
Map-based Multiple Model Tracking of a Moving
Object

Cody Kwok and Dieter Fox

Department of Computer Science & Engineering
University of Washington, Seattle, WA

{ctkwok,fox }@cs.washington.edu

Abstract. In this paper we propose an approach for tracking a moving target
using Rao-Blackwellised particle filters. Such filters represent posteriors over the
target location by a mixture of Kalman filters, where each filter is conditioned on
the discrete states of a particle filter. The discrete states represent the non-linear
parts of the state estimation problem. In the context of target tracking, these are
the non-linear motion of the observing platform and the different motion models
for the target. Using this representation, we show how to reason about physical
interactions between the observing platform and the tracked object, as well as
between the tracked object and the environment. The approach is implemented
on a four-legged AIBO robot and tested in the context of ball tracking in the
RoboCup domain.

1 Introduction

As mobile robots become more reliable in navigation tasks, the ability to interact with
their environment becomes more and more important. Estimating and predicting the
locations of objects in the robot’s vicinity is the basis for interacting with them. For
example, grasping an object requires accurate knowledge of the object’s location rela-
tive to the robot; detecting and predicting the locations of people helps a robot to better
interact with them. The problem of tracking moving objects has received considerable
attention in the mobile robotics and the target tracking communities [1, 2, 10, 13, 6, 8].
The difficulty of the tracking problem depends on a number of factors, ranging from
how accurately the robot can estimate its own motion, to the predictability of the ob-
ject’s motion, to the accuracy of the sensors being used.

This paper focuses on the problem of tracking and predicting the location of a ball
with a four-legged AIBO robot in the RoboCup domain, which aims at playing soc-
cer with teams of mobile robots. This domain poses highly challenging target tracking
problems due to the dynamics of the soccer game, coupled with the interaction between
the robots and the ball. We are faced with a difficult combination of issues:

– Highly non-linear motion of the observer: Due to slippage and the nature of
legged motion, information about the robot’s own motion is extremely noisy, blur-
ring the distinction between motion of the ball and the robot’s ego-motion. The
rotation of these legged robots, in particular, introduces non-linearities in the ball
tracking problem.

2

– Physical interaction between target and environment:The ball frequently bounces
off the borders of the field or gets kicked by other robots. Such interactions result
in highly non-linear motion of the ball.

– Physical interaction between observer and target:The observing robot grabs
and kicks the ball. In such situations, the motion of the ball is tightly connected to
the motion or action of the robot. This interaction is best modeled by a unified ball
tracking framework rather than handled as a special case, as is done typically.

– Inaccurate sensing and limited processing power: The AIBO robot is equipped
with a176 × 144 CMOS camera placed in the robot’s “snout”. The low resolution
provides inaccurate distance measurements for the ball. Furthermore, the robot’s
limited processing power (400MHz MIPS) poses computational constraints on the
tracking problem and requires an efficient solution.

In this paper, we introduce an approach that addresses these challenges in a unified
Bayesian framework. The technique uses Rao-Blackwellised particle filters (RBPF) [4]
to jointly estimate the robot location, the ball location, its velocity, and its interaction
with the environment. Our technique combines the efficiency of Kalman filters with the
representational power of particle filters. The key idea of this approach is to sample
the non-linear parts of the state estimation problem (robot motion and ball-environment
interaction). Conditioning on these samples allows us to apply efficient Kalman filtering
to track the ball. Experiments both in simulation and on an AIBO robot show that this
approach is efficient and yields highly robust estimates of the ball’s location and motion.

This paper is organized as follows. After discussing related work in the next section,
we will introduce the application of Rao-Blackwellised particle filters to ball tracking
in the RoboCup domain. Then we will discuss an efficient approximation to the RBPF
technique. Experimental results are presented in Section 4, followed by conclusions.

2 Related Work
Tracking moving targets has received considerable attention in the robotics and target
tracking communities. Kalman filters and variants thereof have been shown to be well
suited for this task even when the target motion and the observations violate the linearity
assumptions underlying these filters [2]. Kalman filters estimate posteriors over the
state by their first and second moments only, which makes them extremely efficient and
therefore a commonly used ball tracking algorithm in RoboCup [12].

In the context of maneuvering targets, multiple model Kalman filters have been
shown to be superior to the vanilla, single model filter. Approaches such as the Interact-
ing Multiple Model (IMM) and the Generalized Pseudo Bayesian (GPB) filter represent
the target location using a bank of Kalman filters, each conditioned on different poten-
tial motion models for the target. An exponential explosion of the number of Gaussian
hypotheses is avoided by merging hypotheses after each update of the filters [2]. This
merging is done by collapsing all Gaussians belonging to the same discrete motion
model into a single Gaussian estimate. While the resulting GPB and IMM approaches
are efficient, the model merging step assumes that the state conditioned on each discrete
motion model is unimodal. However, the uncertainties in our target tracking problem
frequently produce multimodal distributions, even when conditioned on a single motion
model. This is often caused by uncertainty in the relative location of field borders.

3

Particle filters provide a viable alternative to Kalman filter based approaches [5].
These filters represent posteriors by samples, which allows them to adequately rep-
resent and estimate non-linear, non-Gaussian processes. Recently, particle filters have
been applied successfully to people tracking using mobile robots equipped with laser
range-finders [13, 10]. While the sample-based representation gives particle filters their
robustness, it comes at the cost of increased computational complexity, making them
inefficient for higher-dimensional estimation problems.

