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Abstract

This paper presents a novel maximuma posteriori (MAP) estimator for enhancing the spatial resolution of an

image using co-registered high spatial-resolution imagery from an auxiliary sensor. Here we focus on the use of

high-resolution panchomatic data to enhance hyperspectral imagery. However, the estimation framework developed

allows for any number of spectral bands in the primary and auxiliary image. The proposed technique is suitable for

applications where some correlation, either localized or global, exists between the auxiliary image and the image

being enhanced. To exploit localized correlations, a spatially varying statistical model, based on vector quantization,

is used. Another important aspect of the proposed algorithm is that it allows for the use of an accurate observation

model relating the “true” scene with the low-resolutions observations. Experimental results with hyperspectral data

derived from the Airborne Visible-Infrared Imaging Spectrometer (AVIRIS) are presented to demonstrate the efficacy

of the proposed estimator.

Index Terms

Hyperspectral, Multispectral, MAP estimation, Resolution Enhancement, Multisensor, Panchromatic Sharpening.

EDICS Category: 2-COLO, 2-MLTF
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MAP Estimation for Hyperspectral Image

Resolution Enhancement Using an Auxiliary

Sensor

I. I NTRODUCTION

Recently there has been significant interest in hyperspectral sensing technology to support a variety of civilian,

commercial, and military remote sensing applications. The wealth of information that resides in the spectral domain

provides significant advantages over traditional panchromatic and multispectral imagery, particularly for ground

cover and material identification and classification. However, the design and development of practical hyperspectral

sensors often result in a significant trade-off in spatial resolution. Therefore, important spatial features such as shape

and texture can be lost and the spatial fidelity of the resulting hyperspectral products is reduced.

The inherent trade-off between spatial and spectral resolution has resulted in the development of remote sensing

systems that include low-resolution hyperspectral coupled with high-resolution panchromatic and/or multispectral

imaging subsystems. An example is the NASA Earth Observer 1 satellite, which includes a 30 m hyperspectral

sensor and a 10 m panchromatic imager. Commercial panchromatic satellite imagery approaching 1 m spatial

resolution is also available. This provides the opportunity to jointly process the hyperspectral and higher resolution

panchromatic imagery to potentially achieve improved detection and/or classification performance.

A variety of techniques have been presented in the literature for merging imagery of different spatial and spectral

resolution [1]–[15]. Many of these techniques have been designed to sharpen multispectral imagery for human

interpretation using broadband panchromatic data. Component substitution methods transform the multispectral

imagery and replace one component with the broadband high-resolution imagery [3], [5], [16]. Commonly used

transformations are intensity-hue-saturation (IHS), where the intensity is replaced, or principal component analysis

(PCA), where the first principal component is replaced. Clearly, information in the lower components, that may be

critical in classification and detection, is not enhanced with such an approach.
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High pass techniques add high spatial frequency content from the high-resolution image to the bands of the low-

resolution data [1], [4], [7], [8], [16]. The technique in [11] uses a statistical approach that adds a linear combination

of the high-resolution data to a pixel replicated version of the low-resolution imagery. This technique was designed

to enhance the spatial resolution of the Landsat Thematic Mapper thermal band from the remaining bands. The

method described in [2] and [6] models the relationship between the high-resolution image and the image to be

estimated. Regression techniques are used at the available lower resolution to obtain the model parameters.

Another approach to hyperspectral resolution enhancement is based on spectral mixture analysis. A method based

on the linear mixing model has been investigated that employs constrained nonlinear optimization techniques to

obtain high resolution endmember fractions [12]–[14]. An alternative approach appends the high resolution image to

the hyperspectral data and computes a mixture model based on the joint data set [15]. A high resolution hyperspectral

image, however, is not explicitly estimated.

In this paper, we describe a novel maximuma posteriori (MAP) estimation framework [17] for enhancing the

spatial resolution of an image using co-registered high spatial-resolution imagery from an auxiliary sensor. Here we

focus on the use of high-resolution panchomatic data to enhance hyperspectral imagery. However, the estimation

framework developed allows for any number of spectral bands in the primary and auxiliary sensor. The proposed

technique is suitable for applications where some correlation, either localized or global, exists between the auxiliary

image and the image being enhanced. A spatially varying statistical model is used to help exploit localized correlation

between the primary and auxiliary image. Another important aspect of the proposed algorithm is that it allows for

the use of an accurate observation model relating the “true” scene with the low-resolutions observations. This means

that a potentially wavelength-dependent spatially-varying system point spread function (PSF) can be incorporated

into the estimator.

