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Abstract

The problem of generating maps with mobile robots has re-

ceived considerable attention over the past years. Most of the

techniques developed so far have been designed for situations

in which the environment is static during the mapping process.

Dynamic objects, however, can lead to serious errors in the re-

sulting maps such as spurious objects or misalignments due to

localization errors. In this paper we consider the problem of

creating maps with mobile robots in dynamic environments.

We present a new approach that interleaves mapping and lo-

calization with a probabilistic technique to identify spurious

measurements. In several experiments we demonstrate that

our algorithm generates accurate 2d and 3d in different kinds

of dynamic indoor and outdoor environments. We also use

our algorithm to isolate the dynamic objects and to generate

three-dimensional representation of them.

1 Introduction

Learning maps with mobile robots is one of the fundamen-

tal problems in mobile robotics. In the literature, the mobile

robot mapping problem is often referred to as the simultane-

ous localization and mapping problem (SLAM) [5, 7, 13, 17,

14, 10, 19]. This is because mapping includes both, estimating

the position of the robot relative to the map and generating a

map using the sensory input and the estimates about the robot’s

pose.

Whereas most of todays mapping systems are able to deal with

noise in the odometry and noise in the sensor data, they as-

sume that the environment is static during mapping. However,

if a person walks through the sensor range of the robot dur-

ing mapping, the resulting map will contain evidence about an

object at the corresponding location. Moreover, if the robot re-

turns to this location and scans the area a second time, pose es-

timates will be less accurate, since the new measurement does

not contain any features corresponding to the person. The re-

duced accuracy of the resulting maps may have a negative in-

fluence on the overall performance of the robot, since it can

obstruct the execution of typical navigation tasks such as lo-

calization and path planning.

In this paper we present a new algorithm to mapping with

mobile robots in dynamic environments. Our approach ap-

plies the popular Expectation-Maximization (EM) algorithm.

In the expectation step we compute a probabilistic estimate

about which measurements might correspond to static objects.

In the maximization step we use these estimates to determine

the position of the robot and the map. This process is iterated

until no further improvement can be achieved.

We apply our approach to 2d and 3d data obtained with laser-

range scanners. In practical experiments we demonstrate that

our algorithm can reliably filter out dynamic aspects and yields

accurate models of the environment. A further advantage of

our algorithm is that the filtered data can be extracted from the

rest of all measurements. This way, we can obtain accurate

textured 3d models of dynamic objects.

This paper is organized as follows. After discussing related

work in the following section, we will present our EM-based

procedure to learn which measurements correspond to static

aspects of the environment in Section 3. In Section 4 we will

present several experiments illustrating that our approach can

successfully learn 2d and 3d maps with range scanners in dy-

namic environments.

2 Related Work

For mobile robots, there exist several approaches to mapping

in dynamic environments. The approaches mostly relevant to

the work reported here are the methods developed by Wang

et al. [20] and our previous work described in [11]. Wang et

al. [20] use a heuristic and feature-based approach to identify

dynamic objects in range scans. The corresponding measure-

ments are then filtered out during 2d scan registration. In our

recent work [11] we describe an approach to track persons in

range scans and to remove the corresponding data during the

registration and mapping process. Compared to these tech-

niques, our algorithm presented in this paper does not rely on

any pre-defined features. Rather, it considers every measure-

ment individually and estimates a posterior about whether or

not this data item has been generated by a dynamic object.

Additionally, there has been work on updating maps or im-

proving localization in populated environments. For exam-

ple, in the system described in [4] we update a given static

map using the most recent sensory input to deal with people in

the environment during path planning. Montemerlo et al. [15]

present an approach to simultaneous localization and people

tracking. Siegwart et al. [18] present a team of tour-guide
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robots that operates in a populated exhibition. Their system

uses line features for localization and has been reported to suc-

cessfully filter range-measurements reflected by persons. Fox

et al. [9] present a probabilistic technique to identify range

measurements that do not correspond to the given model of the

environment. These approaches, however, require a given and

fixed map which is used for localization and for the extraction

of the features corresponding to the people. Our technique,

in contrast, does not require a given map. Rather it learns

the map from scratch using the data acquired with the robot’s

sensors. Our algorithm repeatedly interleaves the process of

estimating which beams are caused by dynamic objects with

a mapping and localization algorithm. Thereby it iteratively

improves its estimates and generates more accurate models of

the environment.

