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ABSTRACT As one of the most important tasks in autonomous driving systems, ego-lane detection has been

extensively studied and has achieved impressive results inmany scenarios. However, ego-lane detection in the

missing feature scenarios is still an unsolved problem. To address this problem, previous methods have been

devoted to proposing more complicated feature extraction algorithms, but they are very time-consuming and

cannot deal with extreme scenarios. Different from others, this paper exploits prior knowledge contained in

digital maps, which has a strong capability to enhance the performance of detection algorithms. Specifically,

we employ the road shape extracted from OpenStreetMap as lane model, which is highly consistent with the

real lane shape and irrelevant to lane features. In this way, only a few lane features are needed to eliminate

the position error between the road shape and the real lane, and a search-based optimization algorithm is

proposed. Experiments show that the proposed method can be applied to various scenarios and can run in

real-time at a frequency of 20 Hz. At the same time, we evaluated the proposed method on the public KITTI

Lane dataset where it achieves state-of-the-art performance. Moreover, our code will be open source after

publication.

INDEX TERMS Ego-lane detection, missing feature, OpenStreetMap, parameter estimation.

I. INTRODUCTION

With the development of artificial intelligence, autonomous

driving systems have become research hot-spots in both

academia and industry. As one of the essential modules,

ego-lane detection allows the car to properly position itself

within the road lanes, which is crucial for subsequent control

and planning.

A typical ego-lane detection result in the KITTI Lane

dataset is shown in Figure 1, where the ego-lane is labeled

as green. It can be seen that there are three main tasks for

ego-lane detection: left boundary detection, right boundary

detection, and upper boundary detection. The upper boundary

detection is mainly to detect the preceding vehicle, which

has been studied by most scholars in recent years and has

achieved encouraging results. Therefore, this paper focuses

on the left and right boundary detection, that is, lane line

detection and road curb detection in KITTI Lane dataset (the

The associate editor coordinating the review of this manuscript and

approving it for publication was Razi Iqbal .

FIGURE 1. A typical ego-lane detection result in the KITTI Lane dataset,
where the ego-lane is labeled as green.

road in the KITTI Lane dataset is a two-way road and the

vehicle is driving on the right lane).

For lane line detection and road curb detection, one of the

most challenging scenarios is missing feature, which may

be caused by lane marking wear, lighting changes, and even

no visible features. To tackle this challenge, previous meth-

ods [1]–[4] have been devoted to proposing more effective

feature extraction methods to obtain as many features as

possible, but they are very time-consuming and cannot deal

with extreme scenarios. In addition, model fitting plays an

important role when features are partially missing or other
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objects are interpreted as features [5]. Therefore, this paper

focuses on obtaining the compact high-level representation

of lane boundaries through model fitting, thereby solving the

missing feature problem.

In recent decades of research, various mathematical repre-

sentation models have been used for model fitting, ranging

from simple straight line models to complex spline models.

Many researchers prefer model fitting using straight line [6],

[7], which is a good approximation for the short range and

is the most common case in highway scenarios. Although

the straight line model is efficient and simple, it will fail in

curved roads, so some researchers propose to use a circular

arc as lane model [8], [9]. Furthermore, quadratic polyno-

mials [10] and cubic polynomials [11] are also widely used

for model fitting in curved situations. In recent years, more

and more researchers prefer to use splines for model fitting

such as cubic spline [12], Catmull-Rom spline [13], and

B-Spline [14]. Although mathematical representation models

have been widely used for model fitting, their performance

is profoundly affected by the quality of lane features. When

in some extreme scenarios, the overfitting issue will occur,

therefore causing a large shape error between the fitted lane

and the real lane.

Nowadays, most autonomous driving systems have access

to digital maps that contain rich geometric and semantic

information about the environment. This prior information

has been proven to have a strong capability to enhance the per-

formance of algorithms in perception [15], prediction [16],

and motion planning [17]. In this paper, we exploit Open-

StreetMap (OSM) [18], a free online community-driven map

to enhance our ego-lane detection algorithm. OSM data is

structured using three basic geometric elements: nodes, ways,

and relations [19]. Ways are geometric objects like roads,

railways, rivers, etc. It includes a collection of nodes, where

the number of nodes is determined by the complexity of the

object. Taking the road as an example, a straight road may

consist of only two or three points as shown in Figure 2(a),

and a curved road may consist of dozens of points as shown in

Figure 2(b), ensuring the consistency of the OSM road shape

and the real lane. Therefore, we use OSM road shape as lane

model, which is irrelevant to lane features and robust to a

variety of missing feature scenarios.

