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We address the problem of underdetermined BSS. While most previous approaches are designed for instantaneous mixtures, we
propose a time-frequency-domain algorithm for convolutive mixtures. We adopt a two-step method based on a general maximum
a posteriori (MAP) approach. In the first step, we estimate the mixing matrix based on hierarchical clustering, assuming that the
source signals are sufficiently sparse. The algorithm works directly on the complex-valued data in the time-frequency domain
and shows better convergence than algorithms based on self-organizing maps. The assumption of Laplacian priors for the source
signals in the second step leads to an algorithm for estimating the source signals. It involves the �1-normminimization of complex
numbers because of the use of the time-frequency-domain approach. We compare a combinatorial approach initially designed for
real numbers with a second-order cone programming (SOCP) approach designed for complex numbers. We found that although
the former approach is not theoretically justified for complex numbers, its results are comparable to, or even better than, the SOCP
solution. The advantage is a lower computational cost for problems with low input/output dimensions.
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1. INTRODUCTION

The high-quality separation of speech sources is an impor-
tant prerequisite for further processing such as speech recog-
nition in environments with several active speakers. Often,
the underlying mixing process is unknown, thus requiring
blind source separation (BSS). In general, we can distinguish
two cases depending on the number of sources N and the
number of sensorsM:

(i) N > M: underdetermined BSS,
(ii) N ≤M: (over-) determined BSS.

Since overdetermined BSS (N < M) can be reduced to de-
termined BSS (N = M) [1], we refer to both as determined
BSS.Most approaches deal with determined BSS [2, 3], but in
reality BSS is often underdetermined. While the area of un-
derdetermined BSS is attracting increasing attention [4–12],
it remains a challenging task.

Most existing approaches for underdetermined BSS were
proposed for instantaneous mixtures. In this paper, we use

[13, 14] as our basis for proposing an algorithm for under-
determined BSS that deals with convolutive mixtures in the
time-frequency domain.We start from a general Bayesian ap-
proach, which leads to a two-stage framework. In the first
stage, we have to estimate the mixing matrix. In the second,
stage the actual source signals are estimated.

Several of the previously proposed algorithms for the
first stage are based on histograms and developed for only
two sensors [7, 9, 11]. Some could, in principle, be en-
hanced for higher dimensions M. But since histograms are
based on densities, the so-called curse of dimensionality
[15] sets practical limits to the number of usable sensors.
This problem becomes even worse with complex numbers,
which double the histogram dimensions due to their real
and imaginary parts or amplitude and phase, respectively.
Complex numbers are necessary if BSS is performed in the
time-frequency domain. Some methods approach complex
numbers by applying real-valued algorithms to the real and
imaginary parts or amplitude and phase [6, 12], which is not
always applicable. Some approaches extract features such as
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the direction of arrival (DOA), or work on the amplitude re-
lation between two sensor outputs [4, 5, 7, 16]. In both cases,
only two sensors can contribute, no matter how many sen-
sors are available.

Other algorithms such as GeoICA [8] or AICA [10] re-
semble self-organizing maps (SOMs) and could more easily
be applied to convolutive mixtures. However, their conver-
gence depends heavily on initial values [15]. Usually, coun-
termeasures are computationally expensive.

Here we propose the use of hierarchical clustering to es-
timate the mixing matrix. This method can work directly on
complex-valued samples. While it does not limit the usable
numbers of sensors, it prevents the convergence problems
that can occur with SOM-based algorithms.

In the second stage, we separate the mixtures using the
estimated mixing matrix from the first stage. We assume sta-
tistical independence and Laplacian probability density func-
tions (PDFs) for the sources [17]. This leads to constrained
�1-normminimization. Since we are considering convolutive
mixtures, we work in the time-frequency domain. This re-
duces the convolutive mixtures to instantaneous mixtures,
which are easier to handle. As a result, we have to deal with
complex numbers.

Therefore we investigate the difference between real- and
complex-valued �1-norm minimizations and its implication
for the underdetermined BSS of convolutive mixtures.

In Section 2, we first explain the general framework be-
fore providing details about the hierarchical clustering in
Section 3 and the source separation based on �1-norm min-
imization in Section 4. In Sections 4.2 and 4.3, we present
a detailed description of real- and complex-valued �1-norm
minimizations before considering their differences. The con-
sequences of these differences for practical applications are
described in Section 5 together with experimental results.
They demonstrate the performance for convolutively mixed
speech data in a real room with reverberation time TR = 120
milliseconds.

2. GENERAL FRAMEWORK

We consider a convolutivemixingmodel withN speech sour-
ces si(t) (i = 1, . . . ,N) and M (M < N) sensors that yield
linearly mixed signals xj(t) ( j = 1, . . . ,M). The mixing can
be described by

xj(t) =
N∑

i=1

∞∑

l=0
hji(l)si(t − l), (1)

where hji(t) denotes the impulse response from source i to
sensor j.

Instead of solving the problem in the time domain, we
choose a narrowband approach in the time-frequency do-
main by applying a short-time Fourier transform (STFT).
While a wideband approach would be desirable, extension of
the proposed method is not as straightforward as described
for example in [18]. This is because this problem has a dif-
ferent structure from traditional adaptive filtering problems.
Following [13], we can approximate the mixing process in

the time-frequency domain as

X( f , τ) = H( f )S( f , τ), (2)

where X ∈ KM ,H ∈ KM×N , S = [S1, . . . , SN ]T ∈ KN ,K = C,
and τ denotes the time frame.

