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MAP: Multiauctioneer Progressive
Auction for Dynamic Spectrum Access
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Abstract—Cognitive radio (CR) is a promising paradigm to achieve efficient utilization of the limited spectrum resource by allowing the
unlicensed users to access the licensed spectrum, and dynamic spectrum access (DSA) is one of the fundamental functions of CR
networks. Market-driven spectrum auction has been recognized as an effective way to achieve DSA. In spectrum auction, the primary
spectrum owners (POs) act as auctioneers who are willing to sell idle spectrum bands for additional revenue, and the secondary users
(SUs) act as bidders who are willing to buy spectrum bands from POs for their services. However, conventional spectrum auction
designs are restricted within the scenario of single auctioneer. In this paper, we study the spectrum auction with multiple auctioneers
and multiple bidders, which is more realistic for practical CR networks. We propose MAP, a Multiauctioneer Progressive auction
mechanism, in which each auctioneer systematically raises the trading price and each bidder subsequently chooses one auctioneer for
bidding. The equilibrium is defined as the state that no auctioneer and bidder would like to change his decision. We show analytically
that MAP converges to the equilibrium with maximum spectrum utilization of the whole system. We further analyze the incentive for
POs and SUs joining the auction and accepting the auction result. Simulation results show that MAP well converges to the equilibrium,
and the spectrum utilization is arbitrary closed to the global optimal solution according to the length of step.

Index Terms—Cognitive radio, dynamic spectrum access, auction theory, spectrum auction, dual theory.

1 INTRODUCTION

CURRENTLY, wireless communication systems suffer from
scarcity in spectrum resource and inefficiency in
spectrum usage. Cognitive radio (CR) or dynamic spectrum
access (DSA) [3], [4], [5] has been viewed as a novel
approach for improving the spectrum utilization by allow-
ing the unlicensed users (i.e., secondary users, SUs) to
access the licensed spectrum in an opportunistic manner.
Through DSA, the SUs have a chance to employ the idle
spectrum which impliedly improving the spectrum effi-
ciency, and the primary spectrum owners (POs) can gain
potential profits by leasing their idle spectrum temporarily.
To realize this, it is essential to design a spectrum assign-
ment mechanism by which all idle spectrum can be
efficiently assigned to the SUs.

In this paper, we consider the problem of spectrum
assignment among SUs in CR networks with multiple POs.
Each PO owns a set of residual spectrum bands (idle
channels) which can be shared by SUs, and each SU has a
desire to employ spectrum band for his services. We
address the following essential issues: 1) how to assign the
residual spectrum bands among the SUs with the highest
spectrum utilization, and 2) what is the motivation for each
PO and SU accepting such an assignment. The first issue is
referred to as efficiency and the second as incentive.
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In general, an efficient spectrum assignment can be
achieved by centralized method such as linear program-
ming based branch-and-bound algorithm [21] or graph
theory-based optimal matching algorithm [22]. However,
the centralized approaches are not suitable for CR networks
due to the distributed nature of CR networks and the
heterogeneous nature of both POs and SUs (see Section 3.3
for detail). Market-driven auction has been recognized as an
effective mechanism to allocate resources in a distributed
manner [11], thus we introduce the concept of spectrum
auction into this work.

In spectrum auction, the POs act as auctioneers who own
the idle spectrum bands and sell them to SUs for additional
revenue, and the SUs act as bidders who buy spectrum
bands from POs for their services. In essence, spectrum
auction is a combination of the spectrum assignment
process and profit transfer process. Unfortunately, conven-
tional spectrum auction designs fall into the scope of one-
shot auction which is usually restricted within the scenario
of single auctioneer. Since the practical CR networks
usually contain multiple POs, it is more realistic to study
the spectrum auction with multiple auctioneers. For this
purpose, we propose a multishot auction named as Multi-
auctioneer Progressive auction (MAP). The main difference
between MAP and conventional spectrum auctions is that
MAP allows for multiple auctioneers each making the
decision independently. To our best knowledge, there is no
work yet which applies auction with multiple auctioneers to
resource allocation problems in wireless networks.

The main contributions of the article are as follows:

e We design the detail mechanism of MAP, which
works in a totally distributed manner and can be
effectively implemented in the system with multiple
POs. The main idea of MAP is that: each auctioneer
systematically raises the trading price and each
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bidder subsequently decides whether to buy the
spectrum band and from which PO he is going to buy.

o  We define equilibrium as the state that no auctioneer
and bidder would like to deviate from his decision.
We show that the equilibrium exists, and MAP
converges to the equilibrium.

e We prove that MAP achieves the optimal spectrum
assignment using dual theory. We further show that,
through the inherent profit transfer process in
auction mechanism, both POs and SUs are willing
to accept the assignment achieved by MAP.

e We discuss in detail the distributed implementation
of MAP protocol in practical networks, from the
aspects of time synchronizing, sensing and decod-
ing, signal interacting, step determining, etc.

The paper is organized as follows: In Section 2, we present
the related work on spectrum assignment in CR networks. In
Section 3, we introduce the system model of CR networks
with multiple POs and SUs. In Section 4, we address the
optimal spectrum assignment problem in a centralized
manner. In Section 5, we provide an auction-based spectrum
assignment mechanism, MAP. In Section 6, we discuss
convergence properties of MAP and provide our simulation
results. Finally, we conclude our work in Section 7.

2 RELATED WORK

As an intelligence extension of software-defined radio
(SDR) [2], cognitive radio [3] has been proposed as the
promising means to promote the efficient use of the
spectrum. There are two comprehensive surveys [4], [5]
on cognitive radio networks and dynamic spectrum access,
respectively. In [4], Akyildiz et al. identified four funda-
mental tasks of cognitive radio networks: spectrum sensing,
spectrum management, spectrum sharing and spectrum
mobility, and dynamic spectrum access in fact involves all
of them. In [5], Zhao et al. categorized the existing work on
dynamic spectrum access into three general models:
dynamic exclusive use model, open sharing model, and
hierarchical access model.

Many approaches for dynamic spectrum access in
cognitive radio networks were proposed, including graph-
theoretic approaches [6], [7], game-theoretic approaches [8],
[9] and [27] so forth. In [10], an optimization problem was
formulated for dynamic spectrum access to achieve highest
utility for SUs with the constraints of quality of service
(QoS) and interference temperature, which could be applied
to the wireless sensor networks [18].

Auction is an efficient mechanism to allocate resources in
market [11], and has been viewed as a promising approach
to allocate spectrum in wireless networks [12]. Some of the
recent work on spectrum auction designs are as follows: In
[13], Huang et al. proposed two pricing schemes for
auction-based power allocation to achieve efficiency (social
optimality) and fairness, respectively. In [14], Gandhi et al.
formulated a general spectrum auction problem as an
optimization problem and emphasized on the choice of
market clearing price. Truthfulness (or strategy-proofness)
was addressed in [15], [16], [17]. In [15], Li et al. proposed
several algorithms to assign spectrum such that the social
efficiency are approximately maximized, and then designed
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strategy-proof mechanisms to charge the SUs. In [16], Zhou
et al. proposed a truthful single-side auction called
VERITAS for spectrum auctions characterized by hetero-
geneity and spectrum reuse among wireless devices. In [17],
Zhou and Zheng, proposed a general framework for
truthful double spectrum auctions called TRUST, wherein
an external auctioneer with complete information runs the
auction to enable the POs and SUs to trade spectrum
dynamically. However, the above spectrum auctions are all
restricted within the scenario of single auctioneer, either
acted by a PO in single PO networks or a virtual centralized
entity in multi PO networks. We study the spectrum
auction in multi PO CR networks without any centralized
entity, wherein each PO acts as an individual auctioneer
and makes his decision independently.

3 SyYSTEM MODEL AND PROBLEM FORMULATION
3.1 System Description

We consider a CR network consisting of M POs and N SUs,
and we allow the POs (or SUs) to be heterogeneous. We
assume there is no centralized control entity in the network,
and thus there is no collaboration among POs (or SUs) since it
is very difficult to collaborate the heterogeneous POs (or
SUs) without any centralized entity. Each PO serves a set of
subscribed primary users and the spectrum bands it
possessing may be under utilized, i.e., there may exist
some residual spectrum bands (also called residual chan-
nels or idle channels) which are not used by primary users
at any particular time. Therefore, the PO allows the SUs’ to
opportunistically access those residual channels to gain
potential profit.

We denote the number of residual channels owned by
PO i as m;, and we assume m; is constant in the time period
of interest." In fact, m; is mainly determined by the number
of channels PO i owns and the pattern of primary users’
channel occupancy in PO 4. While in this work we focus on
a static wireless environment, we can easily extend to the
dynamic wireless environment with non constant m;.
Specifically, in the latter case, we can divide the whole
time period into small enough time intervals such that m; is
constant in each interval.

We assume that channels owned by the same PO are
identical, that is, they have the same bandwidth, carrier
frequency, coding and modulating scheme, etc., whereas
the channels in different POs may be different due to the
heterogeneities of POs. We denote the carrier frequency and
bandwidth of channels in PO ¢ as f; and w;, respectively.
Considering a GSM-based PO 4, we have f; = 900 MHz (or
1800 MHz) and w; = 200 KHz.

We assume there is no spectrum reuse among the SUs,
which implies each SU can hear (and interfere) the
transmissions of other SUs if they are using the same
channel.” Thus we have the first constraint: each channel can
only be used by one SU at the same time. In addition, advanced
spectrum aggregation techniques are still immature and it

1. Note that throughout the paper, we use superscript ¢ to denote a
variable associated with PO ¢ and subscript n for SU n.

