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Abstract

The self-localization of mobile robots in the environment is one of the most fundamental problems in the robotics navigation

field. It is a complex and challenging problem due to the high requirements of autonomous mobile vehicles, particularly with

regard to the algorithms accuracy, robustness and computational efficiency. In this paper, we present a comparison of three

of the most used map-matching algorithms applied in localization based on natural landmarks: our implementation of the

Perfect Match (PM) and the Point Cloud Library (PCL) implementation of the Iterative Closest Point (ICP) and the Normal

Distribution Transform (NDT). For the purpose of this comparison we have considered a set of representative metrics,

such as pose estimation accuracy, computational efficiency, convergence speed, maximum admissible initialization error

and robustness to the presence of outliers in the robots sensors data. The test results were retrieved using our ROS natural

landmark public dataset, containing several tests with simulated and real sensor data. The performance and robustness of the

Perfect Match is highlighted throughout this article and is of paramount importance for real-time embedded systems with

limited computing power that require accurate pose estimation and fast reaction times for high speed navigation. Moreover,

we added to PCL a new algorithm for performing correspondence estimation using lookup tables that was inspired by the

PM approach to solve this problem. This new method for computing the closest map point to a given sensor reading proved

to be 40 to 60 times faster than the existing k-d tree approach in PCL and allowed the Iterative Closest Point algorithm to

perform point cloud registration 5 to 9 times faster.
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1 Introduction

Industrial mobile robots (AGVs, Automatic Guided Vehicle),

are vehicles that can self-localize and move autonomously

without human intervention. They are commonly used to

transport materials between work stations in warehouses

and production lines. They have been used in industrial envi-

ronments for more than 50 years and both the algorithms

and hardware in which they rely on have been evolving

in order to increase the accuracy, robustness and flexibility

while decreasing the costs of construction and operation.

Regarding the localization systems in industrial environ-

ments, it is common to use solutions that rely on artificial

landmarks, such as magnetic tape following, line track-

ing or reflector based laser triangulation [12, 13]. On the

other hand, service robotics applications tend to use map-

matching algorithms that take advantage of natural land-

marks [11, 15] in order to reduce installation time and

decrease operation maintenance costs. These natural land-

marks are composed by a set of distances and angles to the

detected objects (such as doors, walls, furniture and many

others) that can be acquired through an on-board laser range

finder. This method has the main advantage of not requir-

ing the installation of dedicated artificial landmarks in the

environment, which in some factories shop floors might not

be a viable option. However, it is expected that even with-

out special markers and in straight corridors, the localization

system remains accurate and robust. Despite its advantages,

this approach needs to process a higher amount of sensor

data efficiently in order to provide real-time localization and

needs more advanced techniques in order to tolerate outliers

in the sensor data. Therefore, the map-matching algorithms

must be optimized in terms of accuracy, processing time,

convergence speed and also sensor noise robustness.

Map-matching is a method of self-localization for mobile

robots in which the sensor data of the local environment is

matched with an already stored map. With this in mind, this

paper addresses the comparison of three of the most used

algorithms in localization systems based on environment

natural landmarks, which are the Perfect Match (PM)

[5], the Iterative Closest Point (ICP) [2] and the Normal

Distributions Transform (NDT) [3].

The Perfect Match algorithm has increased its popularity

within the robotics community mainly due to its successful

application in the Middle Size League (MSL) robot soccer

competitions, in which it was able to provide robust

localization for robots that require high frequency decision

and locomotion control. For its turn, ICP is a frequently

used approach to solve the map matching problem for 2D

and 3D point-clouds. The NDT algorithm is currently an

alternative to ICP, that does not rely on the establishment

of correspondences. As a result, the NDT is theoretically

more immune to the sensors noise and sensors sampling

resolution, as ICP assumes that sensor readings have been

produced in the same position as the map reference points.

Furthermore, another drawback of ICP is that in each

new iteration a new function is minimized, since the

correspondence information between points obtained from

previous iterations are not used. As a result, a greater

number of iterations may be needed to converge to a good

solution [1]. The implementations of ICP and NDT that

were used for this comparison are available in the Point

Cloud Library (PCL), one of the most relevant open-source

projects related to robotics perception.

