code porta-

bility of a kernel’s code and performance that is com-

mensurate with a device-specific implementation of

that kernel. Memory access is the dominant constraint

on performance; and memory access patterns dominate

memory access performance on NVIDIA devices. As

such the Kokkos multidimensional array programming

model uses compile-time polymorphism (i.e., C++

template meta-programming) to insert device-optimal

memory access patterns into computational kernels

without requiring modification of the kernel’s source

code.

1.3. Implementation in Trilinos [14]

The Kokkos Array library is implemented for multi-

core/manycore devices using:

• a managed pool of pthreads [6],

• CUDA Version 4 [10], and

• a prototype Intel Knights Ferry [8] compute de-

vice.

A collection of performance tests and mini-applica-

tions were used to investigate performance and usabil-

ity of the programming model, API and implementa-

tions.

2. Programming model

The Kokkos Array programming model is data par-

allel in that computational kernels are applied in paral-

lel to members of a partitioned data set. This program-

ming model is based upon the following fundamental

concepts formally defined here:

• Manycore compute device with memory separate

from the host main memory.

• Mapping of a multidimensional arrays onto the

memory of a compute device.

• Application of data parallel computational ker-

nels to these multidimensional arrays.

2.1. Multidimensional arrays

Multidimensional arrays are historically intrinsic to

scientific and engineering application codes, and in-

trinsic to languages commonly used by these codes.

For example, the following two statements declare

similar double precision multidimensional array X in

the Fortran and C languages’ syntax.

Real*8 X(1000,24,8,3);

Fortran declaration

double X[3][8][24][1000];

// C declaration

These two declarations specify the type of the array’s

data (double precision) and the array’s dimensions.

Note that these example declarations assume and do

not specify (1) the memory space in which the array

resides and (2) how the array will be accessed by par-

allel computations. Formally, a multidimensional array

is a homogeneous collection of data members (same

data type and same memory space) with data members

uniquely identified via N -dimensional multi-indices.

Definition 2.1. A multi-index is an ordered list of in-

teger indices denoted by (i0, i1, i2, . . .).

H.C. Edwards et al. / Manycore performance-portability: Kokkos multidimensional array library 91

Definition 2.2. The rank of a multi-index is the num-
ber of indices; e.g., (1, 3, 5) is a rank 3 multi-index and
(7, 3, 5, 1) is a rank 4 multi-index.

Definition 2.3. A Kokkos multi-index space I of rank
R is a Cartesian product of integer ranges I =

[0, . . . , N0) × [0, . . . , N1) × · · · × [0, . . . , NR−1). The
abbreviated notation of I = (N0, N1, N2, . . .) is used
when there is no ambiguity between denoting a multi-
index versus a multi-index space.

Definition 2.4. The cardinality of a multi-index
space I , denoted by #I , is #I =

∏R−1
j=0 Nj .

Definition 2.5. A Kokkos multidimensional array X

consists of:

• a multi-index space XI = (N0, N1, . . . , NR−1),
• a homogeneous collection of #XI data members

residing in the memory of a compute device, and
• bijective map between the multi-index space and

the data members; Xmap : XI → {data}.

2.2. Multidimensional array map

There are many valid bijective maps between a
multi-index space and the collection of data members.
Traditionally these data members reside in a contigu-
ous span of memory on a compute device. The map for
such a multidimensional array X can be expressed by
a base location in memory and a bijective function be-
tween the multi-index space and an offset in the range
[0, . . . , #XI). For example, the Fortran and C language
multidimensional array index spaces and offset-maps
are as follows.

Fortran multi-index space and offset map:

• space: [1, . . . , N0] × [1, . . . , N1] × [1, . . . , N2] ×

· · ·;
• offset: (i0 − 1) +N0 ∗ ((i1 − 1) +N1 ∗ ((i2 − 1) +

N2 ∗ · · ·)).

C multi-index space and offset map:

• space: [0, . . . , N0) × [0, . . . , N1) × [0, . . . , N2) ×

· · ·;
• offset: ((((i0) ∗ N1 + i1) ∗ N2 + i2) ∗ · · ·).

It can be (and has been) debated as to which of these
classical multidimensional array maps is the “right”
map. However, any computationally efficient bijective
map is “good”.

2.3. Data parallel work partitioning

A Kokkos multidimensional array is partitioned
among the threads of a compute device. Each thread

is responsible for applying a given computational ker-

nel to that thread’s assigned partition of the array.

Currently, Kokkos partitions multidimensional arrays

along exactly one dimension of the multi-index space.

The left-most dimension was chosen for parallel par-

titioning by a consensus of computational kernel de-

velopers participating in a Kokkos software design re-

view.

The partitioning of a multidimensional array is

defined by the partitioning of its multi-index space

(NP , N1, N2, . . .), where the left-most (NP) dimen-

sion is partitioned into NP “atomic” units of parallel

work. When a thread applies a computational kernel

to a unit of work, denoted by iP ∈ [0, . . . , NP), that

kernel must:

• only update array data members that are associ-

ated with that index (iP , ∗, ∗, . . .) and

• not query array data members that are potentially

updated by another thread applying the kernel to

a different unit of work.

These constraints are required to prevent thread-paral-

lel race conditions and avoid the need for inter-thread

locking.

2.4. Data parallel computational kernels

Computational kernels are currently applied to par-

allel partitioned work via parallel_for or parallel_

reduce operations. A parallel_for is trivially parallel

in that the computational kernel’s work is fully dis-

joint. In a parallel_reduce each application of the com-

putational kernel generates data that must be reduced

among all work items; e.g., an inner product generates

NP values which must be summed to a single value.

Definition 2.6. A parallel_for kernel is a function that

inputs a collection of parameters and data parallel par-

titioned multidimensional arrays, and outputs a collec-

tion of partitioned arrays:

f : ({α}, {X}) → {Y }

{

{α} ≡ input parameters,

{X} ≡ input arrays,

{Y } ≡ output arrays.

Definition 2.7. A parallel_reduce kernel is a func-

tion f that inputs a collection of parameters and par-

titioned arrays, and outputs a collection of param-

eters and partitioned arrays. Each application of a

parallel_reduce kernel to the iP unit of parallel work

generates a corresponding contribution to the out-

92 H.C. Edwards et al. / Manycore performance-portability: Kokkos multidimensional array library

put parameters. These contributions are reduced by a

mathematically commutative and associative reduction

function fΘ. Note that an implementation fΘ may be

non-associative due to round-off in its floating point

operations:

f : ({α}, {X})

→ ({β}, {Y })

⎧

⎪

⎨

⎪

⎩

{α} ≡ input parameters,

{X} ≡ input arrays,

{β} ≡ output parameters,

{Y } ≡ output arrays,

f ({α}, {X(iP , . . .)})

→ ({β[iP]}, {Y (iP , . . .)}) ∀iP

and then

fΘ({β[iP] ∀iP }) → {β}.

2.5. Compute device

A manycore compute device (1) owns memory

which is separate from the host main memory and

(2) supports many concurrent threads of execution

which share this memory. This conceptual model may

reflect a physical separation of memory of the compute

device (e.g., NVIDIA® accelerator) or merely be a log-

ical view of the same physical memory (e.g., multicore

CPU). Computations performed by the compute device

only access and update data which are in the compute

device’s memory. As such data residing in host mem-

ory must be copied to the device before a computation

can be performed by the device on that data.

A compute device implements parallel_for and

parallel_reduce operations to call a kernel NP times

from the device’s concurrent threads. If the device has

NP threads then all calls may be concurrent; otherwise

threads will call the multiple times until the NP re-

quired calls are completed.

An HPC application run in an HPC environment

with a distributed-memory network of manycore com-

pute devices will have at least two heterogeneous levels

parallelism: distributed memory parallelism typically

supported through a Message Passing Interface (MPI)

implementation and thread level parallelism. In this en-

vironment it is assumed that a distributed-memory par-

allel process; e.g., the process associated with a par-

ticular MPI rank, has exclusive use of at most one

manycore compute device. This assumption is made to

avoid introducing complexity associated with manag-

ing multiple compute devices within the same process.

However, the abstraction for a single manycore com-

pute device can aggregate multiple hardware devices

into a single, logical device.

2.6. Device polymorphic multidimensional array

maps

A compute device has a “preferred” multidimen-

sional array map that yields the best performance for

most computational kernels. The key concept for the

Kokkos Array programming model is the use of de-

vice polymorphic multidimensional array maps. Many

valid multidimensional array maps may exist; how-

ever, for a domain of computational kernels a partic-

ular map may yield the best memory access perfor-

mance for a particular compute device. For example,

an NVIDIA® device must have a multidimensional

array map that results in a coalesced global mem-

ory access pattern for parallel_for or paral-

lel_reduce kernels. Device polymorphism is im-

plemented in the Kokkos Array programming model

through C++ template meta programming, as opposed

to C++ virtual interfaces, to eliminate runtime over-

head. This implementation strategy allows computa-

tional kernels to have performance-portable implemen-

tations such that the best performing multidimensional

array map for a given device is transparently compiled

into computational kernels.

