- 1 MAP Kinase and mammalian target of rapamycin are main pathways of
- 2 gallbladder carcinogenesis: Results from bioinformatic analysis of Next
- **3** Generation Sequencing data from a hospital-based cohort.
- 4
- 5 Monika Rajput, monika05rajput@gmail.com
- 6 SatyaVjiay j Chigurupati, vjchigurupati@gmail.com
- 7 Roli Purwar, purwarroli@gmail.com
- 8 *Mridula Shukla drmridulashukla@gmail.com
- 9 Manoj Pandey mpandey66@bhu.ac.in
- 10
- 11 Department of Surgical Oncology
- 12 Institute of Medical Sciences
- 13 Banaras Hindu University
- 14 Varanasi 221005, India
- 15 *Department of Pathology
- 16 Lal Pathology
- 17 Shiv Pur, Varanasi, India
- 18 Address for correspondence and reprint requests
- 19 Manoj Pandey
- 20 Department of Surgical Oncology
- 21 Institute of Medical Sciences

- 22 Banaras Hindu University
- 23 Varanasi 221005, India
- 24 mpandey66@bhu.ac.in
- 25

26 <u>ABSTRACT</u>

Background: Gallbladder Cancer (GBC) is one of the most common cancers of the biliary tract and the third commonest gastrointestinal (GI) malignancy worldwide. The disease is characterized by the late presentation and poor outcome despite treatment, and hence, newer therapies and targets need to be identified.

Methods: The current study investigated various functionally enriched pathways in GBC pathogenesis involving the genes identified through Next Generation Sequencing (NGS). The Pathway enrichment analysis and Gene Ontology (GO) were carried out after NGS, followed by the construction of the protein-protein interaction (PPI) network to discover associations among the genes.

Results: Of the thirty-three patients with GBC who were screened through next-36 generation sequencing (NGS), 27somatic mutations were identified. These 37 mutations involved a total of 14 genes. The p53 and KRAS were commonly found 38 to be mutated, while mutations in other genes were seen in one case each, the mean 39 number of mutations were 1.2, and maximum mutation in a single case (eight) was 40 seen in one case. The bioinformatics analysis identified MAP kinase, PI3K-AKT, 41 EGF/EGFR, and Focal Adhesion PI3K-AKT-mTOR signaling pathways and cross-42 talk between these. 43

44 Conclusion: The results suggest that the complex crosstalk between the mTOR,
45 MAPK, and multiple interacting cell signaling cascades can promote GBC

46 progression, and hence, mTOR - MAPK targeted treatment will be an attractive47 option.

Keywords: Next Generation Sequencing (NGS), Gene Ontology (GO), Proteinprotein interaction network (PPI), Gene Set Enrichment Analysis (GSEA),
Signaling network, Disease Ontology (DO) and, Cross-Talk.

Abbreviations: Gene Ontology (GO), Protein-protein interaction network (PPI),
WEB-based Gene Set Analysis Toolkit (Webgestalt), Search Tool for the Retrieval
of Interacting Genes (STRING), the mammalian target of Rapamycin (mTOR) &
the mitogen-activated protein kinase (MAPK) signaling pathways.

55

56 **INTRODUCTION**

Gallbladder cancer (GBC) is a rare malignant neoplasm of the biliary tract and is 57 more prevalent in Asia (1-2). According to GLOBOCAN 2018 data, approximately 58 1.2% of deaths reported in 2018 were due to GBC (3). It is a relatively rare type of 59 cancer with a poor prognosis with a 5-years survival rate of 10-20%, and a lack of 60 symptoms in its early stages compared to other cancers (4-6). The development of 61 GBC progresses through metaplasia, carcinoma, dysplasia, and invasive 62 malignancy over 5-15 years (7). If GBC is detected earlier and managed 63 effectively, it is completely curable (8). Several internal and external factors are 64 associated with GBC development; of these gallstones (9), various lifestyle-related 65 factors (stress, alcohol, diet, menstrual factors) (10-12), xanthogranulomatous 66 cholecystitis (13), biliary duct infection (14-16), metabolism and lipid peroxidation 67 (17-18), Heavy metals and environmental pollution (19-20) etc., play a crucial role. 68

Surgery is the primary treatment for early disease, while chemotherapy andradiation are the mainstays in advanced and metastatic GBC (21). The use of other

approaches, such as immunotherapy, hormone therapy, and targeted therapy, is mostly experimental, with a slight improvement in progression-free survival with no benefit in overall survival (22). With the advent of advanced methods such as whole-genome sequencing (WGS) using NGS or microarray platforms, the origin of genomic research has expanded, and newer approaches are being identified (23). This has also helped me understand the molecular mechanisms and prediction of treatment response and outcome.

GBC appears to arise due to undiscovered successive spontaneous mutations 78 involving tumor suppressor genes, oncogenes, genes involved with angiogenesis, 79 cell growth and development, and microsatellite instability (24-29). So far in GBC, 80 about 1281 genetic mutations have been discovered (30). Another recent study 81 exploring the transcriptome identified over 900 differentially expressed gene (31). 82 In this study, thirty-three cases of GBC were screened through NGS for mutational 83 studies, and the results of mutation profiling were analyzed using bioinformatics 84 tools to understand the biological pathways involved in gallbladder carcinogenesis 85 and identify a suitable targeted therapy. 86

87

88 **Patients and methods:**

A prospective study was carried out between January 2017 to December 2021. After approval from the institute ethics committee, and obtaining a written informed consent, naïve patients with a proven histological diagnosis of gallbladder cancer were included in the study.

Data collection and processing- Comprehensive history and physical examination
of the patients were taken, and details were recorded in the preset proforma.
Besides hematology and biochemistry, including the tumor marker CA 19-9, an

image-guided biopsy was carried out. CT/MRI/MRCP of the abdomen was carried
out to measure the tumor dimensions and stage the disease before initiation of
treatment. The tumor tissue was studied for expression of gene mutation by NextGeneration Sequencing. All patients were treated as per standard of care and
followed until December 2021.

GO and Pathway enrichment analysis- WEB-based Gene Set Analysis Toolkit 101 (Webgestalt) (32), an online bioinformatics tool that helps to investigate significant 102 enriched Genes and functional pathways, Wikicancer Pathway analysis and Gene 103 Ontology (GO)were performed by using Webgestalt tool 104 (http://www.webgestalt.org). 105

Network integration and screening of modules- Protein-protein interaction 106 107 network (PPI) of genes were constructed by using NetworkAnalyst (http://www.networkanalyst.ca.) (33) and Search Tool for the Retrieval of 108 Interacting Genes (STRING) (http://string-db.org/) (34) based on the confidence 109 scores. Further analysis of involved genes was carried out by constructing a gene-110 gene interaction network using GeneMania online Tool (35). A signaling network 111 was built among the GBC-specific genes. 112

Disease ontology- Further, Disease Ontology (DO) analysis was performed through Gene Set Enrichment Analysis (GSEA) (36) as a plugin of the Webgestalt tool. Gene-Associated Disease Interaction network of 14 genes was constructed through NetworkAnalyst.

117

118 **RESULTS:**

119 A total of 33 cases underwent NGS analysis; among them, mutations were 120 identified in 17 of the patients, and a total of 27 mutations (mean 1.19 SD 1.7,

range 0-8) were identified in 14 genes which were further analyzed (Table 1). The
mutations included TP53 (9 cases), KRAS (4 cases), KDR (4 cases), MAP3K1 (4
cases), BRAF (4 cases), PTEN (2 cases), SMAD4 (1 case), NRAS (1 case),
CTNNB1 (1 case), EGRF (1 case), PDGFRA (1 case), FBXW7 (1 case), and
POLE (1 case) (Table 1).

Functional enrichment analysis- The results of GO enrichment analysis were 126 categorized into three functional categories, i.e. biological processes (BP), 127 molecular function (MF), and cellular components (CC). In the BP, gene 128 enrichment was seen in MAPK cascade, signal transduction by protein 129 phosphorylation, positive regulation of protein phosphorylation, and positive 130 regulation of phosphorylation (Table 2A). In the MF, genes were functionally 131 transmembrane receptor protein tyrosine enriched in kinase activity. 132 transmembrane receptor protein kinase activity, protein-containing complex 133 binding, and MAP kinase activity (Table 2B). In the CC, genes were functionally 134 enriched in the membrane raft, membrane micro domain, membrane region, cell 135 junction, receptor complex, and focal adhesion (Table 2C). 136

Pathway enrichment analysis- Figure 1 shows the ten positive and four negatively related categories according to the false discovery rate (FDR > 0.05). The genes significantly enriched in MAPK, PI3K-AKT, EGF/EGFR, Focal Adhesion, and PI3K-AKT-mTOR signaling pathway. The resulted outcome stipulated that these significant genes were functionally enriched in cancerassociated biological pathways (Figure 2).

