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Abstract

Background: Although the costs of next generation sequencing technology have decreased over the past years,

there is still a lack of simple-to-use applications, for a comprehensive analysis of RNA sequencing data. There is

no one-stop shop for transcriptomic genomics. We have developed MAP-RSeq, a comprehensive computational

workflow that can be used for obtaining genomic features from transcriptomic sequencing data, for any

genome.

Results: For optimization of tools and parameters, MAP-RSeq was validated using both simulated and real

datasets. MAP-RSeq workflow consists of six major modules such as alignment of reads, quality assessment of

reads, gene expression assessment and exon read counting, identification of expressed single nucleotide

variants (SNVs), detection of fusion transcripts, summarization of transcriptomics data and final report. This

workflow is available for Human transcriptome analysis and can be easily adapted and used for other genomes.

Several clinical and research projects at the Mayo Clinic have applied the MAP-RSeq workflow for RNA-Seq studies. The

results from MAP-RSeq have thus far enabled clinicians and researchers to understand the transcriptomic landscape of

diseases for better diagnosis and treatment of patients.

Conclusions: Our software provides gene counts, exon counts, fusion candidates, expressed single nucleotide variants,

mapping statistics, visualizations, and a detailed research data report for RNA-Seq. The workflow can be executed

on a standalone virtual machine or on a parallel Sun Grid Engine cluster. The software can be downloaded from

http://bioinformaticstools.mayo.edu/research/maprseq/.
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Background
Next generation sequencing (NGS) technology break-

throughs have allowed us to define the transcriptomic

landscape for cancers and other diseases [1]. RNA-

Sequencing (RNA-Seq) is information-rich; it enables

researchers to investigate a variety of genomic features,

such as gene expression, characterization of novel tran-

scripts, alternative splice sites, single nucleotide variants

(SNVs), fusion transcripts, long non-coding RNAs, small

insertions, and small deletions. Multiple alignment soft-

ware packages are available for read alignment, quality

control methods, gene expression and transcript quantifi-

cation methods for RNA-Seq [2-5]. However, the majority

of the RNA-Seq bioinformatics methods are focused only

on the analysis of a few genomic features for downstream

analysis [6-9]. At present there is no comprehensive

RNA-Seq workflow that can simply be installed and

used for multiple genomic feature analysis. At the Mayo

Clinic, we have developed MAP-RSeq - a comprehensive

computational workflow, to align, assess and report

multiple genomic features from paired-end RNA-Seq

data efficiently with a quick turnaround time. We have
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tested a variety of tools and methods to accurately esti-

mate genomic features from RNA-Seq data. Best per-

forming publically available bioinformatics tools along

with parameter optimization were included in our

workflow. As needed we have integrated in-house methods

or tools to fill in the gaps. We have thoroughly investigated

and compared the available tools and have optimized

parameters to make the workflow run seamlessly for

both virtual machine and cluster environments. Our

software has been tested with paired-end sequencing reads

from all Illumina platforms. Thus far, we have processed

1,535 Mayo Clinic samples using the MAP-RSeq work-

flow. The MAP-RSeq research reports for RNA-Seq data

have enabled Mayo Clinic researchers and clinicians to ex-

change datasets and findings. Standardizing the workflow

has allowed us to build a system that enables us to investi-

gate across multiple studies within the Mayo Clinic.

MAP-RSeq is a production application that allows re-

searchers with minimal expertise in LINUX or Windows

to install, analyze and interpret RNA-Seq data.

Implementation
MAP-RSeq uses a variety of freely available bioinformatics

tools along with in-house developed methods using Perl,

Python, R, and Java. MAP-RSeq is available in two versions.

The first version is single threaded and runs on a virtual

machine (VM). The VM version is straightforward to

install. The second version is multi-threaded and is

designed to run on a cluster environment.

Virtual machine

Virtual machine version of MAP-RSeq is available for

download at the following URL [10]. This includes a

sample dataset, references (limited to chromosome 22),

and the complete MAP-RSeq workflow pre-installed.

Virtual Box software (free for Windows, Mac, and Linux

at [11]) needs to be installed in the host system. The

system also needs to meet the following requirements:

at least 4GB of physical memory, and at least 10GB of

available disk. Although our sample data is only from

Human Chromosome 22, this virtual machine can be

extended to the entire human reference genome or to

other species. However this requires allocating more

memory (~16GB) than may be available on a typical

desktop system and building the index references files

for the species of interest.