The comparison and evaluation of these three algorithms

were performed considering different metrics, namely, the

computational weight of each algorithm, the speed of

convergence, the maximum admissible initialization error

(maximum rotation error introduced in the initial pose

estimation of the robot that the map-matching algorithms

can tolerate), and finally the robustness of the algorithms in

the presence of outliers on the robot sensor data.

For the execution of this comparison we used the ROS

(Robot Operating System) framework. In this regard, the work

of Carlos et al. [4] was considered to make the interface

between ROS and PCL, as it was designed to solve the robot

localization problem and is completely parameterizable.

In terms of results, these were extracted both in a

simulated environment (using the Stage Simulator) with

virtually generated sensor information (laser range finder

data), as well as using a real robotic platform (Jarvis robot),

which has a SICK NAV350 laser range finder on board used

for map-matching and ground-truth (relying on a reflector

based triangulation system).

This paper is organized as follows: after the brief

introduction given in this section, the Section 2 describes

the algorithms (Perfect Match, Iterative Closest Point and

Normal Distribution Transform). Then, Section 3 addresses

the comparison of experimental results retrieved with each

algorithm for each of the evaluation metrics. Finally,

Section 4 concludes this paper and presents some future work.

2 Algorithms Definition

In this section it is presented the main concepts of the map-

matching algorithms used in this experimental comparison.

2.1 Perfect Match

The Perfect Match is a light computational algorithm

that was proposed by M. Lauer et al. in [5]. In this

algorithm, the vehicle pose is computed using 2D distance

information from the surrounding robot environment which

can be acquired using LIDARs or CCD cameras. The

main goal of the algorithm is to minimize the matching

error (fitting error between the data acquired and the
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environment map). Overall, the Perfect Match algorithm can

be divided into three steps: 1) matching error and gradient

computation; 2) optimization routine based on the Resilient

Back-Propagation (RPROP); and 3) co-variance estimation

using the second derivative. Using the acquired map of the

environment, that is then converted to an occupancy grid

map, it is possible to compute the distance and gradient

maps of the environment [5]. In the case of the distance

map, each cell gives the distance to the closest obstacle.

For the gradient maps, there are two measurements, one for

the x direction and another to the y direction. The first one

gives the direction of the variation of the distance map with

the variation of the x position. The second one shows the

direction variation of the distance map with the y position

variation. These three maps (distance map, and x/y gradient

matrices) can be pre-computed in order to speed up the

computation of the Perfect Match algorithm.

Considering now a list of points of a Laser Range Finder

scan defined as PList . The point i of this list in the world

referential frame is PList (i) = (xi, yi). The cost value is

given by equation (1) where di and Ei represents, respectively,

the distance matrix and the cost function values of point i.

E =

PList .Count
∑

i=1

Ei, Ei = 1 −
L2

c

L2
c + d2

i

(1)

The parameter Lc is used to discard points with large error

Ei , increasing the robustness of the algorithm to outliers.

To minimize the error function, the Perfect Match algorithm

uses the RPROP optimizer. The output of this algorithm is

the state of the robot, x, y and θ (robot pose) that minimizes

the map-matching error. For a detailed description of the

algorithm please refer to [5].

2.2 Iterative Closest Point

The Iterative Closest Point algorithm is a commonly

used map-matching method which tries to minimize the

Euclidean distance between the input data and a reference

model (in the self-localization problem it corresponds to the

sensor data and the map of the environment).

From a mathematical point of view, consider two sets

of 2D points, source A (with n points) and target B (with

m points) ⊆ R
2. The objective is to find a transformation

function u : A → B that minimizes the mean squared

distances (MSD) between A and B (Eq. 2).

MSD(A,B, u) =
1

n

∑

a∈A,b∈B

‖b − u(a)‖2 (2)

Incorporating the rotation (R) and translation (t) matrices

into the matching function, the minimization problem can

be written using Eq. 3.

min
u:A→B

1

n

n
∑

i=1

‖bi − Rai − t‖2 (3)

With this mathematical formulation, the ICP tries in each

iteration to minimize the MSD(A,B, u) by switching

between a matching and a transformation stage.

Matching Stage In this first stage, the objective is to

minimize the mean squared distances MSD(A,B, u) by

finding the best correspondence between a point ai ∈ A

and bi ∈ B. This step is in its most basic form executed

by selecting the point bi ∈ B with the minimum Euclidean

distance to the point ai ∈ A. Note that in the first iteration, t

and R are normally set to [0, 0]T and to the identity matrix

respectively.