This reduces the problem from convolutive to instanta-
neous mixtures in each frequency bin f . For simplicity, we
will omit the frequency and time-frame dependence. Switch-
ing to the time-frequency domain has the additional advan-
tage of making it easier to exploit the time-frequency sparse-
ness of speech sources [6]. Sparseness of a signal means that
only a few instances have a value significantly different from
zero. During speech activity, the amplitude of a speech sig-
nal in the time domain is usually significantly different from
zero, and therefore not sparse. The higher sparseness in the
time-frequency domain can be explained by the harmonic
structure of speech signals. During voiced speech, the en-
ergy of a speech signal is concentrated around multiples of
the speaker’s fundamental frequency. Ideally, the frequency
bands in between do not carry any energy. This means that in
the time-frequency domain, only a few frequency bins have
high values at each time instance τ, while most frequency
bins have a value close to zero. This is by definition a sparse
signal. In addition, the fundamental frequency depends on
the time instance τ, which means that the signal is also sparse
with respect to τ. Together with the frequency sparseness and
the speaker dependency, this leads to less overlap in the time-
frequency domain than in the time domain. Using a sparse
signal representation is very important as regards ensuring
good separation performance since the separation is built on
the assumption of sparse source signals.

The disadvantage of narrowband BSS in the time-
frequency domain is the internal permutation problem,
which results in incorrect frequency bin alignment. In our
framework, we use a clustering-based method to reduce the
permutation problem [3, 19]. We also apply the minimum-
distortion principle [2] to solve the scaling problem.

In determined BSS, the mixing matrix H is square and
(assuming full rank) invertible. Therefore, the BSS problem
can be solved by either inverting an estimate of the mixing
matrix or directly estimating its inverse and solving (2) for S.

However, this approach does not work in underdeter-
mined BSS where themixingmatrix is not invertible. Instead,
we follow a general Bayesian approach, which leads to an op-
timal solution in a statistical sense. In general, we search for
an estimation of the source signals S and mixing matrix H
that maximize the a posteriori P(S,H|X). If wemake the usu-
ally reasonable assumption that the source signals and mix-
ing matrix are statistically independent, this problem can be
written as

max
S,H

P(S,H | X) = max
S,H

P
(
X | S,H)P(S,H)

P(X)
(3)

∼ max
S,H

P(X | S,H)P(S)P(H). (4)
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Figure 1: Overall unmixing system.

If we assume additive white Gaussian noise with variance ν2

at the sensors, then the likelihood P(X|S,H) also has a Gaus-
sian distribution according to

P(X | S,H) = N
(
X | HS, ν2I

)
. (5)

We will limit ourselves to the noiseless case (ν2 → 0), which
leads to a Dirac impulse for the likelihood

P(X | S,H) = lim
ν2→0

N
(
X | HS, ν2I

) = δ(X−HS). (6)

It requires the maximum of the a posteriori to fulfillHS = X,
which turns (3) into the constrained problem

max
S,H

P(S)P(H) s.t.HS = X. (7)

If we further assume that we know the mixing matrix H (or
can provide an estimate for it as shown in Section 3), then
P(H) is also a Dirac impulse. So we only have to estimate the
source signals S, and (7) results in

max
S

P(S) s.t.HS = X. (8)

Therefore we follow a two-stage approach as utilized in [6, 8]
consisting of blind mixing model recovery (BMMR) and
blind source recovery (BSR). To estimate the mixing matrix
A in the BMMR step, we propose the use of hierarchical clus-
tering as described in detail in Section 3. To eventually sep-
arate the signals in the BSR step, we specify a source model
P(S) and provide a solution for (8) in Section 4. Finally, the
inverse STFT is applied to obtain time-domain signals. The
overall system is depicted in Figure 1.

3. BLINDMIXINGMODEL RECOVERY

Several algorithms have already been proposed for BMMR.
They usually have the common feature that they assume
sparseness of the original signals. Without being mentioned,
it is usually assumed that the sources are located at different
spatial positions (space sparseness). In addition, they com-
monly assume a certain degree of time-frequency sparseness,
which ideally means that the time-dependent spectra of the
sources do not overlap even after being mixed. Rewriting (2),
we can express ideal time-frequency sparseness by

X( f , τ) =
N∑

i=1
hi( f )Si( f , τ)

= hq( f )Sq( f , τ), q ∈ {1, . . . ,N}.
(9)

Thismeans that each time-frequency instance originates only
from a single source and represents a scaled version of the
corresponding mixing vector hq( f ). q depends on the fre-
quency f and time τ.

If we assume stationary source positions, the mixing vec-
tor hq( f ) is constant for all τ. Since hq( f ) is related to the
position of the qth source, it is also different for each source.
This means ideally that the time-frequency samples X( f , τ),
that originate from the qth source, cluster at each frequency
f around the corresponding mixing vectors hq( f ).