The remainder of this paper is organized as follows. In Section II, the observation model relating the true high-

resolution hyperspectral image to the observed low-resolution data is formulated. In Section III, the MAP framework

and estimator is presented. Section IV examines methods for estimating the statistical parameters required in forming

the MAP estimate. The relationship of the proposed method to some prior methods is discussed in Section V.

Experimental results are presented in Section VI. Finally, conclusions are given in Section VII.
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II. OBSERVATION MODEL

Consider the desired high-resolution hyperspectral image havingP bands withN pixels per band. This hyper-

spectral data-cube in band-interleaved-by-pixel lexicographical notation will be denoted

z = [z1,1, ..., zP,1, z1,2, ..., zP,2, ..., z1,N , ..., zP,N ]T . (1)

These variables can be expressed asz =
[
zT
1 , zT

2 , ..., zT
N

]T
, wherezn = [z1,n, z2,n, ..., zP,n]T represents the spectral

response pattern at each spatial positionn, for n = 1, 2, ..., N . The vectors,zn, will be referred to as “hyperpixels.”

In practice, the available co-registered imagery is generally either panchromatic or multispectral. Let the number

of bands in this associated data set beQ. In lexicographical form this data set is denoted

x = [x1,1, ..., xQ,1, x1,2, ..., xQ,2, . . . , x1,N , ..., xQ,N ]T . (2)

Expressing these data according to hyperpixel index, we getx =
[
xT

1 ,xT
2 , ...,xT

N

]T
, wherexn = [x1,n, x2,n, ..., xQ,n]T ,

for n = 1, 2, ..., N . The observed low-resolution hyperspectral data cube, havingM < N pixels per band, is denoted

y = [y1,1, ..., yP,1, y1,2, ..., yP,2, ..., y1,M , ..., yP,M ]T . (3)

Expressingy in terms of low-resolution hyperpixels, we obtainy =
[
yT

1 ,yT
2 , . . . ,yT

M

]T
, whereym = [y1,m, y2,m, ..., yP,m]T ,

for m = 1, 2, ...,M .

We model the observed hyperspectral image with the following linear observation model

y = Wz + n. (4)

HereW is anMP × NP matrix which, when operating onz, performs the PSF blurring and down-sampling. In

many cases the PSF can be determined theoretically by taking into account the spatial integration of the detectors

and modeling the optics [18]. The vectorn is a random vector of noise samples introduced during image acquisition.

We will assume thatn is a zero-mean Gaussian random vector that is independent ofz and x. Specifically, the
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probability density function (pdf) for the noise vector is given by

p(n) =
1√

(2π)MP |Cn|
exp

{
−1

2
nT C−1

n n
}

, (5)

whereCn is thePM ×PM covariance matrix for the noise. For notational simplicity, all the pdfs defined here will

be distinguished only by their arguments (in this casen). In many applications it is reasonable to model the noise

samples as independent and identically distributed from pixel-to-pixel and band-to-band. In that case, the noise

covariance matrix is given byCn = σ2
nI. Note that the total number of independent linear equations defined by

our observation model isPM and the number of unknowns inz is PN . Thus, without the additional information

provided byx anda priori knowledge aboutz, the problem of estimatingz is ill-posed.

III. MAP E STIMATION

A. MAP Estimation Framework

Treatingx, y, andz as random vectors, the MAP estimate ofz, given we observex andy, is defined as

ẑ = arg max
z

p(z|x,y), (6)

wherep(z|x,y) represents the conditional probability density function (pdf) ofz given x andy. In other words,

the MAP estimate is given by the vectorz that maximizesp(z|x,y). Using Bayes rule we can write

p(z|x,y) =
p(x,y|z)p(z)

p(x,y)
. (7)

Based on the model in (4) it can be seen thaty, given knowledge ofz, is simplyn plus a constant vector. In our

observation model we have assumed that the primary sensor noise,n, is independent of bothx and z. Thus, it

follows thatx andy, conditioned on knowledge ofz, are independent. This allows us to express (7) as

p(z|x,y) =
p(x|z)p(y|z)p(z)

p(x,y)
. (8)

Using Bayes rule onp(x|z) yields

p(z|x,y) =
p(z|x)p(x)p(y|z)p(z)

p(z)p(x,y)
. (9)
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Lastly, cancellingp(z) and noting thatp(x) andp(x,y) are not functions ofz, yields an alternative and equivalent

expression for the MAP estimator given by

ẑ = arg max
z

p(y|z)p(z|x). (10)

Specifying the required pdfs is addressed in the following section.