2. This assumption is obviously available for the network within any
small region, e.g., a building. For wide and open region, the assumption is
also available if the SUs work as virtual primary users and access the
network through the primary base stations.
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Fig. 1. An example of CR network with 2 POs and 6 SUs.

is difficult for a radio device to employ multiple discontig-
uous spectrum bands, whether these spectrum bands are
possessed by the same PO or different POs. Thus we have
the second constraint: each SU can only use one channel at a
particular time.

Fig. 1 presents an example of CR network with 2 POs and
6 SUs, where PO1 and PO2 operate on the frequency of
900 MHz (e.g., GSM-based system) and 5 GHz (e.g., IEEE
802.11a-based system), respectively. The gray bars in
frequency-axes denote the busy spectrum bands which are
being used by the primary users, and the white bars denote
the residual spectrum bands (idle channels) owned by each
PO at the moment. Obviously, there are two residual
channels owned by PO1 and 4 residual channels owned by
PO2. If we assume that PO1 operates in a GSM-based system
and PO2 operates in a 802.11a-based system, the bandwidth
of channel owned by PO1 and PO2 are 200 KHz and 20 MHz,
respectively. Each dashed line between POs and SUs
indicates that the SU employs a residual channel of the
associated PO. We can easily find that SU1 and SU2 employ
channels of PO1 and other SUs employ channels of PO2.

To facilitate the reading, we list the major notations used
in our model and analysis in Table 1.

3.2 Reservation Price and Valuation

If a PO accepts an accessing request of any SU, he will
assign an idle channel to the SU and serve the SU on that
channel. We call this process “PO assigning a channel to
SU” for short.?> We denote the assignment from PO i to SU n
as (n,4). In each assignment, the PO suffers certain expense
and the SU gains certain benefit.

For each PO, we define the reservation price (also called
cost) of a residual channel as the expense of serving the
assigned SU on that channel. This reservation price
represents the disadvantageous impact of SUs’ transmission
on POs’ performance, which may consist of power con-
sumption, device depreciation, performance degradation of
primary users, etc. We denote the reservation price of PO ¢
as ¢;. The reservation price vector, denoted by c, is defined by
all POs’ reservation prices:

. ,C]L[). (].)

For each SU, we define the valuation for a channel as the
benefit of using that channel. This valuation is often

C:(Cly €2, .-

3. For simplicity, we will use the following statements interchangeably in
this paper: 1) PO i assigns a channel to SU n, 2) PO i serves SU n on a
channel, 3) SU n employs (utilizes) a channel of PO ¢, and 4) there is an
assignment from PO i to SU n.

TABLE 1
Notations

€ The trading price update step size of POs
fi The carrier frequency of PO i
w; The bandwidth of channels of PO 1

m; The number of residual channels of PO i
e The reservation price of PO i

Pi The trading price of PO 4

d; The demand for channels owned by PO i

\F The strategy of PO i
vn:  The valuation of SU n for the channel of PO i

xni  The interest of SU n for buying the channel from PO i
X The strategy of SU n
rni  The assignment between PO i and SU n

related to the channel capacity or channel quality
(typically signal-to-noise ratio, SNR). Since the channels
within the same PO are identical, we simply denote the
valuation of SU n for the channel of PO ¢ as v,;. We can
generally model v, as a function of the channel
bandwidth and SNR: v,; = G,(Ty;, w;), where T',; is the
channel SNR between SU n and PO i, and G,(z,y) is a
nonnegative and nondecreasing function with respect to x
and y. Similarly, the valuation matrix, denoted by W, is
composed of all SUs” valuations for all channels:

v (") 2)

VN

where v,, = (U1, Un2, - - ., Upar) is the valuation vector of SU n
for all POs’ channels.

It is worth noting that c; is private information of PO i and
vy is private information of SU n. For any PO or SU, it is very
hard to obtain the private information of others in a
noncooperative network. As will be discussed later, this is
also a reason that we try to solve the problem by means of
auction theory, since auction is essentially a game with
incomplete information [11].

It is also notable that the valuation of SU for any channel
is not only related to the channel bandwidth and SNR, but
also to the service type. In fact, each SU n can select
different form of G, (x, y) for different services. For example,
for voice services which sensitive to delay and bit-error-
ratio (BER), the SU can model the valuation as a sigmoid
function with respect to SNR. For data services which
sensitive to bandwidth and bit rate, the SU can model the
valuation as the Shannon Capacity [1]. Further, if any PO’s
transmission mode is not supported by SU, e.g., an OFDM-
based PO and a CDMA-based SU, the SU can simply set the
associated valuation to zero since he cannot use those
channels at all.

3.3 Spectrum Assignment Problem Formulation

According to definition of valuation, we can easily find that
different SUs may have different valuations for the same
channel and different channels may have different values
for the same SU. Besides, according to the previous
assumptions, each SU can only use one channel and each
channel can only be used by one SU. Thus we address the
following spectrum assignment problem: 1) how to assign the



> ien ™ residual channels among all SUs to achieve the highest
spectrum utilization,* and 2) what is the motivation for each PO
and SU to accept such an assignment. The first issue is referred
to as efficiency and the second as incentive.

We define the channel assignment matrix as an N x M
matrix IR = {r,;}yyy where each element r, €{0,1}
indicates whether PO i assigns one residual channel to
SU n, that is, r,; = 1 denotes that PO 4 assigns a channel to
SU n and r,; = 0 otherwise. It is easy to see that a feasible
channel assignment matrix must satisfy the following
constraints: 1) > ., < 1, since each SU can only use
one channel, and 2) }°, _y 7 < m;, since each channel can
only be used by one SU.

If PO i assigns a channel to SU n, i.e., r,; =1, the PO
suffers expense c¢; and the SU gains profit v,;, thus we
define net profit (or social profit), denoted by s,;, as the
difference of SU’s valuation and PO’s expense, i.e.,
Spi = Up; — ¢;. In fact, s,; represents the increase of social
wealth brought by the assignment from PO ¢ to SU n.
Further, we define the social income as the aggregate net
profits of all assignments in IR. The social income is also
regarded as the spectrum utilization of whole network.
Formally, we can write the social income as follows:

S = Z Zrni . (vni - C?) (3)
neN ieM

An optimal channel assignment refers to a feasible channel
assignment which maximizes the social income S. Formally,
we can write the optimal channel assignment as the
following optimization function:

R* = S = i (Uni — Ci
arg max argm}ngZr,, (Uni — ¢)

neNieM
st. (i) Y ri<1,VneN,
ieM (4)
(11) Z’I‘mgmi, ViEM,
neN

(iif)

In fact, (4) defines a binary linear programming (BIP)
problem, a special case of integer programming in which
variables can only be 0 or 1. The BIP problem is NP-hard
in general. We can use Branch-and-Bound algorithm [21]
to solve this problem, or we can transform the original
problem into the optimal matching problem in graph theory
[20] and use Kuhn-Munkres algorithm [22] to solve this
problem. However, both of the algorithms fall into the
scope of centralized algorithm which is not suitable for
the distributed and noncooperative CR networks due to
the following two reasons.

On one hand, the centralized algorithm needs complete
information, while in our model the reservation price and
valuation are private information for POs and SUs,
respectively. As mentioned previously, it is hard to obtain
the private information of others in noncooperative and
distributed CR networks. On the other hand, even if there is
a centralized entity who successfully collects the complete
information, the selfish SUs may not accept the optimal
channel assignment. In other words, the centralized

rni € {0,1}, Vi € M,n € N.

4. We write the expression i € {1,2,..., M} as i € M for simplicity.
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algorithm cannot provide the incentive for SUs. We show
this problem by an example in the network with 2 POs and
2 SUs where ¢; = ¢ =0,m; =mg=1,v; = (5,1) and vy =
(4,2). Obviously the optimal channel assignment is rj; =
15, =1 and 7], = 15, = 0, that is, SU1 employs the channel
of PO1 and SU2 employs the channel of PO2. However, the
SU2 will disobey the assignment since va; > v9y!

3.4 Spectrum Auction Description

Auction has been recognized as an effective mechanism to
allocate resources in wireless networks in a distributed
manner [11]. Additionally, the CR networks with multiple
POs and SUs can be easily regarded as a two-sided market.
Thus it is natural to apply auction mechanism for channel
assignment problem in CR networks.

In spectrum auction, the POs act as auctioneers who sell
their residual channels to SUs, and the SUs act as bidders
who buy channels from POs. In other words, if an SU
employs a channel of any PO, he must pay the PO a given
monetary payment for using that channel. Such a payment
is called the trading price of the channel. Note that each
assignment is associated with a trading price which can be
specified either by the associated PO or SU. From the
economic perspective, ¢; is the minimum trading price at
which PO i is willing to sell a residual channel, and v, is the
maximum trading price at which SU n is willing to pay for a
channel of PO i.

The SUs gain the profit by using the POs’ channels for
their services and the POs also gain the profit by charging
SUs the trading price. In essence, spectrum auction is a
combination of conventional channel assignment process
and profit transfer process. For simplicity, we list the key
elements of spectrum auction as follows:

1. Bidders: all SUs desiring to employ channels;
2. Auctioneers: all POs willing to sell residual channels;
3. Auctioned Items: all residual channels.

It is easy to see that our spectrum auction falls into the
scope of multiauctioneer multiitem auction.

According to the difference of bidding behavior, auctions
can be divided into two categories: one-shot auction and
multishot auction [11]. In one-shot auction, all the bidders
submit their bids to auctioneer simultaneously and the
auctioneer sets the trading price at once, taking into account
the bids collectively. In multishot auction, the auctioneer
dynamically adjusts the trading price and at the instance
when price changes the bidders react by, for example
showing whether or how many they are willing to buy from
the auctioneer. Thus one-shot auction is also referred to as
static auction and multishot auction as dynamic or
progressive auction.