As we will describe in Section 3.2, Rao-Blackwellised particle filters (RBPF) [4]
combine the representational benefits of particle filters with the efficiency and accuracy
of Kalman filters. This technique has been shown to outperform approaches such as the
IMM filter on various target tracking problems [6, 8]. Compared to our method, existing
applications of RBPFs consider less complex dynamic systems where only one part of
the state space is non-linear. Our approach, in contrast, estimates a system where sev-
eral components are highly non-linear (observer motion, target motion). Furthermore,
our technique goes beyond existing methods by incorporating information about the en-
vironment into the estimation process. The use of map information for improved target
tracking has also been proposed by [10]. However, their tracking application is far less
demanding and relies on a vanilla particle filter to estimate the joint state space of the
observer and the target. Our RBPF technique is more efficient since it relies on Kalman
filters to estimate the target location.

3 Rao-Blackwellised Particle Filters for Multi Model Tracking
with Physical Interaction

In this section, we will first describe the different interactions between the ball and the
environment. Then we will show how RBPFs can be used to estimate posteriors over
the robot and ball locations. Finally, we will present an approximation to this idea that
is efficient enough to run onboard the AIBO robots at a rate of 20 frames per second.

3.1 Ball-Environment Interactions

Fig. 1(a) describes the different interactions between the ball and the environment:

– None: The ball is either not moving or in an unobstructed, straight motion. In this
state, a linear Kalman filter can be used to accurately track its location and velocity.

– Grabbed : The ball is between the robot’s legs or grabbed by them. The ball’s
position is thus tightly coupled with the location of the robot. This state is entered
when the ball is in the correct position relative to the robot. It typically exits into
theKicked state.

– Kicked : The robot just kicked the ball. This interaction is only possible if the ball
was grabbed. The direction and velocity of the following ball motion depend on the
type of kick. There is also a small chance that the kick failed and the ball remained
in theGrabbed state.

– Bounced : The ball bounced off one of the field borders or one of the robots on
the field. In this case, the motion vector of the ball is assumed to be reflected by the
object with a considerable amount of orientation noise and velocity reduction.

4

None Grabbed

Bounced Deflected Kicked

(residual prob .)
(0 .8)

Robot loses grab
(0.2)

(1.0)

R
obot k

icks

ball (0.9)

(1. 0)(0.1)(1
.0

)

Within grab range
and robot grabs

(prob . from model)

C
ol

lis
io

n
w

it h

ob
je

c t
s

o
n

m
ap

 (1
.0

)

Kick fails (0.1)

(a)

k−2b k−1b kb

r k−2 r k−1 r k

z b
 k−2 z b

 k−1 z b
 k

u k−2 u k−1

z l
 k−1 z l

 kz l
 k−2

kmk−1mk−2m

Ball observation

Ball location and velocity

Ball motion mode

Map and robot location

Robot control

Landmark detection

B
al

l t
ra

ck
in

g
R

ob
ot

 lo
ca

liz
at

io
n

(b)

Fig. 1: (a) Finite state machine describing the transitions between different ball motion models.
All transitions are probabilistic, the probabilities are enclosed in parentheses. (b) Graphical model
for tracking a moving ball. The nodes in this graph represent the different parts of the dynamic
system process at consecutive points in time, and the edges represent dependencies between the
individual parts of the state space. Filled circles indicate observed nodes, wherezl

k are landmark
andzb

k ball observations.

– Deflected : The ball’s trajectory has suddenly changed, most likely kicked by
another robot. In this state, the velocity and motion direction of the ball are un-
known and have to be initialized by integrating a few observations.

The transition probabilities between the states are parenthesized in the figure. Their
values were tuned manually. From theNone state, we assume that there is a 0.1 proba-
bility that the ball will be deflected at each update (e.g., by an undetected robot). When
the ball is close in front of the robot, the ball will enter theGrabbed state with proba-
bility defined by a two-dimensional linear probability function. When the ball collides
with the borders or other robots, it will always reflect and move into theBounced
state. This transition is certain because each ball estimate is conditioned on a sampled
robot position, which can be assumed to be the true robot position. This will be elab-
orated further in the next section. Finally, theNone state transitions back to itself by
default, hence it takes up the residual probability after computing the previously men-
tioned transitions. For the statesKicked andGrabbed , the transitions are associated
with whether these actions succeed or not. Kicking the ball has a success rate of 0.9 and
Grabbing 0.8. TheBounced andDeflected states are used to initiate changes in
the Kalman filters. Once the changes are made, they transition immediately to the nor-
mal updates in theNone state. Thus, most of the time, the ball is either in free motion
(None) or grabbed by the robot (Grabbed). The other states are only valid for very
short periods of time (our current system does not model that the ball can be grabbed
by other robots).

While most of these interactions depend on the location of the ball relative to the
robot, the ball’s interactions with the environment (e.g. the field borders) strongly de-
pend on the ball location on the field,i.e. in global coordinates. For instance, when the
ball collides with a border, the predicted motion after collision depends on the global
incident angle. In order to estimate global coordinates from relative observations, we
need to associate relative ball positions with the robot’s location and orientation on the
field. Hence, the problem of tracking a ball requires the joint estimation of the ball
location, the robot location, and the ball-environment interaction.

5

3.2 Rao-Blackwellised Posterior Estimation

Let 〈mk, bk, rk〉 denote the state of the system at timek. Here,mk = {None, Grabbed ,
Kicked , Bounced , Deflected } are the different ball motion models resulting from
the interactions between the ball and the environment.bk = 〈xb, yb, ẋb, ẏb〉 denotes the
ball location and velocity in global coordinates, andrk = 〈xr, yr, θr〉 is the robot lo-
cation and orientation on the field. Furthermore,zk are observations of the ball and
landmarks, provided in relative bearing and distance.