2.7. Higher rank parallel partitioning

Parallel partitioning of more than one dimension,

such as for three-dimensional finite difference grids,

is not currently within the scope of the Kokkos Ar-

ray programming model. Such an expansion of scope

will require extension of conceptual models for multi-

dimensional parallel_for and parallel_

reduce operations, and for multidimensional array

maps. This extension will be challenging in that it

must address the performance of data access patterns

associated with concurrent parallel kernel calls over

the “atomic” work space (NP1, NP2, . . .) and the cor-

responding multidimensional array mapping of array

data members.

3. Kokkos Array API

The Kokkos Array API is defined in three parts:

(1) Index space, data, and mapping of the index

space to data (Section 3.1).

H.C. Edwards et al. / Manycore performance-portability: Kokkos multidimensional array library 93

namespace Kokkos {

template < typename ValueType , class DeviceType >

class MDArray {

public:

typedef ValueType value_type ; // Restricted to simple numerical types

typedef DeviceType device_type ; // Compute device

typedef ... size_type ; // Preferred index type for the device

size_type rank() const ; // Rank of the array

size_type dimension(irank) const ; // Dimension of the ’irank’ ordinate

size_type size(); // Cardinality of the array

// Map a multi-index to access the associated data member

value_type & operator()(iP , i1 , ...) const ;

};

}

Fig. 1. Kokkos Array API for an array’s multi-index space and access to array data members via multi-index mapping.

(2) View and shared ownership semantics for mem-

ory management (Section 3.2).

(3) Mirroring and copying data between device and

host memory (Section 3.3).

3.1. Index space and data

A Kokkos Array composes a collection data mem-

bers residing the memory of a compute device, an in-

dex space, and a bijective mapping from the index

space to the data members. This portion of the API

given in Fig. 1 defines the type of the data mem-

bers, compute devices in which that data resides, rank

and dimension of the index space, and mapping from

multi-index to data member. The member data type,

given by the ValueType template parameter, is re-

stricted to the simple mathematical types. This limi-

tation is imposed so that data members can be sim-

ply and optimally mapped onto compute devices with

performance-sensitive memory access patterns, such as

NVIDIA devices.

The performance-critical function in this API is the

multi-index to data member mapping implemented by

operator(). This fundamental mapping is heavily

used and must be as efficient as possible. As such a

compile-time, in-lined implementation of this function

is critical.

The DeviceType template parameter identifies a

compute device which defines the memory space, par-

allel execution mechanism, and preferred multi-index

space mapping. The compute device is specified by a

compile-time template parameter to allow the device-

polymorphic multi-index space mapping to be com-
piled in-line. This API design avoids imposing the
run-time overhead associated with run-time polymor-
phism; e.g., C++ virtual functions.

Kokkos Array provides a base set of types for the
DeviceType parameter. This set is extensible to al-
low expert-users to define their own multi-index space
mappings for existing parallel execution mechanisms
and memory spaces. The DeviceType set is extensi-
ble (by Kokkos Array developers) to new parallel exe-
cution mechanisms, memory spaces, and devices.

3.2. View and shared ownership semantics

An MDArray object provides a view to array data,
but does not exclusively own the that data. Multi-
ple MDArray objects may view the same array data.
These view share ownership of that array data. The
MDArray constructors, assignment operator, and de-
structor given in Fig. 2 implement view and shared
ownership semantics.

A Kokkos multidimensional array is created with
the create_mdarray function (Fig. 2). This func-
tion allocates memory in the compute device’s mem-
ory space for the data of the array and returns a view
to that data. The calling code will retain a view of the
allocated array.

MDArray<double,DeviceHost> x =

create_mdarray< MDArray<double,DeviceHost>

>(nP , n1 , n2);

Views are not containers. View and shared owner-
ship semantics are fundamentally different from con-

94 H.C. Edwards et al. / Manycore performance-portability: Kokkos multidimensional array library

namespace Kokkos {

template < typename ValueType , class DeviceType >

class MDArray {

public:

MDArray(); // A NULL view.

// New view of the same array viewed by RHS

MDArray(const MDArray & RHS);

// Clear this view: if this is the last view

// to an array then deallocate the array

~MDArray();

// Clear this view and then assign it to

// view the same array viewed by RHS

MDArray & operator = (const MDArray & RHS);

// Query if ’this’ is a non-NULL view

operator bool() const ;

// Query if view to the same array

bool operator == (const MDArray & RHS) const ;

};

// Allocate an array on the device

template< MDArrayType >

MDArrayType create_mdarray(nP , n1 , n2, ...);

}

Fig. 2. Kokkos Array API for memory management view and shared ownership semantics.

tainer semantics. A container has exclusive ownership

of its data, versus a view which shares ownership of

data with other views. An example of container versus

shared ownership semantics contrast commonly used

C++ containers (e.g., std::vector, std::list,

std::set) [7] with the C++ shared pointer (std::

shared_ptr) [2].

The copy constructor and assignment operator of

MDArray perform a shallow copy – they set the cur-

rent object to be a view of same data viewed by the in-

put object (RHS in Fig. 2). A shallow copy only copies

the minimal information required to view and access

the array data, the data itself is not copied. In contrast

the copy constructor and assignment operator of a con-

tainer performs a deep copy – they allocate their own

array data as needed and then copy each data member

from the input container.

Why view semantics. In large complex application

codes arrays are allocated on the compute device

by “driver” functions, passed among driver functions,

passed from driver functions to computational kernels,

passed from one computational kernel to another, and

at some point should be deallocated to reclaim mem-

ory on the compute device. Managing the complexity

of numerous references to many allocated arrays re-

quires a high degree of software design and implemen-

tation discipline to prevent memory management er-

rors of (1) deallocation of a still used array or (2) ne-

glecting to deallocate an array no longer in use. Thus

there is a significant risk that a team of application de-

velopers will lose track of when to, or not to, deallo-

cate a multidimensional array, and as a result will in-

troduce one of the two memory management errors.

This risk is mitigated by using view or shared owner-

ship semantics for allocated Kokkos arrays. Under the

shared ownership semantics multiple view to the same

allocated data may exist and the last view to be cleared

(see Fig. 2) deallocates the allocated data.

Only views. The Kokkos Array public API only pro-

vides views to array data – a container interface is in-

tentionally omitted. This design decision simplifies the

interface by providing a single, simple, and safe inter-

face to allocated array data.

H.C. Edwards et al. / Manycore performance-portability: Kokkos multidimensional array library 95

3.3. Mirroring and copying data

The create_mdarray function (Fig. 2) is called

on the host process to allocate array data in the mem-

ory space of a compute device. This memory space

may be separate from the host’s memory space (e.g., an

NVIDIA® device) or may be the same memory space

(e.g., a thread pool device [3]). Thus array data may, or

may not, be directly accessible to code executing on the

host process, and a deep copy of data between mem-

ory spaces may be required to access data. The Kokkos

Array API for deep-copying and mirroring array data

is given in Fig. 3.

Arrays can be allocated in the host process memory

space in order to mirror selected arrays’ data which as

been allocated on a compute device. Such a mirror al-

lows array data to be initialized on the host, copied to a

compatible array on the compute device where compu-

tations are performed, and then resulting array data is

copied back to the host process for output. These mir-

ror arrays in the host memory space have the same data

type, same index-space, and same multi-index map as

the device resident array. Note that this multi-index

map is chosen for the device and may be different that

the multi-index map which may not be optimal for

computations on the host.

The MDArray class defines the HostMirror type

(Fig. 3). This is the type for a compatible array (a.k.a.

same data type, index space, and multi-index map) in

the host memory space. When arrays are compatible

their member data may deep-copied as a block – with-

out conversion, permutation, or other remapping.

The create_mirror and deep_copy functions

simplify creation and deep copies of mirror arrays, and

provide an opportunity for performance optimizations

when mirroring data between a compute device and

host process. The create_mirror function creates

(allocates) an array in the host memory space which

has a multi-index space and mapping compatible with

the input array. The deep_copy function copies ar-

ray data from the source array to the destination array

(see Fig. 3). The usage pattern for these functions is

illustrated in Fig. 4.

If the compute device shares the same memory

space and multi-index mapping with the host process

then this mirroring pattern can introduce unnecessary

array allocations and deep copy operations. In this sit-

uation the create_mirror and deep_copy func-

tions can, at the calling program’s request, eliminate

these unnecessary allocations and deep copies by caus-

ing the “xh” and “yh” to be additional views of the ar-

ray data as viewed by “x” and “y”. These views fully

conform to the view and shared ownership semantics

described in Section 3.2.