GBC-specific genes functional characterization- The Protein-Protein Interaction
(PPI) network of 14 significant genes with 14 nodes and 71 edges was constructed
using STRING (Figure 3). Further, several hub genes exhibiting co-expression,
predicted, and physical and genetic interaction with multiple genes were identified,

and a network was constructed through the GeneMania tool (Figure 4 and
Additional Table 1). The NetworkAnalyst Tool built a signaling network through
a plugin Signor (https://signor.uniroma2.it) (37) of 13 significant genes, with 503
nodes and 619 edges shown in (Figure 5).

Disease ontology (DO)- Further, DO with FDR (> 0.05) was functionally enriched. The enriched DO showed identified genes to be associated with Melanoma, Gastrointestinal Diseases, Gastrointestinal Neoplasms, Carcinoma and Squamous cells, Nervous System Neoplasms, and Breast Neoplasms (Figure 6). The results of the Gene-Disease associated network of significantly enriched six genes in NetworkAnalyst are presented in (Additional Figure 1).

157 **Cross talk between mTOR/MAPK signaling pathway-** High frequency of the 158 mammalian target of Rapamycin (mTOR) & the mitogen-activated protein kinase 159 (MAPK) signaling pathways variation was observed, including PTEN, AKT, 160 TP53, SMAD4, EGFR, and CTNNB1 (Figure 7) a pathway of cross-talk between 161 various identified pathways was constructed by data and text mining.

162 **DISCUSSION**

Multi-omics characterization of the NGS data from GBC patients identified 14 significant genes and their functional and biological pathways, with MAP kinase and mTOR being the main. Despite recent breakthroughs in surgical procedures and drug development, gallbladder cancer has a dismal long-term prognosis, with a 5-year survival rate ranging from 5% to 13% (38) (39).

Gain-of-function mutations in FGFRs have been described in numerous malignancies, and they play a crucial role in angiogenesis and proliferation (40). To our knowledge, no FGFR3 mutation or amplification has been documented in

gallbladder cancer. Hence, the discovery of Fibroblast Growth Factor Receptor(FGFR3) was a novel result in our investigation.

Moreover, the investigation uncovered that the TP53 family is associated with 173 different mutation in TP53, in most of our cases suggestingthat it acts as a 174 mutagenic driver in GBC. TP53 is the commonest gene studied in the gallbladder 175 and extrahepatic biliary tract cancer. TP53 mutations with or without RAS 176 mutations are reported in up to 50% of gallbladder cancer patients (41). No 177 difference is observed in patients with the anomalous junction of the pancreatic, 178 and biliary duct (42). In some areas, it's higher, while others display lower p53 179 mutation rates (43). Bolivia reported 50% mutation rates in their patients, all but 180 one patient had a single mutation, while one had three mutations in the same gene. 181 Most of these mutations were on exons 5 and 8 of the gene (44). Eighty single 182 nucleotide variants and 8 indels in 39 genes were identified in their patients with 183 biliary tract cancer, including gallbladder, p53, and KRAS, were the commonest 184 mutations identified in these patients (44). KRAS is a well-known oncogene, 185 commonly mutated in various malignancies (45). Patients with GBC were found to 186 have a mutation in the KRAS gene. 187

A number of other targets like EGFR, VEGF, BRAF, MAPK, etc., were identified, 188 some of which for the first time. Further, significantly higher identification of 189 190 mutations in p53 and RAS oncogene signifies that treatment by EGFR antibodies may not be successful in these cases. However, the relatively widespread 191 frequency of MAPK and mTOR signaling pathway mutations (NRAS, BRAF, 192 TP53, AKT, MAPK31, and PTEN) was a remarkable result, opening up possible 193 alternatives for targeted therapy directed against the mTOR pathway. Previous 194 studies have also shown the importance of MAP kinase and mTOR pathways in 195 gallbladder cancer. A study in the gallbladder cancer cell line from typhoid carriers 196

and an animal model from the same cell line showed mTOR as the main pathway
of carcinogenesis, leading authors to suggest targeting of mTOR receptors (46).
Further experimental studies demonstrated regression of gallbladder cancer by
treatment with mTOR inhibitors (47). This was independent of the typhoid carrier
state and was demonstrated to be mediated through PIK3CA/AKT/mTOR pathway
(48-52). Although the single-phase I study of docetaxel and temsirolimus was
limited by severe myelosuppressive toxicity and failed to meet the objectives (53).

Results of the present study, and bioinformatics show cross-talk between various pathways with mTOR, including the EGFR pathway, p53 pathway, and PIK3CA/AKT pathway, suggesting the need to conduct clinical trials on mTOR inhibitors. The results of this study gives a unique insight into gallbladder carcinogenesis, identifies driver oncogenes, and suggest new therapeutic strategies that need to be tested.

210 CONCLUSION

The study reports the results of DNA sequencing and demonstrated 14 key genes in 211 gallbladder carcinogenesis, including P53, RAS, EGFR, MAP3K1, PTEN, etc. The 212 analysis also demonstrates that the mTOR and MAPK signaling networks were 213 major pathways in gallbladder carcinogenesis. We suggest that the complex 214 crosstalk between the mTOR, MAPK, and multiple interacting cell signaling 215 cascades promotes gallbladder carcinogenesis by activating cell division. This 216 suggests that mTOR inhibitors are an attractive option in the treatment of treatment 217 gallbladder cancer, and this needs to be tested in clinical trials. 218

219 Authors Contribution

220 MR: Conduct of the study, bioinformatics analysis and interpretation and 221 preparation of the draft manuscript

VJC: Collection of the data, design of study, interpretation of results andpreparation of manuscript

- RP: data collection, interpretation of results and preparation of manuscript
- 225 MS: Interpretation of pathological and molecular results, preparation of manuscript
- 226 MP: concept and design, interpretation of results, Editing of the final manuscript
- All authors read and approved final manuscript for publication

228

229 Conflict of Interest

230 The authors declare there are no conflicts of interest

231

232 Ethical approval and Consent

- The study was approved by the Institute Ethics committee vide approval letter no
- 234 Dean/EC/2020/2045 dated 18.7.2020 written informed consent was taken from all
- 235 patients participating the study

236 **Consent to Publish**

237 Not applicable

238

239 Funding

240 None

241 Acknowledgement

242 None

243 **REFERENCES**

- Mehrotra R, Tulsyan S, Hussain S, Mittal B, Singh Saluja S, Singh S, Tanwar P, Khan A, Javle M, Hassan MM, Pant S, De Aretxabala X, Sirohi B, Rajaraman P, Kaur T, Rath GK. Genetic landscape of gallbladder cancer: Global overview. Mutat Res Rev Mutat Res. 2018 Oct-Dec;778:61-71. doi: 10.1016/j.mrrev.2018.08.003. Epub 2018 Aug 23. PMID: 30454684..
- Jin H, Cui M. Gene silencing of heparanase results in suppression of 2. 250 invasion and migration of gallbladder carcinoma cells. Biosci Biotechnol 251 Biochem. 2018 Jul;82(7):1116-1122. doi: 252 10.1080/09168451.2018.1456316. Epub 2018 Mar 29. PMID: 253 29598788.. 254
- Rawla P, Sunkara T, Thandra KC, Barsouk A. Epidemiology of
 gallbladder cancer. Clin Exp Hepatol. 2019 May;5(2):93-102. doi:
 10.5114/ceh.2019.85166. Epub 2019 May 23. PMID: 31501784;
 PMCID: PMC6728871..
- 4. Nemunaitis JM, Brown-Glabeman U, Soares H, Belmonte J, Liem B, Nir
 I, Phuoc V, Gullapalli RR. Gallbladder cancer: review of a rare orphan
 gastrointestinal cancer with a focus on populations of New Mexico. BMC
 Cancer. 2018 Jun 18;18(1):665. doi: 10.1186/s12885-018-4575-3. PMID:
 263 29914418; PMCID: PMC6006713..
- 5. Akhtar J, Priya R, Jain V, Sakhuja P, Agarwal AK, Goyal S, Polisetty
 RV, Sirdeshmukh R, Kar S, Gautam P. Immunoproteomics approach
 revealed elevated autoantibody levels against ANXA1 in early stage
 gallbladder carcinoma. BMC Cancer. 2020 Dec 1;20(1):1175. doi:
 10.1186/s12885-020-07676-6. PMID: 33261560; PMCID: PMC7709428.