A graphical model description of the ball tracking problem is given in Fig. 1(b).
The graphical model describes how the joint posterior over〈bk,mk, rk〉 can be com-
puted efficiently using independencies between parts of the state space. The nodes de-
scribe different random variables and the arrows indicate dependencies between these
variables. The model shows that the robot location at timek, rk, only depends on the
previous locationrk−1 and the robot motion controluk−1. Landmark observationszl

k

only depend on the current robot locationrk. This is exactly as in standard robot local-
ization [7, 9]. The location and velocity of the ball,bk, typically depend on the previous
ball statebk−1 and the current ball motion modelmk. The arc frommk to bk describes,
for example, that the ball prediction depends on whether it was kicked or bounced off
a field border. Ifmk = Grabbed , then the ball location depends on the current robot
locationrk, as indicated by the arrow fromrk to bk. Relative ball observations,zb

k, only
depend on the current ball and robot positions. See Fig. 1(a) for the ball motion models.

Now that the dependencies between different parts of the state space are defined,
we can address the problem of filtering, which aims at computing the posterior over
〈bk,mk, rk〉 conditioned on all observations made so far. A full derivation of the Rao-
Blackwellised particle filter (RBPF) algorithm is beyond the scope of this paper; see [4]
for a thorough discussion of the generic RBPF. Just like regular particle filters, RBPFs
represent posteriors by sets of weighted samples, or particles:

Sk = {s(i)
k , w

(i)
k | 1 ≤ i ≤ N}

In our case, each particles(i)
k = 〈b(i)

k ,m
(i)
k , r

(i)
k 〉, whereb

(i)
k are the mean and covari-

ance of the ball location and velocity,m
(i)
k is the ball motion model, andr(i)

k is the robot

location1. The key idea of RBPFs is to condition the ball estimateb
(i)
k on a particle’s

ball motion modelm(i)
k and robot locationr(i)

k . This conditioning turns the ball location
and velocity into a linear system that can be estimated efficiently using a Kalman filter.
To see how this works, we factorize the posterior as follows:

p(bk,mk, rk | z1:k, u1:k−1) = p(bk | mk, rk, z1:k, u1:k−1) ·
p(mk | rk, z1:k, u1:k−1) p(rk | z1:k, u1:k−1) (1)

The task of filtering is to generate samples distributed according to (1) based on sam-
ples drawn from the previous posterior represented by the sample setSk−1. To do so,

1 An accurate derivation of the recursive RBPF algorithm would require reasoning about robot
trajectoriesr

(i)
1:k and ball motion modelhistoriesm

(i)
1:k. However, for the sake of brevity, we

ignore this rather technical detail since it has no impact on the resulting algorithms.

6

the Rao-Blackwellisation technique first draws a samples
(i)
k−1 from Sk−1. Then, con-

ditioned ons(i)
k−1, a new samples(i)

k is generated stepwise by simulating (1) from right
to left. It can be shown that this is achieved by the following steps (see [4] for more
background). First, a new robot location,r

(i)
k , is sampled according to

r
(i)
k ∼ p(rk | r(i)

k−1,m
(i)
k−1, b

(i)
k−1, zk, uk−1), (2)

wherer
(i)
k−1, m

(i)
k−1, andb

(i)
k−1 are provided bys(i)

k−1. After this step,s(i)
k = 〈 , , r

(i)
k 〉,

where denotes uninitialized value. Then, the new ball motion model,m
(i)
k , is sampled

according to
m

(i)
k ∼ p(mk | r(i)

k ,m
(i)
k−1, b

(i)
k−1, zk, uk−1), (3)

wherer
(i)
k is the robot location generated in the first sampling step. This gives uss

(i)
k =

〈 ,m
(i)
k , r

(i)
k 〉. Finally, the sample’s ball location and velocity,b

(i)
k , are estimated:

b
(i)
k ∼ p(bk | r(i)

k ,m
(i)
k , b

(i)
k−1, zk) (4)

To efficiently estimateb(i)
k , we make use of the fact that we already sampled the ball mo-

tion model and the robot location. By conditioning onm
(i)
k andr

(i)
k , the ball estimation

b
(i)
k can be performed analytically using a Kalman filter; one for each particle.

Equations (2)–(4) follow directly from the three terms in (1) and the independences
of the graphical model in Fig. 1(b). Furthermore, we make use of the fact that the pre-
vious samples(i)

k−1 is a sufficient statistic for all information prior tok − 1. It remains
to be shown how to generate samples distributed according to (2) and (3). Since it is
not possible to sample exactly from these distributions, we apply a technique called
importance sampling, where samples are weighted so as to compensate for the mis-
match between the sampling distributions and the target distributions (2) and (3). The
importance weight of a complete sample is then given by the product of the importance
weights resulting from (2) and (3). We will now take a closer look at these distributions.

Robot Locations The target distribution (2) for the robot location can be transformed
as follows:

p(rk | r
(i)
k−1,m

(i)
k−1, b

(i)
k−1, zk, uk−1)

∝ p(zk | rk, r
(i)
k−1,m

(i)
k−1, b

(i)
k−1, uk−1) p(rk | r(i)

k−1,m
(i)
k−1, b

(i)
k−1, uk−1) (5)

= p(zk | rk,m
(i)
k−1, b

(i)
k−1, uk−1) p(rk | r(i)

k−1, uk−1) (6)

Here, (5) follows by Bayes rule, and (6) from the independencies represented in the
graphical model in Fig. 1(b). To generate particles according to (6), we apply the stan-
dard update routine of particle filters for robot localization [5, 7]. More specifically, we
first predict the next robot locationr(i)

k using the previous locationr(i)
k−1 along with the

most recent control informationuk−1 and the robot motion modelp(rk|r(i)
k−1, uk−1)

(right term in (6)). To represent a random sample from (6), this particle has to be
(importance-) weighted by the left term, which is the likelihood of the measurement
zk. If zk is a landmark detection,zl

k, then this weight is given by

w
(i)
k ∝ p(zl

k | r(i)
k ,m

(i)
k−1, b

(i)
k−1, uk−1) = p(zl

k | r(i)
k), (7)