However, the OSM data is provided by user contributions,

so that it is coarse and rife with errors. At the same time,

the localization system employed on the vehicle might be

noisy. These two problems lead to position errors between

the OSM data and the real lane. To eliminate these errors,

we propose a search-based optimization method, which finds

the optimal position offset parameters by minimizing the

distance between the OSM data and the extracted features,

thereby improving the detection accuracy of the algorithm.

In summary, this paper presents a novel map-enhanced

ego-lane detection (MELD) approach to address the missing

feature problem (shown in Figure 3). First, we project the

3D LiDAR point cloud onto a range image and perform

ROI selection based on the horizontal slope feature and the

FIGURE 2. The results of projecting OSM data onto the bird’s eye view of
the image, where node is displayed in red and road is displayed in blue.
(a) is a straight road sample. (b) is a curved road sample.

vertical slope feature. Then, we use the ROI selection result to

generate a mask on the bird’s eye view of the image and use a

gradient operator to detect lane features. Finally, we propose

a search-based optimization method to employ the OSM

road shape as lane model, further obtain a robust ego-lane

detection result. The main contributions of this paper are as

follows:

1) Exploit the OSM road shape as lane model, which is

highly consistent with the real lane shape and irrelevant

to lane features, thereby robust to the missing feature

scenarios.

2) Propose a search-based optimization method to elimi-

nate the position errors between the OSM data and the

real lane, thereby improving the detection accuracy.

3) Propose an efficient ego-lane detection framework

being able to run in real-time at a frequency of 20 Hz

on a single CPU.

The remainder of this paper is organized as follows.

Section II presents the related work of ego-lane detection.

In Section III, the proposed MELD approach is presented

in detail. Experimental results are presented in Section IV.

Finally, we conclude the paper in Section V.

II. RELATED WORK

The ego-lane detection methods can be categorized according

to different criteria, of which the most common categories

are: model-based and learning-based [20]. Model-based

methods tend to build a shape model [6]–[14] to describe

the lane. Learning-based methods employ either traditional

classifiers [21]–[23] or deep neural networks [24]–[26] to

estimate the category of each pixel. In recent years, some
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FIGURE 3. The framework of the map-enhanced ego-lane detection (MELD) approach. The input data includes 3D LiDAR point cloud, camera image, and
OpenStreetMap. The main processing steps include ROI selection in range image, lane feature extraction in bird’s eye view of image, and ego-lane
detection.

methods based on LiDAR [27], [28] or fusion of LiDAR and

camera [29], [30] have also been used for ego-lane detec-

tion. At the same time, since different sensors have differ-

ent drawbacks, an online sensor reliability assessment and

reliability-aware fusion method was proposed for ego-lane

detection [31]. This paper focuses on solving the feature

missing problem by using the road shape prior provided by

OSM as the lane model. Therefore, the related work will

mainly be carried out in two aspects: lane modeling and map

using.

A. LANE MODELING

In recent years, lane modeling has played an important role

in ego-lane detection, which refers to obtaining a compact

high-level representation of road lane markings [32]. Differ-

ent researchers have proposed different lane models. Some

people only use simple straight lines, while others prefer to

use more complex models, such as polynomial, clothoid, and

spline.

The straight line model [6], [7] is the most commonly

used geometric model. It is a good approximation for short

distances and is the most common model in highway scenes.

To increase the robustness of model fitting, several con-

straints have been applied additionally, such as parallelism

[33] and road or lane width [34]. The straight line model

is simple, but its applicability is limited, especially at long

distances or curve road.

In [8], [9], curved roads are modeled in the bird’s eye view

using circular arc. Generally, the curvature of the road is

small and continuous, so the circular arc is a conventional

lane model on a ground plane [35]. However, the circular arc

cannot handle more general curved roads.

Since performing well on more general curved roads, poly-

nomials are also widely used for model fitting, including

quadratic polynomial [10] and cubic polynomial [11]. But the

fitting effect at the connection between a straight lane and a

circular curve is limited [5].

Several researchers [36], [37] assume that the shape of the

road as clothoid, which is defined by the initial curvature, the

constant curvature change rate, and its total length. Clothoid

can be approximated by a third-order polynomial and used

to avoid abrupt changes in steering angle when driving from

straight to circular roads.