Tables 1 and 2 shows the install and run time metrics

of MAP-RSeq in virtual machine and Linux environments

respectively. For Table 2, we downloaded the breast cancer

cell line data from CGHub [12] and randomly chose 4

million reads to run through the QuickStart VM. It took

6 hours for the MAP-RSeq workflow to complete. It did

not exceed the 4GB memory limit, but did rely heavily on

the swap space provided; making it run slower than if it

would have had more physical memory available. Job pro-

filing indicates that the system could have used 11GB of

memory for such a sample.

Sun grid engine

MAP-RSeq requires four processing cores with a total of

16GB RAM to get optimal performance. It also requires

8GB of storage space for tools and reference file installa-

tion. For MAP-RSeq execution the following packages

such as JAVA version 1.6.0_17 or higher, Perl version

5.10.0 or higher, Python version 2.7 or higher, Python-

dev, Cython, Numpy and Scipy, gcc and g++ , Zlib,

Zlib-devel, ncurses, ncurses-devel, R, libgd2-xpm, and

mailx need to be preinstalled and referenced in the en-

vironment path. It does also require having additional

storage space for analysing input data and writing out-

put files. MAP-RSeq uses bioinformatics tools such as

BEDTools [13], UCSC Blat [14], Bowtie [15], Circos

[16], FastQC [17], GATK [18], HTSeq [19], Picard

Tools [20], RSeqQC [21], Samtools [22], and TopHat

[23]. Our user manual and README files provide de-

tailed information of the dependencies, bioinformatics
Table 1 MAP-RSeq installation and run time for

QuickStart virtual machine

QuickStart VM File size Timeline

Download 2.2GB ~ 20 minutes to download
on consumer grade internet

Unpacked size 8GB -

Time to import into VM - ~ 10 minutes

VM boot - 3 minutes

Run time with sample
data (chr22 only)

- ~ 30 minutes

Table 2 MAP-RSeq installation and run time in a Linux

environment

Linux File size Timeline

Download 930 MB ~10 minutes to download on
consumer grade internet

Install time - ~6 hours (mostly downloading
and indexing references)

Unpacked size 9GB -

Run time - Depends on the sample data used

Table 3 Wall clock times to run MAP-RSeq at different

read counts

MAP-RSeq processing time Read counts

118 minutes 1000000

82 minutes 500000

71 minutes 200000
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tools and parameters for MAP-RSeq. The application

requires configuration, such as run, tool and sample

information files, as described in the user manual.

Table 3 shows the processing time of the workflow

across different sequencing read depths. Time was recorded

from a server with 8 quad core Intel Xeon 2.67 GHz pro-

cessors and 530 GBs of shared memory using Centos 6. For

a sample with 1 million reads, MAP-RSeq completes in less

than 2 hours. For samples with 150 million to 300 million

reads, MAP-RSeq completes in 12-48 hours depending on

the hardware used.

Results and discussion
NGS technology has been outpacing bioinformatics.

MAP-RSeq is a comprehensive simple-to-use solution

for analysis of RNA-Sequencing data. We have used

both simulated and real datasets to optimize parame-

ters of the tools included in the MAP-RSeq work-

flow. The high-level design of MAP-RSeq is shown

in Figure 1. MAP-RSeq consists of the six major

modules such as alignment of reads, quality assess-

ment of sequence reads, gene expression and exon ex-

pression counts, expressed SNVs from RNA-Seq,

fusion transcript detection, summarization of data and

final report.

Reads are aligned by TopHat 2.0.6 [23] against the

human reference genome build (default = hg19) using the

bowtie1 aligner option. Bowtie is a fast memory efficient,

short sequence aligner [15]. The remaining unaligned

reads from Bowtie are used by TopHat to find splice

Figure 1 Flowchart of the MAP-RSeq workflow. High-level representation of the MAP-RSeq workflow for processing RNA-Seq data.
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junctions and fusions. At the end of the alignment

step, MAP-RSeq generates binary alignment (BAM)

and junction bed files for further processing. The workflow

uses the RSeQC software [21] to estimate distance between

paired-end reads, evaluate sequencing depth for alternate

splicing events, determine rate of duplicate reads, and

calculate coverage of reads across genes as shown in

the example report file (Figure 2). The summary statis-

tics and plots generated by MAP-RSeq workflow are

used for further quality assessments. The example

MAP-RSeq result set (files and summary report) from

a RNA-Sequencing run can be downloaded from the

MAP-RSeq homepage [10].

