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Spiking Neural Networks (SNNs) are considered more biologically realistic

and power-e�cient as they imitate the fundamental mechanism of the

human brain. Backpropagation (BP) based SNN learning algorithms that

utilize deep learning frameworks have achieved good performance. However,

those BP-based algorithms partially ignore bio-interpretability. In modeling

spike activity for biological plausible BP-based SNNs, we examine three

properties:multiplicity, adaptability, and plasticity (MAP). Regardingmultiplicity,

we propose a Multiple-Spike Pattern (MSP) with multiple-spike transmission to

improve model robustness in discrete time iterations. To realize adaptability,

we adopt Spike Frequency Adaption (SFA) under MSP to reduce spike activities

for enhanced e�ciency. For plasticity, we propose a trainable state-free

synapse that models spike response current to increase the diversity of

spiking neurons for temporal feature extraction. The proposed SNN model

achieves competitive performances on the N-MNIST and SHD neuromorphic

datasets. In addition, experimental results demonstrate that the proposed

three aspects are significant to iterative robustness, spike e�ciency, and the

capacity to extract spikes’ temporal features. In summary, this study presents

a realistic approach for bio-inspired spike activity with MAP, presenting a novel

neuromorphic perspective for incorporating biological properties into spiking

neural networks.

KEYWORDS

spiking neural network (SNN), leaky integrate-and-fire (LIF) neuron, multiple spike

pattern (MSP), spike frequency adaption (SFA), state-free synaptic response model

(SFSRM), neuromorphic recognition, backpropagation (BP)
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1. Introduction

Spiking Neural Networks (SNNs) are presented as noise-

robust third-generation neural networks due to their biological

plausibility (Maass, 1997). Similar to the brain’s communication

mechanism, the SNNs send discrete action potentials (spikes)

across adaptive synapses to interpret information. Therefore,

it is hoped that the study of SNNs will assist in revealing

the functioning mechanism of the mind and intellect (Ghosh-

Dastidar and Adeli, 2009). Moreover, the event-driven nature of

SNNs makes them potentially energy-efficient on neuromorphic

hardware and sensors (Liu and Delbruck, 2010; Vanarse et al.,

2016).

However, designing and analyzing SNN training algorithms

is difficult. The asynchronous and discontinuous nature of SNNs

makes it difficult to use the well-established backpropagation

(BP) approach for practical training (Pfeiffer and Pfeil, 2018).

Recent studies have developed a pseudo-derivative approach

to overcome the non-differentiable issue, enabling SNN to

be directly trained using BP (Lee et al., 2016; Wu et al.,

2018; Neftci et al., 2019). It deserves to mention that Wu

et al. (2018) presented the Spatio-Temporal Backpropagation

(STBP) technique, which for the first time translated the

discretized Leaky-Integrate-and-Fire (LIF) neural model into

the Pytorch framework (Paszke et al., 2019), significantly

advancing the advancement of direct training approaches. Since

then, several research works on SNN algorithms based on

the Backpropagation-Through-Time (BPTT) algorithms and

the LIF neural model have appeared, consistently showing the

capability and performance of SNN (Lee et al., 2016; Shrestha

and Orchard, 2018; Wu et al., 2018, 2019; Neftci et al., 2019;

Yin et al., 2020; Fang et al., 2021). We refer to these direct

training techniques as BP-based SNN, or BP-SNN for short.

These BP-based SNNs implement the fundamental notion of

Recurrent Neural Networks (RNNs) by transforming spiking

neurons into an iterative model and replicating neural activity

with discrete time iterations. With BP-based learning methods,

SNN models can be applied on a larger scale inside existing

deep learning frameworks for improved performance (Wu et al.,

2019; Woźniak et al., 2020). However, we observed that the

widely used discrete LIF model differs significantly from the

definition in its differential form, and that the dynamics of

neuron membrane potential and spike activity pose a critical

discretization issue. This paper explores the intrinsic limitations

of two broadly used discrete LIF models, the soft-reset model

(Han et al., 2020) and the hard-reset model (Wu et al., 2018), and

redefines the applicable conditions and underlying assumptions

for their implementation. Mathematically, we re-derived the

numerical solution process of the LIF neuronmodel to obtain an

accurate discretization model (which we refer to as the standard

numerical model), and by adding constraints, the standard

discrete model is simplified to obtain approximate models under

various assumptions and their potential errors.