Transformation Stage During the transformation stage, the

objective is to compute the optimal R and t that minimizes

(3), using the correspondences computed in the previous

stage. ICP uses a simple least square solver to find the

optimal linear transformation matrix (R|t) that minimizes

(3) [2]. For this purpose, the algorithm starts by subtracting

from the reference and sensor point clouds their respective

centroid, as shown in Eqs. 4 and 5.

a′
i = ai −

1

n

n
∑

i=0

ai (4)

b′
i = bi −

1

m

m
∑

i=0

bi (5)

This step helps simplifying the minimization problem [2].

Then, the cross-variance matrix is computed using the Eq. 6

with A′ and B ′ being the set of points a′
i and b′

i respectively.

H = A′B ′T (6)

Now, the rotation angle θ can be computed from Eq.7.

θ = atan2((H(0, 1) − H(1, 0)), (H(0, 0) + H(1, 1)) (7)

It can be shown that, the optimal solution for R and t that

minimizes the objective function is given by Eqs. 8 and 9,

where ā and b̄ are the points centroid computed in Eqs. 4

and 5.

In the end of the transformation stage, the source / sensor

data is transformed using the estimated (R|t) matrix and the

algorithm goes back to the matching stage (with (R|t) set

to the identity matrix), unless a stopping criteria is verified

(e.g. number of iterations, Euclidean error improvement

between iterations, etc).

R = m

[

cos(θ) −sin(θ)

sin(θ) cos(θ)

]

(8)

t = b̄ − Rā (9)

The ICP 2D implementation used in this paper was the one

available in the Point Cloud Library (PCL).
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2.3 Normal Distributions Transform

The Normal Distributions Transform was introduced by

P. Biber and W. Straßer [3] as a method for 2D scan

registration and it was later extended for 3D scan matching

[6, 7] by M. Magnusson. This map-matching algorithm

creates a smooth surface representation of the environment

that is modeled by a set of local probability density

functions (PDFs). This representation is built from a set of

reference points that are grouped into a set of fixed sized

cells forming a voxel grid. Then, for each voxel grid cell that

has at least a group of 6 points it is computed the mean (q)

and covariance matrix (�) using the following equations:

q =
1

n

n
∑

i=1

ki, � =
1

n

n
∑

i=1

(ki − q)(ki − q)T (10)

with ki=1..n representing all the points inside each voxel

grid cell. After initializing the 3D representation of the

environment, the initial set of references points can be

discarded and the probability of measuring a sample in a

given voxel grid cell region is given by:

p(k) ∼ −d1e
−

d2(k−q)T �−1(k−q)

2 . (11)

In this equation, d1 and d2 are constants used to bound the

effect of the sensor outliers [7], while q is the mean vector

and � is the covariance matrix of the points contained

within the respective cell.

To use the NDT approach for 3D position track-

ing, it is defined a number of parameters (−→w =

{tx, ty, tz, φx, φy, φz}) to estimate and optimize. The 3D

transformation function between two robot coordinate

frames is represented by {tx, ty, tz} for the translation and

z-y-x Euler angles {φx, φy, φz} for the rotation, which can

be represented as:

T (−→w ,
−→
k ) = RxRyRz

−→
k +

−→
t . (12)

Variable t represents the {tx, ty, tz} translation parameters

and RxRyRz is the rotation matrix built from the

{φx, φy, φz} Euler angles. The goal of a scan registration is

to estimate these 6 parameters from the sensor data given

a pre-computed 3D representation of the environment. This

is done using the Newton’s optimization algorithm [10] in

order to minimize the score function:

score(p(k′)) =

n
∑

i=1

−d1e
−

d2(k′
i
−qi )

T �
−1
i

(k′
i
−qi )

2 (13)

This score is calculated by evaluating the normal distribu-

tion of all points k′
i and summing the result (score) while

also updating the gradient (g) and hessian matrix (H ) in

order to retrieve the necessary corrections (�k) for estimat-

ing the robot pose. These corrections are computed using:

H�k = −g (14)

Fig. 1 Jarvis robot

3 Experimental Results

Having introduced the theoretical foundations of each of the

three algorithms in the previous section, we will now present

the experimental set-up (e.g. framework and simulator

used, the algorithms parameterization, etc) and the results

obtained in our experiments (the dataset can be found at1).

