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ABSTRACT

In the fast developing countries it is hard to trace new

buildings construction or old structures destruction and, as a

result, to keep the up-to-date cadastre maps. Moreover, due to

the complexity of urban regions or inconsistency of data used

for cadastre maps extraction, the errors in form of misalign-

ment is a common problem. In this work, we propose an end-

to-end deep learning approach which is able to solve incon-

sistencies between the input intensity image and the available

building footprints by correcting label noises and, at the same

time, misalignments if needed. The obtained results demon-

strate the robustness of the proposed method to even severely

misaligned examples that makes it potentially suitable for real

applications, like OpenStreetMap correction.

Index Terms— deep learning, segmentation, building

footprint, remote sensing, high-resolution aerial images,

cadastre map alignment

1. INTRODUCTION

Semantic segmentation is still a challenging problem in Re-

mote Sensing. Automatic detection and extraction of precise

object outlines, such as human constructions, is in the inter-

est of many cartographic and engineering applications. The

most effective way to deal with this problem is the use of

Convolutional Neural Networks trained in a supervised man-

ner. Accurate ground truth annotations allows to achieve great

detection and segmentation accuracies, however, these good

annotations are hard to come by because they might be mis-

aligned due to multiple causes e.g. human errors or imprecise

digital terrain model. Furthermore, the maps may not be tem-

porally synchronized with the satellite images failing to take

into account variations in the constructions, i.e. new buildings

may have been built or destroyed.

Several related works tackle this problem with different

approaches. Good alignment performance are achieved in [1]

by training a CNN to predict a displacement field between a

map and an image. The same authors proposed in [2] a multi-

rounds training scheme which ameliorates ground truth anno-

Fig. 1: MapRepair result. Misaligned annotations in red, cor-

rected map in cyan.

tations at each round to fine-tune the model. More recently, a

method that performs a sequential annotation adjustment us-

ing a combination of consistency and self-supervised losses

has been published [3].

In this paper we propose an end-to-end self-supervised

deep learning method for the generation of aligned and tem-

porally coherent cadastre annotation in satellite and airborne

imagery. The aim of the method is to align in one single shot

all the object instances present in the intensity image and, at

the same time, detect obsolete footprints and segment con-

structions that lack annotations.

2. METHODOLOGY

Our goal is to train a deep neural network which can not only

generate an aligned cadastre map, but can also remove obso-

lete footprints and detect new buildings. The overall network

model is shown in Figure 2, and it is composed of two dif-

ferent branches. The first branch estimates and performs a

projection for every building instance in order to produce a

map perfectly registered with the intensity image. During this

process, obsolete footprints are discarded. If a building does

not have a footprint in the map, the second branch segments

and regularizes the construction providing an accurate and vi-

sually pleasing building boundary. The results from two paths

are then merged to produce the final corrected map.
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Fig. 2: Workflow of the proposed MapRepair method. The intensity image and the noisy annotations are given to a network

that generates a transformation map and segments missing and obsolete footprints. The aligned cadastre layer is produced by

a warping function while the segmentation is improved by a regularization network. The final refined annotations are obtained

merging the results from the regularization branch and the warping branch. Noisy and refined annotations overlaid to the RGB

image are shown on the right side.

2.1. Similarity map estimation and instance warping

In order to better align individual object instances to the im-

age content, a generator network G is exploited to predict

a similarity transformation map T ∈ R
4×H×W where the

channels store translation (along x and y axis), rotation and

scale values for each pixel location. The model receives as

input the intensity image I ∈ R
3×H×W and a binary mask

y = {0, 1}H×W which represents the noisy or misaligned

annotations.

T = G(I, y) (1)

A similarity transformation is then computed indepen-

dently for every building averaging the values of the tensor T

under the area described by the object instance. The transfor-

mation for the i-th instance can be written as:

ti =
1

Ni

∑

p∈ωi

Tp (2)

where Ni and ωi are the number of points and the set of points

of the instance i-th, respectively. The four values of ti define

a R
2 −→ R

2 similarity transformation.

The refined annotation for the i-th object instance ŷi is

expressed as the transformed version ŷi = warp(yi, ti) of the

noisy instance annotation yi by the predicted transformation

ti.

The predicted aligned annotations ŷ for the binary image

y is then calculated as the combination of the single instance

transformations and can be expressed as:

ŷ =

M∑

i=1

warp(yi, ti) (3)

where yi represents the i-th instance of the noisy binary mask

and M is the number of object instances in the sample image.

The loss function used to train the model to generate the

similarity transformation map is a combination of the mean

squared error and the mean absolute error between the pre-

dicted binary annotations ŷ and the ground truth annotations.

2.2. Segmentations and regularization

Maps may not be temporally synchronized with the satellite

or airborne data, failing to take into account variations in hu-

man constructions, i.e. removed or new buildings.

In order to solve this problem, the model G also pre-

dicts two segmentation masks: the first represents footprints

of buildings that lack of annotation in y, while the second

shows the annotations that must be removed because obso-

lete.

The missing footprints predicted by G have round corners

and an irregular shape due to the lack of geometric constraints

during the prediction. In order to ameliorate the segmenta-

tion result we post-process the result with the regularization

model proposed in [4]. This network for footprint refinement

is capable of generating regular and visually pleasing building

boundaries without losing segmentation accuracy.



The segmentation of the obsolete annotations is instead

used by the warping function to filter out-of-date or wrong

instances.