However, depending on the mixing system and the actual
time-frequency sparseness of the source signals, the mixed
signals will also have components of other mixing vectors
stemming from other sources. Therefore the mixtures will be
spread around the mixing vectors but still form clusters for
each source.

3.1. Hierarchical clustering

To avoid the problems discussed in Section 1, such as the
curse of dimensionality or poor convergence, we propose
the use of a hierarchical clustering algorithm for finding the
clusters around the mixing vectors. We follow an agglomera-
tive (bottom-up) strategy. [15]. This means that the starting
point is the single samples, considering them as clusters that
contain only one object. Clusters are then combined, so that
the number of clusters decreases while the average number
of objects per cluster increases. In the following, we assume
phase and amplitude normalized samples

X ←− X
|X|2 e

−ϕX1 , (10)

where ϕX1 denotes the phase of the first vector component of
X and |·|p denotes the �p-norm defined by

|Z|p =
(
∑

i

Z
p
i

)1/p

. (11)

The combination of clusters into new clusters is an iterative
process based on the distance between the current clusters.
Starting from the normalized samples, the distance between
each pair of clusters is calculated, resulting in a distance ma-
trix. At each level of the iteration, the two clusters with the
least distance are combined to form a new binary cluster
(Figure 2). This process is called linking and is repeated un-
til the number of clusters has decreased to a predetermined
value c, N ≤ c ≤ P (P is the total number of samples).
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Figure 2: Linking the closest clusters.
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Figure 3: Illustration of distances.

To measure the distance between clusters, we have to
distinguish between two different problems. First we need
a distance measure d(Xτ1 ,Xτ2 ) that is applicable to M-
dimensional complex vector spaces. While there are several
possibilities, we currently use the Euclidean distance based
on the normalized samples, which is defined by

d
(
Xτ1 ,Xτ2

) =
√〈(

Xτ1 −Xτ2

)
,
(
Xτ1 −Xτ2

)∗〉
, (12)

where 〈·, ·〉 stands for the inner product and ∗ stands for
complex conjugation.

When a new cluster is formed, we need to enhance
this distance measure to relate the new cluster to the other
clusters. The method we employ here is called the nearest-
neighbor technique. Let C1 and C2 denote two clusters as
illustrated in Figure 3. Then the distance d(C1,C2) between
these clusters is defined as the minimum distance between its
samples by

d
(
C1,C2

) = min
Xτ1∈C1, Xτ2∈C2

d
(
Xτ1 ,Xτ2

)
. (13)

As mentioned earlier, most of the samples will cluster around
the mixing vectors hi, depending on the degree of sparse-
ness of the original signals. Special attention must be paid to
the remaining samples (outliers), which are randomly scat-
tered in the space between themixing vectors due to nonideal
sparseness (and noise if applicable). Usually they are far away
from other samples and will be combined with other clusters
only at higher levels of the clustering process (i.e., when only
few clusters are left). This led us to the idea of setting the final
number of clusters at a high value:

c
 N. (14)
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Figure 4: Estimation of mixing vectors, f = 1164Hz.

By doing so, we avoid linking these outliers with the clusters
around the mixing vectors hi and therefore avoid distortions.
This results in greater robustness. More important, however,
is the fact that we avoid combining desired clusters. Since the
outliers are often far away from other clusters, desired clus-
ters might be closer to each other than to outliers. Experi-
ments showed that the exact value of c does not matter as
long as it is above 60 for N ∈ {3, 4, 5}.

This approach requires distance calculations, but with a
well-designed implementation as used here, the computa-
tional complexity can become as low as O(n2) [20], where
n denotes the number of samples per frequency bin. An ex-
ample of the resulting clusters is shown in Figure 4. Here, as
with the experiments in Section 5, we chose c = 100. An
example where desired clusters were unintentionally com-
bined because too small a value c was chosen is shown in
Figure 5. Further experimental details are given in Section 5.

3.2. Estimation ofmixingmatrix

Assuming that the clusters around the mixing vectors hi have
the highest densities, and therefore the highest numbers of
samples, we finally chose theN clusters with the largest num-
bers of samples. Thereby, the number of sources N must be
known. To obtain the mixing vectors, we average over all the
samples of each cluster,

hi = 1∣∣Ci

∣∣
∑

X∈Ci

X, 1 ≤ i ≤ N , (15)

where |Ci| denotes the cardinality of cluster Ci. Thereby, we
assume that the influence of other sources has zero mean.

3.3. Advantages of hierarchical clustering

Among the most important advantages of the above hierar-
chical clustering algorithm is the fact that it works directly
on the sample data in any vector space with arbitrary dimen-
sions. The only requirement is the definition of a distance
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Figure 5: Example of unintentionally combining desired clusters,
f = 1164Hz.

measure for the considered vector space. Therefore, it can
easily be applied to the complex-valued data that occurs in
time-frequency domain convolutive BSS.

No initial values are required for the mixing vectors hi.
This means, in particular, that if the assumption of clusters
with high densities around the mixing vectors is true, then
the algorithm converges to those clusters.

Besides choosing a distance measure, there is only the
single parameter c that determines the number of clusters.
Experiments have shown that the choice of this parameter
is quite insensitive as long as it is above a certain limit that
would combine desired clusters. Its choice is, in general, re-
lated to the sparseness of the sources. The sparser the signals
are, the smaller the value of c can be, because the number of
outliers that must be avoided will be smaller.