7

which corresponds exactly to the particle filter update for robot localization [9, 7]. If,
however,zk is a ball detection,zb

k, then the weight must be computed as follows.

w
(i)
k ∝ p(zb

k | r(i)
k ,m

(i)
k−1, b

(i)
k−1, uk−1)

=
∑
Mk

p(zb
k | Mk, r

(i)
k ,m

(i)
k−1, b

(i)
k−1, uk−1) p(Mk | r(i)

k ,m
(i)
k−1, b

(i)
k−1, uk−1) (8)

=
∑
Mk

p(zb
k | Mk, r

(i)
k , b

(i)
k−1) p(Mk | r(i)

k ,m
(i)
k−1, b

(i)
k−1, uk−1), (9)

HereMk ranges over all possible ball motion models, and (8) follows from the law of
total probability. Thus, to compute the weight of a sampled robot location, we have to
sum over all ball motion models. Each summand is given by the likelihood of the ball
detection times the probability of the model. The value of the likelihood term follows
from an update of the Kalman filter associated with the ball estimateb

(i)
k−1. This update

is conditioned on the robot locationr(i)
k and ball motion modelMk. The right term

in (9) describes the probability of the ball motion model based on the previous model
m

(i)
k−1, the current robot locationr(i)

k , the previous ball location and velocityb(i)
k−1, and

the robot control actionuk−1. This probability is based on reasoning about the different
ball-environment interactions, as described in Section 3.1.

Ball Motion Models By applying Bayes rule and the independencies in the estimation
problem, the distribution over ball motion models (3) can be transformed to

p(mk | r
(i)
k ,m

(i)
k−1, b

(i)
k−1, zk, uk−1)

∝ p(zk | mk, r
(i)
k , b

(i)
k−1) p(mk | r(i)

k ,m
(i)
k−1, b

(i)
k−1, uk−1). (10)

To generate a samplem(i)
k from this distribution, we have to distinguish between land-

mark and ball detections. Ifzk is a landmark detection,zl
k, then we simply samplem(i)

k

from the right term in (10). The corresponding importance weight is then given by the
left term, the landmark observation likelihoodp(zl

k | m
(i)
k , r

(i)
k , b

(i)
k−1). This likelihood

can be simplified top(zl
k | r

(i)
k), since the landmark observation only depends on the

robot location. Thus, since the importance weight is the same for allm
(i)
k , it can be

ignored and subsumed into a normalization constant.
If zk is a ball detection,zb

k, then (10) is identical to one of the summands in (9)

(the one for whichm(i)
k = Mk). Since all ball motion models have to be generated and

evaluated in order to get the importance weight (9) forr
(i)
k , we can re-use exactly these

models to generate samples from (10). The importance weights of each samplem
(i)
k is

then identical to (10), since it is drawn uniformly among the models.

Ball Estimate To finalize the generation of a sample from the posterior (1), we need to
determine the leftmost term of the factorization. As mentioned above, since we already
sampledr(i)

k andm
(i)
k , the ball posterior of the particle can be computed analytically

using a Kalman filter [2]. The Kalman filter prediction uses the previous ball stateb
(i)
k−1

and the ball motion modelm(i)
k . The correction step is based on the robot locationr

(i)
k

8

1. Inputs:
Sk−1 = {〈b(i)

k−1, m
(i)
k−1, r

(i)
k−1〉 | i = 1, . . . , N} posterior at timek − 1

uk−1 control measurement
zk observation

2. Sk := ∅ // Initialize

3. for i := 1, . . . , N do // Generate samples

4. Sampler(i)
k ∼ p(rk | r

(i)
k−1, uk−1) // Predict robot position, right term in (6)

5. if zk is a landmark detectiondo // Integrate landmark observation

6. Samplem(i)
k ∼ p(mk | m

(i)
k−1, r

(i)
k , b

(i)
k−1, uk−1) // Predict motion model, see (10)

7. b
(i)
k := Kalmanprediction(r(i)

k , m
(i)
k , b

(i)
k−1) // Update ball estimate, see (4)

8. Sk := Sk ∪ {〈b(i)
k , m

(i)
k , r

(i)
k 〉} // Insert sample into sample set

9. w
(i)
k := p(zk|r(i)

k) // Importance weight, see (7)

10. else ifzk is a ball detectiondo // Integrate ball observation

11. w
(i)
k := 0

12. for eachmodelM j
k do // Update Kalman filter for all ball models

13. b
(i,j)
k := Kalmanupdate(r(i)

k , M j
k , b

(i)
k−1, zk) // Update ball estimate, see (4)

14. w
(i,j)
k := p(zk|M j

k , r
(i)
k , b

(i)
k−1) p(M j

k |r
(i)
k , m

(i)
k−1, b

(i)
k−1, uk−1) // See (10)

15. w
(i)
k := w

(i)
k + w

(i,j)
k // Sum up weights, see (9)

16. for eachmodelM j
k do

17. w
(i,j)
k := w

(i,j)
k × w

(i)
k // Multiply weights from (9), (10)

18. Sk := Sk ∪ {〈b(i,j)
k , M j

k , r
(i)
k 〉} // Inserts(i,j)

k into sample set

19. Multiply / discard samples inSk based on normalized weightswk such that|S| = N

20. return Sk

Table 1: RBPF algorithm for joint robot-ball estimation.

along with the most recent ball observationzk. The innovation of the correction step
provides the observation likelihood needed in (9) and (10). Since landmark detections
provide no information about the ball location, the Kalman correction step is not per-
formed ifzk is a landmark detection.