B. Specifying the Probability Density Functions

The pdf, p(y|z), comes from the observation model in (4). In particular, givenz, the random vectory has a

mean ofWz and variation due only to the noisen. Thus, using (5) we obtain

p(y|z) =
1√

(2π)MP |Cn|
exp

{
−1

2
(y − Wz)T C−1

n (y − Wz)
}

. (11)

The role that this pdf plays in the final algorithm will be to constrain any estimate ofz to closely (depending on

the level of noise) satisfy the observation model equationy = Wz.

Let us now consider the conditional pdf,p(z|x). If we assume thatx andz are jointly Gaussian, then by Theorem

10.2 of [17], the conditional pdf is also Gaussian with the following form

p(z|x) =
1√

(2π)NP |Cz|x|
exp

{
−1

2
(z − µz|x)T C−1

z|x(z − µz|x)
}

, (12)

whereµz|x = E{z|x} is the expected value ofz given x andCz|x is theNP ×NP covariance matrix ofz given

x. These conditional parameters can be related to the joint statistics, which are generally easier to estimate [17].

In particular, the conditional mean is given by

µz|x = E{z} + Cz,xC−1
x,x [x − E{x}] (13)

and the conditional covariance is given by

Cz|x = Cz,z − Cz,xC−1
x,xC

T
z,x, (14)

whereE{x} represents the mean ofx, E{z} represents the mean ofz. The variablesCz,z, Cz,x, andCx,x are
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cross-covariance matrices of the form

Cu,v = E
{

(u − E{u}) (v − E{v})T
}

, (15)

whereu andv are arbitrary multivariate random vectors.

C. The MAP Cost Function

To maximize the expression in (10), we can alternatively minimize the sum of the exponential terms in (11) and

(12). Thus, the MAP estimator can be expressed as

ẑ = arg min
z

C(z), (16)

whereC(z) is a cost function given by

C(z) =
1
2
(y − Wz)T C−1

n (y − Wz) +
1
2
(z − µz|x)T C−1

z|x(z − µz|x). (17)

Note that first term is the result of the observation model constraint and the second term comes from the correlation

between the auxiliary image and the desired image. The first term is minimized whenz is selected so that when

it is degraded, according to the observation model, the result matches the observed low-resolution hyperspectral

image data. The second term is minimized whenz = µz|x. These two competing constraints are intuitive. We want

our estimate to exploit the correlation withx, and still be consistent with the observation model.

To derive the closed form solution, we begin by computing the gradient of the cost in (17) with respect toz.

This is given by

∇zC(z) = WT C−1
n Wz − WT C−1

n y + C−1
z|x(z − µz|x). (18)

Setting the gradient to zero and solving forz yields

ẑ =
[
WT C−1

n W + C−1
z|x

]−1 [
WT C−1

n y + C−1
z|xµz|x

]
. (19)

Note also that if the noise covariance goes to zero, this form is invalid. Applying the matrix inversion lemma [17]
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and simplifying the result yields

ẑ = µz|x + Cz|xWT
[
WCz|xWT + Cn

]−1
[
y − Wµz|x

]
. (20)

This is, perhaps, a more useful result as it requires the inversion of anMP ×MP matrix WCz|xWT +Cn rather

than theNP ×NP matrix Cz|x in the previous form. Furthermore, when the noise in the observation model is set

to zero, (20) reduces to a useful result that is equivalent to that obtained with constrained optimization, as shown

in Appendix A.

It is interesting to note that ifCz|x is positive definite, thenWCz|xWT + Cn is positive definite for anyW,

provided thatCn is positive definite (e.g.,Cn = σ2
nI, whereσ2

n > 0). Another important point is that these closed

form solutions may require the inversion of a very large matrix. However, by making assumptions about the structure

of the covariance matrices and the system PSF, the problem can be decomposed spatially into independent subsets.

This greatly reduces the computational and memory demands of the closed form solutions. In other cases where

such decomposition is not possible, iterative minimization techniques can be employed such as those described in

[18], [19]. These methods may not require a matrix inverse and they can more readily exploit the sparse nature of

W inherent in most practical image formation models.

IV. ESTIMATING THE REQUIRED STATISTICAL PARAMETERS

Estimating the fullNP ×NP covariance matrixCz|x, used in (12), is impractical for a typical size hyperspectral

image. To make the problem manageable, constraints on the form of this covariance are required to bring down

the number of statistical parameters to be estimated. While there may be numerous ways to accomplish this, we

believe that a reasonable approach is to model the unknown high-resolution hyperpixels as conditionally independent

spatially, yielding

p(z|x) =
N∏

n=1

p(zn|xn). (21)

Writing out the individual conditional pdfs yields

p(z|x) =
N∏

n=1

1√
(2π)P |Czn|xn

|
exp

{
−1

2
(zn − µzn|xn

)T C−1
zn|xn

(zn − µzn|xn
)
}

, (22)
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whereµzn|xn
= E{zn|xn} andCzn|xn

is theP ×P covariance matrix forzn givenxn. The relationship between

the individual hyperpixel statistical parameters and the global statistical parameters in (12) is given by

Cz|x =




Cz1|x1 0 · · · 0

0 Cz2|x2

...