From the aspect of bidding behavior, one-shot auction
works in a centralized or quasi-centralized manner. For
market with single seller (i.e., single PO), one-shot auction
can be directly implemented since the seller can work as the
central processing entity. Specifically, the bidders submit
their bids to the seller and the seller works out the market-
clearing price in a centralized manner (e.g., see examples of
one-shot auction in [15], [16]). While for market with
multiple sellers (i.e., multiple POs), one-shot auction cannot
be directly implemented. In one hand, the bidders cannot
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Fig. 2. An example of (a) bipartite graph and (b) complete bipartite
graph.

decide one-shot from which seller he is going to buy a
channel. In the other hand, it needs to obtain collectively all
the bids submitted to every seller and then to compute
market-clearing prices for all the sellers. It requires central
control over or coordination among the sellers, which is not
practical for the distributed networks (e.g., see example of
double auction in [17]). Thus one-shot auction is not
suitable for multiseller networks without any cooperation
or centralized entity.

Considering the deficiency of one-shot auction in multi-
seller case, we design the spectrum auction in the
distributed CR networks with multiple POs as a multishot
auction, since it can be easily implemented in a distributed
manner. We denote the proposed dynamic auction as MAP
auction which will be discussed in detail in Section 5.

4 OPTIMAL CHANNEL ASSIGNMENT

In this section, we transform the problem in (4) into an
optimal matching problem [20] in graph theory and derive
the optimal channel assignment by means of Kuhn-
Munkres algorithm [22], which is essentially a centralized
algorithm. Although the centralized algorithm is not
realistic for practical system as mentioned in Section 3.2,
we present the centralized approach as a benchmark for the
auction-based solution in the simulations.

41 Optimal Matching Problem

To better understand the optimal matching problem [20],
we first introduce some basic concepts related with the
bipartite graph and matching in graph theory.

A bipartite graph is a graph whose vertices can be divided
into two disjoint sets U and V such that every edge
connects a vertex in U to one in V. A complete bipartite graph
is a special bipartite graph where every vertex of U is
connected to every vertex of V. Since a complete bipartite
graph is completely determined by the vertex sets U and V,
we can write it as G = (U,V) for simplicity. A weighted
graph is such a graph wherein every edge is associated with
a weight which is usually a real number. Thus a weighted
complete bipartite graph can be written as G = (U, V, W),
where W = {w;;}jy/«v) and w;; is the weight of edge
connecting with vertexes i € U and j € V.

A matching in a bipartite graph is a set of edges without
common vertices, that is, a matching is a set of edges such
that for each vertex in the graph at most one edge in the
matching is incident upon this vertex. Fig. 2 presents an
example of the bipartite graph (Fig. 2a) and the complete

SUs 7 7 -
D) ‘/2/‘ ‘
\5 1 ‘7 2 ,3

>

POs 1

mé=4

mi=2

Fig. 3. A graphic representation for the system model in Fig. 1.

bipartite graph (Fig. 2b), where the bold edges in Fig. 2b
match the complete bipartite graph.

Now we can formally write the optimal matching problem
in a weighted complete bipartite graph as follows: Given a
weighted complete bipartite graph G = (U,V,W), find a
matching (a set of edges) with maximum weight.

The optimal matching problem can be solved by the
Kuhn-Munkres algorithm (also known as Hungarian algo-
rithm) in polynomial time [22]. Due to space limitation, we
do not present in detail the algorithm in this work. Thus a
nature thinking is to transform the original problem into an
optimal matching problem.

4.2 Optimal Channel Assignment

It is easy to see that each CR network can be represented as
a weighted complete bipartite graph G = (U, V, W), where
U is the set of SUs, V is the set of POs and W is an N x M
matrix with wy,; = v, —¢;, Yn € N,i € M. Obviously each
channel assignment IR corresponds to a set of edges in G.
Fig. 3 presents a graphic representation for the system
model in Fig. 1, wherein the set of bold edges is equivalent
to the channel assignment in Fig. 1. Thus the original
problem in (4) can be transformed into the following
problem: find a set of edges with maximum weight, subjecting to
pn <1, ¥n € Nand p; < m;, Vi € M.° However, it is still not
an optimal matching problem.® This can be shown in Fig. 3,
where the optimal channel assignment (shown as the bold
edges) is not a matching.

Thus it is necessary to make some skillful change to Fig. 3
so0 as to transform the original optimization problem into an
optimal matching problem. We split the vertex correspond-
ing to each PO ¢ as m; identical vertices, and split the edge
between SU n and PO ¢ into m; identical edges each
connecting SU n to a new generated vertex, as shown in
Fig. 4. Such a new graph is referred to as the splitting graph. In
fact, the splitting graph is a weighted complete bipartite
graph G = (U, VI, WT), where Uis the set of SUs, V' is the set
of all residual channels and W' is a column extension of W.
We find that the original problem in (4) is exactly an optimal
matching problem in the splitting graph. Thus we can use the
Kuhn-Munkres algorithm [22] to derive the optimal match-
ing. The set of bold edges in Fig. 4 is an optimal matching,
which is equivalent to the channel assignment in Fig. 3.

5. The notation p; is the degree of vertex corresponding to PO i € M and
pn is the degree of vertex corresponding to SU n € N.
6. In fact, it is an optimal matching problem only if m; = 1,Vi € M.
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Fig. 4. A splitting graph for the system model in Fig. 1.

It is worth noting that the Kuhn-Munkres algorithm is a
centralized algorithm which is unrealistic for practical
system. Nevertheless, we provide the centralized approach
as a benchmark for the auction-based solution in the
analysis and simulations.

5 AuUCTION-BASED CHANNEL ASSIGNMENT

In this section, we present the basic elements and detail
mechanism of MAP, and then we prove the convergence
and optimality of MAP. We further analyze the incentive
issues and distributed implementation of MAP protocol in
practical networks.

5.1 Basic Elements of MAP

As mentioned previously, MAP is a kind of dynamic
auction wherein the auctioneers set the trading prices and
the bidders select the best auctioneer for bidding,.

The strategy of each SU is to decide whether to buy a
channel and from which PO he is going to buy a channel.
Formally, we can write the strategy of SU n as:

X0 = (1, Tz s Tot), o)

where z,; € {0,1} represents the willingness of SU n to buy
a channel from PO 4, that is, z,; = 1 denotes that SU n is
willing to buy a channel from PO i and z,; =0 otherwise.”
Note that x, = 0;;, where 0,; is an M-dimensional vector
whose all components are zero, denotes that SU n does not
want to buy any channel.

Since each SU can only use one channel at a particular
time, wehave ), ;2 < 1foralln € N. Thus we can easily
write the strategy space of SUs as © = {e,, e},...,elf}
where €}, = 0,/ and €}, i # 0, is an M-dimensional vector
whose ith component is 1 and all others 0. Recall the
example in Fig. 1, we have x; = x» = e% and x3 = X4 = X5 =
x¢ = €3. The strategy profile of SUs, denoted by X, is defined
by all SUs’ strategies:

x— [ : (6)

XN

where x,, € © for all n € N.
From a market perspective, we define the demand for
channels of PO 4, denoted by d;, as the number of SUs who

7. For simplicity, we will use the following statements interchangeably:
1) SU n is willing to buy a channel from PO i, 2) SU n chooses PO i for
bidding, 3) SU n places (submits) his bid on (to) PO 1.
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are willing to buy channel from PO i. Formally, we can
write d; as a function of X, i.e.,

di = T, VieM. (7)

neN

The supply of each PO i is defined as the number of
residual channels he owns, ie., m;. We say a PO i in
demanded surplus (or over demanded) if the demand for
channels of PO ¢ exceeds the supply of PO i, ie., d; > m,,
and we say PO i in supply surplus otherwise. Recall the
example in Fig. 1, we have m; =d; =2 and my =dy =4,
and thus both of PO1 and PO2 are not in demanded surplus
(or supply surplus).

Since each channel can only be used by one SU at a
particular time, it is necessary to design a mechanism for
each PO to deal with the situation of demanded surplus. A
simple mechanism, denoted by D% is that each PO i
randomly selects m; SUs to which he is going to sell the
channels, from the set of SUs who select the strategy e,
This mechanism may result in low profit of the PO itself,
and meanwhile lower the spectrum utilization of the whole
network due to the wild behavior of dropping SUs
randomly. Thus a more intelligent mechanism is necessary
for each PO to deal with demanded surplus.

In essence, such a mechanism is part of the strategy of
the PO. In dynamic auction, the trading prices are set by
auctioneers and announced to all bidders in an open
manner. It is obvious that the trading price is also part of
each PO’s strategy. Thus the strategy of each PO i can be
defined as follows:

y; = {pi, Di}, (8)

where p; is the trading price associated with PO i and D; is
the mechanism to deal with demanded surplus. Further, the
trading price vector, denoted by p, is defined by all POs’
trading prices:

.,pM). (9)

Similarly, the strategy profile of POs, denoted by Y, is
defined by all POs’ strategies:

pP= (plv b2, - -

Y1
Y=1... (10)
Yu

From an economic perspective, if PO i sells a residual
channel to SU n at price p;, the profit of PO i is defined as the
difference between the selling price and cost of the channel,
i.e., pi — ¢;, and the profit of SU n is defined as the difference
between his valuation for the purchased channel and the
purchasing price, ie., v,; —p;. Additionally, if a residual
channel of PO ¢ is not purchased by any SU, the profit of
this channel is zero for PO i. Similarly, if an SU does not buy
any channel from POs, his profit is zero. It is notable that
the net profit of an assignment (say, from PO ¢ to SU n) is
exactly the aggregate profit of the associated PO and SU,
ie., Sy =pi—¢ + vy —pi, since the selling price and
purchasing price cancel each other and do not interference
the social wealth.