While the considered signals must have some degree of
sparseness, they do not have to be statistically independent
at this point to obtain clusters.

4. BLIND SOURCE RECOVERY

Unmixed signals cannot be directly obtained, because the
mixing matrix cannot be inverted in underdetermined BSS.
Several approaches have been proposed to solve blind source
recovery [17]. Of these approaches, we chose the shortest-
path algorithm, which is based on maximum a posteriori
(MAP) estimation, assuming statistical independence and
Laplacian PDFs for the sources.

4.1. MAP-based cost function

Using a maximum a posteriori (MAP) approach, we have
shown in Section 2, that once we know the mixing matrix
H, we have to solve the constrained problem (8) in order to
obtain a statistically optimal estimate for the source signals
S. If we assume mutually independent source signals whose
spectral components have statistically independent phases

and amplitudes with uniform and one-sided Laplacian dis-
tributions, respectively, the cost function results in

min
S

∑

i

|Si|, i = 1, . . . ,N , s.t.HS = X, (16)

for each time instance τ. |Si| denotes the amplitude of Si.

4.2. �1-normminimization of real-valued problems

If we had to consider only real-valued problems (K = R), we
could employ linear programming (LP) [21], which solves
problems of the form

min ĉT Ŝ, s.t. ĤŜ = X̂, Ŝi ≥ 0, i = 1, . . . , N̂ , (17)

where ĉ, Ŝ ∈ RN̂ , Ĥ ∈ RM̂×N̂ , and X̂ ∈ RM̂ . For K = R,
(16) can be transformed into (17) by separating positive and
negative values by

Ŝ←−
[
S+

S−

]
,

ĉ←−
[
1
1

]
, Ĥ←−

[
H
−H

]
, X̂ ←− X.

(18)

Here 1 stands for a unity matrix with appropriate dimen-
sions. S+ and S− are derived from S by setting all negative
values or positive values, respectively, at zero.

Although powerful algorithms for linear programming
exist, they are still time consuming. Depending on the di-
mensions of the problem, we can obtain a faster combinato-
rial algorithm if we use a certain property of the solution. It
can be shown [8, 22] that the N-dimensional vector S that
solves (16) contains at least N −M zeros if the columns ofH
are normalized. The normalization can be assumed for BSS
due to the scaling ambiguity.

The lower limit for the number of zeros can be consid-
ered a constraint imposed by the MAP estimation and can
easily be fulfilled by setting N −M elements of the solution
at zero. Then we only have to determine the remainingM el-
ements. Assuming that we know where to place the zeros, the
remaining elements are found by multiplying the inverse of
the quadratic matrix built by the remaining mixing vectors
hi with the constraining vector X:

[
hi1 , . . . ,hiM

]−1
X, i1, . . . , iM ∈ {1, . . . ,N}. (19)

The correct placement of the zeros can be determined by
combinatorially testing all possibilities and accepting the one
with the smallest �1-norm. As a simple example, let us con-
sider

H =
[
1 0.6 −0.6
0 0.8 0.8

]
, X =

[
1

0.5

]
. (20)

According to the dimensions of the problem, at least one el-
ement of the solution S must be zero. The �1-norm of the
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possible solutions is

∣∣∣∣∣∣∣∣

⎡
⎢⎢⎣

[
1 0.6

0 0.8

]−1 [
1

0.5

]

0

⎤
⎥⎥⎦

∣∣∣∣∣∣∣∣
1

= 1.25, (21)

∣∣∣∣∣∣

⎡
⎣0

[
1 −0.6
0 0.8

]−1 [
1

0.5

]⎤
⎦

∣∣∣∣∣∣
1

= 2, (22)

∣∣∣∣∣∣∣∣

⎡
⎢⎢⎣

0
[
0.6 −0.6
0.8 0.8

]−1 [
c1

0.5

]
⎤
⎥⎥⎦

∣∣∣∣∣∣∣∣
1

= 1.6. (23)

The notation of (22) reflects the above description of setting
one element at zero and inverting the remaining quadratic
matrix. The chosen solution would be the one corresponding
to (21).

This combinatorial method is based on the shortest-
path algorithm [8] and the �0-norm that basically counts
the number of nonzero elements. The combinatorial method
stands in contrast to the approach in [23] where conditions
are given for which the �0-norm can be calculated by an �p-
norm with 0 < p ≤ 1.

4.3. �1-normminimization of complex-valued
problems

If complex numbers are involved, then (18) can no longer be
applied because such numbers possess a continuous phase in
contrast to a discrete phase of real numbers. Thus we cannot
use algorithms that solve linear programming problems for
complex-valued problems. However, �1-norm minimization
problems (16) with complex numbers (K = C) can be trans-
formed to second-order cone programming (SOCP) prob-
lems in the following way.