During training the ground truth of both the missing

instances and the obsolete instances is known and binary

cross-entropy losses are computed for these two segmenta-

tion branches.

The generator network G is used both for the alignment

task and for the detection task, therefore it is trained using a

linear combination of the alignment losses and the segmenta-

tion losses.

2.3. Network models

The convolutional neural network used as generator G is a

recurrent residual U-Net [5] modified to produce three out-

puts: two segmentation masks and the similarity transforma-

tion map. The network we adopted is a simple but yet precise

segmentation model which guarantees high building segmen-

tation accuracy. The input image has 4 channels, since it is

the concatenation of the intensity image I and the noisy an-

notation mask y. The outputs have values that ranges in [0, 1]
for the segmentation masks and in [−1, 1] for the similarity

transformation map since we use sigmoid and tanh activa-

tion functions, respectively.

The annotation instances are warped using a Spatial

Transformer Network [6] that ensures to have differentiable

warping operations and allows gradient flow during back-

propagation. The warping function performs scale and rota-

tion with respect to the barycenter of the selected annotation

instance. It is noted that the generator G does not receive

any information about the separation in instances and about

the location of the barycenter of the buildings present in the

input mask. The network, in fact, learns to identify building

instances and understands the transformation rules during

training.

The regularization network used to refine the segmenta-

tion is pre-trained and it is only used during inference.

3. EXPERIMENTAL SETUP

3.1. Dataset

The generator network G and the regularization model are

trained in the Inria Aerial Image Labeling Dataset [7] com-

posed of 180 images (5000 × 5000 px resolution) of 5 cities

from US to Europe. Two of these images are used as test set.

During training we consider the annotation masks provided

in the dataset as ground truth even if some of these images

contain misalignments.

3.2. Self-supervised training

The network must receive misaligned and incorrect annota-

tions in order to learn. Since the dataset is assumed to be

Fig. 3: Alignment result in kitsap36. Synthetic misaligned

annotations on the left. MapRepair prediction on the right.

Fig. 4: Alignment result in bloomington22. Noisy OSM an-

notations are overlaid in red. MapRepair prediction is in cyan.

Removed annotations are yellow and segmented buildings are

pink.

made of aligned image pairs some synthetic misalignments

and errors must be introduced to alter the ground truth im-

ages. The noise is therefore enhanced by introducing global

and instance random translations, rotations and scales. Ran-

dom translations have a maximum absolute value of 64 pixels,

while random rotations ranges between −30◦ and 30◦. In or-

der to create the ground truth for the segmentation branches

some footprints have also been randomly removed and some

others have been injected in the annotation masks.

4. RESULTS

The method has been evaluated in two Inria images: kitsap36

and bloomington22. The two images have a resolution of

5000 × 5000 pixels and in order to evaluate the full image

we split them into 448 × 448 patches. Each patch is indi-

vidually processed by the network and a 64 pixels border is

discarded due to lack of context information that can lead to
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Fig. 5: IoU measured with the manually aligned annotations

of kitsap36 from the Inria dataset. The plot shows the score

of the synthetically misaligned annotations (red) and the score

achieved after the correction (blue). The annotations are mis-

aligned with gradually increasing random displacements and

with random rotations and scales.

Table 1: Results in bloomington22 using OSM annotations.

Alignment Align & detect

IoU Acc IoU Acc

Misaligned OSM 0.5235 0.9372 0.4739 0.9234

N. Girard et al. [2] 0.8302 0.9813 0.7369 0.9674

MapRepair align 0.8281 0.9812 0.7341 0.9673

MapRepair full - - 0.7914 0.9740

the generation of aligned annotations with errors and artifacts.

The kitsap36 image contains 1252 building instances hav-

ing a wide range of shapes and sizes. The ground truth pro-

vided by the dataset contains several misalignments that are

manually corrected in order to evaluate the algorithm pre-

diction. In this image MapRepair correcs the original mis-

aligned ground truth increasing the Intersection over Union

(IoU) score from 0.71 to 0.82. Several experiments with syn-

thetic misalignments are conducted in the same test image

showing the robustness of the method to heavy annotation

displacements. Building annotations are randomly rotated be-

tween −30◦ and 30◦ and translated by increasing absolute

displacements from 8 to 64 pixels.

The results in Figure 5 show that all the synthetic anno-

tations aligned by MapRepair achieve IoU scores around 0.8.

The best performance in reached with a maximum absolute

displacement of 56 pixels where the network improves the

IoU score from 0.23 to 0.77 (Figure 3). The efficiency starts

dropping with an annotations misalignment of 64 pixels.

Bloomington22 is an image of the test-set of the Inria

dataset, therefore the ground truth is not provided. For this

region OSM provides 771 building footprints, most of them

with severe misalignments. Furthermore, several construc-

tion do not have an OSM annotation. In order to measure the

effectiveness of the correction we manually aligned the foot-

prints and we annotated the unlabelled buildings. The quanti-

tative and qualitative results in this image are shown in Table 1

and Figure 4, respectively.

5. CONCLUSIONS

We presented MapRepair, an approach for cadastre map re-

finement in satellite images composed of a multi-purpose neu-

ral network trained in a self-supervised manner. The model

is capable of generating an aligned cadastre mask predicting

a similarity transformation map and warping each object in-

stance independently. Furthermore, it solves temporal syn-

chronization errors removing unused footprints or segmenting

new buildings in the scene. MapRepair achieves comparable

or even higher alignment performance with respect to state-

of-the-art methods, dealing effectively with heavily distorted

annotations.
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