Splines are smooth piecewise polynomial curves, which

have been popular in previous studies [38]. Spline based lane

model describes a wider range of lane structures, as it can

form arbitrary shapes by a different set of control points [39].

Various spline representations have been proposed for lane

modeling. In [12], a cubic spline with two to four control

points is used for lane modeling. Wang et al. [13] presents

lane modeling based on Catmull–Rom spline (also known

as Overhauster spline), which is a local interpolating spline

developed for computer graphics purposes. B-spline was

introduced in [14], which can provide a local approximation

of the contour with a small number of control points. Fur-

thermore, nonuniform B-spline was used to construct the left

and right lanes of the road [40]. Third-degree Bezier spline

is also used to fit the left and right boundaries of the road

surface [41]. The lane model was also improved to generate a

B-snake model [42] or parallel-snake model [43]. Moreover,

a spline-based particle filter is used to model the curvature of

the lane [44].

Several combination models have also been proposed as

lane models. In [45], the image is divided into multiple

slices, and lanes in each slice are fitted with straight lines

to form a piecewise linear model. Jung et al. [46] proposed

a linear parabolic lane model consisting of a linear function

in the near-range and a parabola in the far-range. The nearby
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FIGURE 4. OSM data of a sample in the KITTI Lane dataset. (a) shows the raw image of a sample scenario in the KITTI Lane dataset. (b) shows the
raw OSM data corresponding to the scenario, in which the red arrow indicates the position and direction of the ego vehicle. (c) shows the
transformed OSM data where roads are shown in blue, railways are shown in red, and other geometric objects are shown in yellow. (d) shows the
road that the ego vehicle is currently traveling.

straight line model provides the robustness of the model, and

the parabola provides the flexibility of the model. Similar to

[46], some researchers employ a clothoid model [47] or a

hyperbola model [48] as the far-range model.

B. MAP USING

Amap that contains rich geometric and semantic information

about the environment is essential for autonomous driving

systems. Impressive results have been achieved by introduc-

ing maps to perception [15], prediction [16], and motion

planning [17]. Various map-based methods are also proposed

for ego-lane detection.

In [49], the curvature of the road was first obtained from

the GPS position and the digital map, and then it was used

to determine whether it was driving on a straight road or a

curved road. Different road regions use different lane detec-

tion modules, of which straight roads are fitted using linear

models and curved roads are fitted using circular arc.

To enhance the performance and robustness of the lane

detection system, Möhler et al. [50] proposed to extract lane

width and curvature of upcoming road segments from a digi-

tal map to adapt certain configuration parameters. In addition,

clothoid is used for model fitting.

It is worth mentioning that Godoy et al. [51] proposes an

automatic program that extends the digital map definition

to generate a better approximation of the real road shape.

Specifically, the proposed algorithm replaces the straight line

segments between nodes with cubic Bezier curves and auto-

matically adjusts the control points for fitting road.

As described in Section I, all mathematical representation

models have the overfitting issue when features are missing.

The methods that using maps still use mathematical rep-

resentation model as lane model, and the overfitting issue

still exists. In this paper, we use the road shape in OSM

data as lane model and transform the fitting problem into a

search-based optimization problem. The advantage is that the

prior knowledge provided by the map is effectively used, and

the problem of missing feature is addressed.

III. EGO-LANE DETECTION

In this section, the proposed MELD approach will be

described in detail. First, we describe the OSM data format

and how to obtain the data needed for this paper. Next,

we show the preprocessing step, which contains Region of

Interest (ROI) selection and lane feature extraction. Finally,

we explain how OSM data is used for ego-lane detection.

A. OpenStreetMap

In 2004, the OpenStreetMap project was started with the

goal of creating a free to use and editable map of the world

[18]. So far, the OSM project has been greatly developed,

and more and more researchers prefer to employ the OSM

to enhance their algorithms. The OSM data can be accessed

via the correspondingwebsite1 by specifying a bounding box.

Figure 4(b) shows the raw OSM data of the scenario corre-

sponding to of Figure 4(a) (we add a red arrow to indicate the

position and direction of the ego vehicle).

The OSM data is in the world coordinate system, but

our ego-lane detection algorithm is performed in the road

coordinate system. Therefore, the OSM data needs to be

transformed to the road coordinate system first. Figure 4(c)

shows the results of our coordinate transformation result.

1https://www.openstreetmap.org/
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It should be noted that the data beyond the image view is

clipped.