3.1 Framework description and evaluation tests

The ROS framework was used to perform the comparison

of the three algorithms. Considering the simulation case,

the Stage simulator was selected since it allows to model a

virtual world where it can be introduced robots, sensors and

objects. Besides the simulation, it is also presented results with

a real robot platform (Jarvis). This robot is equipped with a

commercial navigation laser (SICK NAV350), seen in Fig. 1.

3.2 Set-up of the Experiment

The initial parameterization of the algorithms for all the

experiments was made as follows:

– All algorithms process the same sensor data.

1https://github.com/carlosmccosta/dynamic robot localization tests

https://github.com/carlosmccosta/dynamic_robot_localization_tests
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– All algorithms use the same reference map.

– For the evaluation of the three presented algorithms, it

was ensured that the same stopping criteria was used for

each evaluation metric. Considering the computational

weight metric, we set as the stopping criteria to

be the run of 50 iterations. This value was chosen

since we verified experimentally that all matching

algorithms converge to the final solution during this

set of iterations. For the results on the converge speed,

we defined a criteria that evaluated the position and

orientation correction made by the algorithms between

each iteration. When this correction is below a certain

value the algorithm is considered to have converged.

For the maximum initialization error metric, the same

initial positions and orientations were considered for

the three algorithms. Then, for each of these poses, the

orientation error was incremented in each iteration and

we stop the evaluation when the matching algorithm

diverged to a bad matching solution. Finally, for the

evaluation of the algorithms robustness to outliers, the

same reference map and sensors data was used.

– All algorithms do not have access to data from

odometry. Therefore the pose error is caused by the

robots movement, traveling at 0.5 m/s.

– The version of the ICP available in PCL used in the

tests was the “iterative closest point 2d” available

in [4], without RANSAC for outlier rejection

(“max number of ransac iterations: 0”), and unless

stated otherwise, the maximum distance search

value was set to a high value for forcing the estab-

lishment of correspondences for all sensor data

(“max correspondence distance: 9999.0”). Also, we set

the parameter “use reciprocal correspondences: false”

in all the tests performed.

– The NDT implementation used was the 3D version

available in PCL.

– The computer used had a Intel Core i5 450M @ 2.40

GHz.

We choose to use the 3D implementation of NDT

present in PCL (in relation to the 2D implementation also

available in PCL) given that in preliminary tests it achieved

superior robustness against initialization errors and sensor

outliers while also being able to track the robot pose with

higher accuracy. Moreover, the 2D implementation seems

to have numerical / registration instability, which causes

sudden loss of pose tracking even when the robot was

performing only linear motions (the 3D implementation

Fig. 2 Stage simulator with robot initial pose and unknown / not mapped objects presented as red rectangles. These objects introduce wrong

measurements and occlusions in the LIDAR data
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did not suffer from these issues). We acknowledge that

the 3D implementation of NDT in PCL is about 4 times

slower than the 2D implementation, but it should be noted

that the 2D implementation uses 4 overlapping grids to

avoid discretization problems, which requires to compute

the 2D-NDT score 4 times more, one for each grid for each

sensor point (the 3D implementation relies on a single voxel

grid). Given the superior robustness, stability and accuracy

of the 3D implementation of NDT in PCL (in relation to

the 2D implementation), we believe that its usage in this

article provides a more useful comparison for the robotics

community that uses PCL.

Regarding the ICP parameterization it should be noted that

in our previous article [14] we set “use reciprocal correspond

ences: true”, which was causing the correspondence estima-

tion stage to reject up to 40% of sensor data (a correspon-

dence [map → sensor-data] needed to be the same as

[sensor-data → map]). This significant rejection of cor-

respondences was reducing the robustness of the ICP

against rotation errors, and as such, in this article we set

“use reciprocal correspondences: false” in order to avoid

this issue.

3.3 Results on Computational Weight

The main goal of these tests was to evaluate the

computational weight of the fundamental processing stages

of the three map-matching algorithms. In order to achieve

a more equitable performance evaluation of each method,

the number of iterations was fixed to 50 and any auxiliary

algorithm or filter that could influence the results was turned

off. It was evaluated how the number of LIDAR points, the

reference map cell size, and the presence of outliers in the

sensor data (disposed as shown in Fig. 2) influenced the

computational weight of the map-matching algorithms.