From a more general perspective, the problem of estimating

dynamic aspects in data can be regarded as an outlier detec-

tion problem, since the spurious measurements are data items

that do not correspond to the static aspects of the environment

which are to be estimated. The identification of outliers is

an important subtask in various application areas such as data

mining [12, 3, 16], correspondence establishment [6, 2], clus-

tering [8], or statistics [1]. In all these fields, errors in the

data reduce the accuracy of the resulting models and thus can

lead to a decreased performance whenever the learned models

are used for prediction or robot navigation, for example. The

problem considered in this paper differs from these approaches

in the fact that outliers cannot be detected solely based on their

distance to the other data items. Rather, the measurements first

have to be interpreted and transformed into a global represen-

tation (map) before individual measurements can be identified

as outliers.

3 Learning Maps in Dynamic Environments

Our approach to discover measurements that correspond to dy-

namic objects is strictly statistical. We use the popular EM-

algorithm to identify data items that cannot be explained by

the rest of the data set. The input to our routine is a sequence

of data items z = {z1, . . . , zT }. The output is a model m ob-

tained from these data items after incorporating the estimates

about spurious measurements. In essence, our approach seeks

to identify a model m that maximizes the likelihood of the

data. Throughout this paper we assume that each measurement

zt consists of multiple data zt,1, . . . , zt,N as it is the case, for

example, for laser-range scans. Throughout this paper we as-

sume that the data zt,n are beams obtained with a laser-range

scanner.

To accurately map a dynamic environment we need to know

which measurements are caused by dynamic objects and there-

fore can safely be ignored in the alignment and map updating

phase. To characterize spurious measurements in the data we

introduce additional variables ct,n that tell us for each t and

each n, whether the data item zt,n is caused by a static object

or not. Each such variable ct,n is a binary variable, that is ei-

ther 0 or 1. It is 1 if and only if the zt,n is caused by a static

object. The vector of all these variables will be denoted by c.

n,tz0 f(x,n,k)

endpointlaser beam

Figure 1: Beam covering zt,n cells of a map.

For the sake of simplicity, we give the derivation for beams

that are parallel to the x-axis of the map. In this case, the

length zt,n directly corresponds to the number of cells cov-

ered by this beam. We will later describe how to deal with

beams that are not parallel to the x-axis. Let f be a function

that returns for each position xt of the robot, each beam num-

ber n, and each k ≤ zt,n the index f(xt, n, k) of k-th field

covered by that beam in the map (see Figure 1). To determine

whether or not a beam is reflected by a dynamic object, we

need to define the likelihood of a measurement given the cur-

rent map m of the environment, the pose x of the robot, and

the information about whether zt,n is reflected by a maximum

range reading. Typically, maximum-range readings have to

be treated differently, since those measurements generally are

not reflected by any object. Throughout this paper we intro-

duce indicator variables ζt,n which are 1 if and only if zt,n is

a maximum range reading and 0, otherwise. The likelihood of

a measurement zt,n given the value of ct,n and the map m can

thus be computed as:

p(zt,n | ct,n, xt,m) =

[

zt,n−1
∏

k=0

(1 − mf(xt,n,k)))

]ζt,n

·

[

[mf(xt,n,zt,n)]
ct,n · [1 − mf(xt,n,zt,n)]

(1−ct,n)

·

zt,n−1
∏

k=0

(1 − mf(xt,n,k))

](1−ζt,n)

(1)

The first term of this equation specifies the likelihood of the

beam given it is a maximum range scan. In such a situation, we

compute the likelihood as the product of the probabilities that

the beam has covered the cells 0 to zt,n−1. Please note, that the

cell in which the beam ends does not provide any information

since we do not know, whether there is an object or not given

the beam is a maximum range reading. Thereby the probabil-

ity that a beam covers a cell k < zt,n is equal to 1−mf(xt,n,k).

The second row of this equation specifies how to deal with the

case that a cell that reflects a non-maximum range beam. If

zt,n is not reflected by a dynamic object, i.e. ct,n = 1, then

the likelihood equals mf(xt,n,zt,n). If, in contrast, zt,n is re-

flected by a dynamic object, the likelihood is 1−mf(xt,n,zt,n).