The utility of each SU n, denoted by w,, is defined as his
profit under current strategy profile. In details, as SU n
chooses the PO i for bidding, i.e., x, = €}, his utility is



GAO ET AL.: MAP: MULTIAUCTIONEER PROGRESSIVE AUCTION FOR DYNAMIC SPECTRUM ACCESS 7

vy — pi if PO 4 accepts the request of SU n and 0 otherwise.
Formally, for SU n with x,, = e},, we have:

Uni — Pi, 1 € M, accepted by PO 1
U, =< 0, 1 € M, refused by PO i (11)
0, 1=0

The utility of each PO i, denoted by 7;, is defined as the
aggregate profit of all residual channels he owns. In details,
if PO ¢ is in demanded surplus, i.e., d; > m;, he can sell out
all residual channels he owns, and gain profit from all
residual channels. While if PO ¢ in supply surplus, i.e.,
d; < m;, he can only sell d; residual channels, and gain
profit from d; residual channels. Thus we can formally write
m; as follows:

m; - (pi — ¢i),
T =
{ dL : (pL - Ci)?
So far, we have defined the essential elements of MAP,

i.e., the strategies and utilities of both auctioneers and
bidders. Thus MAP can be formally defined as follows:

d; > my

1. Bidders/Auctioneers/Auctioned Items: the same as those
in spectrum auction;

2. Strategies: St. of bidder is in (5), and St. of auctioneer
is in (8);

3. Utilities: Ut. of bidder is in (11), and Ut. of auctioneer is
in (12).

5.2 Mechanism of MAP

We first provide the essential assumptions for MAP: all POs
and SUs are selfinterested which means they are always to
maximize their own utility, and myopic which means they
act to maximize their immediate expected utility. Thus each
PO is willing to sell his channels with a price higher than
the reservation price and each SU is willing to buy the
channel with a price lower than his valuation for this
channel. The basic idea for MAP is that: each PO system-
atically adjusts the trading price and each SU subsequently
chooses the best PO for bidding.

In MAP, the auctioning process goes like this: from a
seller’s perspective, each PO starts by calling out a low
trading price and then gradually raises the price as long as
he is in demanded surplus. From a buyer’s perspective, each
SU indicates whether to buy a channel and which channel he
is going to buy at the given trading price vector. As a PO’s
trading price rises, the SUs naturally reduce their interest for
buying the channels of this PO. The auction ends as none of
the PO is in demanded surplus and each PO sells his
channels, at current trading price, to those SUs who choosing
this PO for bidding in current trading price vector.®

Due to the progressive nature of MAP, we define MAP
as a round-based distributed process which works as follows:
In the first stage of each round, each PO elicits the demands
for his channel in the previous round and judges whether
he is in demanded surplus. If so, the PO raises his trading
price by a given step and announces the new price to all
SUs. Such a price updating and announcing process is
referred to as Asking (of PO). In the second stage of each

8. In fact, each PO i chooses mechanism D' to deal with demanded
surplus, where D' can be explained as “raise price and refuse all.”

TABLE 2
Mechanism of MAP

(i) Initializtion
for each PO i € M do
set p; = ¢, d; = 0;
for each SU n € N do
set xp, = ef;
(ii)  Asking
set p’ = p;
for each PO i € M do
get d; = Z”: v Tnis
if d; > m; do
set p; = pi +¢;
announce p; to all SUs;
if p==p' do
exit; // END auction (=)
(iii)  Bidding
for each SU n € N do
find k = arg max;ear (v — pi);
if v —pr = 0 do

set x, = ek ;
else do
set x, = e

go back to (ii); // NEXT round

round, each SU decides whether to buy a channel, and if so,
selects the PO which maximizes his utility for bidding,
according to the trading prices vector POs just announced.
Such a process is referred to as Bidding (of SU). The Asking/
Bidding process keeps on until none of the POs is in
demanded surplus. In a word, the essence of MAP is that:
by raising the trading prices of the POs in demanded surplus, the
SUs who were willing to buy channels from these POs will be
driven to other POs. Formally, we present the detailed
mechanism of MAP in Table 2, where p’ is the trading price
vector in previous round and step e is an arbitrarily small
positive number which determines the converging speed.

Remark 1. The Asking/Bidding process cannot occur
infinitely because, when the trading price of a PO becomes
sufficiently large, say, higher than all SUs’ valuations for
his channel, the PO cannot be in demanded surplus (since
none of the SUs will place bid on this PO).

Remark 2. The initial price of each PO i can be set higher
than ¢;. Let p! be the trading price of PO i at the last
round of MAP. In fact, as long as PO i chooses an initial
price lower than p!, the trading price p; will always
converges to piT, and the achieved channel assignment is
same to the primal one. However, if PO 4 chooses an
initial price higher than p!, the achieved channel
assignment may be different.

Remark 3. The strategies of SUs (i.e., X) in the last round of
MAP is actually the resulting channel assignment. This is
due to the fact that, none of the POs is in demanded
surplus as the auction ends, and thus each SU who
places a bid on any PO is actually assigned a channel by
this PO. Equivalently speaking, if an SU n is assigned a
channel by any PO say 4, then his best strategy in the last
round must be x, = €, and if an SU n is not assigned
any channel, then his best strategy in the last round must
be x,, = €,.



8 IEEE TRANSACTIONS ON MOBILE COMPUTING,

—_
N

SUs 1

POs 1 2 1 (2
= pi= p2=0
c1=0 =0 =0 =0

(a) (b)

Fig. 5. An example of MAP in a system with 2 POs and 2 SUs: (a) the
first round, and (b) the last round.

Fig. 5 presents an example of MAP in a system with 2
POs (each owning 1 residual channel) and 2 SUs. The bold
edge indicates the bidding interest of SUs at a given trading
price vector. The number on each edge denotes the
valuation of SU for the associated channel.” Without loss
of generality, we assume that the reservation prices of both
POs are zero, and thus each PO will calling out an initial
price at zero. At this trading price vector, both SUs will
place their bids on PO1, which results in demanded surplus
in PO1, as shown in Fig. 5a. According to the MAP
mechanism, PO1 raises his price p; up to p; > 1, say p1 =2,
and SU1 will move his bid to PO2, as shown in Fig. 5b. Now
none of the POs is in demanded surplus and thus the
auction ends. The PO1 assigns the channel to SU2 and PO2
assigns the channel to SUL. It is notable that the channel
assignment achieved by MAP is exactly the optimal channel
assignment.

5.3 Equilibrium of MAP

We analyze the convergence of MAP in this section.
Without loss of generality, we assume that the SUs have
different valuations for the same channel, i.e., v,; # v,
Vm # n. In one hand, the SUs with different services may
choose different form of valuation function to evaluate the
value of channel, and thus they have different valuations.
Even the SUs choose the same valuation function, this
assumption is reasonable because the channel SNR are
different for different SUs, as we distribute the SUs
randomly in a testing area.

We first define weak equilibrium (W.E.) as a state in which
none of the POs is in demanded surplus. Formally, we
present the definition of W.E. as follows:

Definition 1 (Weak Equilibrium). W.E. is defined as a state
in which the demand for channels of each PO i does not exceed
the supply of PO i, i.e., d; < m;, Yi € M.

The most important property of W.E. is that each SU who
submits a bid to any PO is actually assigned a channel by
this PO, since there is no PO in demanded surplus. We find
that MAP converges to W.E., and we show this property in
the following lemma.

Lemma 1. MAP converges to a W.E.
Proof. We first show that the Asking/Bidding procedure in
MAP cannot go on infinitely. Let p; = max,cnv,; and

9. Note that we do not confuse with the number on the edges in Fig. 4
which denotes the net profit of an assignment.
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Fig. 6. Summary of W.E. and S.E. with different properties.

D; =pi+¢€Vie M. We can easily find that, when the
trading price of PO i achieves sufficiently high, say,
pi > pi, PO i cannot be in demanded surplus and raise
his price any more. Thus we have p <P where
D = (51, Py, --.,Py)- " Note that in each round of MAP
there is at least one PO raising his price by e, thus the
above P must be achieved, if possible, in at most K
rounds, where K =3%"._,,(p; — ¢;)/e is a finite number
since the components of ¢ and W are finite and the step e
is not infinitesimal. Thus we show that MAP ends in
finite rounds. In addition, in the end of MAP (i.e., line (x)
in Table 2), there is no PO in demanded surplus, which is
exactly a W.E. state. 0

It is notable that W.E. is usually inefficient. For example,
when all POs set very high trading prices, say p = p, none
of the SUs will decide to buy channel and the spectrum
utilization is zero, but this is yet a W.E. Due to the limitation
of W.E., we introduce the concept of strong equilibrium (S.E.)
or equilibrium in short.

Definition 2 (Strong Equilibrium). S.E. is defined as a state in
which 1) the demand for channels of each PO i does not exceed
the supply of PO 4, ie., d; <my, Yi € M, and 2) if the
demand for channels of PO i is less than the supply of PO i,
then the trading price of PO i equals his reservation price, i.e.,
pi = ¢ if di <m,.

It is obvious that an S.E. is always a W.E. In fact, in S.E.,
each PO i is either in the state of 1) d; < m; and p; = ¢; or 2)
d; = m;, while in W.E., each PO i is in the state of d; < m,.!
We further define the weak equilibrium price and (strong)
equilibrium price as the trading price vectors in W.E. and
S.E., respectively.

In order to provide an intuitionistic impression, we show
the summary of W.E. and S.E. by properties in Fig. 6. The
S.E. is shown as the bold lines, i.e., p; = ¢; and d; = m;, and
the W.E. is shown as the range surrounded by p; =¢; , d; =
m; and p; axis.

