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ABSTRACT

This paper describes a process for automatically inferring
maps from large collections of opportunistically collected
GPS traces. In this type of dataset, there is often a great
disparity in terms of coverage. For example, a freeway may
be represented by thousands of trips, whereas a residential
road may only have a handful of observations. Additionally,
while modern GPS receivers typically produce high-quality
location estimates, errors over 100 meters are not uncom-
mon, especially near tall buildings or under dense tree cov-
erage. Combined, GPS trace disparity and error present a
formidable challenge for the current state of the art in map
inference. By tuning the parameters of existing algorithms,
a user may choose to remove spurious roads created by GPS
noise, or admit less-frequently traveled roads, but not both.

In this paper, we present an extensible map inference
pipeline, designed to mitigate GPS error, admit
less-frequently traveled roads, and scale to large datasets.
We demonstrate and compare the performance of our pro-
posed pipeline against existing methods, both qualitatively
and quantitatively, using a real-world dataset that includes
both high disparity and noise. Our results show significant
improvements over the current state of the art.
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1. INTRODUCTION
Automatically inferring maps from opportunistically col-

lected GPS traces has a range of valuable applications. For
example, where no manually-produced maps exist, inferred
maps may be the only available option. Elsewhere, inferred
maps may be used to detect changes to the road network
and to pin-point errors in existing maps. Map inference
may also be used to produce custom maps for certain classes
of travelers, including pedestrians, bicyclists, transit riders
[5], truckers, or tourists, by feeding in data from different
sources. The GPS traces needed for producing such maps
are becoming increasingly available due to the popularity
of smartphones and GPS navigators, which capture large
volumes of user location traces on a daily basis.

Inferred maps today however, do not offer the quality we
expect of real maps. The existing state of the art in map
inference [6, 11, 9] is highly sensitive to disparities in the
number of trips made on different roads and to the high
levels of GPS noise often encountered in urban areas, typi-
cally resulting in maps with either poor coverage or a mul-
titude of spurious and misaligned roads. In this paper, we
propose a hybrid map inference method that combines the
best aspects of existing algorithms with several new innova-
tions to produce the most accurate map inference method
to date. Moreover, in order to accelerate the development of
further improvements, we develop an extensible map infer-
ence pipeline, make the code and data available, and invite
the research community to help bring map inference over
the last remaining hurdles.

The primary contributions of this paper may be summa-
rized as follows:

• An extensible, hybrid map inference pipeline with high
tolerance to disparities in coverage and GPS noise.

• A gray-scale map skeletonization method for extract-
ing map centerlines from a density estimate.

• A trajectory-based topology refinement technique for
edge pruning and intersection merging.

• A trajectory-based geometric refinement technique to
estimate intersection geometries.

• A comparative evaluation of the proposed pipeline
against several existing map inference techniques from
the literature.

Below, an overview of our proposed hybrid map inference
pipeline is given in §2. We then discuss each stage of the
pipeline in its own section (§3–§7), followed by a brief review



of the related literature in §8. We evaluate the performance
of our map inference pipeline against that of several algo-
rithms from the literature in §9, and §10 concludes.

2. A HYBRID MAP INFERENCE PIPELINE
In this section, we present a scalable, extensible map in-

ference pipeline, and motivate its design. In addition to
creating a high-performance map inference engine, we aim
to provide a reusable framework within which improvements
to individual components may be made and evaluated by the
community. To this end, the source code of the map infer-
ence engine, together with example trace data and ground
truth maps, are made available on our website [1].

The list below gives a general overview of our pipeline,
where each step builds upon the output of the one before it.
In this paper, we propose an effective method for each step
in turn, but expect future research to offer further improve-
ments for each of the various steps.

1. Density Estimation (§3). The full set of GPS traces
is passed through a kernel density estimator (KDE)
with a Gaussian kernel, to produce a single sample
point density estimate for the area in question.