RBPF Algorithm An algorithm for implementing our RBPF tracking is summarized in
Table 1. The input to the algorithm is the previous sample set along with the most recent
observation and control information. The algorithm generatesN new robot locations
(line 4). If the observation is a landmark detection, then the ball estimate belonging to
each robot location is updated by sampling a new ball motion model (line 6) followed
by a Kalman filter prediction step (line 7). The importance weight of each sample is
given by the likelihood of the landmark detection, conditioned on the robot location
(line 9). Thus, for landmark detections, each particle is updated exactly as in regular
robot localization [7, 9], plus the sampling of a ball motion model followed by a Kalman
prediction of the ball estimate. The weighted samples are resampled in line 19, thereby
generating a sample set with uniformly weighted samples.

9

The update is slightly more complicated for ball observations. The importance
weight of a generated robot location,r

(i)
k , is based on the summation given in (9). If

there areM ball motion models, then the algorithm generatesM models for each robot
location, resulting in a total ofN ×M particles. Each particle performs a Kalman filter
update using its robot locationr(i)

k and ball motion modelM j
k (line 13). The impor-

tance weight,w(i,j)
k , of each such particle follows from multiplication of the values

given in (9) and (10). The first term is computed in line 14, and the summation is per-
formed via lines 15 and 17. Finally, after generatingN ×M new particles, the number
of samples is reduced toN by resampling in line 19.

3.3 Efficient Approximation

We implemented the RBPF algorithm and it worked very well on data collected by an
AIBO robot. Unfortunately, the approach requires on the order of 300–500 particles,
which is computationally too demanding for the AIBO robots, especially since each
particle has a Kalman filter attached to it. The reason for this high number of samples is
that for each robot location, we need to estimate multiple ball motion models with asso-
ciated Kalman filters. This is necessary since the ball and robot estimates are coupled,
with information flowing from the ball estimate to the robot location estimate, andvice
versa. For example, the robot location of a particle influences the ball estimate, since it
determines when the ball bounces into a border. On the other hand, ball estimates can
influence the robot’s localization, since a sample can be removed by resampling if its
ball estimate is out-of-bounds. While this mutual influence is desired, it has the negative
effect of increasing the number of required samples.

The requirement for large sample sets is dramatically reinforced by the following
fact. In order to track the fast moving ball, its estimates are updated about 20 times
per second. The robot location, on the other hand, is updated much less frequently,
about twice per second. As a consequence, around 10 ball observations are integrated
into the sample set for each landmark detection that is being integrated. The frequent
ball updates result in importance weights that strongly outweigh the contribution of
the relatively rare landmark detections. Resampling based on such weights results in
the deletion of many valid robot location hypotheses even if the robot is not seeing
any landmarks. This is contrary to the fact that the ball location provides much less
information about the robot location than the other way around. To overcome this source
of inefficiency, we ignore the information provided by ball detections on the robot’s
location. In the resulting approximation, information flows from robot locations to ball
estimates, but not in the other direction. To do so, we partition the state space into
robot and ball positions, which are then updated separately. While the robot location is
estimated using a standard particle for robot localization [7, 9], the ball estimates are
“re-attached” to updated robot locations whenever a landmark is observed.

The approximation algorithm is presented in Table 2. As can be seen, the set of
samplesSk is now a pair〈Rk, Bk〉, whereRk is the set of robot positions andBk is
the set of ball estimates. Each ball sample consists of the ball’s position and velocity,
the motion model it is conditioned on, and a robot position,ρ

(i)
k , used to estimate the

motion model. Lines 3–9 update the ball estimates contained inBk. Like the original al-
gorithm, they implement the RBPF factorization (1) from right to left by first sampling

10

1. Inputs:
Sk−1 = 〈Rk−1, Bk−1〉 posterior at timek − 1

Rk−1 = {r(i)
k−1 | i = 1, . . . , N} robot positions

Bk−1 = {〈b(i)
k−1, m

(i)
k−1, ρ

(i)
k−1〉 | i = 1, . . . , L} ball estimates

uk−1 control measurement
zk observation

2. Rk := ∅, Bk := ∅ // Initialize

3. for i := 1, . . . , L do // Update ball samples

4. Sampleρ(i)
k ∼ p(ρk | ρ

(i)
k−1, uk−1) // Predict robot position, see (6)

5. Samplem(i)
k ∼ p(mk | m

(i)
k−1, ρ

(i)
k , b

(i)
k−1, uk−1) // Predict motion model, see (10)

6. b
(i)
k := Kalmanupdate(ρ(i)

k , m
(i)
k , b

(i)
k−1, zk) // Update ball location, see (4)

7. Bk := Bk ∪ {〈b(i)
k , m

(i)
k , ρ

(i)
k 〉} // Insert sample into sample set

8. w
(i)
k := p(zk | m

(i)
k , ρ

(i)
k , b

(i)
k−1) // Compute importance weight, see (10)

9. Multiply / discard samples inBk using weightswk // Resample ball samples

10. for i := 1, . . . , N do // Predict robot positions inRk

11. Sampler(i)
k ∼ p(rk | r

(i)
k−1, uk−1) and insert intoRk // See (6)

12. if zk is a landmark detectiondo // Integrate landmark observation

13. for i := 1, . . . , N do

14. w
(i)
k := p(zk | r

(i)
k) // Compute importance weight, see (7)

15. Multiply / discard samples inRk // Resample robot samples

16. for i := 1, . . . , L do // Update mixture of ball-robot samples

17. Re-attach〈b(i)
k , m

(i)
k , ρ

(i)
k 〉 to a robot position drawn randomly fromRk

18. return Sk = 〈Rk, Bk〉

Table 2: Efficient approximation to the Rao-Blackwellised particle filter algorithm.

a new robot locationρ(i)
k , followed by sampling a ball motion modelm

(i)
k conditioned

onρ
(i)
k , followed by a Kalman update of the ball estimate, conditioned on bothρ

(i)
k and

m
(i)
k (lines 4–6). Ifzk is a landmark observation, then the Kalman update consists of

a prediction step only. The resulting importance weight of the sample is given by the
likelihood of the observation, which is computed as part of the Kalman filter update
(uniform likelihood for landmark detections). Note that these steps generate weighted
samples distributed almost exactly according to (1). The only approximation is in ignor-
ing the contribution from landmark detections and the weights according to (9). How-
ever, these weights model the impact of ball observations on robot locations, which is
what we want to ignore anyhow. The weighted ball samples are resampled in line 9.