3.4. Illustrative test function

Array creation, view shallow copy, and deep copy

operations are all illustrated in Fig. 5. In this illustra-

tive test function an array’s member data is filled on

namespace Kokkos {

template < typename ValueType , class DeviceType >

class MDArray {

public:

// Compatible array type in the host memory space.

typedef ... HostMirror ;

};

// Create a compatible array in the host memory space

template< MDArrayType >

typename MDArrayType::HostMirror create_mirror(const MDArrayType &);

// Copy data between arrays with compatible type and dimension

template< typename ValueType , class DeviceDestination ,

class DeviceSource >

void deep_copy(

const MDArray<ValueType,DeviceDestination> & destination ,

const MDArray<ValueType,DeviceSource> & source);

}

Fig. 3. Kokkos Array API for mirroring and deep-copying data between host and device memory.

96 H.C. Edwards et al. / Manycore performance-portability: Kokkos multidimensional array library

typedef MDArray< double, Device > array_type ;

array_type x = create_mdarray< array_type >(nP , nX);

array_type y = create_mdarray< array_type >(nP , nY);

array_type::HostMirror xh = create_mirror(x);

array_type::HostMirror yh = create_mirror(y);

// read data into ’xh’ on the host process

deep_copy(x , xh);

// perform computations on the device

// inputting ’x’ and outputting ’y’

deep_copy(yh , y);

// write data from ’yh’ on the host process

Fig. 4. Example of mirroring and deep-copying array data between host and device memory.

template< class Device >

void illustrative_test_function(size_t N)

{

typedef MDArray<double,Device> array_type ;

array_type dev_z ;

array_type::HostMirror host_z ;

{

array_type dev_x ;

array_type::HostMirror host_x , host_y ;

dev_x = create_mdarray<double,Device>(N, 10, 20);

dev_z = create_mdarray<double,Device>(N, 10, 20);

host_x = create_mirror(dev_x);

host_y = create_mirror(dev_z);

host_z = host_y ; // View the same data (shallow copy)

fill(host_x); // Fill ’host_x’ with test data ...

deep_copy(dev_x , host_x); // Copy device <- host

deep_copy(dev_y , dev_x); // Copy device <- device

deep_copy(host_y, dev_z); // Copy host <- device

verify_equal_member_data(host_x , host_z);

} // The destructors deallocate the host_x and dev_x data.

// Data originally allocated for ’host_y’ still exists

// because this data is still viewed by ’host_z’

}

Fig. 5. Test function illustrating creating, shallow copying, and deep copying Kokkos Arrays between the host and device.

the host, copied to the device, copied between arrays

on the device, and then copied back to a different ar-

ray on the host. As an illustration of view semantics

the view host_z is assigned to also view the array al-

H.C. Edwards et al. / Manycore performance-portability: Kokkos multidimensional array library 97

located for view host_y. When view host_y is de-
stroyed the member data originally allocated for it is
not deallocated because the host_z view to that data
still exists.

3.5. Multivector and value views

The Kokkos Array API provides two additional
C++ interface classes for device-resident data:Value
and MultiVector. The MultiVector is a re-
stricted multidimensional array – it is a collection of
one-dimensional vectors all the same length. A mul-
tivector is at most rank-two (vector length and vector
count) and has a “hard-wired” multi-index space map-
ping; thus a multivector has a simpler abstraction and
API than a multidimensional array. The Value is the
simplest – it is rank-zero. A value view is used to cre-
ate and manage persistent parameters on the compute
device which are typically shared by all calls to a com-
putational kernel. For example, the {β} parameters of
a parallel_reduce kernel in Definition 2.7 can be main-
tained in the device’s memory space as a value view.

Both MultiVector and Value APIs use the
same shared-ownership view semantics as the MDAr-
ray. There APIs include corresponding C++ con-
structors, assignment operator, destructor, create_
multivector, create_value, create_mir-
ror, and deep_copy functions as were defined for
the MDArray. For brevity details of the simpler Mul-
tiVector and Value APIs have not been included
here.

4. Computational kernel functor

Computational kernels are implemented as functors

for execution by parallel_for or parallel_reduce opera-
tions. A functor is the composition of a computation,
its parameters, and views to array data to which the
computation is applied – recall Definitions 2.6 and 2.7.
Functor semantics are common to several program-
ming models; for example, the C++ Standard Tem-
plate Library (STL) algorithms [7], Intel Threading
Building Blocks [11] and Thrust [13].

In the Kokkos Array programming model a functor
is created on the host process, copied to the compute
device, and then run thread-parallel on the compute de-
vice. A functor is required to (1) identify the intended
compute device, (2) provide computational function(s)
and (3) have views of the data on which it will oper-
ate. Functor API requirements are defined for paral-
lel_for and parallel_reduce functors in Sec-
tions 4.1 and 4.3.

4.1. Parallel for functor interface

A Kokkos Array parallel_for functor is a

C++ class which (1) has a template parameter for

the manycore device, (2) identifies that device via

“typedef · · · device_type” and (3) provides a

computation via “operator()(iP)”. The example

parallel_for functor given in Fig. 6 illustrates

these functor API requirements.

For compile-time portability to different manycore

devices a functor must:

• have a template parameter for the manycore de-

vice,

• define all array data through MDArray or Multi-

Vector views which are instantiated with the de-

vice template parameter,

• implement the operator() with the subset of

C++ that is supported by the compute devices

(i.e., CUDA), and

• only access array data through the array views’

multi-index map operator.

Instantiation of the array views causes a device-

preferred multi-index mapping to be compiled in-line

into the functor’s operator()(iP) function.

A functor’s operator()(iP) function is called

nP times, where nP is the integer value passed to the

parallel_for (or parallel_reduce) state-

ments. Each call to the functor is passed a unique in-

dex iP in the range [0..nP]. For thread-safe parallel

execution the functor’s operator()(iP) computa-

tion must:

• only update array data associated with the parallel

work index iP,

• not query array data that is being updated by an-

other call to the functor (i.e., another value of iP),

• never assume a particular multi-index mapping to

data members.

The example functor in Fig. 6 only accesses appropri-

ate parallel partitioned data members of the input and

output arrays (X(iP,*,*) and Y(iP,*)), and only

accesses array data through the array API.

4.2. Functor performance considerations

Minimize global memory reads and writes. This

consideration is critical for NVIDIA® compute de-

vices, and noticeable even for host-memory multi-

core devices. In a CPU multicore device several cores

share a memory controller and thus share access to

global memory. Minimizing these cores’ global mem-

98 H.C. Edwards et al. / Manycore performance-portability: Kokkos multidimensional array library

template< class Device /* REQUIRED parameter */ >

class ExampleParallelForFunctor {

public:

typedef Device device_type ; // REQUIRED typedef

typedef MDArray<double,device_type> array_type ;

const array_type X , Y ; // Input and output arrays

int n1 , n2 ; // constant input parameters

KOKKOS_MACRO_DEVICE_FUNCTION // REQUIRED qualifier

void operator()(int iP) const // REQUIRED operator

{

// Average values from rank-3 array X into

// the corresponding values of rank-2 array Y

for (int i = 0 ; i < n1 ; ++i) {

ValueType tmp = 0 ;

for (int j = 0 ; j < n2 ; ++j) { tmp += X(iP,i,j); }

Y(iP,i) = tmp / n2 ; // write only once

}

}

// Construct functor with views to input and output arrays

// and other useful parameters

ExampleParalleForFunctor(const array_type & arg_x ,

const array_type & arg_y)

: X(arg_x), Y(arg_y) // view shallow copy

, n1(X.dimension(1)) , n2(X.dimension(2)){}

};

// Call this functor nP times on the manycore device:

// parallel_for(nP , ExampleParallelForFunctor(myX,myY));

Fig. 6. Pseudo code for an example parallel_for kernel that averages terms from a rank-3 array into the corresponding terms of a rank-2

array.

ory reads and writes reduces demands for this shared
resources, and thus reduces the cores’ contention for
access to global memory. A simple example of min-
imizing global memory access is illustrated in Fig. 6
where a local temporary variable is used to accumu-
late the X(iP,i,*) values so that the corresponding
Y(iP,i) global data is written exactly once.