2. Initial Map Generation (§4). Road centerlines are
extracted using our new gray-scale skeletonization al-
gorithm.

3. Trace Map Matching (§5). Viterbi map matching
[23, 17] is used to associate each GPS sample point
in the original traces with an edge in the initial map,
weighted by the mean density beneath each edge.

4. Topology Refinement (§6). Here, the map-matched
traces are studied to remove low-confidence edges, merge
redundant nodes, and infer allowable edge transitions.

5. Geometry Refinement (§7). Finally, our topology-
invariant geometry refinement step aligns intersections,
extracts turn-lanes and fits road segments to transform
the resulting topologically-accurate road map into a
more geometrically-accurate, finished map.

In a major departure from prior work, we combine ini-
tial density processing as in [9, 22, 7, 21] with subsequent
trajectory processing [6, 11, 24, 12, 13, 3, 18]. As shown
in [4], density processing holds a significant advantage over
trajectory processing in terms of robustness to noise and
computational complexity, both supremely important con-
siderations as we grow the amount of trace data used. Den-
sity estimation’s ability to very efficiently consider all traces
simultaneously allows us to find an optimal road skeleton,
rather than resorting to greedy approximations.

Existing density-based approaches are highly sensitive to
density disparities between roads—we address this in §4.
More critically, density-based approaches are poorly suited
to detecting turn restrictions and grade-separated roadways,
as they discard the relationships between points. By pre-
serving these relationships, trajectory-based techniques are
better able to perform fine-grained trajectory analysis such
as lane detection [11, 19, 8], allowable turn detection [19],
and spline fitting of road curvatures [11, 19, 24, 3]. However,
the prohibitive complexity of computing globally optimal so-
lutions based on trajectories has led to a variety of greedy

solutions in the literature. None of these are robust to noisy
GPS data, resulting in poor map quality [4].

By map-matching the original traces to a density-based
map in step (3), we recover the relationships between suc-
cessive samples without the noise sensitivity and scalability
problems associated with trajectory-based map inference al-
gorithms. One may interpret map-matching noisy traces to
a noise-resilient scaffold as a replacement for the clustering
or merging step in existing trajectory-based methods. After
matching, we may safely assume that every point matched
to an edge is a (potentially noisy) sample from a single road.
On rarely traveled roads, however, the noise problem per-
sists: determining whether an underlying road is accurately
represented by a single, potentially noisy trace, is an open
problem. We now discuss each step in more detail.

3. DENSITY ESTIMATION
In the first stage of the pipeline, the full set of GPS traces

is condensed into a single two-dimensional (2-D) density es-
timate. The area of interest is first discretized into 1x1 meter
cells. The number of times a trace passes through each cell
is then computed, producing a 2-D histogram.

To account for aliasing problems and GPS errors, the 2-D
histogram is convolved with a normal distribution function
N(0, σ2), representing the expected GPS error distribution.
This is a close (and fast) approximation of a well-known
technique in statistics known as Kernel Density Estimation
(KDE), with a Gaussian kernel [20]. The choice of σ should
be made based on the expected GPS error and road width.
We used σ = 8.5 meters.

Fig. 1(a) shows a sample of raw GPS traces, and its corre-
sponding kernel density estimate is shown in Fig. 1(b). The
density estimate shows clear and smooth peaks along the
most heavily traveled roads in our dataset. In the next sec-
tion, we extract an initial road network based on the density
estimate computed here.

4. GRAY-SCALE SKELETONIZATION FOR

ROAD CENTERLINE FINDING
As shown in Fig. 2(a) a simple binary threshold may be

used to produce a binary mask of the most popular roads.
However, as seen in Fig. 2(b), simply lowering the threshold
to include less popular roads also admits a great deal of GPS
noise in some areas, creating a difficult dilemma.

The canonical skeletonization algorithm, due to Zhang
and Suen [26], produces a characteristic skeleton from a bi-
nary image, as illustrated in Fig. 3(a). As mentioned above
however, no single threshold can produce a binary image
that is both inclusive and accurate in the presence of den-
sity discrepancies and GPS noise. Below, we extend the
original skeletonization technique to multi-intensity (gray-
scale) images, so that we may produce a skeleton without
the use of a binary threshold.