269	6.	Horsley-Silva JL, Rodriguez EA, Franco DL, Lindor KD. An update on
270		cancer risk and surveillance in primary sclerosing cholangitis. Liver Int.
271		2017 Aug;37(8):1103-1109. doi: 10.1111/liv.13354. Epub 2017 Jan 28.
272		PMID: 28028930.
273	7.	Espinoza JA, Bizama C, García P, Ferreccio C, Javle M, Miquel JF,
274		Koshiol J, Roa JC. The inflammatory inception of gallbladder cancer.
275		Biochim Biophys Acta. 2016 Apr;1865(2):245-54. doi:
276		10.1016/j.bbcan.2016.03.004. Epub 2016 Mar 12. PMID: 26980625;
277		PMCID: PMC6287912.
278	8.	Kanthan R, Senger JL, Ahmed S, Kanthan SC. Gallbladder Cancer in the
279		21st Century. J Oncol. 2015;2015:967472. doi: 10.1155/2015/967472.
280		Epub 2015 Sep 1. PMID: 26421012; PMCID: PMC4569807.
281	9.	Espinoza JA, Bizama C, García P, Ferreccio C, Javle M, Miquel JF,
282		Koshiol J, Roa JC. The inflammatory inception of gallbladder cancer.
283		Biochim Biophys Acta. 2016 Apr;1865(2):245-54. doi:
284		10.1016/j.bbcan.2016.03.004. Epub 2016 Mar 12. PMID: 26980625;
285		PMCID: PMC6287912.
286	10.	Pandey M, Singh S, Shukla VK. Diet and gallbladder cancer: A case-
287		control study. Eur J Cancer Prevention 2002; 11: 365-8. PMID:
288		12195163
289	11.	Pandey M, Singh S, Shukla VK. Life-style, parity, Menstrual and
290		reproductive factors and gallbladder cancer. Eur J Cancer Prev 2003; 12:
291		269-72. PMID: 12883378
292	12.	Pandey M. Risk factors for gallbladder cancer a reappraisal. Eur J Cancer
293		Prev 2003; 12: 15-24. PMID: 12548106

294	13.	Dixit VK, Prakash A, Gupta A, Pandey M, Kumar M, Gautam A, Shukla
295		VK. Xanthogranulomatous cholecystitis. Dig Dis Science 1998; 43(5):
296		940-2. PMID: 9590403
297	14.	Shukla VK, Singh H, Pandey M, Upadhyaya SK, Nath G. Carcinoma of
298		the gallbladder is it a sequel of typhoid? Dig Dis Sci 2000; 45: 900-3.
299		PMID: 10795752
300	15.	Pandey M, Shukla M. Helicobacter species are associated with possible
301		increase in risk of hepatobiliary cancers. Surgical Oncology 2009; 18:51-
302		56 PMID: 18715780
303	16.	Pandey M, Mishra RR, Dixit R, Jaiswal R, Shukla M, Nath G.
304		Helicobacter bilis in human gallbladder cancer: Results of a case control
305		study and meta analysis. Asia Pacific journal of Epidemiology and
306		prevention 2010; 11: 343-47.PMID: 20843113
307	17.	Pandey M, Shukla VK. Fatty acids, biliary bile acids, lipid peroxidation
308		products and gallbladder cancer: A hypothesis. European J Cancer
309		Prevention 2000; 9:165-71. PMID: 10954255
310	18.	Pandey M, Shukla VK, Singh S, Roy SK, Rao BR. Biliary lipid
311		peroxidation products in gallbladder cancer: increased peroxidation or
312		biliary stasis?. <i>Eur J Cancer Prev</i> 2000; 9 : 417-22. PMID: 11201680
313	19.	Shukla VK, Arya NC, Pitale A, Pandey M, Dixit VK, Reddy CD,
314		Gautam A. Metallothionein expression in carcinoma of the gallbladder.
315		Histopathology 1998; 33: 154-7. PMID: 9762548
316	20.	Pandey M: Environmental pollutants in gallbladder cancer. J Surg Oncol
317		2006; 93(8):640-3 PMID: 16724354. 10.1002/jso.20531
318	21.	Turgeon MK, Maithel SK. Cholangiocarcinoma: a site-specific update
319		on the current state of surgical management and multi-modality therapy.

Chin Clin Oncol. 2020 Feb;9(1):4. doi: 10.21037/cco.2019.08.09. Epub
2019 Sep 2. PMID: 31500433; PMCID: PMC7186525.

- Zheng Q, Wu C, Ye H, Xu Z, Ji Y, Rao J, Lu L, Zhu Y, Cheng F.
 Analysis of the efficacy and prognostic factors of PD-1 inhibitors in
 advanced gallbladder cancer. Ann Transl Med. 2021 Oct;9(20):1568. doi:
 10.21037/atm-21-4747. PMID: 34790774; PMCID: PMC8576663.
- Roy N, Kshattry M, Mandal S, Jolly MK, Bhattacharyya DK, Barah P.
 An Integrative Systems Biology Approach Identifies Molecular
 Signatures Associated with Gallbladder Cancer Pathogenesis. J Clin
 Med. 2021 Aug 10;10(16):3520. doi: 10.3390/jcm10163520. PMID:
 34441816; PMCID: PMC8397040.
- Mishra SK, Kumari N, Krishnani N. Molecular pathogenesis of
 gallbladder cancer: An update. Mutat Res. 2019 Nov;816-818:111674.
 doi: 10.1016/j.mrfmmm.2019.111674. Epub 2019 Jul 6. PMID:
 31330366.
- 25. Priya R, Pandey M, Shukla VK. Biomarkers in carcinoma of the
 gallbladder. *Expert opinion on medical diagnosis* 2008; 2:511-26.
- 26. Dixit R, Shukla VK, Pandey M. Molecular alterations in gallbladder
 cancer. World Journal of Pathology 2012, 1:7
- 27. Dixit R, Singh G, Pandey M, Basu S, Bhartiya SK, Singh KK, Shukla
 VK. Association of Methylenetetrahydrafolate Reductase Gene
 Polymorphism (MTHFR) in Patients with Gallbladder Cancer. J
 Gastrointest Cancer. 2016 Mar;47(1):55-60. doi: 10.1007/s12029-0159794-0.
- Srivastava V, Patel B, Kumar M, Shukla M, Pandey M. Cyclin D1,
 retinoblastoma and p 16 protein expression in carcinoma of the

346 gallbladder. Asia Pacific J Cancer Prev Asian Pac J Cancer Prev. 2013;
347 14(5):2711-5

- 29. Dixit R, Pandey M, Tripathi SK, Dwivedi AN, Shukla VK. Comparative
 Analysis of Mutational Profile of Sonic hedgehog Gene in Gallbladder
 Cancer. Dig Dis Sci. 2017 Mar;62(3):708-714. doi: 10.1007/s10620-0164438-1. Epub 2017 Jan 5. PMID: 28058596
- 352 30. .Maurya SK, Tewari M, Mishra RR, Shukla HS. Genetic aberrations in
 353 gallbladder cancer. Surg Oncol. 2012 Mar;21(1):37-43. doi:
 354 10.1016/j.suronc.2010.09.003. Epub 2010 Sep 29. PMID: 20880699.
- 31. Dixit R, Pandey M, Tripathi SK, Dwivedi AND, Shukla VK. Genetic
 mutational analysis of β-catenin gene affecting GSK-3β phosphorylation
 plays a role in gallbladder carcinogenesis: Results from a case control
 study. Cancer Treatment and Research Communications, 2020;
 23:100173 doi.org/10.1016/j.ctarc.2020.100173 PMID: 32344182
- 32. Liao Y, Wang J, Jaehnig EJ, Shi Z, Zhang B. WebGestalt 2019: gene set
 analysis toolkit with revamped UIs and APIs. Nucleic Acids Res. 2019
 Jul 2;47(W1):W199-W205. doi: 10.1093/nar/gkz401. PMID: 31114916;
 PMCID: PMC6602449.
- 364 33. Xia J, Gill EE, Hancock RE. NetworkAnalyst for statistical, visual and
 network-based meta-analysis of gene expression data. Nat Protoc. 2015
 Jun;10(6):823-44. doi: 10.1038/nprot.2015.052. Epub 2015 May 7.
 PMID: 25950236.
- 34. Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J,
 Simonovic M, Doncheva NT, Morris JH, Bork P, Jensen LJ, Mering CV.
 STRING v11: protein-protein association networks with increased
 coverage, supporting functional discovery in genome-wide experimental