...
.. . 0

0 · · · 0 CzN |xN




=
N⊕

n=1

Czn|xn
, (23)

where
⊕

represents a direct sum and

µz|x =
[
µT
z1|x1

, µT
z2|x2

, . . . , µT
zN |xN

]T

. (24)

Furthermore, applying the results in (13) and (14) on the hyperpixels yields

µzn|xn
= E{zn} + Czn,xn

C−1
xn,xn

[xn − E{xn}] (25)

and

Czn|xn
= Czn,zn

− Czn,xn
C−1

xn,xn
CT

zn,xn
. (26)

Note that the covariance matrix of the joint random vector,sn =
[
xT

n , zT
n

]T
, is related to the cross-covariance

matrices in (25) and (26) as follows

Csn
=




Cxn,xn
CT

zn,xn

Czn,xn
Czn,zn


 . (27)

With the simplifying assumption of conditional independence,Cz|x is block diagonal, reducing the number of

statistical parameters from(NP )2 to NP 2. That is, the problem reduces to estimating the hyperpixel conditional

statistics in (25) and (26). We may wish to further reduce the number of statistical parameters to be estimated by

treating some or all hyperpixels as having the same conditional covariance. If, for example, we assume that all

hyperpixels have the same covariance, then we have onlyP 2 statistical parameters in the conditional covariance

matrix to estimate. One area of future work might be to explore other forms for the conditional covariance matrix

(implying other assumptions regarding the nature of the high-resolution hyperpixels).

To estimateE{zn}, we propose using the spatially interpolated observed hyperspectral imagery, denotedµ̂zn
.
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We have found that spline interpolation tends to yield the best results here. To estimateE{xn}, we use a spatially

smoothed version of the band or bands inx. We have observed that the best results are obtained when the smoothing

is done to mimic the way in whicĥµzn
relates tozn. That is, we degradexn with a PSF and down-sampling factor

similar to that defined byW. This degraded image is interpolated using spline interpolation to produce the estimate

of E{xn}, which we will denoteµ̂xn
, for all n. In this fashion it may be said that̂µxn

relates toxn as µ̂zn
relates

to zn. These estimates tend to track the non-stationarity in the mean exhibited by most natural images [20].

The joint covariance in (27) must also be estimated in order to get the conditional statistics in (25) and (26).

In most cases it will not be possible to obtain statistically similar data at the high resolution required. Thus, we

attempt to estimate the required joint covariance from the observed imagery. To do so, we will estimate a joint

covariance at the lower resolution of the observed hyperspectral imagery and apply it at the higher resolution. While

the joint statistics may differ at different resolutions, it is hoped that there is sufficient symmetry of spatial scale in

the statistical parameters to provide a useful result. In particular, we artificially degrade the spatial resolution and

size ofx to match that ofy. Let this degraded image be denotedx̃ =
[
x̃T

1 , x̃T
2 , ..., x̃T

M

]T
. The local means at this

resolution, obtained using the same method applied to the original resolution, are removed fromx̃ andy. Now, the

joint covariance information is estimated. One relatively simple approach seeks a single global covariance using a

sample covariance estimate. This covariance is used as an estimate ofCsn
for all n.

However, in order to more fully exploit the information inx, we wish to capture the changing joint covariance

as the spectral content in the scene varies spatially. Since it is impractical to estimate a joint covariance for each

hyperpixel, we use a simple clustering approach based on vector quantization. To begin, we form joint vector

s̃m =
[
x̃T

m,yT
m

]T ∈ RQ+P for m = 1, 2, . . . ,M , whereRQ+P represents theQ + P dimensional real space.

These vectors are grouped intoK clusters (or classes) using the Linde-Buzo-Gray (LBG) algorithm [21]. The

cluster centroids define the Voronoi partitions of the spectral space. That is, a given vector inRQ+P space is

assigned to classk if it lies closest, in a Euclidean sense, to the centroid of clusterk. For each cluster, the sample

joint covariance is computed using̃sm for m ∈ Ωk, whereΩk is the set of all indices corresponding to Voronoi

partition k. To estimate the joint covariance,Csn
, we assign̂sn =

[
xT

n , µ̂T
zn

]T
to a partition and let the covariance

for this high-resolution spatial positionn be the corresponding cluster covariance. With these covariance estimates

in hand, the final MAP estimate can be formed. In some cases we have observed improvement in performance if we
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form an estimate of the conditional mean in (25),µ̂zn|xn
, and then re-classify the image usingŝn = [xT

n , µ̂T
zn|xn

]T

for the purpose of assigning cluster covariances to each high-resolution position.