At a high level, our algorithm repeatedly performs the
binary skeletonization operation, once per integer density
level, starting with the maximum density. At each level,
new parts are potentially added to the skeleton, but none
are ever removed. This process accurately captures the cen-
terlines of high-density ridges. At the same time, it is able
to produce centerlines for roads that were only driven once.
More formally, the gray-scale skeletonization algorithm pro-
ceeds as follows.



(a) Binary mask of original traces. Coverage density
varies by three orders of magnitude, including very sig-
nificant noise in some areas.

(b) Kernel density estimate. Darker regions correspond to
frequently traveled road segments. Some roads are very
faint.

Figure 1: As a first step, kernel density estimation produces a continuous distribution out of a noisy set of
GPS traces. Note the fuzziness of the density estimate around the high-noise areas.

(a) Binary map image derived by applying a high thresh-
old to the KDE.

(b) Binary map image derived by applying a low threshold
to the KDE.

Figure 2: Simple binary thresholding does not work well, as no single threshold achieves both high accuracy
and high coverage. To address this, a threshold-free centerline finding algorithm is needed.

(a) Skeleton from binary image. (b) Gray-scale skeleton from KDE.

Figure 3: Binary skeletonization vs. gray-scale skeletonization. Gray-scale skeletonization produces more
edges, but each edge is more accurate, and annotated by a gray-scale level. The darker the edge, the higher
the confidence in its location and existence.
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Figure 4: The 8-neighborhood of pixel P1, used in
the process of skeletonization.

4.1 Algorithm Description
Let D(x, y) be the density at location x, y. For each level

l ∈ 1 . . . lmax, let Tl be a binary (thresholded) image, such
that Tl(x, y) = 1 iff D(x, y) ≥ l. Our algorithm recursively
produces a skeleton image Sl for level l, such that Sl =
skeletonize(Tl+Sl+1), where Slmax

= skeletonize(Tlmax
).

Thus, the skeleton pixels at the end of the process have
values in the range 1 . . . lmax depending on the level at which
they were introduced.

The procedure skeletonize repeatedly “thins” the image
until it converges. Each thinning step consists of applying
several local conditions to any pixel of value 1 (unit pixels) in
the image, to decide whether to set the pixel to zero. Here,
we use the notation from [26], partially illustrated in Fig. 4.
For every pixel P1 = 1, the decision to keep it or set P1 := 0
is made based on the values of the neighboring pixels P2

through P9. Each major thinning iteration consists of two
sub-iterations. In the first sub-iteration, P1 := 0 iff all of
the following conditions are satisfied:

B(P1) ≥ 2 (a)

B(P1) ≤ 6 (b)

A(P1) = 1 (c)

P2 · P4 · P6 6= 1 (d)

P4 · P6 · P8 6= 1, (e)

where A(P1) is the number of (0,≥ 1)-pairs in the ordered
set P2, P3, . . . , P9, P2, and B(P1) is the number of non-zero
neighbors of P1. In the second sub-iteration, rules d’ and e’
are substituted for rules d and e:

P2 · P4 · P8 6= 1 (d’)

P2 · P6 · P8 6= 1. (e’)

Upon convergence, any remaining unit pixels that satisfy
the following rule are set to zero:

B(P1) ≥ 7 (f)

4.2 Algorithm Intuition
By proceeding level by density level, and preserving any

skeleton pixels from higher levels as we progress toward the
lower densities, we ensure that high-density pixels are ac-
curately represented in the final skeleton. We now briefly
summarize the purpose of each of the conditions above.

Here, Cond. (a)–(e’) closely resemble those in [26], ad-
justed to accept values other than {0, 1}. Specifically, Cond.
(a) preserves unit pixels at the end-points of lines. Cond. (b)
forces thinning to progress inward from the edges of contigu-
ous unit pixel areas, consistent with the thinning concept.