State-of-the-art bio-inspired SNNs reveal the potential of

biological characteristics with better performance, such as the

delayed Spike Response Model (SRM) for synaptic expressions

(Shrestha and Orchard, 2018), biologically plausible BPTT

for reward-based online learning (Bellec et al., 2020), Lateral

Interactions for intra-layer connections (Cheng et al., 2020),

and Nematode Neural Circuits Policies for auditable autonomy

(Lechner et al., 2020), guiding researchers to delve into more

biological realities. Focusing on the biological features of

spiking activity, Multiplicity, Adaptability, and Plasticity, we

propose three modules and integrate them to accomplish

reliable and stable neural data classification tasks with varying

temporal moderation, as shown in Figure 1. Specifically, the

multiplicity prompts us to evaluate the prospect of multiple

spikes happening within a short period of time, enabling

us to consider the constraints of SNNs based on binary

spike transmission. Initially, BPTT-based SNNs needed a

high number of time steps to verify that discrete models

and LIF neuron dynamics corresponded (Wu et al., 2018).

However, recent work has reduced the number of time steps to

make inference computation faster andmore efficient, while also

lowering SNN calculation latency (Wu et al., 2019; Yin et al.,

2020; Chowdhury et al., 2021; Fang et al., 2021). When total time

is constant, a lesser number of time steps corresponds to a larger

step length (1t), whichmay violate the pre-restriction (1t → 0)

of the discrete LIF model. In accordance with the original aim

of neuron dynamics, we argue that SNNs using binary signals

should be scalable to integers. Xu et al. (2020) initiated multiple

spike codes at the hardware level and offered time compression

to shorten the computational latency of inference on pre-

trained models. Following this, Xu et al. (2021) introduced a

multi-threshold LIF model and proved that time compression

could be implemented directly during the training process to

provide consistency between training and inference. From an

algorithmic standpoint, this work investigates multiplicity from

the perspective of discretization issues. After taking discrete

limitations and membrane potential dynamics into account,

we propose Multiple-Spike Pattern (MSP) to permit multiple

spike transmissions in a minimal iterative step length [S(t) in

Figure 1], hence making the SNN resistant to varying timescales.

MSP enhances the underlying LIF neuron model of SNN

algorithms and can be merged easily with a variety of SNN

training techniques. Adaptability relates to the Spike Frequency

Adaption (SFA) phenomenon of biological neurons, which is

highly practical at the algorithmic level (Bellec et al., 2018; Salaj

et al., 2021). The benefit of SFA is that it can effectively decrease

the number of spikes by temporarily increasing the threshold;

hence, we suggest an SFA-based MSP implementation, SFA

mode, to minimize spike transmission [V(t) in Figure 1].

Plasticity refers to the trainability and adjustability of synaptic

structures and encourages us to reconsider the dynamical model

of synapses. Similar studies have shown that the insertion of

the spike response in synapses with plasticity could significantly
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FIGURE 1

MAP-SNN overview. (A) Modeling neural model mathematically with Dendrites, Soma and Axon. The four variables I, V, S, and O describe the

input current, the membrane potential, the spike transmission, and the output current concerning time, respectively. (B) MAP-SNN: Discretized

spike activities with MAP properties. (C) Discretized spike activities without proposed improvements.

increase the temporal dependency of the network, resulting

in improved performance on spatio-temporal tasks (Jin et al.,

2018; Shrestha and Orchard, 2018; Gu et al., 2019; Fang et al.,

2020). Nonetheless, the spike response model in synapses

explicitly imposes computing costs. The insertion of synaptic

state variables to mimic synaptic dynamics is the most poignant

step since it necessitates recursive calculations in the time

dimension, which are pretty unfriendly for SNN simulation

at the algorithmic level. Therefore, we propose a state-free

synaptic response model [SFSRM, O(t) in Figure 1] that does

not rely on time-varying states to construct spike response

models, which can be implemented using efficient convolution

operations as opposed to iterative processes, hence facilitating

network training significantly. Experiments have also shown that

stateless synaptic responses with plasticity help expedite network

convergence and improve performance.