- 372datasets. Nucleic Acids Res. 2019 Jan 8;47(D1):D607-D613. doi:37310.1093/nar/gky1131. PMID: 30476243; PMCID: PMC6323986.
- 374 35. Franz M, Rodriguez H, Lopes C, Zuberi K, Montojo J, Bader GD,
 375 Morris Q. GeneMANIA update 2018. Nucleic Acids Res. 2018 Jul
 376 2;46(W1):W60-W64. doi: 10.1093/nar/gky311. PMID: 29912392;
 377 PMCID: PMC6030815.
- 378 36. Korotkevich G, Sukhov V, Budin N, Shpak B, Artyomov MN,
 379 Sergushichev A. Fast gene set enrichment analysis. BioRxiv, 2021:
 380 060012. https://www.biorxiv.org/content/10.1101/060012v3
- 37. Lo Surdo P, Calderone A, Cesareni G, Perfetto L. SIGNOR: A Database
 of Causal Relationships Between Biological Entities-A Short Guide to
 Searching and Browsing. Curr Protoc Bioinformatics. 2017 Jun
 27;58:8.23.1-8.23.16. doi: 10.1002/cpbi.28. PMID: 28654729.
- 38. Hundal R, Shaffer EA. Gallbladder cancer: epidemiology and outcome.
 Clin Epidemiol. 2014 Mar 7;6:99-109. doi: 10.2147/CLEP.S37357.
 PMID: 24634588; PMCID: PMC3952897.
- 388 39. Dasari BVM, Ionescu MI, Pawlik TM, Hodson J, Sutcliffe RP, Roberts
 KJ, Muiesan P, Isaac J, Marudanayagam R, Mirza DF. Outcomes of
 surgical resection of gallbladder cancer in patients presenting with
 jaundice: A systematic review and meta-analysis. J Surg Oncol. 2018
 Sep;118(3):477-485. doi: 10.1002/jso.25186. PMID: 30259519.
- 40. Haugsten EM, Wiedlocha A, Olsnes S, Wesche J. Roles of fibroblast
 growth factor receptors in carcinogenesis. Mol Cancer Res. 2010
 Nov;8(11):1439-52. doi: 10.1158/1541-7786.MCR-10-0168. Epub 2010
 Oct 13. PMID: 21047773.
- 41. Espinoza JA, Bizama C, García P, Ferreccio C, Javle M, Miquel JF,
 Koshiol J, Roa JC. The inflammatory inception of gallbladder cancer.

Biochim Biophys Acta. 2016 Apr;1865(2):245-54. doi:
10.1016/j.bbcan.2016.03.004. Epub 2016 Mar 12. PMID: 26980625;
PMCID: PMC6287912.

- 402 42. Chao TC, Wang CS, Jan YY, Chen HM, Chen MF. Carcinogenesis in
 403 the biliary system associated with APDJ. J Hepatobiliary Pancreat Surg.
 404 1999;6(3):218-22. doi: 10.1007/s005340050110. PMID: 10526055.
- 405 43. Asai T, Loza E, Roig GV, Ajioka Y, Tsuchiya Y, Yamamoto M,
 406 Nakamura K. High frequency of TP53 but not K-ras gene mutations in
 407 Bolivian patients with gallbladder cancer. Asian Pac J Cancer Prev.
 408 2014;15(13):5449-54. doi: 10.7314/apjcp.2014.15.13.5449. PMID:
 409 25041017.
- 44. Hirata K, Kuwatani M, Suda G, Ishikawa M, Sugiura R, Kato S, 410 Kawakubo K, Sakamoto N. A Novel Approach for the Genetic Analysis 411 of Biliary Tract Cancer Specimens Obtained Through Endoscopic 412 Ultrasound-Guided Fine Needle Aspiration Using Targeted Amplicon 413 Sequencing. Clin Transl Gastroenterol. 2019 Mar;10(3):e00022. doi: 414 10.14309/ctg.000000000000022. PMID: 30908307; PMCID: 415 PMC6445609. 416
- Liu P, Wang Y, Li X. Targeting the untargetable KRAS in cancer 45. 417 therapy. Acta Pharm Sin B. 2019 Sep;9(5):871-879. doi: 418 10.1016/j.apsb.2019.03.002. Epub 2019 Mar 6. PMID: 31649840; 419 PMCID: PMC6804475. 420
- 46. Scanu T, Spaapen RM, Bakker JM, Pratap CB, Wu LE, Hofland I,
 Broeks A, Shukla VK, Kumar M, Janssen H, Song JY, Neefjes-Borst EA,
 te Riele H, Holden DW, Nath G, Neefjes J. Salmonella Manipulation of
 Host Signaling Pathways Provokes Cellular Transformation Associated
 with Gallbladder Carcinoma. Cell Host Microbe. 2015 Jun 10;17(6):763-

426 74. doi: 10.1016/j.chom.2015.05.002. Epub 2015 May 28. PMID:
427 26028364.

- 47. Mohri D, Ijichi H, Miyabayashi K, Takahashi R, Kudo Y, Sasaki T,
 Asaoka Y, Tanaka Y, Ikenoue T, Tateishi K, Tada M, Isayama H, Koike
 K. A potent therapeutics for gallbladder cancer by combinatorial
 inhibition of the MAPK and mTOR signaling networks. J Gastroenterol.
 2016 Jul;51(7):711-21. doi: 10.1007/s00535-015-1145-1. Epub 2015 Nov
 27. PMID: 26614007.
- 434
 48. Chen K, Zhu P, Chen W, Luo K, Shi XJ, Zhai W. Melatonin inhibits
 435 proliferation, migration, and invasion by inducing ROS-mediated
 436 apoptosis via suppression of the PI3K/Akt/mTOR signaling pathway in
 437 gallbladder cancer cells. Aging (Albany NY). 2021 Sep 27;13(18):22502438 22515. doi: 10.18632/aging.203561. Epub 2021 Sep 27. PMID:
 439 34580235; PMCID: PMC8507264.
- Yang D, Chen T, Zhan M, Xu S, Yin X, Liu Q, Chen W, Zhang Y, Liu 49. 440 D, Yan J, Huang Q, Wang J. Modulation of mTOR and epigenetic 441 pathways as therapeutics in gallbladder cancer. Mol Ther Oncolytics. 442 10.1016/j.omto.2020.11.007. 3:20:59-70. doi: 2020 Dec PMID: 443 33575471; PMCID: PMC7851494. 444
- Wencong M, Jinghan W, Yong Y, Jianyang A, Bin L, Qingbao C, Chen
 L, Xiaoqing J. FOXK1 Promotes Proliferation and Metastasis of
 Gallbladder Cancer by Activating AKT/mTOR Signaling Pathway. Front
 Oncol. 2020 Apr 17;10:545. doi: 10.3389/fonc.2020.00545. PMID:
 32363163; PMCID: PMC7180204.
- 450 51. Zong H, Yin B, Zhou H, Cai D, Ma B, Xiang Y. Inhibition of mTOR
 451 pathway attenuates migration and invasion of gallbladder cancer via

452		EMT inhibition. Mol Biol Rep. 2014 Jul;41(7):4507-12. doi:
453		10.1007/s11033-014-3321-4. Epub 2014 Mar 13. PMID: 24623408.
454	52.	Yang P, Javle M, Pang F, Zhao W, Abdel-Wahab R, Chen X, Meric-
455		Bernstam F, Chen H, Borad MJ, Liu Y, Zou C, Mu S, Xing Y, Wang K,
456		Peng C, Che X. Somatic genetic aberrations in gallbladder cancer:
457		comparison between Chinese and US patients. Hepatobiliary Surg Nutr.
458		2019 Dec;8(6):604-614. doi: 10.21037/hbsn.2019.04.11. PMID:
459		31929987; PMCID: PMC6943012.
460	53.	Amin M, Gao F, Terrero G, Picus J, Wang-Gillam A, Suresh R, Ma C,
461		Tan B, Baggstrom M, Naughton MJ, Trull L, Belanger S, Fracasso PM,
462		Lockhart AC. Phase I Study of Docetaxel and Temsirolimus in

Refractory Solid Tumors. Am J Clin Oncol. 2021 Sep 1;44(9):443-448.

doi: 10.1097/COC.0000000000852. PMID: 34310349.