Cond. (c) preserves any unit pixel that is the sole bridge
between two or more non-zero pixels. Here, two or more
(0,≥ 1)-pairs split the 8-neighborhood into disjoint sets,
connected only through P1. Finally, alternating between
Conds. (d–e) and (d’–e’) enforces a degree of synchroniza-
tion in this otherwise highly parallelizable algorithm. This
is to avoid a race condition which may thin two-pixel wide
lines in a single step, rather than thinning these to a one-
pixel line.

In the final step, applying Cond. (f) to the image after
convergence is necessary to counter a phenomenon that oc-
curs only in gray-scale skeletonization. Occasionally, an area
surrounded by high-density ridges may be entirely filled with
cells of non-zero density. Using binary skeletonization, the
high density ridges would first be flattened to level 1, and
the image thinned until a single line remained through the
middle of the low-density area. In gray-scale skeletonization
however, the high-density ridges appear early in the process,
and cannot be thinned away later. Due to Cond. (b), these
ridges then prevent pixels in the surrounded low-density area
from being removed. Cond. (f) returns the image to its de-
sired skeleton shape by hollowing out any such surrounded
areas in a single step.

4.3 Performance Optimizations
Both the density estimation and skeletonization techniques

described are highly parallelizable algorithms that are well
suited for GPU or MapReduce implementations. However,
as described, the gray-scale skeletonization algorithm runs
one binary skeletonization per level. For maps with very
high densities, this may grow to an unmanageable number
of iterations, even on GPU hardware. In practice, we have
found that restricting the levels to powers of two produces
largely identical initial maps, with an exponential improve-
ment in execution time.

4.4 Edge Extraction from Skeleton Image
Given a skeleton image, our goal is to produce an initial

road map consisting of nodes and edges. We use the combus-
tion technique described in [21] to associate each pixel with
an edge, and the Douglas-Puecker algorithm [10] to produce
the edges that make up the shape of each road segment.

5. DENSITY-AWARE MAP MATCHING
We now match our original traces to a contiguous se-

quence of edges from the initial map produced by the skele-
tonization algorithm above. This accomplishes two things.
First, it sets an upper bound on the number of nodes and
edges. Later steps may prune and shift nodes and edges,
but may not add to the topology. This avoids the tendency
of trajectory-based techniques to produce spurious edges.
Second, by assigning each point to an edge, it reduces the
computational complexity and improves the parallelism of
downstream methods that can now operate on each edge
independently.

Our map-matching technique uses Viterbi’s algorithm, and
is based on [23]. Relative to [23], we make the following
modifications. To enforce a speed limit, every edge is rep-
resented by several consecutive fixed-length states, each of
which must be traversed before transitioning to a new edge.
This replaces the speed limit heuristic in [23]. Moreover,
transition probabilities, which were uniform in [23], are in-
stead assigned values proportional to the edge weight, com-



puted as the mean level of the pixels that make up the gray-
scale skeleton. Weighting transitions based on edge weight
encourages the matcher to use popular roads when the trace
allows it, effectively reducing the number of traces that tra-
verse spurious roads.

6. TOPOLOGY REFINEMENT
In the topology refinement step, the initial map produced

through density processing is updated based on the the map-
matched traces. All edges with zero or one traversals are
discarded, pairs of intersections are merged when trace evi-
dence supports it, and statistics are produced to determine
the allowable transitions between edges. Below, we describe
each step in more detail.

6.1 Pruning Spurious Edges
Through edge pruning, edges that see less than two well-

matched traversals are removed. More formally, for each
map-matched trace t and edge e, we compute nt

e, the num-
ber of traversals of e such that RMSD(τ, e) < RMSDmax,

where τ is a traversal of e and

RMSD(τ, e) =

√

1

|τ |

∑

p∈τ

dist(p, e)2.

Here p ∈ τ are GPS points, and dist is the distance be-
tween p and the nearest point on e. We only consider traver-
sals with RMSD(τ, e) < RMSDmax good matches; these
are used as evidence of a road segment’s existence.