Analyzing Table 1 it is possible to verify that the Perfect

Match is computationally lighter in all the tests performed.

Furthermore, it can also be seen that each Perfect Match

and NDT iteration is mainly affected by the amount of

the robot sensors data, whereas in the case of ICP it is

affected by all the variables that were analyzed (amount

of the robot sensors data, resolution of the reference map

and the presence of outliers in the robot sensors data).

This higher computational demand required by the ICP in

each of its iterations can be explained by the usage of a

k-d tree to store the reference map (in the current PCL

implementation of ICP) which makes the access slower and

less deterministic (when compared to lookup tables used by

the Perfect Match). The main advantage of a k-d tree is the

optimization of memory required to store the information

of the reference map, sacrificing the search time to access

the data. The Perfect Match uses approximately three times

more memory than each of the other algorithms (ICP and

NDT), but for the case under review (localization of a robot

in 2D space), the operating speed is an important factor and

the requirements in terms of memory are less critical.

By analyzing the distribution of the time used in each of

the stages of ICP, we concluded that more than 90% of the

total time is spent in the search for correspondences in the

k-d tree of the map. In order to reduce the computational

weight of ICP in the current PCL implementation, we

replaced the k-d tree search approach with a lookup table

search method. Besides reducing the computation cost, this

approach provides constant and deterministic retrieval of

Table 1 Computational time (in ms) taken by each algorithm to perform 50 iterations

Map 5cm Map 1cm

Points 288 Points 1440 Points 288 Points 1440

No Out Outliers No Out Outliers No Out Outliers No Out Outliers

PM Mean Time 1 1 5 5 1 2 6 6

Max Time 5 3 13 12 6 5 15 15

Min Time <1 <1 2 2 <1 <1 3 3

ICP Mean Time 29 32 114 125 38 49 126 181

Max Time 43 47 145 175 64 76 157 267

Min Time 22 23 103 109 29 37 115 145

LUT-ICP Mean Time 6 6 19 19 6 6 19 20

Max Time 14 14 31 40 14 16 32 33

Min Time 3 3 13 13 3 3 13 14

NDT Mean Time 72 52 335 309 60 69 339 310

Max Time 94 85 386 355 77 93 471 376

Min Time 60 43 299 231 52 46 301 228

For these tests were considered two different angular resolutions for the laser sensor. One which produced 288 points and another generated 1440

points per scan
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Fig. 3 Number of iterations performed by PM, ICP and NDT

the closest map point when a given sensor measurement

is provided. This was achieved with the discretization of

the environment into a 2D grid and the pre-computation

of the closest map point for each of its cells. As such,

when it is necessary to find the closest point to a given

sensor measurement, instead of performing a computational

intensive tree search, it is only required to use the sensor

measurement 2D coordinates to compute the grid cell index

in which the cached closest map point is stored and ready to

be retrieved.

In Table 1 it is presented the computational weight

results of this new proposed version of ICP (LUT-ICP),

achieving performance of 5 to 9 times faster than the

actual PCL implementation (relying on k-d trees). This new

closest point search approach using a more deterministic

approach reduced the correspondence estimation phase to

a fast matrix access, boosting the ICP efficiency and cycle

time while achieving computational times much closer to

those of the PM algorithm. Although the operation speed

was greatly optimized with this new implementation, the

time needed to create the lookup table at the start of

the program (using our implementation of the Meijster

distance transform algorithm [9]) was slightly higher when

compared with the k-d tree approach. However, given that

this operation only needs to be calculated once for each map,

its impact on the startup of the system is far outweighed by

the performance gains that it provides during the runtime of

a self-localization system. However, for SLAM applications

in which it is required to dynamically update the map, it

would be interesting to analyze how recomputing part of a

lookup table compares in relation to rebuilding a k-d tree in

terms of performance.