Equation (16) is equivalent to

min t ∈ R, s.t. X = HS, |S|1 ≤ t. (24)

By decomposing t = ∑N
i=1 ti, ti ∈ R, the second constraint

|S|1 ≤ t can be expressed by

|S|1 =
N∑

i=1

∣∣∣∣∣

[�(Si
)


(Si
)
]∣∣∣∣∣

2

≤ 1T t = 1T
[
t1, . . . , tN

]T = t, (25)

where �(·) and 
(·) denote the real and imaginary parts,
respectively. Thus we can rewrite (16) as

min
t

1T t, s.t. X = HS,

∣∣∣∣∣

[�(Si
)


(Si
)
]∣∣∣∣∣

2

≤ ti, ∀i. (26)

By defining

Ŝ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ct1
�(S1

)


(S1
)

...

tN
�(SN

)


(SN
)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R3N , ĉ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

c1

0

0
...

1

0

0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

∈ R3N ,

X̂ =
[�(X)

(X)

]
∈ R2M ,

Ĥ

=
[
0 �(h1

) −
(h1
) · · · 0 �(hN

) −
(hN
)

0 
(h1
) �(h1

) · · · 0 
(hN
) �(hN

)
]
∈R2M×3N ,

(27)

we can write

min
Ŝ

ĉT Ŝ, s.t. X̂ = ĤŜ,

∣∣∣∣∣

[�(Si
)


(Si
)
]∣∣∣∣∣

2

≤ ti ∀i. (28)

The second constraint in (28) can be interpreted as a second-
order cone for each i.

Equation (28) describes an SOCP problem [24], which
can be solved numerically for example with SeDuMi [16].

4.4. Analysis of real- and complex-valued
�1-normminimizations

In contrast to the real-valued �1-norm minimization prob-
lem where a minimum number of zeros can be guaranteed
theoretically in the optimal solution, the number of zeros
cannot be predicted with complex-valued problems as the
following simple example shows. Let

H =

⎡
⎢⎢⎢⎣

1 0.6
4√
17

0 0.8
0.8 + j0.6√

17

⎤
⎥⎥⎥⎦ , X =

[
1

0.5

]
. (29)

Then the �1-norm of the solution obtained by SOCP is given
by

∣∣Ssocp
∣∣
1 =

∣∣∣∣∣∣∣∣

⎡
⎢⎢⎣

0.227 + 0.040i

0.511− 0.091i

0.481 + 0.015i

⎤
⎥⎥⎦

∣∣∣∣∣∣∣∣
1

= 1.23. (30)

It does not contain any zeros as we would expect with
real numbers, yet it solves (16). In comparison, the �1-norm
of the optimal combinatorial solution is given by

∣∣Scomb
∣∣
1 =

∣∣∣∣∣∣∣∣∣∣∣∣

⎡
⎢⎢⎢⎢⎢⎢⎣

0
⎡
⎢⎢⎢⎣

0.6
4√
17

0.8
0.8 + j0.6√

17

⎤
⎥⎥⎥⎦

−1
[
1

0.5

]

⎤
⎥⎥⎥⎥⎥⎥⎦

∣∣∣∣∣∣∣∣∣∣∣∣
1

= 1.24.

(31)
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This observation reveals a very important difference from
real-valued problems and prevents the theoretical justifica-
tion of a procedure similar to the combinatorial approach in
Section 4.2. To better explain this difference between real and
complex numbers, we take a look at a general solution based
on a combinatorial solution and the nullspaceN (H) ofH.

Even though the combinatorial solution Scomb does not
necessarily minimize the �1-norm, it fulfills together with the
SOCP solution Ssocp that

X = HScomb = HSsocp. (32)

By defining the difference Ŝ = Ssocp − Scomb, (32) becomes

HScomb = HScomb +HŜ︸︷︷︸
=0

. (33)

This means that if we have a combinatorial solution, we can
limit our search for the minimum �1-norm solution to the
nullspaceN (H), that is,

min
∣∣Scomb + Ŝ

∣∣
1 (34)

with

Ŝ ∈ N (H)⇐⇒ Ŝ = (
1−H−H

)
z, z ∈ CN , (35)

whereH− is an arbitrary generalized inverse ofH. For N = 3
and M = 2, we can express the combinatorial solution and
the nullspace without loss of generality by

Scomb =
⎡
⎣
[
h1 h2

]−1
X

0

⎤
⎦ ,

N (H) = α

⎡
⎣
[
h1 h2

]−1
h3

1

⎤
⎦ , α ∈ C.

(36)

With (36), the function to be minimized (34) can be written
as

∣∣Scomb + αŜ
∣∣
1 =

∣∣ f11(H,X) + α f12(H,X)
∣∣

+
∣∣ f21(H,X) + α f22(H,X)

∣∣

+
∣∣ f31(H,X) + α f32(H,X)

∣∣.

(37)

Here fi j is a summand that only depends onH and X, which
are constant for any given problem. If only real values are
involved, then (37) describes a piecewise linear function de-
pending on α whose slope can only change a limited number
of times in a discrete manner.

However, once complex numbers are involved, their
imaginary part results in an inherent �2-norm, which leads
to smooth slopes as they appear with second-order or higher
polynomials. This behavior becomes obvious in (28). There
the �1-norm is changed from the sum of the absolute val-
ues of real numbers to the sum of the �2-norms of the
real and imaginary parts. The introduction of the �2-norm
explains the different behavior of complex-valued �1-norm
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Figure 6: Smooth slope.

Table 1: Experimental conditions.