Aggregating nt
e across all traces, we have ne =

∑

t
nt
e, the

number of well-matched traversals for each edge. Intuitively,
any edge with ne = 0 is unlikely to represent an actual road.
Such an edge may, for example, have been created by a
noisy GPS trace, which was later matched to a more popular
nearby road by our weighted map-matching technique in §5.

We argue that the same is true for edges with ne = 1.
With a single traversal, the trace will naturally fit the map
edge perfectly. After all, the edge was most likely drawn
based on that single trace. Thus, the RMSD(τ, e) is point-
less when ne = 1. For this reason, we require two traces to
support the existence of any given road segment.

Fig. 5 shows our map before (a) and after (b) this pruning
process, clearly illustrating the effectiveness of this technique
in reducing the number of spurious road segments.

6.2 Collapsing Nodes into Intersections
While the multi-level skeletonization algorithm in §4 pro-

duces an accurate road skeleton for a given density estimate,
the generated topology does not necessarily correspond well
to typical road designs. One common case of this, caused
by an uneven density distribution in the intersection, is il-
lustrated in Fig. 6(a). Here, a single four-way intersection
is represented as two adjacent three-way intersections.

To address this common problem, we first sort all pairs of
adjacent intersection nodes in order of increasing distance.
We then consider collapsing each pair in order, replacing
the pair’s two m,n-degree intersections with a single (up
to) m + n − 2-degree intersection at their mean location.
If this refinement does not reduce the total number of well
matched traces, it is made permanent. Fig. 6(b) shows the
result after collapsing. This process effectively transforms
the map into a topologically accurate representation of the
underlying road network.

6.3 Map Matching Do-Over
After completing the pruning and collapsing steps above,

all traces are map-matched once more, this time using the
actual number of traversals rather than edge densities to
compute transition probabilities. Any traces initially matched
to now deleted edges are re-matched to a more likely route,
and edge pruning is performed once more. Here, the first
pruning round breaks a number of spurious cycles, and the
second round removes the remaining spurs after map-matching
re-routes traces to more probable routes. The final result
from this step is shown in 14(d).

6.4 Detecting Allowable Edge Transitions
Finally, for each trace we compute a list of all adjacent

pairs of distinct edges e : d, in order. We then compute the
number of occurrences of each pair, count(e : d) across all
traces. To enforce allowable edge transitions we use a strict
interpretation of this data: a transition from edge e to edge
d is allowed iff count(e : d) > 0.

7. GEOMETRY REFINEMENT
In the geometry refinement step, the map is updated to

model intersections in more detail, and to improve the align-
ment of the inferred map using its original traces. Here,
the segment-level topology does not change—segments may
shift, but they are not added or deleted. One minor excep-
tion to this are turn-lanes, which do contribute additional
detail to the topology of an intersection, but do not add new
road segments.

7.1 K-means Refinement
Our goal here is to simultaneously refine the entire map,

including intersections, rather than refine each segment piece-
meal. We propose a geometry refinement technique based
on the k-means algorithm. The input to the k-means algo-
rithm is the k initial means and a set of sample points to
be clustered. We adapt k-means to the geometry refinement
problem by (a) creating an initial estimate based on the
input map, and (b) restricting clustering eligibility—which
sample points may be assigned to what means, based on the
map matching results from §5.

7.1.1 Initialization

Key to a successful application of the k-means algorithm
is a good initial estimate. Since the goal here is to refine an
existing map, we base our estimate on this map. We pro-
duce two classes of means: intersection means and segment
means. For each intersection and end-point (i.e., dead-end)
in the input map, we add one intersection mean to our ini-
tial estimate. Each intersection mean is associated with all
segments incident on the intersection. For each road seg-
ment in the input map, treating each direction separately,
we produce ⌈ L

m
− 2⌉ means, where L is the length of the

segment, and m is the maximum distance between means.
The first and last points of the segment are excluded, as
these are already represented by the intersection means. The
rest are uniformly distributed along the length of the seg-
ment. These means are associated only with the segment
from which they originated.



(a) Map before pruning. (b) Map after first round of pruning.