Fig. 7 presents an example of W.E. (price) and S.E. (price)
in a system with 2 SUs and 2 POs (each owning 1 residual
channel), in which Fig. 7a shows a W.E., Fig. 7b shows an
S.E., and Fig. 7b’" is an equivalent graph of Fig. 7b by
subtracting the reservation prices from the trading prices
and valuations. It is easy to see that d; < m; and p; > ¢; in
Fig. 7a, thus it is not an S.E. In both Figs. 7a and 7b, SU1 is
going to buy a channel from PO2 while SU2 does not buy

10. If x and y are M-dimensional vectors, then x < y denotes that for all
i€ M,x; <y;, and x = y otherwise.
11. Note that p; is impliedly greater than ¢; for each PO i.
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Fig. 7. An example of W.E. and S.E. in a system with 2 POs and 2 SUs.

any channel from POs, thus the resulting channel assign-
ment is 715 = 1 and r9; = r11 = r99 = 0. The social income
achieved by the W.E. in Fig. 7a and S.E. in Figs. 7b or 7b” are
S =T7and S =5, respectively.

Although the valuations in Figs. 7a and 7b are same, the
optimal channel assignment and optimal social income are
different due to the difference of reservation prices.
Specifically, in Fig. 7a, the optimal channel assignment is
iy =713 =1 and 7], =75 =0, and the optimal social
income is S* =7+ 5 =12, while in Figs. 7b or 7b’, the
optimal channel assignment is 7j, =1 and 75 =7}, =
r3, =0, and the optimal social income is S*=7—-2=5.
So we can find that the W.E. in Fig. 7a does not achieve the
optimal channel assignment or optimal social income, while
the S.E. in Figs. 7b or 7b”" does.

In what follows, we will show that, given a small enough
step ¢, MAP converges to an S.E.

Lemma 2. MAP converges to an S.E., if € is small enough.

Proof. We have proved that MAP converges to a W.E. in
Lemma 1, i.e., di < m;, Vi € M. Thus we can prove this
lemma, as long as we show that: if d; < m;, then p;, = ¢;,
We prove the above assertion by contradiction. Assum-
ing that MAP converges to W.E. state wherein there
exists a PO i with d; < m; and p; > ¢;.

For simplicity, we denote p! as the trading price of PO

i at the k th round, and obviously p! = ¢; and p! = p;

where T is the last round of MAP. Since p! > p} and p! is

monotonously nondecreasing with respect to & (for all

k € T), there must be a round 7 such that p] ™' > p7, that

is, PO i is in demanded surplus in the 7 th round. Strictly

speaking, we have p] ™' = pT + e. When ¢ is small enough,
it is possible that only one buyer of PO i changes his
strategy at that moment. In fact, as long as 1) the step ¢ is
small enough and 2) the SUs have different valuations
for each channel, PO i can always driven away at most
one SU at a particular round as in demanded surplus.

Thus the reduction of d; is at most one in a round, which

implies that d; always approaches m,.

As long as d; approaches m;, PO ¢ will no longer raise
his trading price (until d; exceeds m; again, if possible). It
is notable that if PO ¢ does not change his trading price,
the demand for his channels (i.e., d;) will never decrease.
This is due to the fact that the trading prices of other POs
are nondecreasing.

So far, we have shown that: 1) if p; > ¢; in the end of
MAP, then there must be a round such that d; > m;, 2) as
long as d; > m; at any round, d; will decrease one by one

Dik
al— S T T
Vai
SU1 SuU2 SU3 Su4

Fig. 8. An illustration of the influence of ¢ on the convergence of MAP.

and approach m; finally, and 3) as long as d; approaches
m;, it will always hold at m; or become greater than m;
again. From above, we prove that: if p; > ¢;, then d; > m,
which contradicts with the assumption, and thus we
complete the proof. O

Remark 4. Lemma 2 holds only if € is small enough.
However, perfectly determining the feasible range (in
particular the upper-bound) of ¢ is difficult or even
sometimes impossible. In what follows, we will present a
rough range of e. We first derive the feasible upper-
bound of € for each PO i at a particular round ¢, denoted
by €. Without loss of generality, we assume that PO i is
in demanded surplus and the SUs 1,..., K choose PO 1
for bidding. For each SU n € K, we define:

A
An =

(i = pi) = [max(oc—p0)| . (13)
ki

where [z]" = zif 2 > 0and 0 if 2 < 0. The first term in A,,
denotes the profit of SU n if he chooses PO i, while the
second term denotes the maximum profit SU n can
achieve if he does not choose PO i. Without loss of
generality, we assume A; < Ay ... < Ag. Note thatif PO ¢
raises his trading price by € > A,,, SUs 1-n will change
their strategies in the next round. Thus in order to make
at most one SU change his strategy at round ¢ + 1, the
upper-bound of € for PO ¢ at round ¢ must be equal or
less than A,, ie., € <A,. Hence, we can obtain a
conservative upper-bound for step ¢ as follows:

oMo "
< mi i :

€< Itnzl{n}l:lln {ez}, (14)
where T is the last round of MAP. From above we find
that determining the theoretical upper-bound of € needs
not only the private information, but also the whole
course of auction, which is intractable. Therefore, in
practical protocol, each PO can independently and
adaptively set the step e according to experience.

Fig. 8 shows an illustration of the influence of € on the
convergence of MAP in a system with 4 SUs and one PO ¢
(owning 2 residual channels). When the trading price is
p; = a, SUL, SU2 and SU3 are willing to buy the channel
from PO i, which leads to a demanded surplus in PO i, and
consequently PO ¢ will raise the price by a step e. Note that
A] = V1§ —a,Az = V9; —a,Ag =3 —a, and A] < A3 < AQ. If
€ > A3, say € = €, SUI and SU3 are simultaneously driven
away from PO i, which results in d; < m;. While as we
choose a relatively small step, say € = €;, only SU1 is driven
away, and we get the desired outcome. Therefore, there is a
tradeoff between convergence and converging speed, that
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is, a small € ensures better convergence but lower conver-
ging speed, and vice verse.

We refer to a CR network as demand-exceeds-supply
(DES) network if 1) N > ", _,, m;, which means that the
total demand of SUs is more than the total supply of POs,
and 2) vy —¢; >0, Vi € M,n € N, which means that each
assignment has a positive net profit. From Lemma 2, we can
find that, in a DES network, MAP converges to such an S.E.
that all POs sell out their residual channels, which does
coincide with common sense. We show this property in the
following corollary.

Corollary 1. In DES networks, MAP converges to an S.E. with
di = my, Yi € M, if € is small enough.

Proof. We have proved that MAP converges to an S.E. in
which each PO i is either in 1) d; <m; and p;, = ¢; or
2) d; = m;. We prove the corollary by contradiction.
Assume that there exists a PO i with d; < m; and p; = ¢
in the achieved S.E. We can easily find that there must be
an SU, say n, who is not assigned any channel (and gains
a zero utility) since N >3, ,,m;. As mentioned
previously, the strategies of SUs in the last round of
MAP is actually the resulting channel assignment, thus
SU n must select the strategy x,, = €},. However, in DES
networks we have v,; — p; = v,; — ¢; > 0, in other word,
SU n has at least one strategy x, = e/, which is better
than €Y,. Thus we have reached a contradiction. 0

5.4 Efficiency of MAP

We define the efficiency of MAP as the social income
achieved by MAP. We analyze the efficiency of MAP in this
section. Specifically, we will show whether the channel
assignment achieved by MAP is optimal.

We can easily find that, in the networks with one PO 4, the
channel assignment of MAP is exactly an optimal channel
assignment. In fact, in such a case, PO ¢ will raise his trading
price up to the m,; th highest valuation of SUs, and the
m; SUs with highest valuation are willing to buy channels
and actually acquire the channels from PO i. Note that such
a channel assignment is an optimal channel assignment, and
the optimal social income is >, . y:(vni — ¢;), where N’ is the
set of SUs who successfully acquire the channels.

In what follows, we will show that in the networks with
multiple POs, MAP also achieves the optimal channel
assignment, as long as the step ¢ is small enough.

Theorem 1. The channel assignment of MAP is optimal, if € is
small enough.

Proof. We use duality theory of linear programming
(specifically the primal-dual method [19]) to prove this
theorem. By naturally defining the primal problem as a
linear program, we consider the dual problem and then
use complementary slackness to transform our optimiza-
tion problem into a problem of solving a set of inequal-
ities (constraints). A feasible solution for the primal
problem is optimal, if and only if the corresponding
inequalities in the dual problem are satisfied.

We perform the proof in two steps: first, we prove a
feasible assignment matrix is optimal if it satisfies the
complementary slackness conditions in primal-dual

method, and then we show the channel assignment of
MAP satisfies the complementary slackness conditions.

Step 1. Let «, and 3, be the dual variables
corresponding to each SU n and PO 4, respectively, and
0,; be the slacks for each assignment (n,i). For
convenience we define the slacks as: 0,; = a,, + 3; — Spi
where s,; = v,; — ¢; is the social profit of an assignment
(n, 7). Note that, in the dual problem, the dual variables
and slacks must be nonnegative, i.e., a,, 8;, 8, > 0,Yn €
N,i € M. Let R be a feasible assignment matrix for the
primal problem. By duality, R has a maximal social
income if, for every SU n€ N and PO i€ M, the
following conditions hold:

c.l. Qo Z Oaﬂi Z 070717 Z 0/

c.2. 0,; =0,if (n,i) is an assignment in R (i.e., rp; = 1);

c3. a, =0, if SU n is not assigned in R, and §; = 0, if

PO i is not demanded in full, i.e., d; < m;.