Sensor distance 40mm

Source signal length 7 seconds

Reverberation time TR 120ms

Sampling frequency fs 8 kHz

Window type von Hann

Filter length 1024 points

Shifting interval 256 points

Number of clusters c 100

minimization compared with its real counterpart. An exam-
ple is shown in Figure 6, where the dependence of �1-norm
on α is shown (here only the dependence on the real part of
α is shown). The combinatorial solution that minimizes the
�1-norm is given there for α = 0. However, this is not the
solution of (16), which is rather obtained for α �= 0.

5. EXPERIMENTAL RESULTS

Even though the combinatorial solution (CS) with a mini-
mum number of zeros in Section 4.2 cannot be justified the-
oretically for complex numbers, in practice its performance
is comparable to, or even better than, that of the SOCP so-
lution. In our experiments, we separated mixtures that we
obtained from clean speech signals and recorded room im-
pulse responses. We tested both approaches with both the es-
timated and the original mixingmatrices with different num-
bers of sources (N ∈ {3, 4, 5}) and sensors (M ∈ {2, 3}).
We performed four experiments for each scenario. Each of
the four experiments had a different combination of speak-
ers drawn from six male and female English speakers. Fur-
ther experimental conditions are summarized in Table 1 and
Figure 7. For comparison, we also applied a time-frequency-
masking approach to the same mixtures [25].

To measure the performance, we decomposed an esti-
mated signal s in the time domain into a filtered version starget
of the original signal, a filtered mixture einterf of the interfer-
ing signals and eartif , which accounts for artifacts introduced
by the separation algorithm [26, 27],

s = starget + einterf + eartif . (38)
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Figure 7: Room setup, room height = 240 cm.

As performance measures, we used the source-to-distortion
ratio

SDR = 10 log10

∑
s2target

∑(
einterf + eartif

)2 , (39)

the source-to-interference ratio

SIR = 10 log10

∑
s2target∑
e2interf

, (40)

and the source-to-artifact ratio

SAR = 10 log10

∑(
starget + einterf

)2
∑
e2artif

. (41)

The results are shown in Tables 2, 3, 4, and 5. The perfor-
mance values of each combination give the average for the in-
volved signals. The specific sources and sensors used in each
scenario are indicated in the caption of each table following
the numbering in Figure 7.

To evaluate the performance improvement, we provide
the input SDR, SIR, and SAR measured at a single sensor in
Table 6.

A subjective evaluation of the separated sources supports
the result.

The SOCP solution and combinatorial solution yield
similar results with the estimated mixing matrix. However,
the combinatorial solution performs better with the optimal
mixing matrix.

Although the difference in performance quality is negli-
gible in practical applications with estimated mixing matri-
ces, the computational complexity reveals great differences.
The combinatorial solution has a low initial computational
complexity but grows exponentially with the input dimen-
sion N . On the other hand, the SOCP solution has a high
computational complexity even for low input dimensions N ,
but even in the worst case it grows only according to

O
(√

N log
1
ε

)
. (42)

ε denotes the precision of the numerical algorithm [16].
Figure 8 illustrates this fact and shows on a logarithmic scale
the time required by the two approaches to separate the
sources in one frequency bin with 230 time frames for dif-
ferent numbers of sources and sensors. The simulations for
Figure 8 were performed on a 2.4GHz PC based on random
data and mixing matrices.

One reason for the big difference in the initial compu-
tational complexity can be found in the reusability of previ-
ous results. For underdetermined BSS in the time-frequency
domain, the minimum �1-norm solution must be calculated
several times with the same mixing matrix. The combinato-
rial solution is built on the inverses of selected mixing vec-
tors. Once they are calculated, they can be reused as long as
the mixing matrix does not change. In contrast, SOCP can-
not profit from the reuse of earlier results due to its algorith-
mic nature.
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Table 2: Separation results for 3 sources (3, 5, 7), 2 mixtures (1, 2).

Combination
Original mixing matrix Estimated mixing matrix Time-frequency

CS SOCP CS SOCP masking

SDR SIR SAR SDR SIR SAR SDR SIR SAR SDR SIR SAR SDR SIR SAR

1 10.17 14.61 12.31 10.67 14.12 13.57 6.03 9.67 9.19 6.29 9.45 9.88 5.24 11.36 7.28

2 10.21 14.72 12.31 9.05 11.81 12.79 2.73 6.57 6.28 3.44 6.88 7.15 5.34 11.76 7.23

3 11.62 16.60 13.49 11.48 14.91 14.53 6.41 10.57 9.53 6.74 10.50 10.16 4.87 10.61 7.10

4 10.71 15.67 12.61 9.57 12.91 12.63 4.54 8.82 7.85 4.76 8.74 8.36 6.17 12.29 8.13

Average 10.68 15.40 12.68 10.19 13.44 13.38 4.93 8.91 8.21 5.30 8.89 8.89 5.40 11.51 7.43

Table 3: Separation results for 4 sources (1, 3, 4, 6), 2 mixtures (1, 2).