Figure 5: Density-based centerline finding produces a number of spurious edges. A trajectory-based pruning
process, using the original traces map-matched against the initial map, removes most spurious edges.

(a) Intersection before collapsing nodes. (b) Intersection after collapsing nodes.

Figure 6: By collapsing nearby nodes into intersections, the final map topology is produced. Nodes are
merged only when the original traces support this change.

(a) Same intersection with directional street segments. (b) Same intersection with turn-lanes added.

Figure 7: Geometry refinement, separating directions and adding turn lanes.



7.1.2 Assignment

Each GPS sample is then assigned to its nearest eligible
mean. The set of eligible means include those from the seg-
ment that the sample was matched to, as well as the inter-
sections or end-points that delimit the segment at each end.
Note that intersection means are eligible for GPS sample
assignment from all segments incident on that intersection.
This optimizes intersection alignment, taking all neighbor-
ing segments into account. Simultaneously, segment-based
means automatically find the shape of each road segment.

7.1.3 Update

In the update step, each mean is moved to reflect its new
sample membership. The typical update function simply
takes the mean location of all member samples as the new
mean location. This can be further refined by first remov-
ing points that lie too far from the mean (outliers), and by
taking into account the location of neighboring means.

This produces a map with correct lane separation, but
with intersections still represented as points in the map
topology. Where bi-directional segments exist, this leads
an hourglass-shaped intersection geometry, see Fig. 7(a).
To produce a correct intersection geometry, we need to esti-
mate each segment transition separately.

7.2 Estimating Transition Trajectories
As a näıve solution, simply replacing the intersection node

with direct edges between segments produces a significantly
improved map; the hour-glass shape is removed, while the
topology is preserved. This approach however, does not ac-
curately capture the individual shape of each lane, often
leading to crooked-looking intersections. Below, we describe
a solution that separately estimates the transition between
each pair of segments, producing a complex, but accurate,
intersection geometry.

For each pair of road segments, taken as a single “transi-
tion”, we prepare a separate set of means according to the
initialization method described above. We then perform k-
means again, this time using the transition means. Here, a
given mean is eligible for assignment only if the current sam-
ple came from a matching transition. The generated tran-
sition segments and the original street segments are then
merged. In this paper, we use a simple constant set-back
from the intersection as the merge-point. Fig. 7(b) shows
the final result, after adding turn-lanes.

Note how the location of the intersection is initially offset
to the south-west in Fig. 7(a). This intersection is highly
asymmetric in density, with a large majority of traces in
the south-west corner. Density-based processing finds this
peak, and places the intersection here. After breaking out
the turn-lanes however, this density asymmetry no longer
has an effect as each turn-lane has an independent set of
traces matched to it. This example emphasizes the power of
combining density- and trajectory-based processing for map
inference.

8. RELATED WORK
The existing literature concerning the problem of map in-

ference from GPS traces can be organized into three broad
categories, surveyed in [4]:

K-means algorithms begin by performing variants on k-
means clustering over the set of GPS samples, where the dis-
tance measure is defined as a combination of the Euclidean

distance to, and compass heading of, a given cluster. In or-
der to extract the road map, a second pass is made through
these clusters, connecting with road segments those clusters
that fall along the path of the raw GPS traces. Methods
that belong to this class include algorithms described by
Edelkamp and Schrödl [11], Schroedl et al. [19], Worrall
and Nebot [24], Guo et al. [12], Jang et al. [13], and Aga-
mennoni et al. [3].

Trace-merging algorithms incrementally construct a
road map by merging together incoming GPS traces that are
located nearby in terms of distance and bearing. As a noise-
reduction step, those roads with relatively few corroborating
GPS trace samples are not included in the final road map.
Algorithms belonging to this class include work by Niehofer
et al. [18] and Cao and Krumm [6].