As well as for the maximum range measurements we have to
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consider in both cases that the beam has covered zt,n − 1 cells

before reaching cell f(xt, n, zt,n).

Based on the definition of the observation likelihood we now

will define the likelihood p(z, c | x, m) of the data which we

try to maximize in order to find the most likely map of the

environment.

p(z, c | x, m) =
T
∏

t=1

p(zt, ct | xt,m) (2)

=
T
∏

t=1

p(zt, | xt,m) · p(ct | xt,m) (3)

=
T
∏

t=1

p(zt, | xt,m) · p(ct) (4)

=
T
∏

t=1

N
∏

n=1

p(zt,n, | ct,n, xt,m) · p(ct) (5)

We obtain Equation (3) from Equation (2) by assuming that

the zt and ct are independent given xt and m. We furthermore

consider ct as independent from the location xt and the map

m, which leads to Equation (4). Finally, Equation (5) is de-

rived from Equation (4) under the usual assumption, that the

neighboring beams of a single scan are independent given the

map of the environment.

Maximizing p(z, c | x, m) is equivalent to maximizing the

corresponding log likelihood, which can be derived from

Equation (5) and Equation (1) by straightforward mathemat-

ical transformations:

ln p(z, c | x,m)

= ln
T
∏

t=1

N
∏

n=1

p(zt,n, | ct,n, xt,m) · p(ct)

= N ·
T
∑

t=1

ln p(ct) +
T
∑

t=1

N
∑

n=1

ln p(zt,n, | ct,n, xt,m)

= N ·
T
∑

t=1

ln p(ct)

+
T
∑

t=1

N
∑

n=1

[

(1 − ζt,n) ·
[

ct,n · lnmf(xt,n,zt,n)

+(1 − ct,n) · ln(1 − mf(xt,n,zt,n))
]

+

zt,n−1
∑

k=0

ln(1 − mf(xt,n,k))

]

(6)

Since the correspondence variables c are not observable in the

first place a common approach is to integrate over them, that is,

to optimize the expected log likelihood Ec[ln p(c, z | x, m) |
x,m, d] instead. Since the expectation is a linear operator,

we can move it inside the expression. By exploiting the fact

that the expectation of ct,n only depends on the corresponding

measurement zt,n and the position xt of the robot at that time.

we can derive the following equation:

Ec[ln p(z, c | x,m) | z, x,m] =

γ +

T
∑

t=1

N
∑

n=1

[

et,n · (1 − ζt,n) · lnmf(xt,n,zt,n)

+(1 − et,n) · (1 − ζt,n) · ln(1 − mf(xt,n,zt,n))

+

zt,n−1
∑

k=0

ln(1 − mf(x,n,k))

]

(7)

For the sake of brevity, we use the term

et,n = Ec[ct,n | zt,n, xt,m] (8)

in this equation. The term

γ = N ·
T
∑

t=1

Ec[ln p(ct) | z, x,m] (9)

is computed from the prior p(ct) of the measurements which

is independent of z, x, and m. Accordingly, γ can be regarded

as a constant.

Unfortunately, optimizing Equation (7) is not an easy en-

deavor. A typical approach to maximize log likelihoods is the

EM algorithm. In the particular problem considered here this

amounts to generating a sequence of maps m of increasing

likelihood. In the E-Step, we compute the expectations about

the hidden variables c. In the M-step we then compute the

most likely map m using the expectations computed in the E-

Step. Both steps are described in detail in the remainder of this

section.

In the E-step we compute the expectations et,n = Ec[ct,n |
zt,n, xt,m] for each ct,n given the measurement zt,n, the lo-

cation xt of the robot and the current map m. Exploiting the

fact that et,n equals p(ct,n | zt,n, xt,m) and considering the

two cases that zt,n is a maximum range reading or not, we

obtain:

et,n =

{

p(ct,n) , if ζt,n = 1

p(ct,n)ǫt,n , otherwise

where

ǫt,n =
1

p(ct,n) + (1 − p(ct,n))( 1
mf(xt,n,zt,n)

− 1)
(10)

The first equation corresponds to the situation that zt,n is a

maximum range reading. Then, et,n corresponds to the prior

probability p(ct,n) that a measurement is reflected by a static

object. Thus, a maximum range reading does not provide any

evidence about whether or not the cell in the map in which the

beam ends is covered by a dynamic object.