Combination
Original mixing matrix Estimated mixing matrix Time-frequency

CS SOCP CS SOCP masking

SDR SIR SAR SDR SIR SAR SDR SIR SAR SDR SIR SAR SDR SIR SAR

1 4.91 8.73 7.84 4.32 7.33 8.98 −0.55 2.24 5.36 −0.26 2.16 6.18 1.33 5.80 4.70

2 5.73 9.97 8.25 4.96 8.18 9.10 −1.40 1.02 5.19 −0.36 1.96 5.87 2.01 7.40 5.05

3 5.58 9.57 8.32 4.13 7.00 8.66 −1.31 1.14 5.34 0.30 2.71 6.02 1.53 6.18 5.23

4 5.94 10.07 8.63 5.05 8.55 9.36 0.22 3.07 5.57 0.61 3.09 6.40 1.49 6.25 4.88

Average 5.54 9.59 8.26 4.62 7.76 9.02 −0.76 1.87 5.36 0.07 2.48 6.12 1.59 6.41 4.96

Table 4: Separation results for 4 sources (1, 3, 4, 6), 3 mixtures (1, 2, 3).

Combination
Original mixing matrix Estimated mixing matrix Time-frequency

CS SOCP CS SOCP masking

SDR SIR SAR SDR SIR SAR SDR SIR SAR SDR SIR SAR SDR SIR SAR

1 13.93 18.45 15.9 13.38 16.71 16.24 9.64 13.15 12.46 9.76 12.93 12.88 6.30 13.56 7.50

2 14.15 18.77 16.07 14.36 17.92 17.00 5.66 8.41 9.91 7.36 10.19 11.11 7.15 14.25 8.34

3 14.66 20.01 16.21 14.64 18.73 16.86 11.35 15.38 13.71 11.58 15.16 14.26 6.69 13.66 7.96

4 14.58 19.25 16.46 14.48 18.26 16.96 10.23 13.12 13.67 10.75 13.36 14.46 7.01 14.12 8.23

Average 14.33 19.12 16.16 14.22 17.91 16.76 9.22 12.51 12.44 9.86 12.91 13.18 6.79 13.89 8.01

Table 5: Separation results for 5 sources (1, 2, 3, 4, 6), 3 mixtures (1, 2, 3).

Combination
Original mixing matrix Estimated mixing matrix Time-frequency

CS SOCP CS SOCP masking

SDR SIR SAR SDR SIR SAR SDR SIR SAR SDR SIR SAR SDR SIR SAR

1 9.80 13.86 12.17 10.12 13.46 13.03 6.31 9.81 9.35 6.63 9.73 10.03 4.62 10.65 6.39

2 10.00 14.03 12.39 10.38 13.71 13.30 6.02 9.57 9.08 6.37 9.58 9.71 4.97 11.35 6.52

3 10.23 14.27 12.61 10.43 13.48 13.66 6.08 9.28 9.52 6.33 9.19 10.12 4.74 10.87 6.47

4 9.68 13.67 12.12 10.30 13.67 13.20 6.39 9.89 9.43 6.71 9.85 10.08 4.03 10.39 5.73

Average 9.93 13.95 12.32 10.31 13.58 13.30 6.20 9.64 9.35 6.51 9.59 9.99 4.59 10.81 6.28

Table 6: Input SDR,SIR, and SAR for different numbers N of sources.

Combination
3 sources 4 sources 5 sources

SDR SIR SAR SDR SIR SAR SDR SIR SAR

1 −3.11 −3.09 26.14 −4.52 −4.51 26.84 −5.57 −5.56 27.13

2 −2.79 −2.78 27.22 −4.35 −4.34 27.56 −5.69 −5.67 26.37

3 −2.79 −2.77 26.08 −4.46 −4.45 26.91 −5.59 −5.58 26.05

4 −2.80 −2.79 26.06 −4.53 −4.51 25.31 −5.83 −5.81 25.93

Average −2.87 −2.86 26.37 −4.47 −4.45 26.65 −5.67 −5.65 26.37
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Figure 8: Comparison of computational complexity: (a) 2 mixtures, (b) 3 mixtures, (c) 4 mixtures, and (d) 5 mixtures.

The time-frequency masking approach yields better sep-
aration in terms of the SIR than the proposed methods. This
is because the time-frequency masking approach uses only
time-frequency instances that originate from a single source
with high confidence. In contrast, the proposed methods
do not evaluate the confidence about the origin of a time-
frequency instance but use all instances for separation in a
uniform way. On the other hand, by using all time-frequency
instances, the proposed methods result in fewer artifacts, as
expressed by a higher SAR.

6. CONCLUSION

Starting from a general Bayesian approach, we derived a
framework for underdetermined BSS for convolutive speech
mixtures consisting of two main steps. In the first step, we
estimate the mixing matrix based on hierarchical cluster-
ing. This method can work directly on complex mixture
samples. It also prevents the convergence problems that can
occur with SOM-based methods such as GeoICA. Experi-
mental results confirmed that the assumption of sparseness
in time-frequency and space, and therefore, clusters around
the mixing vectors, is sufficiently fulfilled for convolutively
mixed speech signals in the time-frequency domain.