Lines 10–17 mostly update the setRk, which represents the main estimate of the
robot’s location. In essence,Rk ignores ball detections and incorporates landmark ob-
servations in the same way as a regular particle filter for robot localization [7, 9]. Line
11 predicts the robot locations stored inRk. If zk is a landmark observation, then the
importance weights of the samples are given by the observation likelihood (line 14).
The robot samples are then resampled in line 15.

11

The key trick of the algorithm lies in line 17. Before we explain this step, let us
briefly recap. The algorithm performs regular robot localization withRk, whose updates
ignore ball detections (lines 10–17). The ball sample setsBk are updated based on ball
detections only (lines 3–9). Ball-environment interactions are determined using robot
locationsρ

(i)
k of each ball sample, which are updated only according to the robot’s

motion (line 4). However, since theseρ(i)
k do not consider landmark detections, their

locations become more and more inaccurate. Furthermore, due to resampling ofBk

(line 9), the diversity of these robot locations decreases over time (this is the main reason
for our approximation algorithm). Both problems are overcome by the step in line 17:
Whenever the robot location sample setRk is updated with a landmark detection, the
ball estimates make use of this refined estimate by re-attaching the ball samples to
the new robot locations. To do so, each ball sample〈b(i)

k ,m
(i)
k , ρ

(i)
k 〉 replaces its robot

location ρ
(i)
k by a locationr

(i)
k , randomly drawn fromRk. The global ball location

b
(i)
k is then updated (shifted) to assume the same relative location w.r.t.r

(i)
k as it had

w.r.t ρ
(i)
k . This way, the ball estimates frequently (about once every second) inherit

both the accuracy and the diversity of the robot localization samples. Such an idea of
efficiently estimating a complex system by frequently decoupling and re-coupling parts
of the state space has already been applied successfully in dynamic systems [3, 11].

In practice, the ball estimates generated by the algorithm are virtually identical to
the original RBPF algorithm. The approximation also has only negligible impact on the
robot location estimates, since the noisy ball observations provide only minor informa-
tion about the robot’s location. As a benefit, the decoupling of robot and ball samples
significantly reduces the number of samples needed for successful tracking (using 50
robot and 20 ball particles, respectively).

3.4 Tracking and Finding the Ball
Since our approach estimates the ball location using multiple Kalman filters, it is not
straightforward to determine the direction the robot should point its camera in order to
track the ball. Typically, if the robot sees the ball, the ball estimates are tightly focused
on one spot and the robot can track it by simply pointing the camera at the mean of the
ball samples with the most likely motion model However, if the robot doesn’t see the
ball for a period of time, the distribution of ball samples can get highly uncertain and
multi-modal. This can happen, for instance, after the ball is kicked out-of-sight by the
robot or by other robots.

To efficiently find the ball in such situations, we use a grid-based representation to
describe where the robot should be looking. The grid has two dimensions, the pan and
the tilt of the camera. Each ball sample is mapped to these camera parameters using
inverse kinematics, and is put into the corresponding grid cells. Each cell is weighted
by the sum of the importance weights of the ball samples inside the cell. To find the
ball, the robot moves its head to the camera position specified by the highest weighted
cell. In order to represent all possible ball locations, the pan range of the grid covers
360◦. Cells with pan orientation exceeding the robot’s physical pan range indicate that
the robot has to rotate its body first.

An important aspect of our approach is that it enables the robot to make use ofneg-
ative informationwhen looking for the ball: Ball samples that are not detected even

12

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 0.5 1 1.5 2

R
M

S
 E

rr
or

 [c
m

]

Prediction time [sec]

RBPF
KF’
KF*

(a)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0 5 10 15 20 25 30 35 40 45 50

P
er

ce
nt

ag
e

of
 b

al
l l

os
t

Number of ball samples

With Map
Without Map

(b)

Fig. 2: (a) RMS error of the ball’s position for different prediction times. (b) Percentage of time
the robot loses track of the ball after a kick for different numbers of particles with and without
map information.

though they are in the visible range of the camera get low importance weights (visibil-
ity considers occlusions by other robots). In the following resampling step, these ball
samples are very unlikely to be drawn from the weighted sample set, thereby focusing
the search on other areas. As a result, the robot scans the whole area of potential ball
locations, pointing the camera at the most promising areas first. When none of the ball
particles are detected, the ball is declared lost and the ball samples are re-initialized at
the next ball detection.

4 Experiments
We evaluated the effectiveness of our tracking system in both simulated and real-world
environments. We first illustrate the basic properties of our algorithm by comparing it
with the traditional Kalman Filter. Then we evaluate how well the approach works on
the real robot.

4.1 Simulation Experiments

In the RoboCup domain, robots often cannot directly observe the ball, due to reasons
such as looking at landmarks for localization, or the ball being occluded by another
robot. The goalkeeper robot in particular has to accurately predict the trajectory of the
ball in order to block it. Hence, accurateprediction over multiple camera framesis of
utmost importance. To systematically evaluate the prediction quality of our multiple
model approach, we simulated a robot placed at a fixed location on the soccer field,
while the ball is kicked randomly at different times. The simulator generates noisy
observations of the ball. The observation noise is proportional to the distance from the
robot and constant in the orientation, similar in magnitude to the real robot. Prediction
quality is measured using the RMS error at the predicted locations.