Overlap global memory access and computations.
Contention for access to global memory can be fur-
ther reduced by overlapping accesses to global mem-
ory and computations among concurrent threads of ex-
ecution. A computational kernel may be able to facil-
itate this overlap if each unit of work (1) accesses a
relatively large amount of global memory and (2) has
a relatively large computational intensity (ratio of op-
erations to global memory accesses). This concept is
illustrated in Fig. 7. In the first thread execution pro-
file every thread (or GPU thread-block) performs all of
its global memory reads “up front”. During this read-
phase threads which share access to global memory are
in contention and their global memory accesses are se-
rialized. In the second thread (or GPU thread-block)

Fig. 7. Conceptualization of overlapping global memory access and

computations for threads or thread-blocks sharing access to global

memory. (Colors are visible in the online version of the article;

http://dx.doi.org/10.3233/SPR-2012-0343.)

execution profile global memory reads are dispersed

throughout the computation. This reduces contention

and allows improved overlapping of global memory

access and computations among threads.

H.C. Edwards et al. / Manycore performance-portability: Kokkos multidimensional array library 99

MDArray< double , Device > input_coordinates ;

MDArray< double , Device > output_gradients ;

void operator()(int ielem) const

{

double local_coordinates[3][8] ;

// Read coordinates from global memory once

// and use them many times in the computations

local_coordinates[0..2][0..7] = input_coordinates(ielem,0..2,0..7);

// Compute and write ’X’ gradients to global memory

output_gradient(ielem,0,0..7) = ... ;

// Compute and write ’Y’ gradients to global memory

output_gradient(ielem,1,0..7) = ... ;

// Compute and write ’Z’ gradients to global memory

output_gradient(ielem,2,0..7) = ... ;

}

Fig. 8. Pseudo code summary of initial hexahedral finite element uniform gradient functor with all global reads up front.

This memory contention behavior and subsequent

performance improvement is demonstrated in the hex-

ahedral finite element uniform gradient unit perfor-

mance test case. In this functor each unit of work re-

quires 24 global memory reads, performs 318 floating

point operations, and then outputs via 24 global mem-

ory writes. An initial implementation of this functor

read all global data “up front” before performing its

computations; as illustrated in Fig. 8.

Dispersing global memory reads to “just in time”

locations within the work function reduces the block

of time during which threads are in contention for

global memory access. This allows the threads’ ag-

gregate global memory reads and computations to be

overlapped. The dispersed global memory read version

of the functor summarized in Fig. 9 demonstrated im-

proved aggregate performance as compared to the ini-

tial version.

Compile-time knowledge of dimensions. In the hex-

ahedral finite element uniform gradient example the

computation is explicitly defined for arrays with an in-

dex space of (#Elements × 3 × 8). However, the MDAr-

ray objects have runtime, not compile-time, knowl-

edge of the index space. As such an implementation of

the index space mapping cannot leverage this compile-

time knowledge to pre-compute portions of the map-

ping. An enhancement of the MDArrayAPI is planned

to allow compile-time declaration of dimensions as fol-

lows.

template< typename ValueType , class Device ,

unsigned N1 , unsigned N2 ,

unsigned N3 , ... >

class MDArray ;

In this enhanced API only the parallel work di-

mension is still declared at runtime, and all other di-

mensions declared at compile-time. This planned en-

hancement will allow a multi-index mapping to use

compile-time defined dimensions, a good compiler to

pre-compute operations using those dimensions.

4.3. Parallel reduce functor interface

In addition to the basic parallel_for functor

requirements identified in Section 4.1 a Kokkos Ar-

ray parallel_reduce functor must implement the

fΘ reduction function from Definition 2.7. These ad-

ditional requirements are illustrated in Fig. 10 and ex-

plicitly enumerated here.

Reduce functor requirements to implement fΘ in

Definition 2.7.

(1) Define the value type of the {β} parameters to be

reduced.

• typedef · · · value_type;

• The value_type must be a “plain old data”

type so that the parallel_reduce opera-

tion can create and simply copy temporary val-

ues.

• Multiple parameters may be reduced by defin-

ing value_ type to be a simple aggregate,

as illustrated in Fig. 10.

(2) Provide a join function to reduce parameters

from two different threads into a single value.

• static void join(

volatile value_type & update,

volatile const value_type &

input);

100 H.C. Edwards et al. / Manycore performance-portability: Kokkos multidimensional array library

MDArray< double , Device > input_coordinates ;

MDArray< double , Device > output_gradients ;

void operator()(int ielem) const

{

double local_coordinates[8] ;

// Read ’Z’ coordinates from global memory

local_coordinates[0..7] = input_coordinates(ielem,2,0..7);

// Compute intermediate ’Z’ values in temporary variables

// Read ’Y’ coordinates from global memory

local_coordinates[0..7] = input_coordinates(ielem,1,0..7);

// Compute and write ’X’ gradients to global memory

output_gradient(ielem,0,0..7) = ... ;

// Compute intermediate ’Y’ values in temporary variables

// Read ’X’ coordinates from global memory

local_coordinates[0..7] = input_coordinates(ielem,0,0..7);

// Compute and write ’Z’ gradients to global memory

output_gradient(ielem,0,0..7) = ... ;

// Compute intermediate ’X’ values in temporary variables

// Read ’Z’ coordinates from global memory

local_coordinates[0..7] = input_coordinates(ielem,2,0..7);

// Compute and write ’Y’ gradients to global memory

output_gradient(ielem,2,0..7) = ... ;

}

Fig. 9. Pseudo code summary of final hexahedral finite element uniform gradient functor with dispersed “just in time” global reads.

• This function reduces the input value into

the update value according the fΘ reduc-

tion function. For example, the summation of a

scalar value is simply update += input;.

• The arguments are volatile to prevent

a compiler from “optimizing away” thread-

concurrent updates to these values.

(3) Provide an init function to initialize reduce pa-

rameters to the “identity” value of the join op-

eration.

• static void init(value_type &

update);

• For example, identity for a scalar summation

operation is zero so an init operation is simply

update = 0;.

(4) Extend the computation function to contribute

{β[iP]} parameters into the global reduction.

• void operator()(integer_typeiP,

value_type & update)const;

• The function’s contribution to the update

parameter must conform to the join func-

tion. For example: let input_iP be the con-

tribution generated by a call to this function,

then the contribution of this value conforms to

join(update,input_iP).

• The function contributes to update, as op-

posed to returning a input_iP value to avoid

copying potentially large value_type pa-

rameters.

4.4. Serial finalization of a reduction

A parallel reduce operation’s output parameter(s)

{β} can be returned to the host or serially processed on

the device. Three versions of the parallel reduce APIs

are provided for these options, as illustrated in Fig. 11.

The first version simply outputs the reduction value as

a “return” parameter. The second version copies the re-

duction value to a calling argument so aggregate re-

duction values can avoid the extra copy operation as-

sociated with “return” values. The third version does

not output the reduced parameter(s) – instead it calls

an application-provided reduction finalization functor

to perform a final, serial operation on those parameters.

The serial reduction finalization operation could

simply store the resulting value on the device through a

Value object, as illustrated in Fig. 11. The finalization

functor may perform a more involved serial computa-

H.C. Edwards et al. / Manycore performance-portability: Kokkos multidimensional array library 101

template< class Device >

class ExampleReduceFunctor {

public:

typedef Device device_type ;

typedef struct { double cm[3] , m ; } value_type ;

typedef MDArray< double , Device > array_type ;

array_type mass , coord ;

KOKKOS_MACRO_DEVICE_FUNCTION

void operator()(int iP , value_type & update) const

{ const double m = mass(iP);

update.cm[0..2] += m * coord(iP,0..2); update.m += m ; }

KOKKOS_MACRO_DEVICE_FUNCTION

static void join(volatile value_type & update ,

volatile const value_type & input)

{ update.cm[0..2] += input.cm[0..2]; update.m += input.m ; }

KOKKOS_MACRO_DEVICE_FUNCTION

static void init(value_type & output)

{ update.cm[0..2] = 0 ; update.m = 0 ; }

ExampleReduceFunctor(const array_type & arg_mass ,

const array_type & arg_coord ,

: mass(arg_mass), coord(arg_coord) {}

};

// Call this functor nP times on the device:

// parallel_reduce(nP, ExampleReduce(mass,coord));

Fig. 10. Pseudo code example parallel_reduce functor for a center-of-mass computation that accumulates mass and mass-weighted coor-

dinates.

tions and access multiple input parameters and output

to multiple value views. This functionality is intended

to allow sequences of functors to improve performance

by eliminating unnecessary device-to-host data move-

ment and synchronization operations; as illustrated in

the next section.

4.5. Sequence of functors performance considerations

Execution of a parallel_reduce functor pro-

duces a set of reduction parameters {β}. In a sequence

of computational kernels these parameters are typically

output from one functor, processed by some small se-

rial computation, and the results become input param-

eters for one or more subsequent functors. The Mod-

ified Gram–Schmidt unit performance test case exe-

cutes a sequence of parallel_for and paral-

lel_reduce functors and serial computations as il-

lustrated in Fig. 12.