Several research and clinical projects [24-26] at Mayo

Clinic have applied MAP-RSeq workflow for obtaining

gene expression, single nucleotide variants and fusion

transcripts for a variety of cancer and disease related

studies. Currently there are multiple ongoing projects or

clinical trial studies for which we generate both RNA-

Sequencing and exome sequencing datasets at the Mayo

Clinic Sequencing Core. We have developed our RNA-Seq

and DNA-Seq workflows such that sequencing data can

be directly supplied to the pipelines with less manual

intervention. Analysis of the next generation sequencing

datasets along with phenotype data enable further under-

standing of the genomic landscape to better diagnose and

treat patients.

Gene expression and exon expression read counts

A Gene expression count is defined as the sum of reads

in exons for the gene whereas an exon expression count

is defined as the sum of reads in a particular exon of a

gene. Gene expression counts in MAP-RSeq pipeline

can be obtained using HTSeq [19] software (default) or

featureCounts [27] software. The gene annotation files

were obtained from the Cufflinks website [28]. Exon

expression counts are obtained using the intersectBed

function from the BEDTools Suite [13].

MAP-RSeq gene expression counts module was vali-

dated using a synthetic dataset for which RNA-Seq

reads were simulated using the BEERS software - a

computational method that generates paired-end RNA-

sequencing reads for Illumina platform [29]. The parame-

ters used for BEERS to generate simulated data are: total

reads = 2 million reads, hg19 annotation from RefSeq, read

length = 50 bases, base error = 0.005 and substitution

rate = 0.0001. Simulated reads were aligned and mapped

using the MAP-RSeq workflow. The mapped reads were

then input into HTSeq for gene expression counts.

Genes with fewer than 30 reads were excluded from

the analysis. A correlation of r = 0.87 was observed

between the Reads Per Kilobase per Million (RPKM)

simulated gene counts and the counts reported by

MAP-RSeq, as shown in Figure 3. For simulated data

(50 bases), Table 4 summarizes various statistics reported

Figure 2 Screenshot output report (html) of MAP-RSeq. An example screenshot report of MAP-RSeq output file.
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by the MAP-RSeq workflow regarding the alignment of

reads to transcriptome and junctions, gene and exon

abundance as well as number of SNVs identified and

annotated using GATK. An example of MAP-RSeq gene

counts table, exon counts table, and normalized counts

(RPKM) along with annotations for each run are shown in

Figure 4.

Differential expression

Each sample is associated to a phenotype, such as tumor,

normal, treated, control, etc and that meta-data needs to

be obtained to form groups for differential expression

analysis. To remove any outlier samples, it is required to

perform detailed quality control checks prior to gene ex-

pression analysis. There are a variety of software packages

that are used for differential expression analysis using

RNA-Seq gene expression data [4,30-32]. Several studies

have been published comparing the differential expression

methods and concluded that there are substantial differ-

ences in terms of sensitivity and specificity among the

methods [33-35]. We have chosen edgeR software [4]

from R statistical package for gene expression analysis. In

our source code for MAP-RSeq pipeline, we have Perl, R

scripts and instructions that can be used post MAP-RSeq

run for differential expression analysis.

Figure 3 Correlation of gene counts reported by MAP-RSeq in comparison to counts simulated by BEERS. MAP-RSeq uses the

HTSeq software to classify reads to genomic features. The intersection nonempty mode of HTSeq was applied and the query-name

sorted alignment (BAM) file along with the reference GTF file obtained from BEERS were provided as input files to HTSeq for

accurate assignment of paired-end reads to genomic features. Comparison of the gene counts (RPKM) obtained from MAP-RSeq

with counts for respective genes simulated by BEERS yielded a Pearson correlation of 0.87. The genomic regions where gene

expression reported by HTSeq did not completely correlate with simulated expression are due to ambiguous reads or due the

fact that either mate of the paired-end read mapped to a different genomic feature, thus categorizing the read as ambiguous

by HTSeq.

Table 4 Alignment statistics from MAP-RSeq using

simulated dataset from BEERS

MAP-RSeq features Statistics

Total number of single reads 4000000

Reads used for alignment 3999995

Total number of reads mapped 3851539 (96.3%)

Reads mapped to transcriptome 3401468 (85.0%)

Reads mapped to junctions 450071 (11.3%)

Reads contributing to gene abundance 1395844

Reads contributing to exon abundance 11266392

Number of SNVs identified 6222
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Expressed SNVs (eSNVs) from RNA-Seq

After filtering out multiple mapped and fusion reads,

the MAP-RSeq calls SNVs using UnifiedGenotyper

v.1.6.7 and VariantRecalibrator from Genome Analysis

ToolKit (GATK) with the alignment files generated by

Tophat. The UnifiedGenotyper from GATK is a single

nucleotide variant (SNV) and indel caller developed by

the BROAD institute [18]. SNVs are further annotated

by the variant quality score recalibration (VQSR)

method. The annotated SNVs are further filtered based

on read quality (QD), coverage (DP), strand bias (FS),

and positional bias (ReadPosRankSum) to identify true

variants.