In this experiment, we measure the prediction quality for a given amount of time
in the future, which we call theprediction time. Map information is not used, and the
ball is estimated with 20 particles (used to sample ball motion models at each iteration).
The observation noise of the Kalman filters was set according to the simulated noise.
To determine the appropriate Kalman prediction noise, we generated straight ball tra-
jectories and used the prediction noise value that minimized the RMS error for these
runs. This prediction noise was used by our multiple model approach when the motion

13

 0

 50

 100

 150

 200

 250

 300

 100 120 140 160 180 200 220 240 260 280 300

Y
 [c

m
]

X [cm]

Observations
Ref. Posn.

RBKF

(a)
 0

 50

 100

 150

 200

 250

 300

 100 120 140 160 180 200 220 240 260 280 300

Y
 [c

m
]

X [cm]

Observations
Ref. Posn.

KF*
KF’

(b)
 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 2 3 4 5 6 7 8 9 10 11

O
rie

nt
at

io
n

E
rr

or
 [d

eg
re

es
]

Time [sec]

RBPF
KF*

(c)

Fig. 3: Tracking of a ball trajectory with multiple kicks, the observer is located on the left. In (a)
and (b), the observations are indicated by stars and the true target trajectory is shown as a thin line.
(a) shows the estimated trajectory of our multiple-model approach. (b) shows the estimates using
an extended Kalman filter for two different prediction noise settings. The dotted line represents
the estimates when using prediction noise that assumes a linear ball trajectory, and the thick,
solid line is estimated using inflated prediction noise. (c) Orientation errors over a time period
including four kicks. Solid line RBPF, dashed line Kalman filter with inflated prediction noise.

model wasNone (see Section 3.1). The results for prediction times up to 2 seconds are
shown in Fig. 2(a). In addition to our RBPF approach (thick, solid line), we compare
it with single Kalman filters with different prediction noise models. The thin, solid line
shows the RMS error when using a single Kalman filter with prediction noise of the
straight line model (denotedKF ∗). However, since the ball is not always in a straight
line motion, the quality of the filter estimates can be improved by inflating the predic-
tion noise. We tried several noise inflation values and the dotted line in Fig. 2(a) gives
the results for the best such value (denotedKF ′). Not surprisingly, our multiple model
approach greatly improves the prediction quality.

The reason for this improved prediction performance is illustrated in Fig. 3. Our
approach, shown in Fig. 3(a), is able to accurately track the ball location even after a
kick, which is due to the fact that the particle filter accurately “guesses” the kick at the
correct location. The Kalman filter with the straight line motion model quickly diverges,
as shown by the dotted line in Fig. 3(b). The inflated prediction noise model (thick, solid
line) keeps track of the ball, but the trajectory obviously overfits the observation noise.
Further intuition can be gained from Fig. 3(c). It compares the orientation error of the
estimated ball velocity using our approach versus the inflated Kalman filterKF ∗(KF ′

shows a much worse performance; for clarity it is omitted from the graph). Clearly,
our approach recovers from large errors due to kicks much faster, and it converges to a
significantly lower error even during straight line motion.

4.2 Real-world Experiments

In this section we describe an experiment carried out on the real robot. It demonstrates
that the use of map information brings significant improvements to the tracking per-
formance. In the experiment, an AIBO robot and a ball are placed on the soccer field
at random locations. The task of the robot is to track the ball and kick it as soon as it
reaches it. The kick is a sideway head kick as shown in Fig. 4(c). The robot is not able
to see the ball until it recovers from the kick motion. During the experiment, the robot
stays localized by periodically scanning the markers on the field. Fig. 4 illustrates the
evolution of the particles during a kick. As can be seen in Fig. 4(c) and (d), each ball
particle〈b(i)

k ,m
(i)
k , ρ

(i)
k 〉 uses a different location for the border extracted from the robot

14

(a) (b)

(c) (d)

Fig. 4: (a) Robot-centric view of predicted ball samples. The robot kicked the ball to its right
using its head, (small rectangle). If field borders are not considered, the ball samples travel in the
kicked direction (ball motion is illustrated by the length and orientation of the small lines). (b)
Particlesρ(i)

k representing robot’s estimate of its position at the beginning of the kick command.
In the approximation, these particles are frequently taken from the robot location sample setRk.
(c) The robot has kicked the ball toward the border. The robot particles shown in (b) are used
to estimate the relative locations of borders. The sampled borders are shown as dashed lines. (d)
Most ball samples transition into theBounced state. Due to the uncertainty in relative border
location, ball samples bounce off the border at different times, directions and velocities. The
ball sample distribution predicts the true ball location much better than without considering the
borders, as shown in (a). Ball samples can also bounce off the robot.

locationsρ(i)
k shown in (b). These borders determine whether and how the ball motion

model transitions into theBounced state.

The results of 100 kick experiments are summarized in Fig. 2(b). The solid line
shows the rate of successfully tracking the ball after a kick. As can be seen, increasing
the number of samples also increases the performance of the approach. The poor perfor-
mance for small sample sizes indicates that the distribution of the ball is multi-modal,
rendering the tracking task difficult for approaches such as the IMM [2]. Fig. 2(b) also
demonstrates the importance of map information for tracking. The dashed line gives the
results when not conditioning the ball tracking on the robot locations. Obviously, not
considering the ball-environment interaction results in lower performance. On a final
note, using our approach with 20 samples significantly reduces the time to find the ball,
when compared to the commonly used random ball search strategy. When using the de-
fault search sequence, the robot takes on average 2.7 seconds to find the ball, whereas
the robot can locate the ball in 1.5 seconds on average when using our approach de-
scribed in Section 3.4.