OSM data provides rich geometric information. However,

for our purposes, the most useful information is the road that

the ego vehicle is traveling on, so other geometric information

is also clipped. Finally, the OSM data containing only the

currently traveling road after being transformed and clipped

is shown in Figure 4(d), which will be used as the lane model

later.

B. PREPROCESSING

Before using the OSM road shape for ego-lane detection, lane

line features and road curb features need to be extracted first.

To improve the speed and accuracy of the algorithm, feature

extraction is generally after ROI selection [5]. Therefore,

we consider both ROI selection and lane feature extraction

as preprocessing in this section.

1) ROI SELECTION

Among all tasks in ego-lane detection, ROI selection is usu-

ally the first step performed in most of the previous stud-

ies [38]. The main reason for focusing on ROI selection is to

increase the computation efficiency and detection accuracy.

In this paper, we consider the drivable area to be the ROI.

It contains all lane markers and road curbs for feature extrac-

tion, and trees, buildings and other objects outside the road

can be ignored. Therefore, ROI selection can be redefined as

road detection.

Camera is a light-sensitive sensor that is easily affected

by illumination and shadows. Although many deep learning

methods have greatly improved the performance of image

processing in recent years, what has to be considered is

computational efficiency, so it is not suitable for the prepro-

cessing step. Unlike the camera, 3D LiDAR is unaffected by

illumination and can provide accurate geometric information

about the environment. Therefore, we use 3D LiDAR for ROI

selection.

To meet the real-time requirements, we project the 3D

point cloud data to a 2D range image, which can achieve

data compression while retaining neighborhood information.

The number of rows of the range image is defined by the

number of laser beams of the 3D LiDAR. The KITTI dataset

uses Velodyne HDL-64E, so the number of rows is 64. The

number of columns of the range image is the horizontal

resolution of the 3D LiDAR. We only use 90◦ field of view

that coincides with the camera, so the number of columns is

500. In summary, the size of the range image is 64×500, and

an example of a range image can be seen in Figure 5(a).

Based on the assumption that the road is flat and con-

tinuous, we do road detection on the range image using

the region grow method. As the vehicle is traveling in the

forward direction, the road is always located in front of the

vehicle. Therefore, seed points are selected as points in front

of the vehicle, which are located in the bottom center of the

range image. The similarity between pixels is defined by the

horizontal slope feature and the vertical slope feature.

FIGURE 5. An illustration of the implementation process of the ROI
selection. (a) shows a range image whose pixel value represents the
distance from the point to LiDAR. (b) is an example of a horizontal
feature map. (c) is an example of a vertical feature map. (d) is the
corresponding weighted sum feature map. (e) shows the region grow
result. (f) shows the ROI selection result.

For each pixel, the horizontal slope feature is calculated

based on k neighborhood points in the same laser beam:

α =

∑k
i=1 (xi − X̄ )(yi − Ȳ )
∑k

i=1 (xi − X̄ )
2

(1)

where (xi, yi) is the position in the 3D LiDAR coordinate

system of the pixel, and X̄ , Ȳ are the average value of the

k neighbors. As shown in Figure 6(a), the feature value αA
on the ground is close to 0, while the feature value αB on the

road curb is close to infinity, so the horizontal slope feature

is used to detect the road curb. At the same time, the features

were normalized using the logistic function, and the results

are shown in Figure 5(b).

For each pixel, the vertical slope feature is calculated based

on the points on two adjacent laser beams in the same ray

direction:

β =
zr+1 − zr

d r+1 − d r
(2)

where (d r , zr ) is a point on the r laser beam, and (d r+1, zr+1)

is a point on the r+1 laser beam, d =
√

xr 2 + yr 2. As shown

107962 VOLUME 8, 2020
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FIGURE 6. An illustration of the two slope features. (a) is the horizontal
slope feature, where αA represents the ground and αB represents the
road curb. (b) is the vertical slope feature, where βAB represents the
ground and βBC represents the obstacle.

in Figure 6(b), the feature value βAB on the ground is close

to 0, while the feature value βBC on the obstacle is close to

infinity, so the vertical slope feature is used to detect obsta-

cles. At the same time, the features were normalized using the

logistic function, and the results are shown in Figure 5(c).