In the M-Step we want to determine the values for m and x that

maximize Equation (7) after computing the expectations et,n
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MappingScan Registration

Determine Dynamic Measurements

SLAM

Figure 2: Iteration of SLAM and dynamic beam estimation.

about the hidden variables ct,n in the E-step. Unfortunately,

maximizing this equation is also not trivial since it involves a

solution to a high-dimensional state estimation problem. To

deal with the enormous complexity of the problem, many re-

searchers phrase it as an incremental maximum likelihood pro-

cess [19, 10]. The key idea of incremental approaches is to

calculate the desired sequence of poses and the correspond-

ing maps by maximizing the marginal likelihood of the t-th

pose and map relative to the (t − 1)-th pose and map. In our

algorithm, we additionally consider the estimations et,n that

measurement n at time t is caused by a static object of the

environment:

x̂t = argmax
xt

{

p(zt | ct, xt, m̂
[t−1])

·p(xt | ut−1, x̂t−1)
}

(11)

In this equation the term p(zt | ct, xt, m̂
[t−1]) is the likeli-

hood of the measurement zt given the pose x̂t and the map

m̂[t−1] constructed so far. The term p(xt | ut−1, x̂t−1) rep-

resents the probability that the robot is at location xt given

the robot previously was at position x̂t−1 and has carried out

(or measured) the motion ut−1. The registration procedure is

then carried out using the same algorithm as described in our

previous work [11].

It remains to describe how the measurement zt is then used

to generate a new map m̂[t] given the resulting pose x̂t and

the expectations et,n. Fortunately, once x1, . . . , xt, have been

computed, we can derive a closed-form solution for m[t]. We

want to determine the value of each field j of the map m[t]

such that the overall likelihood of m[t] is maximized. To

achieve this, we sum over individual fields j ∈ [1, . . . , J ] of

the map. Thereby we use an indicator function I(y) which is

1, if y is true and 0, otherwise.

m̂[t] = argmax
m

(

J
∑

j=1

T
∑

t=1

N
∑

n=1

[

I(f(xt, n, zt,n) = j)

·(1 − ζt,n) · (et,n lnmj + (1 − et,n) ln(1 − mj))

+

zt,n−1
∑

k=0

I(f(xt, n, k) = j) · ln(1 − mj)

])

(12)

Now suppose, we define

Ĩ(x, n, k, j) := I(f(x, n, k) = j)

and

αj :=
T
∑

t=1

N
∑

n=1

Ĩ(xt, n, zt,n, j) · (1 − ζt,n) · et,n

βj :=
T
∑

t=1

N
∑

n=1

(

Ĩ(xt, n, zt,n, j) · (1 − ζt,n)

·(1 − et,n) +

zt,n−1
∑

k=0

I(f(xt, n, k) = j)

)

The quantity αj corresponds to the sum of the expectations

et,n that beam n of scan t is reflected by a static object of all

beams that are not maximum-range beams and that end in cell

j. The term βj , on the other hand, is the sum of two terms.

The first term is the sum of the expectations 1−et,n that beam

n of scan t is reflected by a dynamic object of all beams that

are not maximum-range beams and that end in cell j. The

second value of the sum simply is the number of times a beam

covers j but does not end in j. Please note that this value is

independent from whether or not the corresponding beam is

reflected by a dynamic object or not. Please furthermore note

that in a static world with et,n = 1 for all t and n the term αt

corresponds to the number of times a beam that does not have

the maximum length ends in j. In contrast to that, βj is the

number of times a beam covers a cell.

Using the definitions of αj and βj , Equation (12) turns into

m[t] = argmax
m





J
∑

j=1

αj lnmj + βj ln(1 − mj)



 (13)

Since all mj are independent, we maximize the overall sum

by maximizing each mj . A necessary condition to ensure that

mj is a maximum is that the first derivative equals zero:

∂m

∂mj

=
αj

mj

−
βj

1 − mj

= 0 (14)

By straightforward mathematical transformationswe obtain

mj =
αj

αj + βj

. (15)

Please note that, given the sensor model specified in Equa-

tion (1), this closed-form solution for the most likely map m

for given positions x and static environments corresponds to

the naive counting technique in which one counts for each cell

how often a beam has ended in that cell and how often a beam

has covered it without ending in it.