465

463

466 Legends for figures-

467 <u>Figure 1 - Pathway Analysis: Wikicancer Pathway:</u> 10 positive related categories
468 and 4 negative related categories are identified as enriched categories.

469 Figure 2 – Signaling Pathway Network diagram

Figure 3 – Protein-Protein Interaction network of 14 genes was constructed in
 STRING

- Figure 4 Gene-Gene Interaction network of 14 genes was constructed in
 GeneMania
- ⁴⁷⁴ Figure 5: Functional characterization of genes through Network Analyst tool
- ⁴⁷⁵ Figure 6 Disease Ontology of 14 genes constructed through Webgestalt

- 476 Figure 7: Showing the crosstalk between various pathways identified through
- 477 bioinformatic analysis of NGS data in gallbladder cancer.
- 478

479 **Table 1 – List of 14 significant genes.**

Gene-Name	Description	UniProt _Id	Score
TP53	tumor protein p53	P04637	79.46
KRAS	KRAS proto-oncogene, GTPase	P01116	106.48
EGFR	epidermal growth factor receptor	P00533	167.6
KDR	kinase insert domain receptor	P35968	64.13
NRAS	NRAS proto-oncogene, GTPase	P01111	76.05
MAP3K1	mitogen-activated protein kinase kinase kinase 1	Q13233	58.84
BRAF	B-Raf proto-oncogene, serine/threonine kinase	P15056	116.32
PTEN	phosphatase and tensin homolog	P60484	191.07
CTNNB1	catenin beta 1	P35222	87.09
FGFR3	fibroblast growth factor receptor 3	P22607	99.14
PDGFRA	platelet derived growth factor receptor alpha	P16234	101.17
FBXW7	F-box and WD repeat domain containing 7	Q969H0	66.7
POLE	DNA polymerase epsilon, catalytic subunit	Q07864	42.19
SMAD4	SMAD family member 4	Q13485	87.93

480

481 Table 2(A) – G0: BIOLOGICAL PROCESS

482 FDR; false discovery rate

Gene Set	Description	Size	Expect	Ratio	P-Value	FDR
GO:00001 65		896	0.75276	15.941	0.000000000000 044853	0.00000000 023567
GO:00230	signal transduction by	907	0.76200	15.748	0.0000000000000	0.00000000

14	protein phosphorylation				051847	023567
	positive regulation of protein phosphorylation	982	0.82501	14.545	0.0000000000000000000000000000000000000	0.00000000 040641
	positive regulation of phosphorylation	1028	0.86366	13.894	0.00000000000 23181	0.00000000 052686
GO:00434 08	regulation of MAPK cascade	745	0.62590	17.575	0.00000000000 42732	0.00000000 06536
GO:00105 62	positive regulation of phosphorus metabolic process	1097	0.92163	13.020	0.00000000000 42732	0.00000000 06536
GO:00459 37	positive regulation of phosphate metabolic process	1097	0.92163	13.020	0.000000000000 50326	0.00000000 06536
GO:00434 10	positive regulation of MAPK cascade	546	0.45871	21.800	0.000000000001 17	0.00000000 13295
GO:00314 01	positive regulation of protein modification process	1190	0.99976	12.003	0.000000000001 3278	0.00000000 13413
GO:00064 68	protein phosphorylation	1860	1.5627	8.3192	0.000000000005 0494	0.00000000 45904

484

485 Table 2(B) - GO: CELLULAR COMPONENT

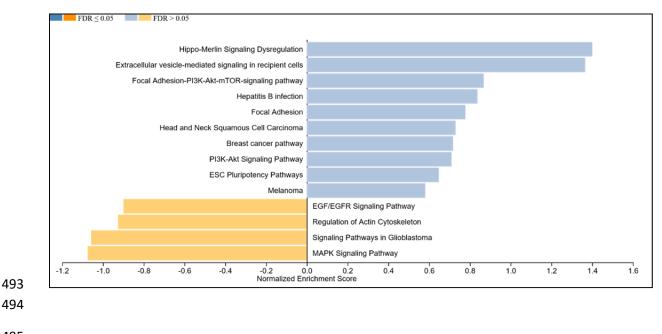
486 FDR; false discovery rate

Gene Set	Description	Size	Expect	Ratio	P-Value	FDR
GO:0045121	membrane raft	311	0.22981	17.406	0.000060379	0.025307
GO:0098857	membrane	312	0.23055	17.350	0.000061138	0.025307

	microdomain					
GO:0098589	membrane region	324	0.23941	16.708	0.000070799	0.025307
GO:0030054	cell junction	1268	0.93696	6.4037	0.00015284	0.025307
GO:0043235	receptor complex	396	0.29262	13.670	0.00015387	0.025307
GO:0005925	focal adhesion	404	0.29853	13.399	0.00016619	0.025307
GO:0005924	cell-substrate adherens junction	407	0.30074	13.300	0.00017099	0.025307
GO:0030055	cell-substrate junction	411	0.30370	13.171	0.00017754	0.025307
GO:0090575	RNA polymerase II transcription factor complex	159	0.11749	25.534	0.00019384	0.025307
GO:0044798	nuclear transcription factor complex	196	0.14483	20.714	0.00035868	0.042145

487

488 Table 2(C) - GO: MOLECULAR FUNCTION


489 FDR; false discovery rate

Gene Set	Description	Size	Expect	Ratio	P-Value	FDR
GO:0004714	transmembrane receptor protein tyrosine kinase activity		0.053756	74.411	0.00000019221	0.00035199
GO:0019199	transmembrane receptor protein kinase activity	81	0.068035	58.794	0.0000004992	0.00035199
GO:0044877	protein-containing complex binding	1062	0.89201	8.9685	0.00000056259	0.00035199
GO:0004709	MAP kinase kinase	27	0.022678	132.29	0.0000013635	0.00053512

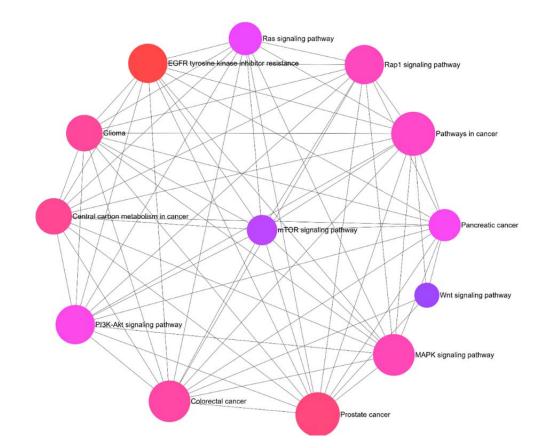
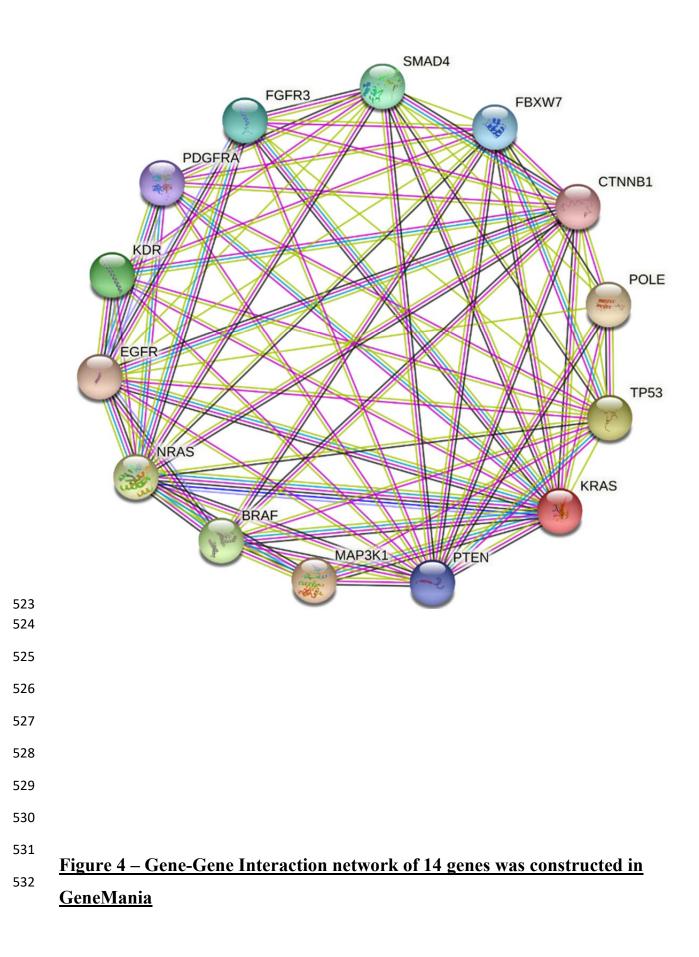
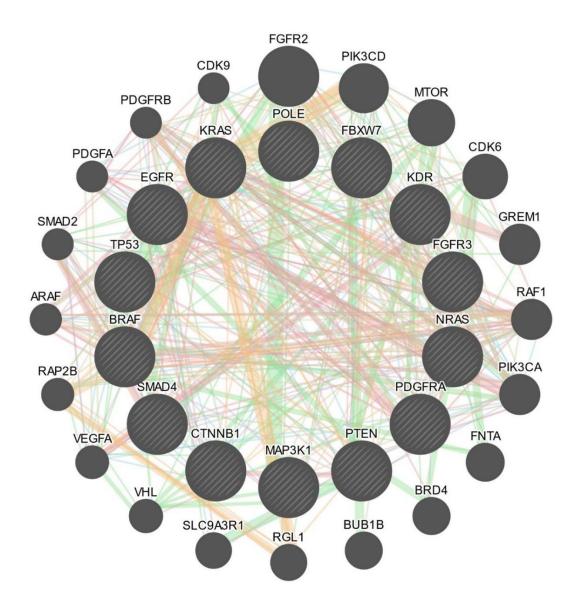