Considering the resolution of the reference map, from

Table 1 it is possible to conclude that due to the NDT

Fig. 4 Total execution time of PM, ICP and NDT
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internal discretization of the environment as a set of

normal distributions, the NDT algorithm is not affected

by the map resolution. Moreover, it should be noted

that the 3D implementation of NDT uses the Newton

optimization method with a line search algorithm [10]

in order to compute the optimization step length that

guarantees sufficient decrease of the optimization score,

which requires an internal loop of 10 iterations in which

the NDT score must be computed. As such, the number

of iterations reported in the tests requires the computation

of the score by a factor of 10. It should also be noted

that the 3D implementation of NDT in PCL uses a

voxel grid for storing the normal distributions mean and

covariance information and each cell of this voxel grid is

indexed in a k-d tree in order to allow efficient radius

search (required when computing the NDT score for each

sensor point). Moreover, the 3D implementation of NDT

in PCL does not include the extensions proposed in [7,

8], that would improve the robustness and accuracy of

NDT at the cost of higher computational cost. The first

extension introduces the iterative discretization add-on

that runs the registration algorithm at successively finer

cell resolution for higher pose estimation accuracy. The

second improvement implements a trilinear interpolation

approach that instead of using just one voxel grid over

the 3D space, it relies on 8 overlapping grids for

minimizing the discretization effects and have a smoother

map representation. The last add-on proposes the concept

of linked cells, in which every empty NDT cell stores a

pointer to the closest cell (with covariance information),

allowing the NDT algorithm to register point clouds with

higher initial error of alignment.

3.4 Results on Convergence Speed

At this point we have concluded that each PM iteration,

can be up to 72 times faster than a NDT iteration

(considering the used PCL implementation) and up to

32 times faster than a ICP iteration. But this raises the

question of convergence speed. Some algorithms may have

a higher computational cost for each iteration, but require

less iterations to converge to a good solution. In order

to analyze the convergence speed, it was added another

stopping criteria to the three map-matching algorithms. This

criteria evaluates the position and orientation corrections

made by the algorithms between two iterations. If they are

below a certain value the optimization process stops. The

parameters values used in this stopping criteria were 0.01m

in translation and 0.8 degrees in rotation for all algorithms.

The selected test scenario was the one with less density in

robot sensor data, with the map with the lowest resolution

and without outliers. Figures 3 and 4 present the results

of the earlier described experiment. Figure 3 presents the

number of iterations of PM (blue), ICP (yellow) and NDT

(orange) over time, while the robot performs the path shown

in Fig. 7. Figure 4 represents the PM (in blue), ICP (yellow)

and NDT (orange) convergence time considering the same

execution path. As can be seen in Fig. 3, the ICP and NDT

algorithms need less iterations than the PM to perform map-

matching. But this is not enough to be computationally

lighter than Perfect Match. The NDT often converges in

less iterations than PM due to the application of Newton’s

algorithm for minimization of the −score (which uses first

and second derivative information while PM only uses the

first derivative) and also due to an adaptive step length

Fig. 5 Number of iterations performed by PM and LUT-ICP
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Fig. 6 Execution times of PM and LUT-ICP

computation within the Newton optimization to guarantee

sufficient decrease of the score value.

In Fig. 3, it is also possible to identify three situations.

A zone where ICP and NDT both perform only one

iteration, which corresponds to the situation when the

robot is stopped. A zone where ICP and NDT perform

between two and eight iterations that corresponds to the

situation where the robot is moving in a straight line. And

another area where the number of iterations rises, even

exceeding the PM number of iterations (mainly for the

NDT case), corresponding to the situation when the robot is

rotating. The above findings do not change if we repeat the

experience for the scenario where there are outliers present

in the map.

Figures 5 and 6 show a comparison between the Perfect

Match algorithm and our ICP approach using lookup tables

(LUT-ICP) regarding convergence speed.

As it can be seen in Fig. 5, the number of iterations

performed by LUT-ICP are the same as the PCL imple-

mentation of ICP (Fig. 3), but the computational time used

in each iteration is now much lower and similar to the

PM’s (Fig. 6). This new proposed approach does not nega-

tively affect the ICP’s performance and greatly reduces its

cycle time, making it a more viable solution for real time

operation.

3.5 Maximum Initialization Error

In the presented tests the Perfect Match has shown to be

computationally lighter than ICP and NDT. In this section,

we show test results for the three algorithms considering

the initial localization error of the robot, in order to

evaluate which algorithm is more robust to local minima.