The overall approach can be summarized as follows (see also

Figure 2). We start with an initial map m̂ obtained by the in-

cremental mapping approach. Thereby the expectations et,n

are initialized with the prior probability p(ct,n) that a mea-

surement is caused by a static object. Given the resulting map

m̂ and the corresponding positions x̂, we compute new expec-

tations et,n for each beam according to Equation (8). These

expectations are then used to compute a new map. The overall

process is iterated until no improvement of the overall likeli-

hood (Equation (6)) can be achieved or a certain number of

iterations has been exceeded.

Finally, we would like to discuss how to deal with beams that

are not parallel to the x-axis. In this case we no longer can
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Figure 5: Evolution of the map during EM. The images corresponds to iteration 1, 2, and 6.

Figure 3: Robot Sam mapping the populated exhibition hall of the

Byzantine Museum in Athens (left). In the resulting map

(right), the measurements labeled as dynamic are shown

in grey/orange.
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Figure 4: Evolution of the log likelihood (Equation (6)) during the

individual iterations.

compute the likelihood that a beam covers a cell j of m as

(1 − mj). Otherwise, transversal beams covering more cells

would accumulate a lower likelihood. The solution to this is to

weigh the beams according to the length by which they cover

a cell. Suppose B is the set of cells in m covered by a beam.

Furthermore suppose lj is the length by which the beam covers

field j ∈ B. Then, the likelihood of a covering all cells in B

is computed as
∏

j∈B (1 − mj)
lj .

4 Experiments

The approach described above has been implemented and

tested on different robotic platforms, in different environments

and with 2d and 3d data. In all experiments, we figured out,

that the system is robust even in highly dynamic environments.

In one experiment carried out with a fast moving car, the sys-

tem was able to accurately map the environment even if no

odometry data was given.

4.1 Filtering People

The first experiments were carried out using the Pioneer 2

robot Sam in the empty exhibition hall of the Byzantine Mu-

seum in Athens, Greece. The size of this environment is 30m

x 45m. The robot traveled continously 57m with an avg. speed

of 0.37m/s and a max. speed of 0.96m/s. Figure 3 (left) shows

the robot during the mapping process. There were 15 people

walking with a typical speed through the environment while

the robot was mapping it. Partially they stopped and contin-

ued moving. The most likely map resulting from the appli-

cation of our approach is shown in athe right image of Fig-

ure 3. The beams labeled as dynamic are drawn grey/orange

in this figure. As can be seen, our approach can reliably iden-

tify dynamic aspects and is able to learn maps that include the

static aspects only. At this point we would also like to mention

that the resulting map contains seriously less dynamic objects

than the map obtained with our previous approach presented

in [11].

Figure 4 plots the evolution of Ec[ln p(c, z | x, m) | x,m, d]
over the different iterations of our algorithm. It illustrates that

our algorithm in fact maximizes the overall log likelihood.

Please note, that this curve generally is not monotonic, be-

cause of the incremental maximum-likelihood solution to the

SLAM problem. Slight variations in the pose can have neg-

ative effects in future steps, so that the map likelihood can

decrease. However, we never observed significant decrease of

the log likelihood.

4.2 Improved Localization Accuracy

Besides the fact that the resulting maps contain less spurious

objects, our approach also increases the localization accuracy.

If dynamic objects are not handled appropriately during local-

ization, matching errors become more likely. Figure 6 shows

a typical map we obtained when mapping a densely popu-

lated environment. In this case we mapped a part of the Wean

Hall Corridor at Carnegie Mellon University during peak of-

fice hours when many persons were around. Some of them

were trying to block the robot, so that the robot had to make

detours around them. Therefore the robot traveled 74m with

an avg. speed of 0.15m/s (0.35m/s maximum). Despite the

fact, that the huge amount of spurious objects make the map

virtually useless for navigation tasks, the map also shows se-

rious errors in the alignment. Some of the errors are indicated

by arrows in the corresponding figure.

Figure 7 shows the map generated by our algorithm. As

the figure illustrates, the spurious measurements (indicated by

grey/orange dots) have been filtered out completely. Addition-

ally, the alignment of the scans is more accurate.
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Figure 6: Map obtained in a populated corridor of the Wean Hall at

Carnegie Mellon University using the raw input data.