V. RELATIONSHIP TO OTHER APPROACHES

It is interesting to explore the relationship between the proposed MAP estimate and some previously proposed

approaches. Consider that if one neglects the observation model fory in the MAP formulation, the resulting cost

function would simply be the second term in (17). This would lead to an estimate that is the conditional mean in

(25). This result is essentially the same as that derived by Nishiiet al. [11] for Landsat Thematic Mapper thermal

band estimation, given specific choices for the estimates ofE{zn} and E{xn}. In particular, one must use zero-

order-hold (ZOH) interpolation (i.e., pixel replication) on each band of the observed hyperspectral image to estimate

E{zn} and average the auxiliary image pixels within the span of each low-resolution hyperpixel to estimateE{xn}.

Using these estimates forE{zn} and E{xn} guarantees that the average of the estimated hyperpixels within the

span of a low-resolution hyperpixel will be equal to the low-resolution hyperpixel. Nishiiet al. [11] explore the

use of both local and global covariances. Thus, in comparison to their method, the proposed MAP framework is

novel in how it explicitly incorporates an arbitrary system PSF and in how it allows for various statistical models

and estimates of the statistical parameters. We will use the method of Nishiiet al. [11] as one of our performance

benchmarks for comparison in Section VI.

Another method used as a benchmark is the estimator proposed by Price [2], [6]. This method was designed to

combine multispectral imagery with a panchromatic auxiliary image (i.e.,Q = 1). For bands strongly correlated

with the panchromatic sensor, the estimate is based on a linear mapping of the panchromatic image, yielding

ẑp,n = apx1,n + bp, (28)

for n = 1, 2, ..., N and p = 1, 2, ..., P . This estimate is then scaled so that the average of the high-resolution

hyperpixels within the span of a low-resolution hyperpixel is equal to the low-resolution hyperpixel. The coefficients,

ap and bp are estimated with least-squares regression using low-resolution hyperspectral bandp and a degraded

version of the panchromatic image (degraded to match the spatial resolution of the low-resolution hyperspectral

band). For weakly correlated bands, a look-up-table (LUT) method is employed [2], [6]. The LUT is created based
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on the relationship between the low-resolution pixel values in a given band and the corresponding pixel values

in the degraded panchromatic image. Once the LUT is generated it is applied to the full-resolution panchromatic

image to form a high resolution estimate of the desired band. As before, this estimate is scaled so that the average

of the high-resolution hyperpixels within the span of a low-resolution hyperpixel is equal to the low-resolution

hyperpixel.

VI. EXPERIMENTAL RESULTS

In this section we present a number of experimental results in order to demonstrate the efficacy of the proposed

estimator in comparison to the benchmark techniques. Simulated data are used here to allow for quantitative

performance analysis. The details of the data set are provided in Section VI-A. In Sections VI-B and VI-C,

quantitative error analysis is presented in the spectral band space and in the principal component space, respectively.

Finally, noise analysis is presented in Section VI-D.

A. Simulated Data

The simulated data sets are derived from a hyperspectral image collected by the Airborne Visible-Infrared Imaging

Spectrometer (AVIRIS) sensor [22]. AVIRIS is a scanning dispersive hyperspectral imaging sensor that flies on the

NASA ER-2 aircraft at approximately 20 km above sea level with a spatial resolution of approximately 6 m per

pixel. The sensor collects 224 contiguous spectral bands in the range of 0.4 to 2.5µm. The specific scene used has

been collected over Yorktown Virginia (Flight F980703T01, Run 02, ID 1828000ST23).

A 256 × 256 portion of the scene is used as the true high spatial resolution hyperspectral imagez. This is

artificially degraded to formy. A simple rectangular detector model is used for the system PSF [18]. In particular,

the PSF is a4 × 4 kernel with equal weights of1/16. The image is subsampled by a factor of4 in both spatial

dimensions. This PSF model leads to a simple structure in the matrixW. This structure, combined with the spatial

conditional independence assumption, allows us to process each low-resolution hyperpixel to form a corresponding

4 × 4 set of hyperpixels independently (after the mean estimates are formed using interpolation). For imagery in

the mid- and long-wave infrared, diffraction effects tend to become more pronounced and can be added to the

observation model [18]. The associated high resolution sensor in this case is modeled as a panchromatic broadband

imager (Q = 1). These data are formed by averaging the 224 AVIRIS bands at the original resolution. A false
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Fig. 1. Simulated observed images derived from AVIRIS data. (a) False color image of principal components one, two, and three of the low
spatial resolution hyperspectral data. (b) High spatial resolution panchromatic image.

color image, formed by mapping the first three principal components of the low-resolution hyerpspectral data to

red, green and blue, respectively, is shown in Fig. 1(a). The simulated broadband image is shown in Fig. 1(b).