In these experiments it were used the same parameters of

Fig. 7 Interval for the rotation

initial error that the algorithms

support and still converge to a

good solution. In red results for

the PM, in purple results for the

ICP, and in green color results

for NDT. The measured angle is

overlapped with the robot pose

ground truth represented by

black arrows
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Fig. 8 Path (red line) performed

by the Jarvis platform in a real

environment, with a laser scan

example (blue dots). In this laser

scan it’s possible to see the major

obstacle of the environment

(vertical blue dots forming a

line, on the left side of the map)

Section 3.3, i.e, a fixed number of iterations was set, the

maximum corresponding distance of ICP was set to a high

value and all NDT filters were turned off. In order to see

the orientation error tolerance of the analyzed algorithms

we have stopped the robot in some points of the navigation

trajectory and the three algorithms were reinitialized with

an initial pose with a gradually greater orientation error (1

degree of resolution) until the matching algorithm diverges.

In Fig. 7 it is presented the set of poses where these

tests were performed (black arrows). Each of these poses

have another three pairs of arrows (red, purple and green).

These correspond, respectively, to the PM, ICP and NDT

orientation error limits in which they still converge to a

correct solution.

Analyzing the results in Fig. 7 it is clear that the PM, in

the majority of cases, supports an initialization error for the

rotation greater than both ICP and NDT.

One important aspect to refer is that the fact that

the parameter “use reciprocal correspondences” was set

to false had a crucial positive impact in the overall

performance of the ICP algorithm, making it more robust.

For this specific case, the maximum initialization error

achieved by ICP was greatly improved (in relation to the

results presented in [14]). These conclusions remain the

same for the LUT-ICP, as the performance of the algorithm

is only affected in terms of cycle

Also, preliminary tests were made regarding the position

error, where we obtained similar results. We also performed

the experience of setting the stopping criteria used in

Section 3.4 but did not obtain better results. In addition,

we also tested limiting the correspondence distance of ICP

and PM. This test was performed in the start position of the

path shown in Fig. 7 - middle of the right vertical segment.

For this specific example and using Lc / max corresponden-

ce distance as 1m, the maximum initialization error of ICP

is about 100 degrees as the PM’s is 184. When decreasing

the value of these parameters to 0.1m, the robustness to

initialization errors in ICP drops in a higher factor than

PM’s, resulting in 13 and 62 degrees, respectively.

3.6 Evaluation of the Algorithms Robustness
to Outliers

At this point we noted PM advantages in the computational

weight. However, it raised the question of accuracy and

robustness to outliers. There exists a large number of

studies that address this issue. In particular the use of the

RANSAC for identifying the presence of outliers in the

sensor data. But many of these methods are transversal to

all matching algorithms and so it can also be used in the

PM algorithm. We are only interested for now in analyzing

the core algorithms, and we want to examine whether the

Table 2 Statistic data of the position and orientation errors obtained in simulation (with outliers) and with the Jarvis platform in presence of

natural outliers

Simulation Real dataset

Position error (m) Orientation error (◦) Position error (m) Orientation error (◦)

Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

PM 0.112 0.0715 0.333 0.207 0.0110 0.00310 0.0889 0.0521

ICP 0.110 0.0704 0.305 0.209 0.0120 0.00384 0.0448 0.0311

NDT 0.127 0.0819 0.378 0.325 0.00951 0.00357 0.0640 0.0428
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Fig. 9 Position error along the trajectory with outliers in simulation

PM computational efficiency is achieved by sacrificing

accuracy/robustness to the result of matching. The PM has

built in its optimization function a kind of outlier filter,

tuned by the Lc parameter. In these experiments we used

Lc = 0.1 meters. Moreover, in order to try to make this a

more fair comparison we also changed the ICP parameter

of the maximum correspondence distance to 0.1 meters.

In relation to the NDT, the more related parameter is the

ratio of expected outliers in the sensor data, which is set by

default to 0.55.

As often simulators do not model important details that

can make a significant difference in the performance of

an algorithm, we also carried out the above experiments

with a real robot equipped with a laser range finder with a

reflective triangulation system installed on walls to serve as

ground-truth. In this dataset the Jarvis robot was traveling

at 0.05 m/s in a map with 20×8 m and performing the

path shown in Fig. 8. We reduced the robot’s velocity

because a 8 Hz laser can have significant distortion when

the robot is rotating fast, which would result in high error of

localization. This problem can be mitigated by using sensors

with high frequency motion estimation, such as wheels

encoders, in order to compute the robot odometry that could

be used to correct the laser distortion using spherical linear

Fig. 10 Orientation error along the trajectory with outliers in simulation
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Fig. 11 Positional error along the trajectory using the Jarvis robot

interpolation. In order to illustrate the major sensor outliers

of the robot environment, we also present a laser scan in

Fig. 8 (laser measurements shown as blue dots).