	kinase activity					
GO:0042802	identical protein binding	1696	1.4245	6.3179	0.0000014255	0.00053512
GO:0035639	purine ribonucleoside triphosphate binding	1786	1.5001	5.9995	0.0000022127	0.00066600
GO:0032555	purine ribonucleotide binding	1850	1.5539	5.7920	0.0000029824	0.00066600
GO:0017076	purine nucleotide binding	1865	1.5665	5.7454	0.0000031934	0.00066600
GO:0032553	ribonucleotide binding	1865	1.5665	5.7454	0.0000031934	0.00066600
GO:0019838	growth factor binding	138	0.11591	34.509	0.0000042221	0.00079249

Figure 1 - PATHWAY ANALYSIS: WIKICANCER PATHWAY

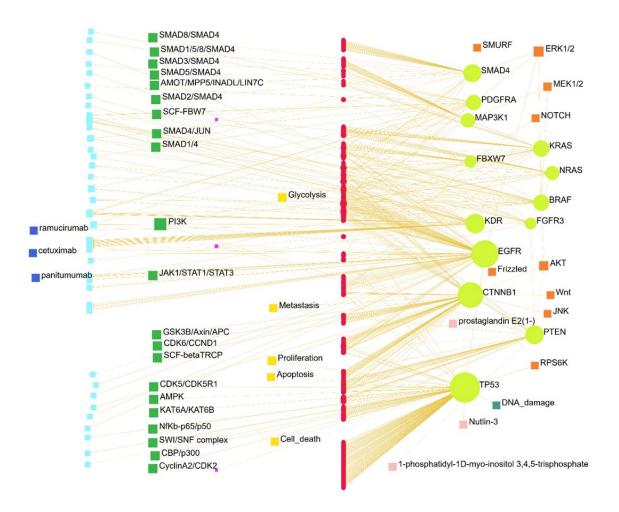

10 positive related categories and 4 negative related categories are identified as enriched categories.

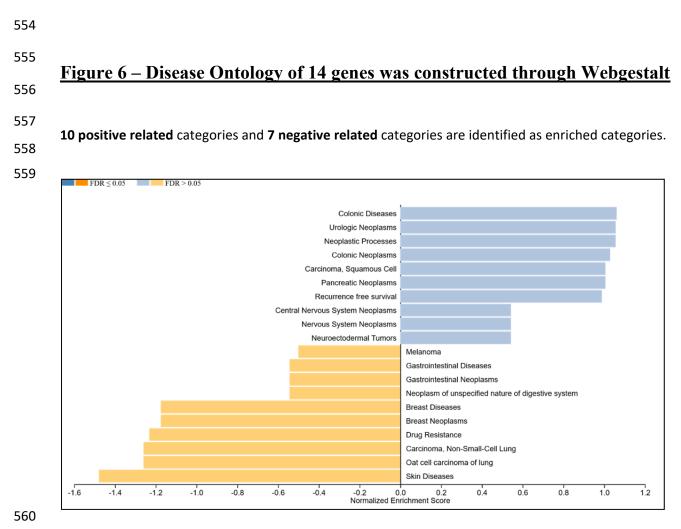
500 Figure 2 - Pathway Network



510	
511	
512	
513	
514	
515	
516	
517 518	<u>Figure 3 – Protein-Protein Interaction network of 14 genes was constructed in</u> <u>STRING</u>
519	Known Interactions - curated databases - light blue; experimentally determined - pink
520	Predicted Interactions - gene neighborhood - green; gene fusions - red; gene co-occurrence - dark blue
521	Others - Text-mining - yellow; co-expression - black; protein homology - grey
522	

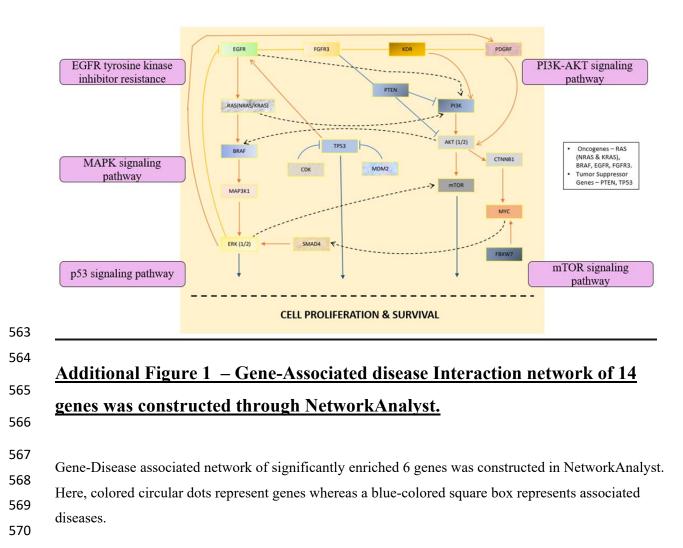
- 534 Colored edges represented the interaction between the genes; physical interaction- pink; genetic interaction- green;
- 535 predicted- orange; co-expression- purple; shared protein domain- grey; pathway- light blue.

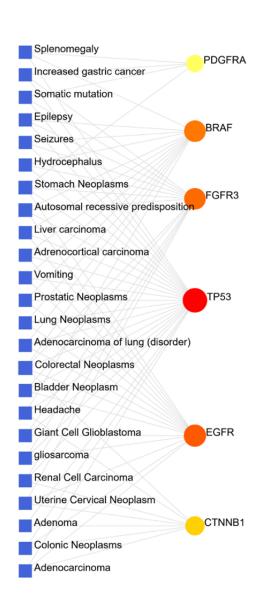



Figure 5 - Signaling network

544 Genes (circle light green), complex (Circle light green), pink (circle dark), chemical (square light blue),

545 protein family (square orange), small molecule (square light pink), stimulus (square blue-green), and


- 546 phenotype (square yellow).