The eigenvalue (variance) associated with each principal component of the low-resolution hyperspectral data is

plotted in Fig. 2. This clearly indicates that the vast majority of signal power is contained in the leading components.

For example, after 20 components, the eigenvalue has dropped by approximately five orders of magnitude from the

top component. In order to reduce the computational burden, we process the imagery in the PCA space in the top

twenty dimensions. The lower 204 dimensions are processed using spline interpolation. The processed components

are then transformed back to the original spectral space. Note that due to the nature of the PCA transformation,

the estimation algorithm applies identically in the principal component space as shown in Appendix B.

B. Spectral Space Performance Analysis

To quantitatively assess the performance of the MAP estimator, we compare the estimates with the “true”

hyperspectral image (the original resolution AVIRIS image). Our image fidelity metric is signal-to-noise ratio (SNR),

where “noise” here refers to estimation error. This metric is computed as the sample variance of the “desired” image

divided by the mean squared error (MSE). Scaling the reciprocal of the MSE by the variance of the desired image

is helpful in allowing one to compare performance between bands with significantly different signal powers. This
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Fig. 2. Eigenvalue versus component number for the low-resolution hyperspectral image.

is particularly useful in principal component space, where power in the bands can vary by orders of magnitude.

The SNR versus wavelength is shown in Fig. 3 for the MAP estimator (K = 16), the method of Nishiiet al.

(with global covariance statistics) [11], Price’s method [2], and spline interpolation. For Price’s method, both the

linear model and LUT approach are used and the best of the two SNRs for each band is reported. Here no noise

is introduced to either the low-resolution hyperspectral imagery or the panchromatic imagery. The effects of noise

are studied in Section VI-D. Note that significant improvement over spline interpolation is obtained in many bands

with all the techniques. Not surprisingly, the bands with the highest correlation with the panchromatic image tend to

have the highest SNRs. The spectral band estimates with very low SNR are a result of the original data having very

low signal power due to atmospheric absorption. It can be seen from Fig. 3 that the MAP estimate with (K = 16)

provides the highest SNRs for these data.

C. Principal Component Space Performance Analysis

The spectral domain error analysis indicates that many spectral bands can be significantly enhanced with the

use of the panchromatic imagery. However, it is insightful to examine the performance in the principal component

space. Table I shows the SNR in the first 5 principal components for spline interpolation, the method of Nishiiet al.
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Fig. 3. SNR versus AVIRIS band wavelength for the MAP estimator (K = 16), the method of Nishiiet al. (with global covariance statistics)
[11], Price’s method [2], and spline interpolation.

(with global covariance statistics) [11], Price’s method [2], and the MAP estimator forK = 1 andK = 16. Clearly

the top principal component is dramatically improved by incorporating information from the panchromatic image.

However, the lower components are far more difficult to enhance due to the weak correlation with the broadband

image. The MAP estimator does provide a modest increase in SNR over spline interpolation for some of the lower

components, while the benchmark techniques have lower SNRs than that obtained with spline interpolation. Note

also that principal component substitution methods typically seek to enhance only the principal component, and

do not enhance the lower components at all. Thus, we believe that any enhancement in these lower components is

a promising result. The use of multispectral high-resolution imagery (rather than panchromatic) could provide the

means to better improve these lower components. To focus on these lower components, Fig. 4 shows the percentage

SNR improvement over spline interpolation for the various estimators in components 2 through 20. Note that the

MAP estimator withK = 16 generally shows the most improvement. We believe that the improvement seen with

K = 16 versusK = 1 is because more correlation is present in the individual classes than exists globally.