15

5 Conclusion and Future work

In this paper we introduced a novel approach to tracking a moving target. The approach
uses Rao-Blackwellised particle filters to sample the potential interactions between the
observer and the target and between the target and the environment. By additionally
sampling non-linear motion of the observer, the target and its motion can be estimated
accurately using Kalman filters. Thus, our method combines the representational ca-
pabilities of particle filters with the efficiency and accuracy of Kalman filters. The ap-
proach goes beyond other applications of RBPFs in that it samples multiple parts of the
state space and integrates environment information into the state transition model. In
addition to the RBPF tracking algorithm, we introduce an efficient approximation that
makes use of the information flow in the tracking problem. The approximation greatly
reduces the number of particles needed for good performance and inherits the key ben-
efits from the original algorithm. However, if enough processing power is available, we
suggest to use the original algorithm.

The technique was implemented and evaluated using the task of tracking a ball with
a legged AIBO robot in the RoboCup domain. This problem is extremely challenging
since the legged motion of the robot is highly non-linear and the ball gets kicked and
frequently bounces off obstacles in the environment. We demonstrate that our efficient
implementation results in far better performance than vanilla Kalman filters. Other ex-
tensions of Kalman filters, such as the IMM and the GPB filters, are not well suited
for this task, since the uncertainty in the ball location is often multi-modal (even when
conditioned on a discrete state). The fact that our technique keeps track of multiple hy-
potheses for the ball’s location allows the robot to efficiently search for the ball using
negative information such as not seeing the ball. Finally, in real robot experiments, we
show that taking the environment into account results in additional performance gains.

We strongly believe that estimating a joint over the ball and its interactions with the
robots and the environment has also conceptual advantages. For example, our estimation
system treats the question of whether or not the robot currently grabs the ball as part
of the probabilistic estimation process. Thus, higher level robot control modules do not
have to reason about such facts any more; the information is provided in a sound way by
the comprehensive ball tracker. Furthermore, the ball tracker is “aware” of the robot’s
actions and automatically reasons about facts such as “if the robot grabs the ball, then
the ball moves with the robot”. Thus, such situations do not have to be treated as special
cases; they are an integral part of the estimation process.

In the future we will extend the algorithm to integrate ball information observed
by other robots, delivered via wireless communication. Such information can be trans-
mitted efficiently by clustering the ball samples according to the different discrete ball
motion states. The integration of transmitted ball estimates can then be done condi-
tioned on the different discrete ball states. Another important area of future research
is the integration of additional information provided by the vision system. Currently,
we do not model the location of other robots on the field and the ball transits into the
deflected model at random points in time. Furthermore, we estimate the relative
location of the field borders using only the robot’s location estimates. However, if the
robot detects the ball and an object in the same camera image, then this image provides
more accurate information about the relative location between the ball and an object.

16

Finally, we conjecture that further performance gains can be achieved using an un-
scented Kalman filter [14] to jointly track the position of the robot and the ball. Using
the Rao-Blackwellisation described in this paper, the discrete state of the ball would
still be sampled. However, each of these samples would be annotated with an unscented
filter over both robot and ball locations (and velocity). By modeling more dimensions
using efficient Kalman filters we expect to be able to track the robot / ball system with
far less samples. Such an approach is especially appropriate for the more accurate sen-
sors used in other RoboCup leagues.

6 Acknowledgments
This work has partly been supported by the NSF under grant number IIS-0093406.

References
1. Y. Bar-Shalom and X.-R. Li.Multitarget-Multisensor Tracking: Principles and Techniques.

Yaakov Bar-Shalom, 1995.
2. Y. Bar-Shalom, X.-R. Li, and T. Kirubarajan.Estimation with Applications to Tracking and

Navigation. John Wiley, 2001.
3. X. Boyen and D. Koller. Exploiting the architecture of dynamic systems. InProc. of the

National Conference on Artificial Intelligence (AAAI), 1999.
4. A. Doucet, J.F.G. de Freitas, K. Murphy, and S. Russell. Rao-Blackwellised particle filtering

for dynamic Bayesian networks. InProc. of the Conference on Uncertainty in Artificial
Intelligence (UAI), 2000.

5. A. Doucet, N. de Freitas, and N. Gordon, editors.Sequential Monte Carlo in Practice.
Springer-Verlag, New York, 2001.

6. A. Doucet, N.J. Gordon, and V. Krishnamurthy. Particle filters for state estimation of jump
Markov linear systems.IEEE Transactions on Signal Processing, 49(3), 2001.

7. D. Fox. Adapting the sample size in particle filters through KLD-sampling.International
Journal of Robotics Research (IJRR), 22(12), 2003.

8. F. Gustafsson, F. Gunnarsson, N. Bergman, U. Forssell, J. Jansson, R. Karlsson, and P-J.
Nordlund. Particle filters for positioning, navigation and tracking.IEEE Transactions on
Signal Processing, 50(2), 2002.

9. J.S. Gutmann and D. Fox. An experimental comparison of localization methods continued.
In Proc. of the IEEE/RSJ International Conference on Intelligent Robots and Systems, 2002.

10. M. Montemerlo, S. Thrun, and W. Whittaker. Conditional particle filters for simultaneous
mobile robot localization and people-tracking. InProc. of the IEEE International Conference
on Robotics & Automation (ICRA), 2002.

11. B. Ng, L. Peshkin, and A. Pfeffer. Factored particles for scalable monitoring. InProc. of the
Conference on Uncertainty in Artificial Intelligence (UAI), 2002.

12. T. Schmitt, R. Hanek, M. Beetz, S. Buck, and B. Radig. Cooperative probabilistic state
estimation for vision-based autonomous mobile robots.IEEE Transactions on Robotics and
Automation, 18(5), 2002.

13. D. Schulz, W. Burgard, and D. Fox. People tracking with mobile robots using sample-based
joint probabilistic data association filters.International Journal of Robotics Research, 22(2),
2003.

14. E.A. Wan and R. van der Merwe. The unscented Kalman filter for nonlinear estimation.
In Proc. of Symposium on Adaptive Systems for Signal Processing, Communications, and
Control, 2000.