A 1000 genome sample (NA07347) with both exome

and RNA-Seq data was used to validate the SNV calling

module of MAP-RSeq workflow. A concordance rate of

95.6% was observed between the MAP-RSeq SNV calls

and the exome sequencing variant calls for NA07347.

Figure 5 shows a screenshot of the MAP-RSeq variant

calling file. Confident variant calls from MAP-RSeq

workflow at high and low read depths of sequencing

are shown in Figure 6A and 6B respectively.

Fusion transcript detection

The TopHat-Fusion algorithm identifies fusion transcripts

accurately [36]. MAP-RSeq uses the TopHat-Fusion algo-

rithm and provides a list of expressed fusion transcripts.

In addition to the output from TopHat-Fusion, we have

implemented modules to visualize fusion transcripts using

circos plots [16]. Fusion transcript candidates are reported

and summarized by MAP-RSeq. As shown in Figure 7,

intra and inter fusion transcripts along with annotations

Figure 4 Screenshots of gene and exon expression reports by MAP-RSeq. An example of the gene and exon expression counts from the

output reports of MAP-RSeq.
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are provided for each sample by the workflow. A circos

plot is generated to visualize fusion transcripts across an

entire RNA-Seq run (see Additional file 1). MAP-RSeq

also generates 5′–3′ fusion spanning sequence for PCR

validation of fusion transcripts identified. These primer

sequences can be selected by researchers to validate the

fusion transcripts.

Summarization of data and final report

The workflow generates two main reports for end users:

1) summary report for all samples in a run with links to

detailed reports and six QC visualizations per sample 2)

final data report folder consists of exon, gene, fusion and

expressed SNV files with annotations for further statistical

and bioinformatics analysis.

A screenshot of an example report from MAP-RSeq

is shown in Figure 2. A complete form of the report is

presented in the additional file provided (see Additional

file 1). Detailed descriptions of the samples processed by

MAP-RSeq along with the study design and experiment

details are reported by the workflow. Results are sum-

marized for each sample in the report. Detailed quality

control information, links to gene expression counts,

exon counts, variant files, fusion transcript information

and various visualization plots are also reported.

Conclusions
MAP-RSeq is a comprehensive simple-to-use applica-

tion. MAP-RSeq reports alignment statistics, in-depth

quality control statistics, gene counts, exon counts,

fusion transcripts, and SNVs per sample. The output

from the workflow can be plugged into other software

or packages for subsequent downstream bioinformatics

analysis. Several research and clinical projects at the

Mayo Clinic have used the gene expression, SNVs and

fusion transcripts reports from the MAP-RSeq workflow

for a wide range of cancers and other disease-related stud-

ies. In future, we plan to extend our workflow such that

alternate splicing transcripts and non-coding RNAs can

also be obtained.

Availability and requirements
Project name: MAP-RSeq

Project home page: http://bioinformaticstools.mayo.edu/

research/maprseq/

Operating system(s): Linux or VM

Programming language: PERL, Python, JAVA, R and

BASH

Other requirements: none

License: Open Source

Any restrictions to use by non-academics: none

Figure 5 Screenshot of a MAP-RSeq VCF files after VQSR annotation. An example of SNV data representation from MAP-RSeq runs.
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Figure 6 Examples of SNVs called in RNA and DNA data for NA07347. An IGV screenshot representation of SNV regions for the 1000

genome sample NA07347 A) at high read depths called in RNA when compared to exome/DNA data and B) at low read depth called in RNA

when compared to exome/DNA data.
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Figure 7 Fusion transcripts reported by MAP-RSeq. An example of the fusion transcripts output file from MAP-RSeq workflow.
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Additional file

Additional file 1: Summary report from the MAP-RSeq workflow.

Complete report in HTML format which summarizes the study design,

alignment and expression statistics per sample, links to pre- and post-QC

plots as well as to the resulting files on gene and exon expression, fusion

transcripts and SNVs identified per sample.
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