To estimate the source signals, in the second step we as-
sumed Laplacian priors and arrived at an �1-normminimiza-
tion problem. We investigated the consequence of dealing
with complex numbers as an result of the time-frequency-
domain approach. Although the combinatorial solution with
at least N −M zeros is not theoretically justified for complex
numbers, its performance quality is comparable to, or even
better than, that of the SOCP solution. In addition, the com-
binatorial solution has the advantage that it is faster for un-
derdetermined BSS problems with low input/output dimen-
sions.

REFERENCES

[1] S.Winter, H. Sawada, and S.Makino, “Geometrical interpreta-
tion of the PCA subspace approach for overdetermined blind
source separation,” EURASIP Journal on Applied Signal Pro-
cessing, vol. 2006, Article ID 71632, 11 pages, 2006, special is-
sue: Advances in Multimicrophone Speech Processing.

[2] K. Matsuoka, “Independent component analysis and its ap-
plications to sound signal separation,” in Proceedings of the
8th International Workshop on Acoustic Echo and Noise Control
(IWAENC ’03), pp. 15–18, Kyoto, Japan, September 2003.

[3] H. Sawada, R. Mukai, S. Araki, and S. Makino, “A robust
and precise method for solving the permutation problem of



Stefan Winter et al. 11

frequency-domain blind source separation,” IEEE Transactions
on Speech and Audio Processing, vol. 12, no. 5, pp. 530–538,
2004.

[4] S. Araki, S. Makino, A. Blin, R. Mukai, and H. Sawada, “Un-
derdetermined blind separation for speech in real environ-
ments with sparseness and ICA,” in Proceedings of IEEE Inter-
national Conference on Acoustics, Speech and Signal Processing
(ICASSP ’04), vol. 3, pp. 881–884, Montreal, Quebec, Canada,
May 2004.

[5] A. Blin, S. Araki, and S. Makino, “Underdetermined blind
separation of convolutive mixtures of speech using time-
frequency mask and mixing matrix estimation,” IEICE Trans-
actions on Fundamentals of Electronics, Communications and
Computer Sciences, vol. E88-A, no. 7, pp. 1693–1700, 2005.

[6] P. Bofill and M. Zibulevsky, “Blind separation of more sources
than mixtures using sparsity of their short-time Fourier trans-
form,” in Proceedings of International Workshop on Indepen-
dent Component Analysis and Blind Signal Separation (ICA’00),
pp. 87–92, Helsinki, Finland, June 2000.
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[11] Ö. Yilmaz and S. Rickard, “Blind separation of speech mix-
tures via time-frequency masking,” IEEE Transactions on Sig-
nal Processing, vol. 52, no. 7, pp. 1830–1847, 2004.

[12] P. Bofill, “Underdetermined blind separation of delayed sound
sources in the frequency domain,” Neurocomputing, vol. 55,
no. 3-4, pp. 627–641, 2003.

[13] S. Winter, H. Sawada, S. Araki, and S. Makino, “Overcomplete
BSS for convolutivemixtures based on hierarchical clustering,”
in Proceedings of International Workshop on Independent Com-
ponent Analysis and Blind Signal Separation (ICA ’04), pp. 652–
660, Granada, Spain, September 2004.

[14] S. Winter, H. Sawada, and S. Makino, “On real and complex
valued L1-norm minimization for overcomplete blind source
separation,” in Proceedings of IEEE Workshop on Applications
of Signal Processing to Audio and Acoustics (WASPAA ’05), pp.
86–89, New Paltz, NY, USA, October 2005.

[15] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of
Statistical Learning: Data Mining, Inference, and Prediction,
Springer Series in Statistics, Springer, New York, NY, USA,
2002.

[16] J. F. Sturm, “Using SeDuMi 1.02, a MATLAB toolbox for op-
timization over symmetric cones,” Optimization Methods and
Software, vol. 11, no. 1, pp. 625–653, 1999, special issue on In-
terior Point Methods.

[17] L. Vielva, D. Erdogmus, and J. C. Principe, “Underdeter-
mined blind source separation using a probabilistic source
sparsity model,” in Proceedings of International Workshop on

Independent Component Analysis and Blind Signal Separation
(ICA ’01), pp. 675–679, San Diego, Calif, USA, December
2001.

[18] W. Kellermann and H. Buchner, “Wideband algorithms ver-
sus narrowband algorithms for adaptive filtering in the DFT
domain,” in Proceedings of the Asilomar Conference on Signals,
Systems and Computers, vol. 2, pp. 1278–1282, Pacific Grove,
Calif, USA, November 2003.

[19] H. Sawada, S. Araki, R. Mukai, and S. Makino, “Blind ex-
traction of a dominant source signal from mixtures of many
sources,” in Proceedings of IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP ’05), vol. 3, pp.
61–64, Philadelphia, Pa, USA, March 2005.

[20] F. Murtagh, “Comments on ‘Parallel algorithms for hierar-
chical clustering and cluster validity’,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 14, no. 10, pp.
1056–1057, 1992.

[21] M. S. Lewicki and T. J. Sejnowski, “Learning overcomplete rep-
resentations,”Neural Computation, vol. 12, no. 2, pp. 337–365,
2000.

[22] I. Takigawa, M. Kudo, and J. Toyama, “Performance analysis of
minimum �1-norm solutions for underdetermined source sep-
aration,” IEEE Transactions on Signal Processing, vol. 52, no. 3,
pp. 582–591, 2004.
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