This example uses the third version of the paral-

lel_reduce operator which accepts both a reduc-

tion functor and a reduction finalization functor. Each

reduction operation is given a finalize functor which
serially processes the result of the reduction on the de-

vice. As such, the result of this serial computation re-
mains on the device for use by the next functor. This
use allows the complete modified Gram–Schmidt al-
gorithm to execute without copying data from device
memory to host memory. For an NVIDIA manycore
accelerator this strategy allows the sequence of func-
tors to be asynchronously dispatched to the device, and
thus eliminates all device-host synchronizations which
would interrupt the execution of the algorithm on the
device.

5. Implicit thermal conduction finite element

mini-application

Performance-portability and usability of the pro-
gramming model and API are demonstrated with a fi-
nite element mini-application that forms and solves a
simple thermal conduction problem. The mini-applica-
tion’s flow of computations and data between the host
and manycore device are summarized in Table 1.

102 H.C. Edwards et al. / Manycore performance-portability: Kokkos multidimensional array library

template< class ReductionFunctor >

typename ReductionFunctor::value_type

parallel_reduce(size_t NP , const ReductionFunctor & functor);

template< class ReductionFunctor , class FinalizeFunctor >

void parallel_reduce(size_t NP ,

const ReductionFunctor & functor ,

typename ReductionFunctor::value_type & result);

template< class ReductionFunctor , class FinalizeFunctor >

void parallel_reduce(size_t NP , const ReductionFunctor & functor ,

const FinalizeFunctor & finalize);

template< class Device >

class ExampleFinalizeFunctor {

public:

typedef Device device_type ;

typedef ... value_type ;

Value< value_type , Device > result ;

// REQUIRED reduction finalization operator

KOKKOS_MACRO_DEVICE_FUNCTION

void operator()(const value_type & input) const

{ *result = input ; }

ExampleReduce(const Value< value_type , Device > & arg)

: result(arg) {}

};

Fig. 11. Three versions of a parallel_reduce operation and an example parallel reduce finalization functor which stores the result of a

parallel reduction on the device.

int K = ... ; // Number of vectors

int N = ... ; // Length of vectors

MultiVector<double,Device> Q = ... ; // Matrix

MultiVector<double,Device> R = ... ; // Coefficients

Value<double,Device> tmp ;

for (int i = 0 ; i < K ; ++i) {

// Reduction: result = dot(Q(*,i) , Q(*,i));

// Finalize: tmp = sqrt(result); R(i,i) = tmp ; tmp = 1 / tmp ;

parallel_reduce(N, Dot(Q,i), Finalize_A(tmp,R,i));

// Q(*,i) *= tmp ;

parallel_for(N, Scale(Q,i,tmp));

for (int j = i + 1 ; j < K ; ++j) {

// Reduction: result = dot(Q(*,i) , Q(*,j));

// Finalize: R(i,j) = result ; tmp = - result ;

parallel_reduce(N, Dot(Q,i,Q,j), Finalize_B(tmp,R,i,j));

// Q(*,j) += tmp * Q(*,i);

parallel_for(N, Add(Q,j,tmp,Q,i));

}

}

Fig. 12. Pseudo code example for modified Gram–Schmidt orthonormalization algorithm using reduction finalization functors for serial post-pro-

cessing of reduction results.

H.C. Edwards et al. / Manycore performance-portability: Kokkos multidimensional array library 103

Table 1

Implicit thermal conduction finite element mini-application computations and data movement between the host

and manycore device

Serial on Host copy Parallel on Manycore Device

Generate finite element mesh. =⇒

Define Dirichlet boundary conditions. =⇒

Generate sparse linear system graph =⇒

and element → graph mapping.

Compute element contributions to the sparse linear system.

Assemble element contributions into sparse linear system.

Update sparse linear system to enforce boundary conditions.

Solve sparse linear system.

⇐= Copy out solution.

// Element->node connectivity array:

MDArray<int,Device> element_node_identifier = ... ;

// Node->element connectivity arrays:

MDArray<int,Device> node_element_offset = ... ;

MDArray<int,Device> node_element_identifier = ... ;

// Converse relationship of connectivity arrays:

for (int node_id = 0 ; node_id < node_count ; ++node_id) {

for (int i = node_element_offset(node_id) ;

i < node_element_offset(node_id + 1) ; ++i) {

int element_id = node_element_identifier(i , 0);

int node_local = node_element_identifier(i , 1);

assert(node_id == element_node_identifier(element_id , node_local));

}

}

Fig. 13. Code fragment verifying the converse relationship between the element → node and the node → element connectivity arrays.

5.1. Unstructured finite element mesh

The mini-application uses a simple unstructured

finite element mesh consisting of nodes (i.e., ver-

tices), elements (i.e., volumes) and connectivity be-

tween nodes and elements. The mesh data structure

consists of four multidimensional arrays.

(1) A rank-two node coordinate array dimensioned

(nodes × spatial-coordinates).

(2) A rank-two element → node connectivity array

dimensioned (elements × nodes-per-element)

containing the integer identifiers for each node of

each element.

(3) A pair of node → element connectivity arrays

which follow a “compressed sparse row” scheme:

a rank-one node element offset array and a rank-

two node element identifier array. These arrays

represent the converse of the element → node

arrays, as described in Fig. 13.

The node → element arrays are used to efficiently gen-

erate the sparse linear system graph from the mesh and

perform the parallel gather-assemble of the linear sys-

tem (Section 5.4).

5.2. Sparse matrix graph

This simple thermal conductivity mini-application

defines one degree of freedom at each node in the

mesh; i.e., each node has an associated row and col-

umn in the linear system of equations. The compressed

sparse row (CSR) matrix graph is efficiently generated

from the element → node and node → element con-

nectivity arrays as specified in Fig. 14. This implemen-

tation is serial on the host. A parallel, manycore de-

vice implementation would straight-forward – given an

extension of the Kokkos Array programming model to

include a parallel_scan operation.

Kokkos Arrays (multidimensional array and multi-

vector) are simple fixed-dimension objects that once

104 H.C. Edwards et al. / Manycore performance-portability: Kokkos multidimensional array library

MDArray<int,Host> element_node_identifier = ... ;

MDArray<int,Host> node_element_offset = ... ;

MDArray<int,Host> node_element_identifier ... ;

MultiVector<int,Host> A_offset = ... ;

MultiVector<int,Host> A_col_ids ;

std::vector<int> A_col_ids_tmp ;

A_offset(0) = 0 ;

// One matrix row per node in this mini-application problem

for (int row_node = 0 ; row_node < node_count ; ++row_node) {

std::set<int> row_col_ids ;

// Loop over each element connected to this node

for (int i = node_element_offset(row_node) ;

i < node_element_offset(row_node + 1) ; ++i) {

int element_id = node_element_identifier(i , 0);

// Add matrix columns for row_node->element->col_node relations

for (int k = 0 ; k < nodes_per_element ; ++k) {

int col_node = element_node_identifier(element_id , k);

row_col_ids.insert(col_node); // A sorted and unique set

}

}

append(A_col_ids_tmp , row_col_ids); // Sorted by node identifier

A_offset(row_node+1) = A_col_ids_tmp.size();

}

A_col_ids = create_multivector< MultiVector<int,Host> >(A_offset(node_count));

A_col_ids(...) = A_col_ids_tmp[...] ; // Copy

Fig. 14. Pseudo code for the generation of a compressed sparse row (CSR) matrix graph from the element → node and node → element

connectivity arrays.

created cannot be dynamically resized. As such the

generation of a CSR matrix graph in Fig. 14 dynami-

cally fills an std::vector container and then copies

its contents to a created Kokkos multi-vector.

5.3. Element computations

The thermal conduction finite element computation

is applied to each element via a parallel_for op-

eration. Each element computation produces contribu-

tions to the sparse linear system of equations associ-

ated with the nodes of that element. The functor for this

computation gathers data from global memory, per-

forms computations using local memory, and then out-

puts results back to global memory. These memory ac-

cess patterns and the associated multidimensional ar-

rays for global data are summarized in Fig. 15.

The resulting element_matrix and element_

vector arrays hold unassembled, per-element con-

tributions to the linear system of equations. In a se-

rial computation these contributions can be imme-

diately assembled into the linear system by identi-

fying the correct locations in the sparse linear sys-

tem and summing the corresponding contributions into

those locations. In a shared-memory thread-parallel

an immediate-assembly operation is not thread-safe as

two or more threads may attempt to sum into the same

location at the same time – a race condition. One solu-

tion is to use mutually exclusive locking (e.g., pthread

mutex) to protect against such a race condition. How-

ever, this locking solution has a potentially large per-

formance penalty relative to the simple arithmetic sum

operation that it is protecting. In addition, the locking

solution introduces a serialization point in the element

loop. Furthermore, such a locking solution allows con-

tributions to be summed in any order leading to non-

deterministic results.