Figure 7: Map generated by our algorithm.

Figure 5 depicts the evolution of a part of the map in the differ-

ent rounds of the EM. It shows how the beams corresponding

to dynamic objects slowly fade out and how the improved es-

timates about these beams improve the localization accuracy.

4.3 Generating Large-Scale Outdoor Maps

To evaluate the capability of our technique to deal with arbi-

trary features, we mounted a laser-range scanner on a car and

drove approximately 1km through Pittsburgh, PA, USA (Cor-

ner between Craig Street and Forbes Avenue). The maximum

speed of the car was 35 MPH in this experiment. We then ap-

plied our approach to the recorded data. The map generated

by our algorithm is shown in Figure 8. Whereas the black dots

correspond to the static objects in the scene, the white dots are

those which are filtered out using our approach. Again, most

of the dynamics of the scene could be removed. Only a few

cars could not be identified as dynamic objects. This is mainly

because we quickly passed cars waiting for turns and because

we drove along the path only once. Please also note, that due

to the lack of a GPS, the map had to be computed without any

odometry information.

4.4 Generating Textured 3D Maps

To demonstrate that our approach is not limited to 2d range

data, we carried out several experiments with the mobile robot

Robin (see Figure 9) which is equipped with a laser-scanner

Figure 8: Map of an outdoor scene after filtering dynamic objects.

Figure 9: The mobile robot Robin used to generate textured 3d

models (left). Beams reflected by a person are isolated

from the rest of the data. This is achieved by computing

a bounding box around those beams perceived with the

horizontal scanner that are identified as corresponding to

dynamic objects (center and right).

Figure 10: Textured 3d model of a person identified as a dynamic

object.

mounted on an AMTEC pan/tilt unit. On top of this scanner

we installed a camera which allows us to obtain textured 3d

maps of an environment. Additionally, this robot contains a

horizontally scanning laser range finder which we used in our

experiments to determine dynamic objects. To label the beams

in the 3d data as dynamic we use a bounding box around

the dynamic 2d points. To filter dynamic objects in the tex-

tures recorded with Robin’s cameras we choose for every poly-

gon that image which has the highest likelihood of containing

static aspects only. The left image of Figure 11 shows one par-

ticular view of a model obtained without filtering of dynamic

objects. The arrow indicates a polygon whose texture contains

fractions of an image of a person which walked through the

scene while the robot was scanning it. After applying our ap-

proach the corresponding beams and parts of the pictures were

filtered out. The resulting model shown in the right image of

Figure 11 therefore only contains textures showing static ob-

jects.

4.5 Extracting Textured 3d Objects

Additionally to filtering dynamic objects and learning static

aspects of environments our algorithm can also be used to sep-

arate dynamic objects from the environment. The key idea is

to extract all measurements from the 3d data that lie within a

bounding box around the beams whose probability that they

are reflected by dynamic objects exceeds 0.7. Figure 9 shows

two views of a typical 3d data sets obtained with this approach.

Whereas the data points belonging to a dynamic object are

shown in black, the rest of the data is depicted in grey. Again

we used the camera to map textures on the 3d data that were
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Figure 11: Textured 3d models obtained using Robin. The upper image shows the result without filtering. The lower image shows the resulting

model obtained with our algorithm.

identified as belonging to a dynamic object. Figure 10 depicts

three views of the resulting model. As can be seen from the

figure, our approach can accurately extract realistic looking

textured 3d models of dynamic objects.

5 Conclusions

In this paper we presented a probabilistic approach to map-

ping in dynamic environments. Our approach uses the EM

algorithm to interleave the identification of measurements that

correspond to dynamic objects with a mapping and localiza-

tion algorithm. This way it incrementally improves its esti-

mate about spurious measurements and the quality of the map.

The finally obtained maps contain less spurious objects and

also are more accurate because of the improved range regis-

tration.

Our technique has been implemented and tested on differ-

ent platforms. In several experiments carried out in indoor

and outdoor environments we demonstrated that our approach

yields accurate maps even if used on a fast moving vehicle

without odometry information. We also presented an appli-

cation to learn textured 3d models of dynamic environments.

Finally, we applied our algorithm to extract dynamic objects

from 3d data. The results illustrate that our approach can reli-

ably estimate which beams correspond to dynamic objects.
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