The conditions in c¢.1-3 are referred to as the
complementary slackness conditions in primal-dual
method. The sufficiency of ¢.1-3 for optimality can be
proved as follows L: Let R' = {r/} v, be any feasible
assignment matrix. On one hand, we can easily write the
social income of R/, denoted by S(R'), as follows:

S(R) =" (1 sui)

neN ieM

= Z Z(T;Li . (Ozn + ﬂ'] - 9777))

neN ieM

< ZZ(TIT” (o + )

neN ieM

neN ieM

The second line comes from the definition of 6,;, the
third line follows because 6,, > 0 as specified in c.1,
and the last line follows because ) .., ., <1 and
D onen Tni < my (since R’ is a feasible assignment matrix).

On the other hand, we can write the social income of
R, denoted by S(R), as follows:

S(R) =" (rni - su)

neN ieM

Z Z(rm' : (a7L + ﬂz)) (]_6)

neN ieM

D an+ Y mib

neN ieM

The second line follows because 6,; =0 if r,; =1, as
specified in ¢.2, and the last line follows because «,, =0
if Y ocpmni <land B =0if )y rni < my, as specified
in ¢.3.

From (15) and (16), we can easily find that, if R is a
feasible assignment matrix which satisfies the comple-
mentary slackness conditions (c.1-3), then S(R) > S(R')
for arbitrary feasible assignment matrix R, which means
R is a channel assignment with maximum social income
(or optimal channel assignment).

Step 2. Now we will show that the channel assign-
ment of MAP satisfies the complementary slackness
conditions. Let R be any channel assignment achieved by
MAP. If we can find a set of dual variables such that R
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satisfies c.1-3, we complete the proof. To achieve this, we
need to identify the dual variables for POs and SUs.

We set the dual variables according to the following
rules: for SUs,

+
an = [mf{f(vm: *pi):| . VnéeN, (17)
1eM

and for POs,

5i:p7'7c737 \V/’iGM, (18)

where [2]" =z if # > 0 and [z]" =0 if x < 0. In fact, «,
in (17) is the profit of SU n and g; in (18) is the unit
profit of PO i, ie. the profit of one channel. For
simplicity, we define A, =max;cy(vy; — p;). Thus the
slacks for each assignment (n,4) can be written as:

O’L’i = [A7l]+ +pi—ci— (Uni - Ci)
= [An]+ - (Um? *pi)~

We first prove the validity of condition c.1. It is easy to
see that o, >0 and 5, >0,Yn € N,i € M. As for the
slacks, if A, >0, we have 6,;, = A, — (v, —p;) > 0, and
if A, <0, which means v,; —p; <0 for all i € M, we
have 0,; =0 — (pj — 1)7”;) > 0.

Then we prove the validity of condition c.2. As
mentioned previously, the strategies of SUs in the last
round of MAP is actually the resulting channel assign-
ment. Thus if (n,i) is an assignment in R, the best
strategy for SU n must be €}, at the last round, which
means v,; — p; > 0 and v,; — p; > v,y — py for all i/ € M,
or, equivalently, An = maXjyepm (’Um‘f - pir) =Upi —Pi > 0.
Substitute the above A,, from (19), we have: 0,; = v,; —
pi — (Vi —pi) = 0.

Now prove the validity of condition c.3. On one hand,
if SU n is not assigned in R, then the best strategy of SU n
must be egj at the last round of MAP, which means v,; —
p; <0 for all : € M, otherwise SU n will choose a PO
with positive profit for bidding. Thus we have A, <0
and o, = [A,]" = 0. On the other hand, if PO i is not
demanded in full, ie., d; < m;, then we have p; = ¢
according to Lemma 2 (when ¢ is small enough). Thus we
have ﬁ7 =pi —C = 0.

So far, we have proved that as we use the dual variable
defined in (17) and (18), all of the complementary
slackness conditions are satisfied. Thus, from Step 1 and
Step 2, we can complete the proof straightforward. ]

(19)

To better understand the relation between dual variables
(or slacks) and optimality, we recall several examples
mentioned previously:

Example 1. Consider the case in Fig. 5b, which is an optimal
channel assignment. By (17) and (18), we can find
the following dual variables: a; = max{6,7} =7, as =
max{3,2} = 3, 5 = 2, §2 = 0. By (19), we have the follow-
ing slacks: 611 = 1,012 = 0,602 = 0,62, = 1. Obviously the
conditions c.1-3 are all satisfied.

Example 2. Consider the case in Fig. 6a, it is not an optimal

channel assignment. Similarly, the dual variables are: oy =
max{2,3} =3, ay = [max{—1,-2}]" = 0,8 = 6, 3 = 4.

The slacks are: 611 = 1,015 = 0,65, = 1,099 = 2. The condi-
tion c¢.3 is not satisfied because 5; = 6 > 0 while PO1 is not
demanded in full.

Example 3. Consider the case in Fig. 6b, which is an optimal
channel assignment. Similarly, the dual variables are: o;; =
max{2,3} = 3, ay = [max{—1,-2}]" =0, B, =0, B, =2.
The slacks are: 61, = 1,012 = 0,602 = 1,65 = 2. Obviously
the conditions ¢.1-3 are all satisfied.

5.5 Incentive of MAP

In this section, we analyze the incentive issues of MAP
including the incentive for both POs and SUs joining the
auction and the incentive for accepting the channel assign-
ment achieved by MAP. The former incentive is regarded as
individual rationality (IR), which means all of the partici-
pators can obtain nonnegative profit as joining the auction,
and the later incentive is regarded as incentive compat-
ibility (IC), which means all of the participators can achieve
maximal profit by following the mechanism of the auction.

As mentioned previously, spectrum auction is actually a
combination of channel assignment process and profit
transfer process. From economic perspective, the former
process is used to capture the social income by assigning the
sellers” items to the buyers who are most desired for the
items, and the latter process is used to divide the achieved
social income among the buyers and sellers. In one hand, a
rational channel assignment mechanism is essential for
spectrum auction since the maximum achieved profit of
POs (or SUs) relies on the social income. The social income
is, in fact, the aggregate profits of POs and SUs, because the
selling price and purchasing price cancel each other from a
social perspective. In the other hand, a rational profit
transfer mechanism is also essential since the actual
achieved profit of POs and SUs relies to a great extent on
the profit division. Obviously that if the POs extract most of
the profit from the social income by charging the SUs high
prices, the SUs are not likely to accept the auction result,
and vice versa.

We first consider the incentive for POs and SUs joining
the proposed auction MAP (ie., IR). According to the
mechanism of MAP in Table 2, each SU will select a PO
with maximal and nonnegative profit for bidding, and each
PO will ask a price higher than its cost. Thus both SUs and
POs can achieve nonnegative profit. Further, from the social
aspect, we can see from Theorem 1 that SUs and POs
achieve the maximal aggregate profit.

Then we consider the incentive for both POs and SUs
accepting the auction result achieved by MAP (i.e., IC). In
this issue, the profit transfer process plays an essential role.
The source of profit is the channel utilization of SUs, and a
certain part of profit can be transferred to the associated
POs by means of pricing. A straightforward pricing
mechanism is the trading price solution, in which each PO 1
charges the related SUs his trading price p;. In such a
pricing mechanism, each SU n will naturally accept the
result of MAP, since in each round, he chooses the strategy
which maximizes his own profit, ie., x, = e]j'u where
k = argmax;ep (v — p;). However, the profit of POs are
strongly influenced by the information the POs know and
the volume of demand. Specifically, the POs with more
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information about SUs or other POs can gain more profit
[24], [25], [26]. Further, the POs with higher demand
requirement appears to gain more profit than those with
lower demand requirement, which does coincide with
common sense. Note that the demand requirement of any
PO is related with the number and location of SUs, which
usually vary randomly in time. Thus in long term, the
average demand requirement of any PO will tend to a
steady amount, say E[N]/M,'* supposing all parameters of
POs are same. Thus for the PO i with m; < E[N]/M, he is
more willing to accept the auction result, compared to the
PO i with m; > E[N]/M.

From above we can find that, using trading price
solution, the profit of POs and SUs vary with the change
of supply-demand relation. To make the profit division
more stable and fair, we introduce another pricing mechan-
ism: Nash bargaining solution [23]. A Nash bargaining
solution is a (Pareto efficient) solution to a Nash bargaining
game which usually used to model bargaining interactions
between one buyer and one seller. According to Nash
bargaining solution, for each channel assignment (n, 1), the
PO ¢ charges SU n a price p; = v,,;/2 + ¢;/2, thus the PO 1
and SU n gain the same profit (i.e., v,/2—¢;/2) in an
assignment. In such a pricing mechanism, both POs and
SUs are willing to accept the result of MAP, since POs and
SUs gain half of the total profit (social income) which is
maximized by the result of MAP. Note that in this case, the
trading price in the auction is just a virtual price used to
ensure the normal operation of the auction, while has no
relation to the profit transfer.

Besides the incentive issues mentioned above, we also
explore an interesting issue about interest compatibility. The
concept of interest compatibility is similar to that of
incentive compatibility. The latter one is widely used in
mechanism design and to ensure all of the participants
truthfully reveal their private information to the mechanism.
However in our auction design, the participants have no need
to exchange their private information, and thus the concept of
incentive compatible is no long a challenge for our auction
design. In our model, each SU has different preference for
different POs, due to the difference on transmission
techniques, channel parameters and qualities, etc. An
auction is said to be interest compatible if all of the SUs
will truthfully reveal their preference in bidding processes,
so that the SUs can be directed to their interested POs.

5.6 Implementation of MAP

In this section, we discuss the implementation of MAP
protocol in practical networks. Specifically, we will show
how MAP can be applied in a distributed manner.