Comparing the results presented in Table 2 we can

conclude that all algorithms achieved similar results

regarding position and orientation errors in the same

circumstances and with equivalent parameterizations. With

all the information to this point it is possible to conclude

that the Perfect Match algorithm is equivalent to ICP and

NDT in terms of accuracy and robustness but with a lower

computational cost, leaving time for the application of more

advanced filters in order to increase the efficiency of a

localization system that relies on the PM. In this experiment,

the LUT-ICP achieved similar results as the original ICP

PCL’s implementation presented in this section, which rivals

the PM’s computational weight advantage with similar

accuracy and robustness results. Figures 9 and 10 present

the precision and results for the PM, ICP and NDT in the

simulated environment. While Figs. 11 and 12, present the

same results but in a real environment with the natural

presence of outliers, using the map and performing the path

presented in Fig. 8.

4 Conclusions and FutureWork

This paper presents a comparison between three well known

map-matching algorithms, the Perfect Match, the Iterative

Closest Point and the Normal Distribution Transform,

considering four different evaluation metrics.

Starting with the computational weight, the Perfect

Match has shown to be lighter than ICP and NDT. We

Fig. 12 Orientation error along the trajectory using the Jarvis robot
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have concluded that this better performance could be

mainly explained by the efficient PM correspondence search

algorithm that is based on lookup tables. Thus, we have

replaced the PCL ICP search approach based on a k-d

tree with the a lookup table search method, which enabled

us to greatly reduce the computational time of ICP, while

maintaining the same matching performance (number of

required iterations to converge, maximum initialization

error, position and orientation errors in the presence of

outliers). With this new search approach that we added

to PCL, the LUT-ICP obtained closer results to those of

Perfect Match, becoming a more viable solution for real

time operation.

In terms of convergence speed, the ICP and NDT have

shown that they require fewer iterations to converge when

the robot is stationary or moving in a straight line. But

their performance degrades significantly when rotations are

made. In this case PM has shown, one more time, to be a

viable option.

The analysis of the maximum initialization error was

the most interesting result from the set of tests performed.

The PM presented a higher tolerance to orientation errors

than ICP and NDT. As future work we intend to refine

this result in order to also include position error. However,

some preliminary tests were made which showed a similar

response of the three algorithms in terms of translation error.

Furthermore, we should highlight the capacity of PM to

handle outliers directly in the optimization function and

support at the same time greater initialization error when

compared with the other two analyzed algorithms.

In terms of accuracy, the three algorithms showed similar

results, however ICP, NDT and the PM implementation

handles the presence of outliers in different ways. The PM

has contemplated in its cost function the possible presence

of outliers. ICP handles outliers by trimming points that are

farther than a given distance. NDT bounds the influence

of outliers by computing the score as a mixture of a

normal distribution and a uniform distribution in which

we can specify the percentage of outliers that we are

expecting to observe. One of the disadvantages of NDT is

the discretization of the environment map into cells with

a lower resolution than the original map. This approach

introduces numerical errors that have a direct impact on

the quality of the matching result. This issue takes special

relevance when the map characteristic are not linear (such

as the case in which the environment map has many curves

and sharp edges), contributing to the growth of the matching

error and consequently deteriorating the estimation of the

AGV position (as high as 15 cm of translation error).

We acknowledge that there are a lot of other solutions in

the state of art which could be included in this comparison

(we only mentioned the ones implemented in PCL at the

time). This study served to validate the relevance of the

Perfect Match algorithm and we intend this to be the

basis for future algorithm developments, improvements and

comparisons.
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8. Magnusson, M., Nuchter, A., Lorken, C., Lilienthal, A.J.,

Hertzberg, J.: Evaluation of 3D registration reliability and speed -

A comparison of ICP and NDT. In: IEEE international conference

on robotics and automation (2009). ICRA 09

9. Meijster, A., Roerdink, J.B.T.M., Hesselink, W.H.: A general

algorithm for computing distance transforms in linear time. In:



J Intell Robot Syst

Mathematical morphology and its applications to image and signal

processing, pp. 331–340 (2000)
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