5.4. Gather assemble

Assembly of the sparse linear system is a thread-

safe and deterministic implementation of the gather-

H.C. Edwards et al. / Manycore performance-portability: Kokkos multidimensional array library 105

template< typename Scalar , class Device >

class Element {

public:

MDArray<int,Device> element_node_identifier ;

MDArray<double,Device> node_coordinates ;

MDArray<Scalar,Device> element_matrix , element_vector ;

KOKKOS_MACRO_DEVICE_FUNCTION

void operator()(int element_id) const

{

// Gather element’s node coordinates from scattered

// global-memory into contiguous local-memory:

double coordinates[8][3] ;

for (int j = 0 ; j < nodes_per_element ; ++j) {

int node_id = element_node_identifier(element_id, j);

coordinates[j][0..2] = node_coordinates(node_id,0..2);

}

// Perform thermal conduction computations to populate

// matrix and vector contributions in local-memory.

Scalar matrix_contrib[8][8] , vector_contrib[8] ;

// ... EXTENSIVE ELEMENT COMPUTATIONS HERE ...

// Output matrix and vector contributions to global-memory:

element_vector(element_id, 0..7) = vector_contrib[0..7] ;

element_matrix(element_id, 0..7, 0..7) = matrix_contrib[0..7][0..7] ;

}

}

Fig. 15. Pseudo code overview of the element computation functor’s global and local memory data interactions.

assemble algorithm (see Chapter 16 in [5]). This im-

plementation has two components: (1) a mapping of

element contributions to the sparse linear system given

in Fig. 16 and (2) a parallel gather-assemble operation

using that mapping given in Fig. 17. Each call to the

gather-assemble work operator (Fig. 17) has exclusive

access to its given row of the linear system; thus the op-

eration is scalable, thread-safe and lock-free. Element

contributions are sorted by element identifier; thus the

summation is deterministic with respect to thread exe-

cution ordering.

5.5. Boundary conditions

Application of boundary conditions follows the

same strategy as the gather-assemble (Section 5.4) op-

eration. A boundary condition enforcement functor is

executed on the manycore device where a unit of par-

allel work is defined by a row of the linear system. In

the current mini-application Dirichlet boundary condi-

tions are enforced through algebraic elimination of the

associated degrees of freedom. The manycore device-

parallel, thread-safe, lock-free, and efficient functor

given in Fig. 18 is applied to perform this algebraic

elimination within the sparse linear system from finite

element contributions.

5.6. Solve Sparse Linear System

The sparse linear system is now fully defined and

ready to be solve via an iterative method. Data for the

“Ax = b” linear system includes three sparse ma-

trix arrays, right-hand side vector, and solution vec-

tor. There is an ample body of previous and ongoing

research and development (R&D) for manycore de-

vice accelerated solution strategies and algorithms for

sparse linear systems. As such this R&D is not ad-

dressed within the scope of Kokkos Array program-

ming model project.

5.7. Performance

Performance of the implicit thermal conduction fi-

nite element mini-application is evaluated on the West-

mere, Magny-Cours and NVIDIA manycore compute

devices. The element computations (Section 5.3) and

sparse linear system gather assemble, or “fill”, oper-

ation (Section 5.4) are timed over a range of prob-

106 H.C. Edwards et al. / Manycore performance-portability: Kokkos multidimensional array library

MDArray<int,Host> element_node_identifier = ... ;

MDArray<int,Host> node_element_offset = ... ;

MDArray<int,Host> node_element_identifier = ... ;

MultiVector<int,Host> A_offset = ... ;

MultiVector<int,Host> A_col_ids = ... ;

MDArray<int,Host> element_CSR_map =

create_mdarray< MDArray<int,Host> >(

element_count , nodes_per_elem , nodes_per_elem);

for (int elem_id = 0 ; elem_id < elem_count ; ++elem_id) {

for (int i = 0 ; i < nodes_per_elem ; ++i) {

int row_node = elem_node_ids(elem_id , i);

for (int j = 0 ; j < nodes_per_elem ; ++j) {

int column_node = elem_node_ids(elem_id , j);

// Find ’index’ in the sorted range such that:

// A_offset(row_node) <= index < A_offset(row_node+1)

// column_node == A_col_ids(index)

// A log(NZ) search where

// NZ = A_offset(row_node+1)- A_offset(row_node)

element_CSR_map(elem_id, i, j) =

find_index(A_offset, A_col_ids, row_node, column_node);

}

}

}

Fig. 16. Algorithm to set up the map for the thread-safe and deterministic gather-assemble of element contributions into the sparse linear system.

lem sizes. The same, unmodified, computational ker-

nels are compiled for, and run on, the three manycore

devices using the Kokkos array interface and library.

Westmere: Intel Xeon X5670 at 2.93 GHz;

24 pthreads on 2 cpus × 6 cores

× 2 hyperthreads

compiled with Intel v11 using

-O3 optimization

Magny-Cours: AMD Opteron 6136 at 2.4 GHz;

16 pthreads on 2 cpus × 8 cores

compiled with Intel v11 using

-O3 optimization

NVIDIA 2070: NVIDIA C2070 at 1.2 GHz;

448 cores compiled with CUDA

v4 using -O3 -arch=sm_20

Performance results presented in Fig. 19 compare el-

ement throughput for the three manycore devices. El-

ement throughput is measured as the “number of ele-

ments contributions computed per second” and “num-

ber of element contributions filled per second”, where

filled refers to the gather assemble operation to fill the

sparse linear system coefficients. Element contribution

computations gather nodal coordinates and element

quadrature data from global memory, performs ap-

proximately 7000 floating point operations, and writes

72 element contribution coefficients to device global

memory. In contrast the element fill computations read

from device global memory the element→linear sys-

tem map arrays as well as the 72 element contribu-

tion coefficients, and then update 72 sparse linear sys-

tem coefficients at random locations in device global

memory. Thus element computations are dominated by

compute performance while fill operations are domi-

nated by device global memory access performance.

Performance of the combined element computation

and fill operation is the complete performance of inter-

est – the time between problem specification and linear

system solution (Table 1). This combined performance

is presented in Fig. 20 for a problem with 1.06 million

elements. On all three manycore devices the time re-

quired to fill the sparse linear system is roughly equal

to the time required to compute the element contribu-

tions. This result is an example of the HPC colloqui-

alism that “floating point operations are free”, in com-

parison to memory access performance.

H.C. Edwards et al. / Manycore performance-portability: Kokkos multidimensional array library 107

template< typename Scalar , class Device >

class GatherAssemble {

public:

enum { nodes_per_elem = 8 };

MDArray<Scalar,Device> element_matrix , element_vector ;

MDArray<int,Device> element_CSR_map ;

MDArray<int,Device> node_element_offset , node_element_identifier ;

MultiVector<int,Device> A_offset , A_col_ids ;

MultiVector<Scalar,Device> A , b ;

KOKKOS_MACRO_DEVICE_FUNCTION

void operator()(int node_id) const

{ // Iterate the sorted list of elements connected to this node.

int iElemBeg = node_element_offset(node_id);

int iElemEnd = node_element_offset(node_id+1);

for (int i = iElemBeg ; i < iElemEnd ; ++i) {

int element_id = node_element_identifier(i,0);

int elem_row = node_element_identifier(i,1);

b(node_id) += element_vector(element_id,elem_row);

for (int elem_col = 0 ; elem_col < nodes_per_elem ; ++elem_col) {

int index = element_CSR_map(element_id , elem_row , elem_col);

A(index) += element_matrix(element_id , elem_row , elem_col);

}

}

}

}

Fig. 17. Algorithm for the thread-safe and deterministic gather assemble of element contributions into the sparse linear system.

6. Finite element explicit dynamics

mini-application

The programming model and the API were also

tested using an explicit dynamics finite element mini-

application that solves an elastic bar impact problem.

This mini-application uses a simple unstructured finite

element mesh consisting of nodes (i.e., vertices), ele-

ments (i.e., volumes), and connectivity between nodes

and elements. The mesh data structure described in

Section 5.1 is also used in this mini-application. The

mini-application’s flow of computations and data be-

tween the host and the manycore device are summa-

rized in Table 2.

6.1. Internal force computation

This simple explicit dynamics mini-application

models the structural response of a bar with an initial

impulse on one end and having the other end fixed.

The elements used are uniform gradient hexahedral

elements with hourglass mode stabilization. The im-

pulse is applied as an initial velocity and the kine-

matic boundary condition on the far end is imposed

by computing accelerations to match the fixed condi-

tion rather than through an external force. Therefore

the only forces that are computed on the nodes are the

internal forces that arise from the divergence of the

stress.