After getting the two slope features, the weighted sum is

finally calculated:

γ = a · α + b · β (3)

where a and b are coefficients of horizontal slope feature

and vertical slope feature respectively. Figure 5(d) shows the

weighted sum feature map and it can be seen that obsta-

cles and road curbs are all detected. After obtaining the

weighted sum feature map, we use horizontal and vertical

region grow to obtain the road area, and the results are

shown in Figure 5(e). Finally, we project road points onto

the perspective image and use Delaunay Triangulation [52] to

upsampling the sparse point cloud to obtain the ROI selection

result. The ROI selection result is shown in Figure 5(f).

2) LANE FEATURE EXTRACTION

As described in Section I, lane features in the KITTI Lane

dataset are mainly composed of two parts: lane line features

and road curb features. In ROI selection, the horizontal slope

feature has a good effect on detecting road curbs, so we

directly use ROI selection results as road curb features.

Lane line feature extraction aims to extract low-level fea-

tures from images to support ego-lane detection, such as

color, texture, edges [53]. Among them, edges are the most

common feature used in ego-lane detection for structured

roads [35]. An edge is mathematically defined by the gradient

of the intensity function [54], so we define the gradient as:

G =
[

−1 − 1 − 1 2 2 2 − 1 − 1 − 1
]

∗ I (4)

where I is the image and G is the calculated gradient.

Since the lane line width becomes smaller as the distance

increases in the perspective image, we perform feature extrac-

tion on the bird’s eye view image, so that the lane line width is

constant and easy to detect. As the vehicle is traveling along

the lane, the lane lines are distributed longitudinally, so we

FIGURE 7. An illustration of the implementation process of the lane line
feature extraction. (a) shows the raw gray scale image on the bird’s eye
view. (b) projects the ROI selection result onto the image. (c) shows the
results of lane line feature extraction.

mainly extract the lateral gradient changes. At the same time,

we found that the lane line width generally takes 2 ∼ 4

pixels on the bird’s-eye view image. For these two reasons,

and in order to increase the computational efficiency, we use

a convolution with the size of 9× 1. There is a sharp contrast

between the road surface and painted lane lines, so the 3

elements in the middle of the convolution kernel are 2 and the

others are−1. In this way, when there is no lane, the intensity

values between pixels are similar, and the gradient is 0; when

there is a lane line, the intensity of the three elements in the

middle is high, the intensity of the two sides is low, and the

gradient is relatively large.

Therefore, when the gradientG(i, j) is greater thanGth, the

pixel at the (i, j) position is marked as the lane. An exam-

ple of the lane line feature extraction result can be seen in

Figure 7(c). It should be noted that lane line feature extraction

is performed on a gray-scale image (shown in Figure 7(a)),

and pixels outside the ROI region are not considered (shown

in Figure 7(b)).

C. EGO-LANE DETECTION

The main goal of this stage is to extract a compact high-level

representation of the lane that can be used for decision

making [53]. In most papers, mathematical representation

models are used as compact high-level representations such

as straight lines, polynomials, parabolas, and splines. In order

to fit lane features to these mathematical representation

models, Least Squares Method (LSM) and Random Sample

Consensus (RANSAC) are widely used. Since mathematical

representation models have the overfitting issue when fea-

tures are missing, we exploit OSM data to enhance ego-lane

detection.

As mentioned in the previous section, OSM data is pro-

vided by the volunteers, so it is very coarse and rife with

errors, which is called OSM data error. At the same time,

VOLUME 8, 2020 107963
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when projecting the OSM data onto the image, the approx-

imate vehicle pose estimation causes errors in the relative

position of the OSM data with respect to the vehicle, which

is called vehicle positioning error.

Since we perform ego-lane detection on the 2D image

plane, the errors can be eliminated by the rotation parameter

θ and the translation parameter x, y (the x-axis points to the

vehicle’s forward direction, while the y-axis is orthogonal to

the x-axis and points the left of the vehicle). In real urban

scenes, the radius of curvature of the road is relatively large,

so the translation parameter x can be ignored. Therefore,

we only need to consider the parameters y and θ , which rep-

resent the lateral offset and the heading offset, respectively.

It should be noted that we do lane line detection and road

curb detection simultaneously, so the lateral offset y consists

of two parts: lane line lateral offset yl and road curb lateral

offset yr . In summary, the parameters we need to estimate

include heading offset θ , lane line lateral offset yl , and road

curb lateral offset yr .