False color images formed with the top three principal components mapped to red, green, and blue are shown

in Fig. 5. In particular, the true high resolution hyperspectral image components are shown in Fig. 5(a). Spline
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TABLE I

SNRS FOR ESTIMATES OF THE TOP5 PRINCIPAL COMPONENT IMAGES

Method PC 1 PC 2 PC 3 PC 4 PC 5

Spline Interpolation 5.87 6.36 2.86 4.86 3.90

Conditional Mean 26.92 5.69 2.48 4.21 3.62

(Nishii et al. [11])

Linear Regression Method 27.92 5.81 2.48 4.24 3.36

(Price [2])

MAP (K = 1) 34.74 7.42 2.99 5.04 4.44

MAP (K = 16) 38.97 8.37 3.05 5.24 4.48
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Fig. 4. Percentage improvement in SNR over straight spline interpolation for estimates of principal components 2 through 20.

interpolated components are shown in Fig. 5(b). The estimate using Price’s method is shown in Fig. 5(c). Finally,

the MAP estimate forK = 16 is shown in Fig. 5(d). An enlargement of the upper right corner of the image is

shown in Fig. 6 for principal components two, three, and four. We believe that the MAP estimates generally appear

sharper than the spline interpolated images and exhibit less prominent block artifacts than the estimates using Price’s

method (an observation consistent with the quantitative analysis).
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Fig. 5. False color images showing the top three principal components for (a) the true high-resolution hyperspectral image (b) spline interpolated
components (c) linear regression method (Price [2]) (d) the MAP estimate withK = 16.

D. Noise Analysis

In this section we consider how noise impacts the performance of the MAP estimator. First we consider the

impact of noise in the observed hyperspectral imagery and then we consider noise in the panchromatic imagery.

The SNRs of the estimates of principal component two as a function of the average SNR of the observed low-

resolution hyperspectral bands are shown in Fig. 7. Here no noise in the panchromatic image is introduced. One

curve shows the SNRs for the MAP estimates withK = 16 when zero noise variance is assumed. Another curve
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Fig. 6. False color images showing principal components two, three, and four for (a) the true high-resolution hyperspectral image (b) spline
interpolated components (c) linear regression method (Price [2]) (d) the MAP estimate withK = 16.

shows the SNRs when the correct noise variance is known and used. Note that when significant levels of noise are

present, it can be important to specify the appropriate noise variance.

The SNRs of the estimates of principal component two as a function of the panchromatic image SNR are shown

in Fig. 8. Here no noise in the hyperspectral image is introduced. Note that the spline interpolator does not depend

onx, and thus, is not affected by noise in the panchromatic image. Also note that when the SNR of the panchromatic

image is low, little improvement is possible as correlation with the hyperspectral bands is reduced. With very low
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Fig. 7. The SNRs of the estimates of principal component two as a function of the average SNR of the observed low-resolution hyperspectral
bands.

SNR panchromatic imagery, the correlation at the lower resolution is not indicative of the correlation at the higher

resolution. This is because the noise at the lower resolution is reduced as the panchromatic image is artificially

degraded to the lower resolution. The use of pre-filters for noise reduction could help to mitigate this effect.

VII. C ONCLUSIONS

This paper has developed a MAP estimation framework for estimating an enhanced resolution image using co-

registered high-resolution imagery from another sensor. Here we have focused on the enhancement of a hyperspectral

image using high-resolution panchomatic data. However, the estimation framework developed allows for any number

of spectral bands in the primary and auxiliary image. We believe that the proposed technique is suitable for

applications where some correlation exists between the auxiliary image and the image being enhanced. The results

with AVIRIS imagery indicate that a number of methods do well enhancing the top principal component image,

where strong global correlation exists with the panchromatic image. Much more difficult to enhance are the lower

component images. Notwithstanding this, we have demonstrated that the proposed estimator is capable of providing

modest improvement in some of these lower components (something not seen with the benchmark techniques).

The spatially varying statistical model (i.e.,K = 16), using vector quantization, does provide some additional
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Fig. 8. The SNRs of the estimates of principal component two as a function of the panchromatic image SNR.

performance gain over global statistics (i.e.,K = 1). We believe this is a result of exploiting the higher correlations

present within the spectral classes (correlations that get “washed out” in the global statistics).

We believe that one of the merits of the proposed estimation framework is that it allows for an arbitrary linear

observation model. Furthermore, the estimation framework opens up opportunities to improve upon these results

with the use of more sophisticated statistical models and methods for estimating the statistical parameters for

those models. For example, improved performance may be possible using a spatial-spectral model for the desired

high-resolution image (i.e., not assuming the desired hyperpixels are conditionally independent, given the auxiliary

image). Future work is focusing on incorporating spectral mixing models in order to improve the estimate of the

local statistics. We are also exploring the use of high-resolution multispectral imagery to enhance the hyperspectral

data.
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APPENDIX A

CONSTRAINED OPTIMIZATION FOR NEGLIGIBLE NOISE CASE

In the case where the noise in the observed data is negligible, it may be desirable to strictly enforce the observation

model constraints. In particular, instead of the unconstrained minimization of (17), we wish to minimize