A rough sketch for the construction of MAP protocol is
shown in Fig. 9, from which we can find a whole auction
duration consists of an auctioning course (denoted as Auc.),
in which the SUs compete for channels, and a following
serving course (denoted as Serving), in which the winning
SUs access the assigned channels. Let T, be the time interval
for two consecutive auctions, which includes a span of time
T, for auctioning course, and a span of time 7} for serving
course. Every auctioning course is divided into multiple

12. E[z] denotes the expectation of x.

T,
PO1 Serving Serving S
PO2 Serving Serving S
T, T; Time

Fig. 9. The construction of MAP protocol in time dimensionality.

slots with length T, each corresponding to one round in
auction. All network parameters (including the number of
residual channels, the number and location of SUs, the SUs’
requirements and valuations for channels, etc.) are assumed
to be constant in one auction duration (7).

To apply MAP in practical networks in a distributed
manner, the following issues must be considered.

First, we assume that all POs are strictly synchronous,
which means the POs start not only the auctioning course
and serving course, but also each round in the auction,
simultaneously. The synchronization ensures that the
Asking/Bidding process in MAP proceeds in an orderly
and regular fashion. Note that the synchronizing of
auctioning course and serving course can be (relatively)
easily achieved, since the duration of auctioning course (17)
and serving course (7}) is in large time-scale (typically on
the order of seconds), but the synchronizing of round is
hardly to be achieved, since the duration of round (7;) is
usually in millisecond level. Thus we also consider the case
of coarse synchronization, wherein the POs initiate each
round independently. We show that the performance
degradation caused by the loss of round synchronization
is very limited.

Second, we assume that there exists a common control
channel used for the interacting of auction signal, including
the initial information, trading price and bidding. Specifi-
cally, at beginning of the auction, each PO i broadcasts the
initial information including channel bandwidth, carrier
frequency, initial trading price, etc. In every round, each PO
1 updates and broadcasts his trading price p;, and then each
SU n decodes the trading prices and sends (unicasts) his
accessing request (bidding) to the preferred PO. Note that
each PO can also decode the trading price of others since the
trading prices are broadcasted in an open manner, and thus
each PO can obtain the current and previous trading price
vectors so as to judge whether the auction ends.

Third, the SUs need not to sense and decode all of the
trading prices. On one hand, an SU may not be able to
decode the trading price of any PO because of the far
distance between them or incompatible transmission modes
they used. On the other hand, the SU may not be willing to
decode the trading price of any PO (even if he can do this)
for the sake of energy saving or other reasons. The SUs can
simply set the unknown trading prices as infinite to prevent
themselves from selecting the associated POs. In the former
case, the auction result is still optimal,13 while in the latter
case, the auction result may be not optimal. In fact, if each
SU selects the only closest PO for sensing, the auction
degenerates to a traditional fixed allocation scheme. We

13. This is due to the fact that the SU cannot use this PO’s channel at all,
and thus he will not choose this PO even if he knows this price.
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Fig. 10. Evolution of SUs’ profits and preferences, using M = 4, N = 100, m; = 6 and fixed step e = 10.

find that if each SU selects two closest POs for sensing, the
performance degradation is very limited.

Fourth, if the auction ends within the period of auctioning
course, the remanent period of auctioning course is
immediately turned into serving course. While if the auction
has not achieved the equilibrium at the end of auctioning
course, it will be forced to terminate to guarantee a long
enough serving time. In such case, there will be some POs in
demanded surplus yet, and each PO ¢, if in demanded
surplus, randomly selects m; SUs for serving. The auction
result in this case is not optimal and the performance
degradation may be considerable. Thus it is essential to
ensure that the auction ends within the auctioning course. To
achieve this, one can enlarge the period of auctioning course
(T%,), which will reduce the spectrum efficiency, or raise the
step €, which will influence the convergence of the auction.

Fifth, the POs can set the step ¢ independently according
to experience. As mentioned previously, how to determine
a rational step e is essential for the auction. A large step ¢
will influence the convergence of the auction and the
optimality of the auction result, while a small e will prolong
the auctioning time and reduce the spectrum efficiency.
Although (14) presents a theoretical upper-bound for ¢, it is
intractable in practice. In practical protocol, each PO 4 can
adaptively adjust his step e based on 1) the number of excess
demand, which is defined as the difference of the demand
requirement for PO ¢ and the supply of PO i (i.e., d; — m;),
and 2) the probability of overshooting, which is defined as
the ratio of the rounds in which PO i drives away two or
more SUs to the whole rounds. Specifically, if the number of
excess demand increases, or the probability of overshooting
decreases, PO i can correspondingly raise his step, and vice
verse. In fact, in the adaptive step scheme, we adopt an
appropriate step ¢ to guarantee the probability of conver-
gence, rather than to make the auction converges to
equilibrium every time.

6 SIMULATION RESULTS

In order to evaluate the performance of the proposed
auction mechanism, we perform simulations for different
network scenarios in MATLAB. Without additional indica-
tion, we will use the following configuration in all
simulations: 100 SUs and 4 POs (each owning 6 residual
channels) are randomly and uniformly distributed in a
square area of 1000 x 1000 m. The carrier frequency is set to
be 2 GHz for all POs, while the channel bandwidth is set to
be {0.5,1,1.5,2} MHz respectively for PO1-PO4.

The propagation path loss model is given by Friis free
space equation [1], ie., I';; = 1/(f?d?,0?), where o is the
noise variance and d,,; is the distance between PO ¢ and SU
n in meters.'* The noise variance is set to be o2 = 1075, The
valuation function is modeled as the Shannon capacity

(assuming data service), i.e.,

Upi = gn(rniy wt) = wj log(l + (20)

1
f? dflicr?)'

The duration of a whole auction is set to be T, = 5s,
which corresponds roughly to the time that the network
environment keeps approximately constant. The length of
one round is 7, = 10 ms, which corresponds to the time
needed for all POs and SUs to transmit one MAC layer
packet (for trading price and bidding). The duration of
auctioning course can be T, = {0.1,0.2,...,5} s according to
different networks configurations, and accordingly the least
serving time in each auction duration is guaranteed to be
T, ={4.9,438,...,0} s. We run each simulation for 1,000
auction periods, which corresponds to 5,000 s according to
the above setting.

6.1 Dynamic of Auction

To provide an intuitionistic impression for the proposed
MAP, we first present the detailed dynamic of the profits
and strategies of both POs and SUs in the auction.

Fig. 10 presents an illustration of the evolution of MAP
from the aspects of SUs’ profits and preferences, where a
fixed step € = 10 is adopted by all POs. Each arrow denotes
the profit of the incident SU as choosing the indicated PO,
from which we can easily find the preference of the SU. The
three subfigures show the profits of SUs in the first round,
the 40 th round and the last round, respectively. We can
find that the SUs’ profits (and preferences) gradually
decrease as the auction progresses, due to the increase of
the POs’ trading prices. In particular, in the last round of
MAP, for each PO, there are only 6 SUs who have positive
profits on this PO and are willing to choose this PO.

Fig. 11 presents the dynamic of the strategies of both POs
and SUs using fixed step € = 10. The left subfigure shows
the dynamic of the trading prices of POs, from which we
can find that the POs continue to raise their prices until the
auction achieves an equilibrium state (about the 120th

14. Note that the transmitting power and transmitter/receiver antenna
gain are normalized to one unit. This simplicity does not influence our
results.
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Fig. 11. Dynamic of the trading prices and bidding, using M = 4, N = 100,
m; = 6 and fixed step ¢ = 10.

round in this example). The POs achieve different trading
prices in the equilibrium. This is caused by the different
bandwidth of the channels POs owning. In particular, the
PO with higher bandwidth can finally address a higher
trading price, and achieve higher profit in each channel,
which coincides with common sense. The right subfigure
shows the dynamic of the bidding of SUs, from which we
find that the SUs change their bidding frequently at the
beginning of MAP, and as the auction progresses, each SU’s
bidding strategy gradually converges to a particular one.

As can be seen from Fig. 11, using fixed step, each PO ¢
raises his price in a constant speed ¢, no matter how many
excess demand (i.e., d; — m;) he experiences. In fact, as any
PO is in highly demand surplus (d; > m;), he can naturally
adopt a large step to increase the converging speed, while
as in lowly demand surplus, he can adopt a small step to
guarantee the convergence. As mentioned previously, each
PO i can adaptively adjust his step € based on the number of
excess demand and/or the probability of overshooting. In
our simulations, we adopt a simple adaptive step based on
the excess demand: for each PO i, the temporal step in each
round is given by:

e ="¢-logy(1 +d; —my), (21)

where ¢ is the baseline of adaptive step.

Fig. 12 presents the dynamic of the strategies of both
POs and SUs using adaptive step € = 10. We can see that,
the auction using adaptive step converges to the equili-
brium (about 45th round) much faster than that using fixed
step, and the equilibrium prices achieved by two schemes
are the same, which means the adaptive scheme increases
the converging speed and meanwhile effectively guaran-
tees the convergence.

6.2 Converging Speed

We define converging rounds, denoted by 7', as the number
of rounds MAP used to converge to the equilibrium state.
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Fig. 12. Dynamic of the trading prices and bidding, using M = 4, N = 100,
m; = 6 and adaptive step € = 10.
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Fig. 13. CDF of converging rounds T, using M = 4, N = 100, m; = 6.

Obviously, the converging speed is straightforwardly
related to the converging rounds. We show the statistic
characteristics of 7" in this section.

Fig. 13 presents the cumulative distribution functions
(CDF) of the converging rounds (1) in different step
schemes and step sizes. We can see from Fig. 13 that T
decreases with the increasing of step size €. For example, the
probability of 7" < 200 is 0, 80, and 100 percent respectively
for fixed steps € = {5,10,20}. We can further see that, for
the same step size, the converging rounds in adaptive step
schemes is much smaller than those in fixed stepw schemes.
For example, the probability of 7' < 200 is 0 and 95 percent
respectively for fixed step € = 5 and adaptive step € = 5.