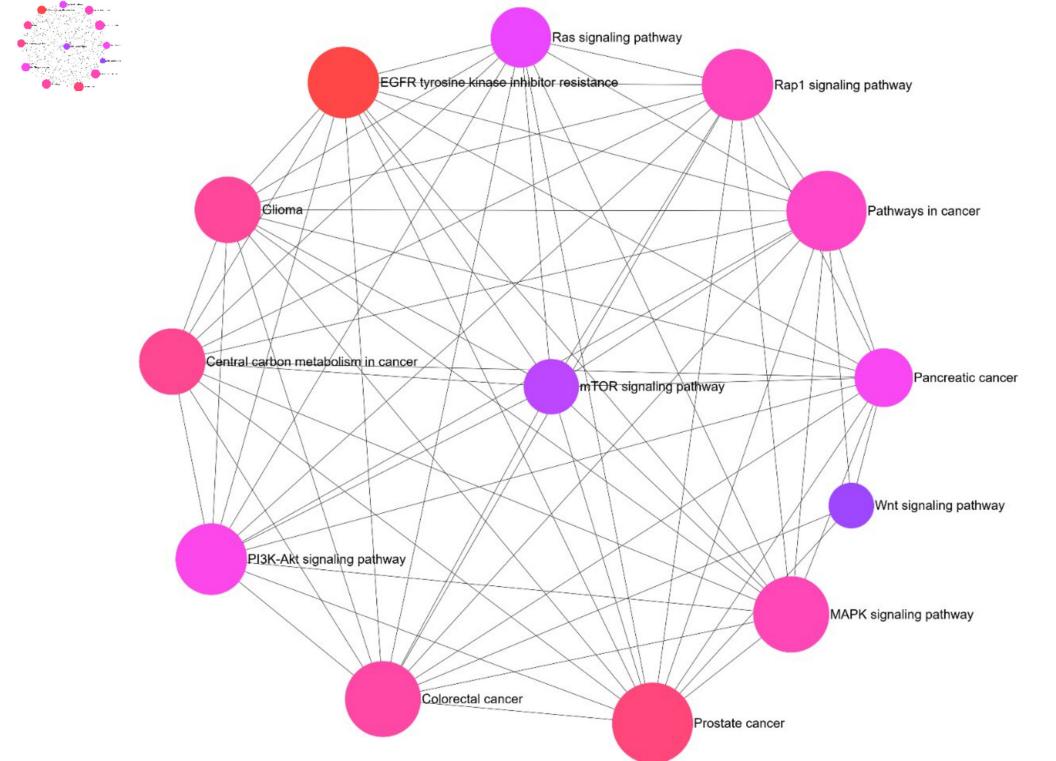
561

562 Figure 7 - Crosstalk among associated pathways

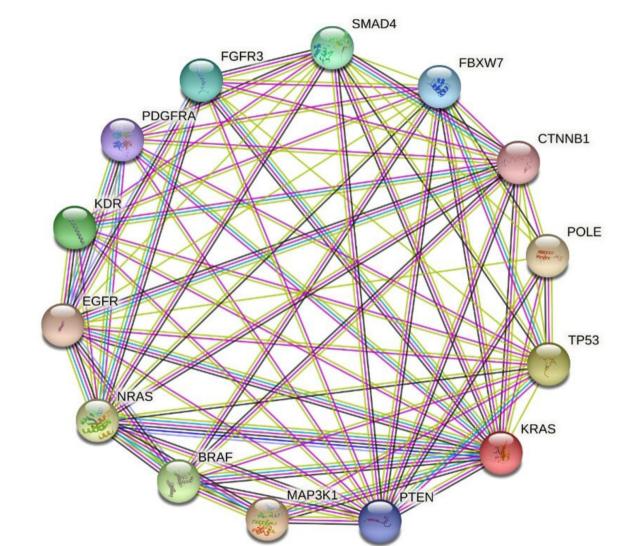
573 Additional Table 1 – Genemania Network

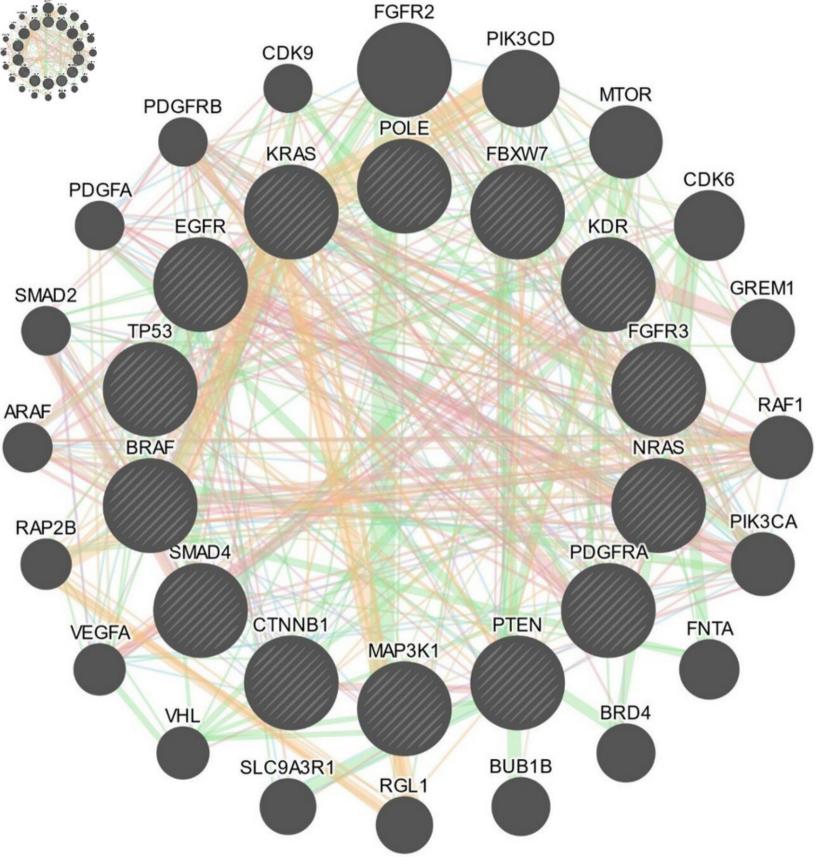
Group	Name	Weight	Reference
			The OncoPPi network of cancer-focused protein-protein interactions to inform
Physical Interactions	Li-Fu-2017	0.1534091	biological insights and therapeutic strategies. Li et al. (2017). Nat Commun
Physical Interactions	IREF-bhf-ucl	0.083547061	
	Huttlin-Harper-		Architecture of the human interactome defines protein communities and disease
Physical Interactions	2017	0.061949513	networks. Huttlin et al. (2017). Nature
			Extensive rewiring of the EGFR network in colorectal cancer cells expressing
	Kennedy-Kolch-		transforming levels of KRAS ^{G13D} . Kennedy et al. (2020). Nat
Physical Interactions	2020 A	0.054815514	Commun
Physical Interactions	Barrios-Rodiles-	0.044266821	High-throughput mapping of a dynamic signaling network in mammalian cells.