To estimate these three parameters, we minimize the dis-

tance from the detected lane features to the OSM data. Since

the OSM road shape consists of a series of points and their

connections, the distance from the feature point to the OSM

data is equal to the distance from the feature point to its

nearest connection:

di =
|(y

Q
j − y

Q
k )x

P
i − (x

Q
j − x

Q
k )y

P
i + x

Q
j y

Q
k − y

Q
j x

Q
k |

√

(y
Q
j − y

Q
k )

2 + (x
Q
j − x

Q
k )

2

(5)

where (xPi , yPi ) is the i-th feature point. (x
Q
j , y

Q
j ) and (x

Q
k , y

Q
k )

are the two adjacent OSM points closest to the feature point.

Therefore, the optimization function is:

min
yl ,yr ,θ

m
∑

i=1

di

s.t. |yl | ≤ ymax ,

|yr | ≤ ymax ,

|θ | ≤ θmax . (6)

wherem is the number of feature points. ymax is the maximum

value of lateral offset, and θmax is the maximum value of

heading offset.

The above optimization problem turns out to be very dif-

ficult to solve due to looking for the OSM line closest to the

feature point. Therefore, we rely on a search-based algorithm

to find the optimal approximate solutions. The basic idea

is that we iterate through all possible values of these three

parameters θ , yl , and yr . After iterating all parameters and

obtaining all corresponding distances, we look for the optimal

parameters that achieve the smallest distance. However, the

time complexity of looping through these three parameters is

O(N 3), which is very time consuming and cannot meet the

real-time requirements. Therefore, we optimize these three

parameters separately, so that the time complexity is reduced

to O(3N ).

Algorithm 1 Search-Based Parameters Optimization

Input: feature points P ∈ Rm×2, OSM points Q ∈ Rn×2

Output: optimization parameter λ∗

1: dmin←+∞

2: λ∗← 0

3: for λ = −λmax to λmax step δλ do

4: d ← 0

5: for p in P do

6: for q in Q do ⊲ descending order

7: transform q to q′

8: if (q′x ≤ px) then

9: d += dp ⊲ dp is calculated by (5)

10: break

11: end if

12: end for

13: end for

14: if (d ≤ dmin) then

15: dmin← d

16: λ∗← λ

17: end if

18: end for

The proposed search-based optimization algorithm is pre-

sented in Algorithm 1. The inputs for the algorithm are the

m features points P and n OSM points Q. The outputs from

this algorithm are the optimization parameter λ∗, which sep-

arately represents θ∗, y∗l , and y
∗
r in each step of optimization.

In line 3, all possible values are traversed by given the max-

imum value of these three parameters. From line 4 to line

13, the distance from the feature point to the OSM data is

calculated. The optimal parameters that achieves the smallest

distance is selected in line 14 to line 17.

After obtaining the optimization results of the left and

right boundaries, we use the vertical slope feature (men-

tioned in the ROI selection subsection) to detect all obsta-

cles between two boundaries, and take the point closest to

the origin as the upper boundary. In this way, the result

of ego-lane detection is the area surrounded by these three

boundaries.

Figure 8 shows the ego-lane detection results of the sce-

narios corresponding to Figure 2. In (a), the significant lateral

error is eliminated, and the OSM road shape perfectly coin-

cides with the lane boundaries. It can be seen from (b) that the

significant heading error is eliminated, except for some slight

errors between the OSM road shape and the lane boundaries

shape.

IV. EXPERIMENTAL EVALUATION

To evaluate the accuracy and real-time performance of

MELD, we test it on the public KITTI Lane bench-

mark. All algorithms are implemented in C++, PCL (Point

Cloud Library) and OpenCV (Open Source Computer Vision

Library), running on a laptop computer with an Intel

i5−8265U 1.66 GHz CPU with 8 GB main memory.
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FIGURE 8. The result of ego-lane detection, where the left column is the
raw OSM data, the middle column is the parameters optimization result,
and the right column is the ego-lane detection result.

A. EXPERIMENTAL SETUP

1) KITTI LANE BENCHMARK

The KITTI Lane benchmark [55] is a widely used benchmark

for ego-lane detection. 95 training samples and 96 testing

samples are collected in various urban scenes with marked

lanes were included. The evaluation metrics include maxi-

mum F1-measure (MaxF), average precision (AP), precision

(PRE), recall (REC), false positive rate (FPR), and false neg-

ative rate (FNR), where MaxF is used as the primary metric

value for comparison between different methods.