Fig. 14 presents the expectation of the converging rounds
(T') versus different step sizes ¢, from which we can also see
that T decreases with the increasing of step size ¢, and
moreover, T' and ¢ are to some extent in inverse proportion.
We can also see that using adaptive step schemes, T' can be
reduced to about 30-50 percent of those using fixed step
schemes with the same size.
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Fig. 14. Expectation of T versus step ¢, using M = 4, m; = 6,
N = {50,100}.
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Fig. 15 presents the expectation of the converging rounds
(T) versus different number of SUs (IV), from which we can
see that using fixed step schemes, T" increases rapidly with
the increasing of the number of SUs, while using adaptive
step schemes, T" increases very slowly as the number of SUs
increases. For example, using fixed step € = 5,7 increases
from 100 to 200 as N varies from 50 to 250, while using
adaptive step € = 5,7 only increases from 50 to 60. We can
also see that as the number of SUs becomes greater, T'
converges to any steady value. Thus MAP is scalable to the
number of SUs, and can be applied in the network with a
large number of SUs.

6.3 Convergence and Efficiency

MAP may converge to a W.E. or an S.E. depending on the
network configurations, and note that W.E. is usually
inefficiency. In this section, we investigate the influence of
step scheme and step size on the equilibrium states MAP
achieved. We define the convergence probability (or conver-
gence for short) as the ratio of the number of times MAP
converging to an S.E. to the total number of simulations,
and the loss probability otherwise.
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Fig. 16. Loss probability versus step ¢, using M =4, N = 100, m; = 6.
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Fig. 16 presents the loss probabilities in different step
schemes and step sizes, from which we can see that the
loss probability increases rapidly as the step size increases,
and loss probability in adaptive step schemes is slightly
higher than that in fixed step scheme with the same step
size. Note that, although the loss probability substantially
degrades as the step size increases, the performance in
terms of social income (efficiency) is kept on a considerable
level, as can be seen in follows.

Fig. 17 presents the complementary cumulative distribu-
tion functions (CCDF) of the optimal social income and the
achieved social income (S) in different step schemes and
step sizes. The dashed curve denotes the optimal social
income (S*) achieved by centralized algorithms, which
actually forms the theoretical upper-bound of the achieved
social income. From Fig. 17 we can see that the social
incomes achieved by MAP are very close to the optimal one.
For example, in the case of 50 SUs, the probability of S >
20,000 is 85, 84, 80 and 70 percent respectively for the
centralized algorithm and for the proposed MAP with fixed
steps € = {10, 50, 100}.

To provide a quantitative illustration of the degradation of
social income, we present the ratio of the achieved social
income (S) to the optimal social income (5*) in Fig. 18, from
which we can see that S decreases slightly with the increasing
of step size e. Such a decrease is inappreciable (less than
1 percent) in the case of € < 10, and even in the case of € = 100,
the performance degradation is less than 8 percent. Thus we
can find that MAP achieve an approximately optimal channel
assignment within tolerable iteration rounds.

6.4 Equilibrium Price and Profit Transfer

Profit transfer is essential since the actual achieved profit of
POs and SUs relies to a great extent on the profit division. In
this section, we investigate the equilibrium price and the
profit division among POs and SUs. Since the difference of
social income in fixed step and adaptive step schemes is not
distinct, we only perform the simulations in fixed step
schemes in this section.

Fig. 19 presents the CCDF of the equilibrium prices (of
POs) in different number of SUs using fixed step e = 10,
from which we can see that the equilibrium prices increases
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with the increasing of the number of SUs. For example, for
PO4, the probability of p, > 2,250 is 40, 70, and 90 percent
respectively for N = {150,200, 250}. This is due to the fact
that a higher demand usually induces a more intensive
competition among the buyers and accordingly results in a
higher market price, which coincides with the common
sense. Further, we can see that the equilibrium prices of POs
are different, i.e., p; < --- < pys, due to the difference in
bandwidth. This is also rational because a better item may
attract more SUs and accordingly induces a more intensive
competition. Fig. 20 presents the expectation of the
equilibrium prices in different number of SUs using fixed
step € = 10, from which we can find a similar discovery.
Fig. 21 presents the expectations of the achieved social
income (total profit) and the profit shared by POs in
different number of SUs, using fixed step ¢ = 10. Note that
we adopt the trading price solution as the pricing
mechanism, that is, each PO ¢ charges the related SUs his
trading price (i.e., p;). The Nash bargaining solution, which
always divides equally the total profit among the POs and
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Fig. 19. CCDF of equilibrium prices, using M =4,m; =6,N =
{150,200, 250} and fixed step e = 10.
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Fig. 20. Expectation of equilibrium prices versus N, using M = 4,m; =6
and fixed step e = 10.

SUs, is shown as the dashed stairs in Fig. 21. As can be seen
from the figure, the proportion of the profit of POs in the
total profit increases from about 50 to 85 percent, as the
number of SUs varies from 50 to 250. This is due to the fact
that the more SUs who competing for channels, the more
profit POs can gain by raising their trading prices. In fact, as
long as the number of SUs is large enough, the POs will
absorb almost all of the social income. From Fig. 21 we can
also suppose that, in a low demand network (e.g., N < 50),
the profits of POs are less than those of SUs. In fact, as the
total demand is the double of the total supply, ie,
N =~ 23%".m;, the POs and SUs share approximately the
same profits.

6.5 Throughput

We have studied in detail the characteristics of MAP
including the converging speed, convergence probability,
efficiency and profit division. Note that all above contents
are related to the mechanism of MAP, while have nothing to
do with the implementation of MAP in practical networks. In
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Fig. 21. Expectation of social income and profit of POs versus N, using
M = 4,m; = 6 and fixed step e = 10.
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this section, we implement the MAP protocol in Section 5.6 in
a simulation network, and we analyze the performance of
MAP in different network configurations. Note that
although we implement the protocol in a simulation
network, it can be easily applied in a practical networks as
adopting the appropriate physical and MAC layers.

As mentioned previously, if the auction ends within the
period of auctioning course 7,, the remanent period of
auctioning course is immediately turned into serving
course. While if the auction has not achieved the equili-
brium at the end of auctioning course, it will be forced to
terminate. Thus we can define the throughput in each
auction duration as:

C=8x(T,+[T,-T-T]"), (22)

where T is the last round of MAP, and ' is the achieved
social income. Obviously that S' = S if T, > T - T, and Sr,
otherwise, where S is the social income achieved by MAP,
and Sy, is the social income at time 7, where the auction has
not yet converged to equilibrium and each PO i randomly
chooses m; SUs for serving.

Fig. 22 presents the average throughput of 1,000 auctions
versus different length of auctioning course (7,), from which
we can see that the throughput in adaptive step schemes is
always greater than that in fixed step schemes. This is due to
the fact that adaptive step schemes reduce the converging
rounds dramatically with a tiny cost of social income
degradation. Further we can see that as 7, < 100 -7}, the
throughput is strongly influenced by 7, while as
T, > 100 - T;, the throughput remains almost unchanged.
This can be explained as follows: When 7, is small, the
achieved social income S’ is like to be Sy, which is closely
related to the length of auctioning course T;,. While as T,
becomes greater, S’ is like to be S since the auction is likely to
complete within 7},. In particular, if 7, > T - T, which means
the auction completes within 7, the throughput will keep
constant, i.e., S x (T, — T - T,), thatis, itis independent of the
length of auctioning course. From Fig. 22 we can also find
that the auction with large step is likely to achieve this
situation (e.g., 7,/T, = 150 and 100, respectively, for the
fixed steps € = 10 and e = 20).
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Fig. 23. Average throughput versus step ¢, using M =4, N = 200,
m; = 6.

Fig. 23 presents the average throughput versus different
step schemes and step sizes, from which we can also see
that the throughput in adaptive step schemes is greater than
that in fixed step schemes. Further, for small 7, the
throughput increases mildly with the increasing of step
size, while for large 7,, the throughput increases more
acutely. This can be explained as follows: For small 7,, the
auction is difficult to complete within T, even if the step
size is large, thus the throughput increases mildly. While
for large Tj, the auction is easy to complete within 7}, and a
large step can reduce the converging rounds distinctly, and
thus increase the serving time and the throughput. We can
also see that the throughput in different 7, converges to a
particular point as the step size becomes very large. This is
due to the fact that with the increasing of the step size ¢, the
reduction of converging rounds becomes small since they
are in approximately inverse proportion.

7 CONCLUSION

In this paper, we study the problem of residual channel
allocation among SUs in CR networks with multiple POs.
We propose an auction-based mechanism MAP, in which
each PO systematically raises the trading prices and each
SU subsequently decides whether to buy a spectrum band
and from which PO he is going to buy a spectrum band. We
show analytically that MAP converges to the equilibrium,
and we prove that MAP achieves the optimal spectrum
assignment using dual theory. We further show that,
through the inherent profit transfer process in auction
mechanism, both POs and SUs are willing to accept the
assignment achieved by MAP. Furthermore, We discuss in
detail the implementation of MAP protocol in practical
networks, and we propose extensive simulation results
which well coincide with the analysis.

Our proposed MAP can be applied in the CR networks
without spectrum reuse among SUs, e.g., the networks
within any small region or the network in wide region
when the SUs work as virtual primary users and access
the network through the primary base stations. Yet in
practice the networks with spectrum reuse is more
general. The spectrum auction with spectrum reuse is still
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a challenge for the networks with multiple sellers. We are
focusing on the research of auction-based spectrum
allocation with spectrum reuse in our new project.
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