The internal force is computed for each element us-

ing a sequence of two parallel_for functors and a

parallel_reduce functor over the elements. This

computation is split into three functors in an attempt to

(1) maximize sharing global memory accesses among

multiple operations and (2) minimize the amount of

local memory required by the functor. These first two

functors compute the element deformation gradient

and element stretches and rotations. The last functor

computes the stress, the corresponding internal forces

for the element’s nodes, and the minimum stable time

step for next time step iteration.

First functor. The first parallel_for functor

computes the gradient, velocity gradient, and the hour-

glass stabilization operators. It gathers from global

memory the element’s nodal coordinates and velocities

and stores them in local arrays from which this data

will is repeatedly used in the computation. Gradient

operators computed in local methods are also stored in

108 H.C. Edwards et al. / Manycore performance-portability: Kokkos multidimensional array library

template< typename Scalar , class Device >

class BoundaryConditions {

public:

MultiVector<int,Device> bc_flags ;

MultiVector<Scalar,Device> bc_values ;

MultiVector<int,Device> A_offset , A_col_ids ;

MultiVector<Scalar,Device> A , b ; // Solving b = A*x

KOKKOS_MACRO_DEVICE_FUNCTION

void operator()(int row) const

{ // This thread has exclusive access to this row

const int iBeg = A_offset(row), iEnd = A_offset(row+1);

if (bc_flags(row)) {

// Set this row’s equation to: bc_value = 1 * x

b(row) = bc_values(row);

for (int i = iBeg ; i < iEnd ; ++i) A(i) = row == i ? 1 : 0 ;

}

else {

for (int i = iBeg ; i < iEnd ; ++i) {

int column = A_col_ids(i);

if (bc_flags(column)) {

// Eliminate ’x’ from the equation:

b(row) -= bc_value(column) * A(i); A(i) = 0 ;

}

}

}

}

}

Fig. 18. Manycore device parallel C++ functor for a thread-safe and lock-free algebraic elimination of boundary conditions.

local arrays for the nodes of each element. Then the de-
formation gradient is computed using a series of three
local function calls. These memory access patterns and
the associated multidimensional arrays for global data
are summarized in Fig. 21.

Second functor. The second functor computes the
kinematic quantities needed for strain rate. This func-
tor copies another set of global variables from global
to local memory; e.g., velocity gradient (output by the
first functor), rotations, stretch, and vorticity. The func-
tor computes the strain rate of the element which is in-
put to the last functor.

Last functor. The last functor computes the element
stress, hourglass resistance, and internal forces ap-
plied at the element’s nodes. The functor also com-
putes an estimate of the stable time step for the ele-
ment. This stable time step value is reduced over all el-
ements to determine the minimum stable time step for
the next time step iteration. The call to the paral-
lel_reduce is illustrated in Fig. 22 and the defini-
tions of the functors that comprise this call are shown
in Figs 23 and 24.

The divergence functor in Figs 22 and 23 does

all of the parallel work of the computation. The

set_next_time_step functor is a serial parallel

reduce finalization functor described in Section 4.4.

This finalization functor takes the result of the reduc-

tion operation, the minimum of the elements’ stable

time steps, and places it in an variable on the manycore

device. This time step value is now ready to be used on

the device in the next time step iteration.

6.2. Nodal forces and time integration

The time step is finished by a functor that sums the

internal forces at the nodes, computes the nodal accel-

erations from the forces and masses, and updates the

velocities and displacements using a central difference

time integration. This functor, illustrated in Fig. 25, is

applied to each node via the parallel_for oper-

ation. The summation of internal forces at the nodes

uses the gather-assemble algorithm (Section 5.4) for

scalability and determinism.

H.C. Edwards et al. / Manycore performance-portability: Kokkos multidimensional array library 109

Fig. 19. Element computation and fill performance on Westmere, Magny-Cours and NVIDIA for (1) single and double precision linear system

and (2) problem sizes from one thousand to two million elements. (Colors are visible in the online version of the article; http://dx.doi.org/

10.3233/SPR-2012-0343.)

Fig. 20. Comparison of Westmere, Magny-Cours and NVIDIA ele-

ment computation and fill performance for 1.06 million elements.

6.3. Performance

Performance of the explicit dynamics finite ele-

ment mini-application is evaluated on the Westmere,

Magny-Cours and NVIDIA manycore compute de-

vices. The sequence of element internal force compu-

tations (Section 6.1) and nodal forces and time inte-

gration computations (Section 6.2) are timed over a

range of problem sizes. The same, unmodified, com-

putational kernels are compiled for, and run on, the

three manycore devices using the Kokkos Array inter-

face and library.

Westmere 24: Intel Xeon X5670 at 2.93 GHz;

24 pthreads on 2 cpus × 12 cores

× 2 hyperthreads

compiled with Intel v11 using

-O3 optimization

Magny-Cours 16: AMD Opteron 6136 at 2.4 GHz;

16 pthreads on 2 cpus × 8 cores

compiled with Intel v11 using

-O3 optimization

NVIDIA C2070: NVIDIA C2070 at 1.2 GHz;

448 cores compiled with CUDA

v4 using -O3 -arch=sm_20

Performance results presented in Fig. 26 compare el-
ement throughput for the three manycore devices. El-
ement throughput is measured in “element-steps per
second” which is defined as the total number of ele-
ments in the problem divided by the runtime for all
elements’ internal force computations plus all nodes’
force and time integration computations. The mini-
application is run for one thousand application-steps,
the runtime is accumulated across all application-
steps, and the mean element-steps per second is re-

110 H.C. Edwards et al. / Manycore performance-portability: Kokkos multidimensional array library

Table 2

Explicit dynamics finite element mini-application computations and data movement between the host and manycore device

Serial on Host copy Parallel on Manycore Device

Generate finite element mesh. =⇒

Define initial and prescribed boundary conditions. =⇒

Compute element mass.

Compute nodal mass.

Time step loop:

Compute element gradients and hour glass operator.

Compute element tensor decomposition and rotations.

Compute element stresses and internal forces.

Compute and reduce the elements’ minimum stable time step.

Gather forces and update acceleration, velocity and displacement.

⇐= Copy out selected variables every N time steps.

template< typename Scalar , class Device >

struct grad_hgop {

public:

MDArray<int,Device> element_node_connectivity ;

MDArray<double,Device> node_coordinates ;

MDArray<Scalar,Device> model_coords ;

MDArray<Scalar,Device> displacement ;

MDArray<Scalar,Device> velocity;

MDArray<Scalar,Device> vel_grad;

MDArray<Scalar,Device> hgop;

MDArray<Scale,Device> dt;

KOKKOS_MACRO_DEVICE_FUNCTION

void operator()(int element_id) const

{

// Declare local data for frequent access to reduce

// global memory reads and writes.

Scalar x[8], y[8], z[8]; // nodal coordinates

Scalar vx[8], vy[8], vz[8]; // nodal velocities

Scalar grad_x[8], grad_y[8], grad_z[8]; // gradient_operator

// Gather this element’s nodal coordinates and velocities.

// Compute element gradient operator, volume, velocity gradient,

// and hourglass operator.

}

}

Fig. 21. Pseudo code overview of the deformation gradient functor’s global and local memory data interactions.

corded:

runtime(application-step)

= runtime(all elements’ internal force)

+ runtime(all nodes’ force summation)

+ runtime(all nodes’ time integration),

element-steps per second

= #elements ÷ runtime(application-step).

Given sufficient parallel work (a sufficient number

of elements) the 448 core NVIDIA C2070 had dramat-

ically better performance in single precision – nearly

15 million element-steps per second versus the 4–

6 million element-steps per second of the Westmere

and Magny-Cours. This result is due to the kernels

having a favorable computational intensity; i.e., hav-

ing a favorable ratio of floating point operations versus

global memory accesses.

H.C. Edwards et al. / Manycore performance-portability: Kokkos multidimensional array library 111

Kokkos::parallel_reduce(num_elements ,

divergence<Scalar, device_type>(...arguments...),

set_next_time_step<Scalar,device_type>(...arguments...));

Fig. 22. Pseudo code overview of the call combining a reduce functor for stress computation and global minimum time step.

//Structure for computing element stress, stable time step, and element

internal forces.

template< typename Scalar , class DeviceType >

struct divergence;

template<typename Scalar>

struct divergence<Scalar, KOKKOS_MACRO_DEVICE>{

typedef KOKKOS_MACRO_DEVICE device_type ;

typedef typename Kokkos::MDArray<Scalar,device_type> array_type ;

typedef typename Kokkos::MDArray<int,device_type> int_array_type ;

typedef Kokkos::Value<Scalar,device_type> scalar_view;

typedef Scalar value_type ;

const int_array_type elem_node_connectivity;

// numerous other member array view declarations

const Scalar user_dt;

const scalar_view dt;

KOKKOS_MACRO_DEVICE_FUNCTION

static void init(value_type &update) {

update = 1.0e32; // initialize to large value for minimum time step

}

KOKKOS_MACRO_DEVICE_FUNCTION

static void join(volatile value_type &update, const volatile value_type & source) {

update = update < source ? update : source; // keep the minimum

}

KOKKOS_MACRO_DEVICE_FUNCTION

void operator()(int ielem, value_type & update) const {

// local memory

Scalar x[8], y[8], z[8]; //Element nodal coordinates in local memory.