C(z) =
1
2
(z − µz|x)T C−1

z|x(z − µz|x) (29)

subject to the constraint thaty = Wz. Multiplying out the terms and keeping only those that are functions ofz,

we arrive at an equivalent cost function

C(z) =
1
2
zT C−1

z|xz −
(
µT
z|xC

−1
z|x

)
z. (30)

Thus, we are faced with a minimization of a quadratic form with linear constraints. We can solve the problem using

the method of Lagrangian multipliers [17]. The Lagrangian is formed as

L(z, λ) =
1
2
zT C−1

z|xz −
(
µT
z|xC

−1
z|x

)
z + λT (Wz − y), (31)

whereλ is anMP × 1 vector of Lagrangian multipliers. The gradient with respect toz is given by

∇zL(z, λ) = C−1
z|xz − (C−1

z|x)T µz|x + WT λ. (32)

Setting this equal to zero and solving forz yields

ẑ = µz|x − Cz|xWT λ. (33)
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Now let us find theλ that allows our solution to meet the linear constraint. To do so we impose the linear constraint

on (33) and solve forλ. This gives us

y = Wẑ = W
(
µz|x − Cz|xWT λ

)
. (34)

Solving for λ we get

λ =
(
WCz|xWT

)−1
(
Wµz|x − y

)
. (35)

Plugging this into (33) yields our final solution

ẑ = µz|x − Cz|xWT
[(

WCz|xWT
)−1

(
Wµz|x − y

)]
. (36)

Note that this result matches (20) when the covariance of the noise is set to zero.

APPENDIX B

PRINCIPAL COMPONENTSPACE ESTIMATION

The PCA technique starts with the construction of aP ×P “spectral” covariance matrix, typically estimated from

the available low-resolution hyperpixels. Using eigenvalue decomposition, an orthonormal set of eigenvectors of the

covariance is obtained. These are used to construct an orthogonal matrixE whose columns are the eigenvectors. The

unknown high-resolution hyperpixelszn are related to the PCA space hyperpixels,z̄n, through the transformation

zn = Ez̄n, for n = 1, 2, . . . , N . Let us defineEN =
⊕N

n=1 E andEM =
⊕M

m=1 E. Note that sinceE−1 = ET ,

the same is true ofEN andEM . Therefore, we can relate the PCA space and spectral space variables asz̄ = ET
Nz,

ȳ = ET
My, and n̄ = ET

Mn. The estimation problem in the PCA space now becomes one of estimatingz̄ from ȳ

andx.

The observation model defined in (4) in the spectral space can be transformed into the PCA space asȳ = W̄z̄+n̄

whereW̄ = ET
MWEN and the transformed noise is a zero-mean Gaussian random vector with covarianceCn̄ =

ET
MCnEM . Also, if z andx are jointly Gaussian, then so arez̄ andx. Thus, the MAP estimate in PCA space has

the same form as that in (20), but with the variables replaced with their PCA counterparts, yielding

ˆ̄z = µz̄|x + Cz̄|xW̄T
[
W̄Cz̄|xW̄T + Cn̄

]−1 [
ȳ − W̄µz̄|x

]
. (37)
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Hereµz̄|x = E{z̄|x} andCz̄|x is the conditional covariance of̄z givenx. These are estimated in a fashion similar

to their spectral domain counterparts. The estimate can be mapped back to the spectral space usingẑ = EN ˆ̄z, if

desired.

Note that in the special case whereCn = σ2
nI, thenCn̄ = ET

Mσ2
nIEM = σ2

nI. Also, if W is formed using a

system PSF which is identical in each spectral band, then it can be shown thatW̄ = W. To see this, consider

partitioning W into P × P blocks Wi,j , where1 ≤ i ≤ M and 1 ≤ j ≤ N , such that each block operates on

one hyperpixel. The corresponding(i, j) block of W̄ is given byET Wi,jE. The assumption thatW does not

vary spectrally is equivalent toWi,j being a multiple of aP × P identity matrix, IP , for all (i, j). Therefore,

Wi,j commutes withE. SinceE is orthogonal,ET E = IP . Hence, the(i, j) block of W̄ is Wi,j , implying that

W̄ = W.

The advantage of PCA space processing lies in the fact that most of the signal energy lies in the PCA subspace

corresponding to the top eigenvalues. The lower principal component dimensions can be treated with a simpler

algorithm, such as interpolation, or even set to zero if they are deemed to be primarily noise. Processing in a lower

dimension PCA subspace reduces the size of the matrix inverse required in the closed form solution and requires

the estimation of fewer statistical parameters. In addition to the benefit in terms of processing time, this tends to

lead to covariance estimates that are better conditioned, making the resulting MAP algorithm more robust.
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