We construct controlled experiments for the proposed

models at different discretization levels, according to our

mathematical assumptions and constraints, and examine their

stability issues under various parameter settings.We evaluate the

proposed model using the N-MNIST and SHD neuromorphic

datasets (Orchard et al., 2015; Cramer et al., 2020). The

experimental results demonstrate that the proposed model can

achieve competitive performance on both the N-MNIST and

SHD datasets. In addition, comparative and analytical studies

reveal that the proposedmodeloffersmore robustmodel stability

over a range of iterative step lengths, fewer and efficientspike

activities, and superior model performance for temporal feature

extraction in neuromorphic tasks.

Our main contributions are four-folds:

1. This research highlights the disparity between discrete

iterative simulation and biological neural dynamics. In

addition, to the best of our knowledge, this study investigates

for the first time the discretization problem in time-

iteration and introduces a new point about the model’s

robustness under varying iterative step lengths for BP-based

SNN algorithms.

2. Starting with the neuron dynamics of LIF, the analytical

model, standard numerical model, and simplified numerical

model are derived from the top down. Additionally, this

study investigates the constraints of the existing discrete LIF

models and extends them from the bottom up. Through

mathematical analysis, all the discrete models mentioned are

connected in series through constraints.

3. This paper offers the Multiple-Spike Pattern for robust

iterative training in Spiking Neural Networks, offering a

promising avenue for future SNN algorithm development.

In addition, we propose an SFA mode as an MSP

implementation for efficient spike activities.

4. This work utilizes a State-Free Synaptic Response

Model (SFSRM) to mimic synaptic dynamics for

temporal expressiveness, which replaces loop calculation
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by convolution operation, compatible with deep

learning frameworks.

2. Methods and materials

2.1. The networks components and
training methods in spiking neural
networks

2.1.1. LIF model as spiking neurons

Dendrites, soma, and axons are the three core constituents

of the biological neuronal structure (Zhang et al., 2021).

Dendrites are responsible for receiving input signals from pre-

synaptic neurons and integrating them into the soma. As

the computational hub of the neuron, the soma takes input

signals, changes the membrane potential, and generates an

action potential (spike activity) when the membrane potential

exceeds a threshold. Spikes are conveyed through axons to

axonal terminals and serve as input signals to post-synaptic

neurons. Based on the neural dynamics, neuroscientists have

developed many neural models, represented by the Hodgkin-

Huxley (Hodgkin et al., 1952), the leaky integrate-and-fire (LIF)

(Dayan and Abbott, 2005), and the Izhikevich (Izhikevich et al.,

2004) model. As a simplified model of neuron dynamics, LIF has

garnered a great deal of interest from algorithm researchers and

has been extensively implemented in SNNs (Lee et al., 2016; Wu

et al., 2018; Cheng et al., 2020; Yin et al., 2020; Fang et al., 2021).

The LIFmodel captures the intuitive properties of external input

accumulating charge across a leaky neural membrane with a

clear threshold (Tavanaei et al., 2019). The LIF model stimulates

the accumulation, leakage, and excitation of the membrane

potential with the mathematical model as:

τ
dv

dt
= − [v− Vrest]+ RI (t) (1)

Here τ is the neuron soma’s time constant, which equals the

product of the capacitance constant C and resistance constant

R of the neural membrane. I(t) is the overall pre-synaptic input

current and is accumulated into the membrane potential v(t).

Vrest is the resting potential of neuron soma. When v(t) is in

the dynamic range (v(t) ≤ Vth), the neuron activity follows

the Equation (1), accumulating the membrane potential among

time. Once the v(t) exceeds the potential threshold Vth, the

neuron fires a spike and resets the membrane potential v to Vrest

waiting for accumulation again. The generation of the neuron

spike activity s is defined as:

s = g(v) =

{

0, v < Vth

1, v = Vth

(2)

The LIF model gives a decent neuron prototype at the

algorithmic level that merits additional research. Due to the

universality of the LIF model, we use it as the spiking neuron

model in our research.