// member functions to compute end of step gradient operators

// computation for computing the element stable time step, cur_time_step

update = update < cur_time_step ? update : cur_time_step;

// compute stress and internal force

}

}

Fig. 23. Pseudo code overview for computation of element stress and global minimum time step.

7. Conclusion

7.1. Summary

The Trilinos–Kokkos Array performance-portable

programming model provides a “classical” multidi-

mensional array abstraction and API for computa-

tional kernels to organize and access computational

data. This abstraction is partitioned into component ab-

stractions of a data set, multi-index space, multi-index

space mapping and data parallel partitioning. A multi-

index space mapping that provides device-specific op-

112 H.C. Edwards et al. / Manycore performance-portability: Kokkos multidimensional array library

template<typename Scalar>

struct set_next_time_step<Scalar ,KOKKOS_MACRO_DEVICE>{

typedef KOKKOS_MACRO_DEVICE device_type;

typedef Scalar value_type;

// ... Members views and constructor ...

KOKKOS_MACRO_DEVICE_FUNCTION

void operator()(Scalar & result) const {

*prev_dt = *dt;

*dt = result;

}

}

Fig. 24. Pseudo code overview of the finalization functor to set minimum stable time step.

template<typename Scalar>

struct finish_step<Scalar ,KOKKOS_MACRO_DEVICE>{

typedef KOKKOS_MACRO_DEVICE device_type;

typedef device_type::size_type size_type;

// ... member views and constructor to pass in those views ...

KOKKOS_MACRO_DEVICE_FUNCTION

void operator()(int inode) const {

// Getting offset and count as per ’CSR-like’ data structure

const int elem_offset = node_elem_offset(inode);

const int elem_count = node_elem_offset(inode+1) - elem_offset ;

// for each element that contains the node to accumulate internal force

double local_force[] = {0.0, 0.0, 0.0};

for(int i = 0; i < elem_count ; i++){

const int elem_id = node_elem_ids(elem_offset+i 0);

const int elem_node_index = node_elem_ids(elem_offset+i,1);

local_force[0..2] += element_force(elem_id, 0..2, elem_node_index);

}

internal_force(inode, 0..2) = local_force[0..2]; // copy local to

global memory

// Computations for acceleration including at fixed boundary

// Each line stores local a_current for fast access later in the

velocity update

// and copies the values to the global acceleration array.

Scalar a_current[3]; // Local storage for subsequent use

if (/* ... a fixed boundary condition ... */) {

// enforce fixed BC by zeroing out acceleration

acceleration(inode,0..2) = a_current[0..2] = 0;

} else { // not on a fixed boundary

acceleration(inode,0..2) = a_current[0..2] = - local_force[0..3]/nodal_mass ;

}

// Computations for central difference integration of velocities and displacements

}

}

Fig. 25. Pseudo code overview for functor to gather internal forces and update acceleration, velocity and displacement.

H.C. Edwards et al. / Manycore performance-portability: Kokkos multidimensional array library 113

Fig. 26. Explicit dynamics element internal force plus node force summation and time integration performance Westmere, Magny-Cours and

NVIDIA for (1) single and double precision and (2) problem sizes from one thousand to one million elements. (Colors are visible in the online

version of the article; http://dx.doi.org/10.3233/SPR-2012-0343.)

timal memory access patterns is transparently intro-
duced at compile-time through C++ template meta-
programming.

A non-traditional shared-ownership view memory
management abstraction is used, as opposed to the
traditional exclusive-ownership container abstraction.
A view abstraction is used to mitigate risks of mem-
ory management errors in large complex libraries and
applications. A view abstraction is exclusively used in
the programming model, as opposed to mixing con-
tainer and view abstraction, to simplify the program-
ming model and API.

The Kokkos Array programming model has been
implemented on several manycore devices and evalu-
ated with unit performance test cases, implicit
thermal finite element mini-application, and explicit
dynamics finite element mini-application. These mini-
application test cases provide evidence that applica-
tion kernel performance-portability can be achieved
among Westmere and Magny-Cours multicore devices
and NVIDIA C2070 manycore device. Evaluation of
the usability of the programming model and API is
pending use and feedback from an “alpha user” com-
munity. The Trilinos–Kokkos is available for such an
evaluation at http://trilinos.sandia.gov.

8. Plans

The Kokkos Array programming model, API and
implementations presented here are the result of one
year (October 10–September 11) of research and de-
velopment. Ongoing and planned research & develop-
ment activities are focused on

• more in-depth performance analysis and improve-
ments on current devices,

• usability analysis and improvements through
mini-application [4] focused dialogues,

• introduction of compile-time dimensions to allow

a compiler to optimize multi-index space map-
pings,

• support concurrent execution of multiple het-

erogeneous kernels within parallel_for and
parallel_reduce operations, and

• expand the scope of the programming model to

include two-level heterogeneous parallelism with
message passing at the outer level and manycore
devices at the inner level.

Acknowledgements

Sandia National Laboratories is a multi-program
laboratory managed and operated by Sandia Corpora-
tion, a wholly owned subsidiary of Lockheed Martin

Corporation, for the US Department of Energy’s Na-
tional Nuclear Security Administration under contract
DE-AC04-94AL85000. This paper is cross-referenced

at Sandia as SAND2011-8102J.

References

[1] D. Abrahams and A. Gurtovoy, C++ Template Metaprogram-

ming: Concepts, Tools, and Techniques from Boost and Be-

yond, 1st edn, Addison-Wesley, Reading, MA, 2005.

[2] Draft technical report on C++ library extensions, avail-

able at: http://www.openstd.org/jtc1/sc22/wg21/docs/papers/

2005/n1836.pdf, June 2005.

114 H.C. Edwards et al. / Manycore performance-portability: Kokkos multidimensional array library

[3] H.C. Edwards, Trilinos ThreadPool Library v1.1, Technical

Report SAND2009-8196, Sandia National Laboratories, Albu-

querque, NM, December 2009.

[4] M.A. Heroux, D.W. Doerfler, P.S. Crozier, J.M. Willen-

bring, H.C. Edwards, A. Williams, M. Rajan, E.R. Keiter,

H.K. Thornquist and R.W. Numrich, Improving performance

via mini-applications, Technical Report SAND2009-5574,

Sandia National Laboratories, Albuquerque, NM, September

2009.

[5] W.-M.W. Hwu, ed., GPU Computing Gems Jade Edition,

1st edn, Elsevier, Waltham, MA, 2012.

[6] IEEE Std. 1003.1, 2004 edition, <pthread.h>, 2004.

[7] Information Technology Industry Council, Programming Lan-

guages – C++, 1st edn, International Standard ISO/IEC

14882, American National Standards Institute, New York,

1998.

[8] Intel unveils new product plans for high-performance com-

puting, available at: http://www.intel.com/pressroom/archive/

releases/2010/20100531comp.htm, May 2010.

[9] A. Klöckner, PyCUDA multidimensional arrays on the GPU,

available at: http://documen.tician.de/pycuda/array.html, De-

cember 2011.

[10] NVIDIA CUDA homepage, http://www.nvidia.com/object/

cuda_home.html, February 2011.

[11] J. Reinders, Intel Threading Building Blocks, O’Reilly, Se-

bastopol, CA, 2007.

[12] D. Stewart, Numeric Haskell: a repa tutorial, available

at: http://www.haskell.org/haskellwiki/Numeric_Haskell:_A_

Repa_Tutorial, October 2011.

[13] Thrust homepage, http://code.google.com/p/thrust/, May 2011.

[14] Trilinos website, http://trilinos.sandia.gov/, August 2011.

[15] S. van der Walt, S.C. Colbert and G. Varoquaux, The numpy

array: a structure for efficient numerical computation, Comput.

Sci. Eng. 13(2) (2011), 22–30.

[16] T.L. Veldhuizen, Arrays in Blitz++, in: Proceedings of the

2nd International Scientific Computing in Object-Oriented

Parallel Environments, Santa Fe, NM, USA, Springer-Verlag,

1998, pp. 223–230.

[17] T.L. Veldhuizen, Blitz++ website, http://www.oonumerics.

org/blitz/, March 2006.

[18] T.L. Veldhuizen, Parallel computing with Blitz++, avail-

able at: http://www.oonumerics.org/blitz/odocs/blitz_8.html,

March 2006.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