Kernel density estimation (KDE) algorithms be-
gin by discretizing the geometric space covered by the set
of GPS points into a grid of pixels, recording the approx-
imate density of samples that fall within and across each
cell. A global threshold is applied to the resulting density
map in order to produce a binary representation of the road
network, and the centerline is extracted using a variety of
image-processing methods. Representative algorithms here
include work by Davies et al. [9], Chen and Cheng [7], Shi
et al. [21], and Steiner and Leonhardt [22].

A representative example from each of these categories is
included in our evaluation (§9).

8.1 Gray-scale Skeletonization
There is existing work in gray-scale skeletonization by Li

et al. [14], and Yim et al. [25]. Li et al. look at the
problem of skeletonizing gray-scale images that lack a con-
tiguous contour. Starting from the boundary segments of
the gray-scale image, their algorithm develops a so-called
Skeleton Strength Map (SSM) from which they are able to
extract the skeleton. Yim et al. look at the skeletonization
of gray-scale images from magnetic resonance angiography,
as a means to identify the paths of small vessels and their
tree structures. The technique employed in this work starts
by modeling the image as a directed acyclic graph, and then
applies selection and pruning methods to isolate the most
salient features in order to extract a final skeleton.

8.2 Road Centerline Finding Algorithms
Prior work on kernel density estimation (KDE) algorithms

have employed a variety of road centerline finding methods.
In Davies et al. [9], a form of Voronoi tessellation is used
within the boundaries of the binary road network. By prun-
ing away short“dead-end”segments, they are able to recover
a contiguous spline along the approximate road centerline.
In Chen and Cheng [7], morphological “dilation” followed
by “closing” operations are used to fill gaps in the binary
road network representation, and then morphological “thin-
ning” is used to extract the centerline of the resulting shape.
Lastly, in Steiner and Leonhardt [22], the watershed trans-
form [16] is used to extract the centerline. This transform
suffers from two major weaknesses making it unsuitable for
our purposes. First, it depends on a method for identifying
a set of local minima from which to initiate the flooding pro-
cess, and reliably choosing minima that produce a good set
of ridges is non-trivial. Second, the watershed transform is
fundamentally unable to detect dead-end roads, since these
cannot form a separate flooding basin.



Figure 8: 7 months of raw traces. Data displays
both high disparity and high GPS noise. Dashed
square indicates the “hospital area.”

9. EVALUATION
In this section, we perform a quantitative and qualita-

tive evaluation of our map inference pipeline. Where possi-
ble, we compare our results to those of three previous map
inference algorithms, demonstrating dramatically improved
performance both quantitatively and qualitatively.

9.1 Dataset
For our evaluation, we use up to 7 months of data collected

from 13 university shuttle buses serving the University of
Illinois at Chicago campus. A mask of the full set of traces
is shown in Fig. 8. These shuttles serve several regular
routes with dozens of trips per day, two commuter shuttle
routes with a handful of trips per day, as well as occasional
chartered trips. This combination of occasional, infrequent,
and frequent trips provides a high degree of density disparity.

In addition, the area served contains a mix of low-rise res-
idential buildings, mid-rise campus buildings, and high-rise
office and hospital towers. In the hospital area (highlighted
by the dashed square in Figure 8), urban canyons are cre-
ated where GPS reception is highly error-prone, with some
traces showing consistent errors well over 100 meters.

9.2 Other algorithms
In addition to our proposed map inference pipeline, we

evaluate three existing algorithms for comparison purposes:
the KDE-based method by Davies et. al [9] (Davies), and
two trace-based methods by Edelkamp et. al [11] (Edelkamp)
and Cao and Krumm [6] (Cao). For this comparison, we
limit our data to a 1-month subset for two reasons. First,
and most importantly, the inherent scalability problem of [6]
makes it infeasible to evaluate this algorithm with a larger
dataset. Second, due to noise sensitivity, the performance
of [11] declines as the amount of data exceeds the 1 month
mark.