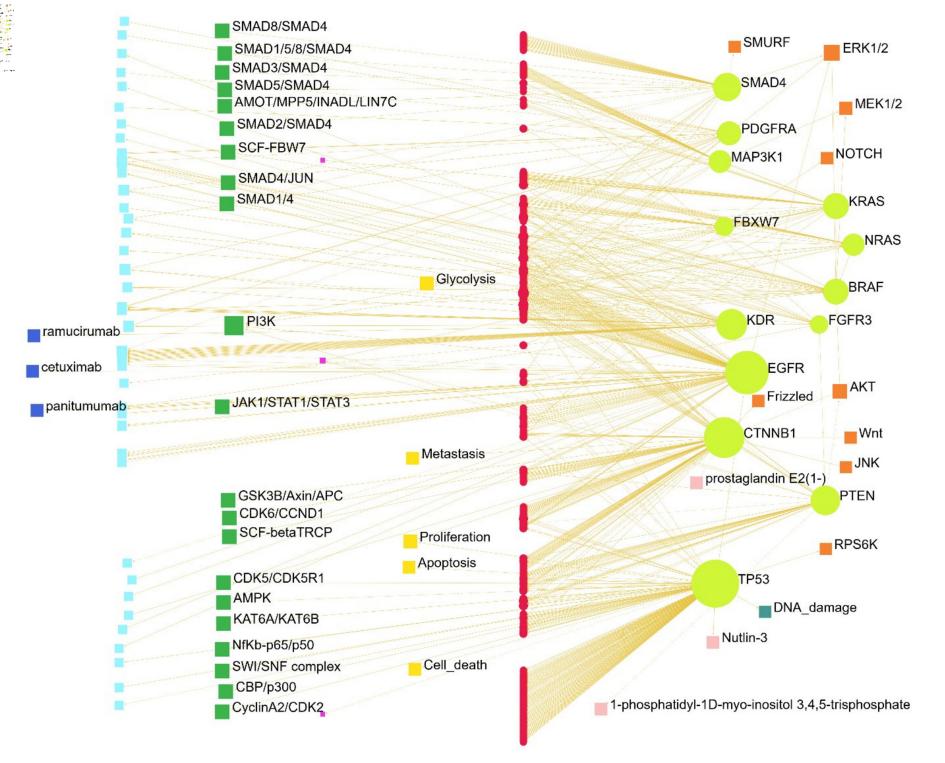
	Wrana-2005		Barrios-Rodiles et al. (2005). Science
Physical Interactions	IREF-dip	0.014490396	
			A protein-protein interaction network for human inherited ataxias and disorders
Physical Interactions	Lim-Zoghbi-2006	0.006780127	of Purkinje cell degeneration. Lim et al. (2006). Cell
Physical Interactions	IREF-mint	0.006441559	
			Reactome: a knowledge base of biologic pathways and processes. Vastrik et al.
Physical Interactions	Vastrik-Stein-2007	0.003195357	(2007). Genome Biol
Physical Interactions	IREF-reactome	0.003195357	
	I2D-Formstecher-		
	Daviet-2005-		Protein interaction mapping: a Drosophila case study. Formstecher et al. (2005).
Predicted	Head-Fly2Human	0.157594586	Genome Res
	I2D-Formstecher-		
	Daviet-2005-		
	Embryo-		Protein interaction mapping: a Drosophila case study. Formstecher et al. (2005).
Predicted	Fly2Human	0.055660286	Genome Res
	I2D-BioGRID-		BioGRID: a general repository for interaction datasets. Stark et al. (2006). Nucleic
Predicted	Mouse2Human	0.019817572	Acids Res
	I2D-MINT-		
Predicted	Mouse2Human	0.019571411	MINT: a Molecular INTeraction database. Zanzoni et al. (2002). FEBS Lett
	I2D-IntAct-		The IntAct molecular interaction database in 2010. Aranda et al. (2010). Nucleic
Predicted	Fly2Human	0.016090701	Acids Res
			A human functional protein interaction network and its application to cancer data
Predicted	Wu-Stein-2010	0.013103625	analysis. Wu et al. (2010). Genome Biol
	I2D-MINT-		
Predicted	Fly2Human	0.004700681	MINT: a Molecular INTeraction database. Zanzoni et al. (2002). FEBS Lett
Co-expression	Chen-Brown-2002	0.05778729	Gene expression patterns in human liver cancers. Chen et al. (2002). Mol Biol Cell
	Boldrick-Relman-		Stereotyped and specific gene expression programs in human innate immune
Co-expression	2002	0.039628511	responses to bacteria. Boldrick et al. (2002). Proc Natl Acad Sci U S A
			Integrative genomics identifies distinct molecular classes of neuroblastoma and
			shows that multiple genes are targeted by regional alterations in DNA copy
Co-expression	Wang-Maris-2006	0.028184098	number. Wang et al. (2006). Cancer Res
	Rosenwald-		Relation of gene expression phenotype to immunoglobulin mutation genotype in
Co-expression	Staudt-2001	0.023532352	B cell chronic lymphocytic leukemia. Rosenwald et al. (2001). J Exp Med
	Alizadeh-Staudt-		Distinct types of diffuse large B-cell lymphoma identified by gene expression
Co-expression	2000	0.017085698	profiling. Alizadeh et al. (2000). Nature
			Toxicity from radiation therapy associated with abnormal transcriptional
Co-expression	Rieger-Chu-2004	0.007378505	responses to DNA damage. Rieger et al. (2004). Proc Natl Acad Sci U S A
			Omics-based identification of the combined effects of idiosyncratic drugs and
			inflammatory cytokines on the development of drug-induced liver injury. Jiang et
Co-expression	Jiang-de Kok-2017	0.005616687	al. (2017). Toxicol Appl Pharmacol
	BIOGRID-SMALL-		
Genetic Interactions	SCALE-STUDIES	0.0257526	
Genetic Interactions	Luo-Elledge-2009	0.022631469	A genome-wide RNAi screen identifies multiple synthetic lethal interactions with

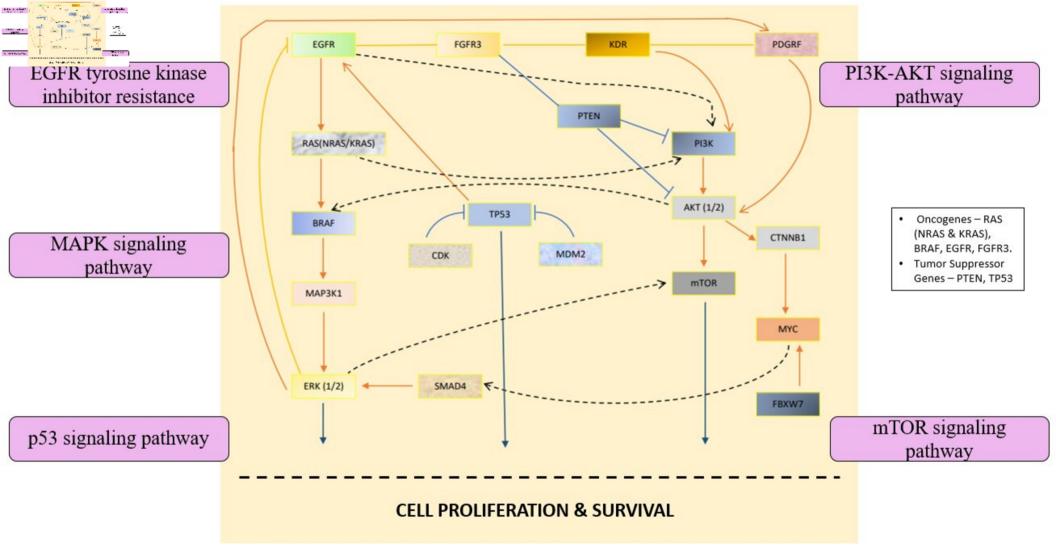

			the Ras oncogene. Luo et al. (2009). Cell
			A genome-wide map of human genetic interactions inferred from radiation hybrid
Genetic Interactions	Lin-Smith-2010	0.018636898	genotypes. Lin et al. (2010). Genome Res
	Martin-Elledge-		A Role for Mitochondrial Translation in Promotion of Viability in K-Ras Mutant
Genetic Interactions	2017	0.018508272	Cells. Martin et al. (2017). Cell Rep
Shared protein			
domains	INTERPRO	0.005217705	
Shared protein			
domains	PFAM	0.004710743	
			A human functional protein interaction network and its application to cancer data
Pathway	Wu-Stein-2010	0.006699506	analysis. Wu et al. (2010). Genome Biol

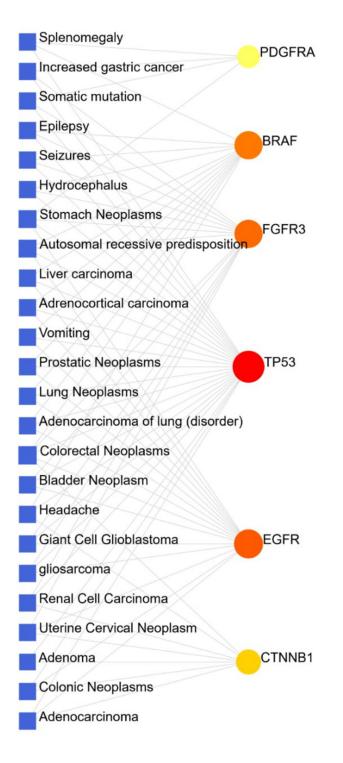
574




FDR > 0.05	
------------	--


Hippo-Merlin Signaling Dysregulation	
Extracellular vesicle-mediated signaling in recipient cells	
Focal Adhesion-PI3K-Akt-mTOR-signaling pathway	
Hepatitis B infection	
Focal Adhesion	
Head and Neck Squamous Cell Carcinoma	
Breast cancer pathway	
PI3K-Akt Signaling Pathway	
ESC Pluripotency Pathways	
Melanoma	
	EGF/EGFR Signaling Pathway
	Regulation of Actin Cytoskeleton
	Signaling Pathways in Glioblastoma
	MAPK Signaling Pathway
	0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 Irichment Score





	Colonic Diseases	
	Urologic Neoplasms	
	Neoplastic Processes	
	Colonic Neoplasms	
	Carcinoma, Squamous Cell	
	Pancreatic Neoplasms	
	Recurrence free survival	
	Central Nervous System Neoplasms	
	Nervous System Neoplasms	
	Neuroectodermal Tumors	
	Melanoma	
	Gastrointestinal Diseases	
	Gastrointestinal Neoplasms	
	Neoplasm of unspecified nature of digestive sy	ystem
	Breast Diseases	
	Breast Neoplasms	
	Drug Resistance	
	Carcinoma, Non-Small-Cell Lung	
	Oat cell carcinoma of lung	
	Skin Diseases	
1.6 -1.4	-1.2 -1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 (Normalized Enrichment Score	0.8 1.0