2) EXPERIMENTS SETTING

For ROI selection, the neighborhood points size k for com-

puting horizontal slope feature is 7, the weighting coefficient

of the horizontal slope feature a is 0.5, and the weighting

coefficient of the vertical slope feature b is 0.5.

For lane feature extraction, the gradient threshold Gth is

200.

For ego-lane detection, the maximum lateral error ymax
is 100 pixels and the step size δy is 5 pixels; the maximum

heading error θmax is 0.1 radians and the step size δθ is 0.005

radians.

FIGURE 9. Robustness of different methods to missing feature.

FIGURE 10. Runtime of MELD for both training and testing datasets.

B. PERFORMANCE EVALUATION

We tested MELD on the KITTI Lane benchmark and

compared it with other state-of-the-art methods, including

SCRFFPFHGSP [21], SPlane + BL [22], SPRAY [23], Up-

Conv-Poly [24], RBNet [25], MANLDF, RoadNet3 [26], and

NVLaneNet. All results are evaluated on the KITTI evalua-

tion server,2 and the performance of the algorithms is shown

in Table 1.

The results show thatMELD achieved 93.56% in theMaxF

score, which is 1.70% higher than the previous state-of-the-

art method. The improvement of the MaxF score is mainly

due to the fact that the PRE of MELD can reach 95.94%,

and this is precisely because we use OSM road shape as the

lane model, which can accurately detect lane boundaries and

further achieve higher accuracy.

C. ROBUSTNESS TO MISSING FEATURE

To evaluate the robustness of MELD to the missing fea-

ture problem, we down-sample the lane features with the

sampling rate from 0 % to 100 % and perform model

comparison experiments on the training dataset. Contrast

mathematical representation models include straight line, cir-

2http://www.cvlibs.net/datasets/kitti/eval_road.php
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TABLE 1. Results of online evaluation on KITTI Lane benchmark. Best scores are highlighted in bold.

FIGURE 11. Qualitative results of MELD. Each column represents a typical missing feature scenario, where the top row is the raw image and the bottom
row is the detection result (shown as green) on the bird’s eye view of image.

cular arc, quadratic polynomial, and cubic spline. It should

be noted that we use the left and right boundary points

from the annotation results in the KTTTI Lane training

dataset as lane features, which can avoid the interference

of different detection algorithms and noise, therefore ensur-

ing the fairness of the experiment. The evaluation met-

ric uses MaxF, and the experimental results are shown in

Figure 9.

It can be seen that the fitting results of all mathematical

representation models become worse as the number of fea-

tures decreases. However, since the OSM road shape is used

as the lane model, MELD is very robust to missing features.

Even if the number of features decreases, the effect remains

unchanged. At the same time, in some extreme scenarios,

such as no visible features, we directly use OSM road shape

as the lane boundary, and the MaxF can reach 88.23 %, while

other mathematical representation models cannot handle this

scenario.

D. RUNTIME

Since MELD is to be used on autonomous driving sys-

tems, the less runtime of the algorithm allows systems to

get information about the surrounding environment earlier,

thereby ensuring the safety of the systems. As shown in

Figure 10, the runtime of MELD on both training and testing

datasets averages around 50 ms. This is twice as fast as the

rotation rate of the 3D LIDAR, so MELD can be used safely

on autonomous driving systems.

E. QUALITATIVE RESULTS

Some detection results of MELD are shown in Figure 11.

For the first two columns, the lane line is heavily worn and

blocked by shadows or other objects. For the third and fourth

columns, the vehicle is going to pass through the tunnel, and

the lane line in the far-range is covered by black or white. For

the last column, there are no visible lane features can be seen

in the picture. All these scenarios have the missing feature

problem, but MELD can stably detect the ego-lane.

V. CONCLUSION

In this study, we employ the OSM road shape as lane model

to enhance our ego-lane detection algorithm, which is robust

to the challenging scenarios of missing feature. At the same

time, to eliminate the position error between the OSM data
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and the real lane, a search-based optimization algorithm is

proposed to improve the accuracy of the algorithm. We vali-

date the proposed algorithm on the well-known KITTI Lane

benchmark, which achieved state-of-the-art performance in

terms of accuracy and real-time performance. However, the

proposed method has only been validated on the two-way

road in which the vehicle is driving on the right lane like

KITTI Lane dataset. In future work, we will expand our work

to more general roads like multi-lane, intersection, and even

no centerline. At the same time, to obtain more accurate

ego-lane detection results, the OSM road shape error will also

be eliminated.
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