9.3 Evaluation Methodology
The purpose of our evaluation is to determine the accuracy

with which each inference algorithm represents the under-
lying road network. As ground truth, we use a manually-
verified section of OpenStreetMap [2] for our region of inter-
est. Because not all streets in this map are actually visited
by our vehicles, we make one modification to the ground
truth map: all traces are map-matched to the ground truth
map, and any road segment that is not traversed by at least
one trace is removed from the ground truth map.
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Figure 9: GEO F-scores of our method vs. existing
methods on the 1-month dataset.
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Figure 10: TOPO F-scores of our method vs. exist-
ing methods on the 1-month dataset.

We use two different evaluation methods from previous
work to compare our inferred maps to the ground truth map.
The first method (GEO) is taken from [15], and evaluates
map geometry only. Here, the connectivity of the map is
ignored entirely, but every segment of both maps is taken
into account. In brief, the full set of segments of each map
are first sampled at 5-meter intervals. Then, a bi-partite,
one-to-one matching is computed between the two sets, up
to a maximum match distance threshold. Remaining sam-
ples from the inferred and ground truth maps are termed
spurious, and missing respectively.

The second method (TOPO) is taken from [4], with one
modification. This sampling-based method evaluates the
topology of the map as well as the geometry. We mod-
ify the method to ignore parts of the map where no cor-
respondence could be found between inferred and ground
truth maps. Thus GEO partially evaluates the entire map,
whereas TOPO fully evaluates those parts where the maps
overlap. See [4] for more details. For both methods we use
the F-score, the geometric mean of precision and recall, as
our primary evaluation metric.

For the results below, we use the topology refinement out-
put only. While geometry refinement produces a more de-
scriptive map, our ground truth does not contain this level
of detail, making it infeasible to quantitatively evaluate the
performance of the geometry refinement step. Visual sam-
ples of the geometry refinement output are provided in 7(a)
and 7(b).
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Figure 11: Precision/recall and F-score on 1-month
dataset. GEO evaluation metric.

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5  10  15  20  25  30

Matching Threshold (m)

F-score Precision Recall

Figure 12: Precision/recall and F-score on 1-month
dataset. TOPO evaluation metric.

9.4 Results
Our main result is shown in Figs. 9–10. Our new method

offers a significant improvement over the previous state of
the art in both GEO and TOPO evaluations.

Figs. 11–12 offer further insight into the limitations of
our proposed pipeline. While precision falls in the 0.9–1.0
range for matching thresholds of 15 meters and above, recall
falls below 0.7. Visually inspecting the generated maps, the
explanation behind this is clear: many roads in the ground
truth were traversed only once, and in the current topology
refinement step, roads with a single traversal are pruned.
In future work, we hope to address this problem to further
improve performance.

Finally, Fig. 13 shows the GEO performance on 7 months
of data. The slightly sharper bend of the curve suggests
that additional data was helpful in producing more accurate
centerlines. However, when using a higher matching thresh-
old, performance is essentially unchanged. In this case, ad-
ditional data simultaneously improves the map quality and
introduces additional ground truth edges. With more evenly
distributed data, we expect to see a monotonic performance
increase with larger data sets.

Figs. 14(a)–14(d) visually illustrate the performance of
each algorithm across the entire region of interest. Our pro-
posed method produces a significantly more complete map,
with very few spurious edges. Note that here, we show only
the 7-month dataset for our proposed pipeline, due to space
limitations. The 1-month map has somewhat fewer edges
but is otherwise similar.
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Figure 13: Precision/recall and F-score on 7-month
dataset. GEO evaluation metric.

Focusing our attention on the “hospital area” which has
high density, disparity, and GPS error, we also see that our
method produces a considerably higher quality map, with
better coverage and improved alignment.

10. CONCLUSION AND FUTURE WORK
We have presented a hybrid map inference pipeline, which

significantly advances the state of the art when consider-
ing noisy and disparate datasets. Key to our work is the
combination of initial density processing, with its ability
to consider all traces in aggregate, followed by trajectory
processing, with its capacity for capturing topological and
geometric details.

While the results on this dataset are very good, much
work remains to validate our approach on different datasets,
and tune each step for optimal performance. By releasing
the source code and data used in this paper, we invite the
community to contribute to this evolving project. These
resources are available on our website [1].
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