2.1.2. Learning rules in SNNs

In SNNs, synaptic strengths are described as scalar weights

that can be dynamically modified according to a particular

learning rule. Actively investigated, the learning rules of SNNs

can be generally categorized into three categories: conversion-

based methods that map SNNs from trained ANNs (Diehl et al.,

2016; Hunsberger and Eliasmith, 2016; Rueckauer et al., 2016,

2017; Sengupta et al., 2019; Han et al., 2020); supervised learning

with spikes that directly train SNNs using variations of error

backpropagation (Lee et al., 2016; Shrestha and Orchard, 2018;

Wu et al., 2018, 2019; Neftci et al., 2019; Yin et al., 2020; Fang

et al., 2021); local learning rules at synapses, such as schemes

exploring the spike time dependent plasticity (STDP) (Song

et al., 2000; Nessler et al., 2009; Diehl and Cook, 2015; Tavanaei

et al., 2016; Masquelier and Kheradpisheh, 2018). In addition

to the above-mentioned directions, many new algorithms have

emerged, such as: a biological plausible BP implementation in

pyramidal neurons based on the Bursting mechanism (Payeur

et al., 2021); a biologically plausible online learning based on

rewards and eligibility traces (Bellec et al., 2020); and the

target-based learning in recurrent spiking networks (Ingrosso

and Abbott, 2019; Muratore et al., 2021), which provides an

alternative to error-based approaches.

By defining pseudo-derivatives for non-differentiable

spike activity, recent research has successfully adapted

the backpropagation technique to SNNs (Lee et al., 2016;

Wu et al., 2018; Tavanaei et al., 2019; Cheng et al., 2020).

These BP-based SNNs are comparable to extensions of

conventional Recurrent Neural Networks (RNNs) that use

error backpropagation via time and gradient descent to update

connection weights. The BP-based algorithms can leverage

mature deep learning frameworks for network design and

operational efficiency, and have become an essential branch

of algorithmic developments. Consequently, this study will

use the basic surrogate technique in BP-SNNs to train the

proposed model.

2.1.3. Synaptic dynamics in BP-based SNNs

Following in the footsteps of neuromorphic computing,

Synaptic Dynamics research is being investigated. Some research

that applied bio-inspired Synaptic Models in BP-SNNs exhibited

improved performance, such as Lateral Interactions for intra-

layer connections (Cheng et al., 2020) and the Spike Response

Model (SRM) for synaptic expressions (Jin et al., 2018; Shrestha

and Orchard, 2018; Gu et al., 2019; Fang et al., 2020),

providing a starting point for embedding synaptic dynamics

into deep-SNNs.
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2.2. Multiplicity with multiple-spike
pattern

2.2.1. Iterable LIF model with single-spike
pattern

To represent the SNN at the algorithmic level, the

computational links between the specified variables must be

shown. The LIF differential definition (Equation 1) must thus

be rewritten in discrete form. Let vrest = 0, Equation (1) yields

the following expression:

v(t) = e−
tk
τ × v(t − tk)+

R

τ

∫ tk

0
e−

τd
τ × I

(

t − τd
)

dτd (3)

where tk indicates the time difference, and v(t) is obtained

by adding two factors, namely its own attenuation and the

input response.

An explicitly iterative version of the LIF model is generally

utilized in deep learning frameworks (Wu et al., 2018; Cheng

et al., 2020), allowing discrete neural spike activities in deep

SNNs. From Equation (3), by establishing the minimal iterative

step size 1t, the following discrete iterative model of LIF

is obtained:

v[t] = e−
1t
τ × v[t − 1t]+ (1− e−

1t
τ )× RI[t] (4)

where I[t] indicates the current input at time t. The model

assumes that the current is consistent throughout the time

interval (t − 1t, t] with a magnitude of I[t]. This assumption

inevitably results in the quantization error (as shown in the

Figure 3). Theoretically, when 1t → 0, the quantization error

approaches zero.

Alternatively, considering computational simplification,

we have:

v[t] = τdecay × v[t − 1t]+ Ĩ[t] (5)

Here τdecay is the time constant describing the leaky activity of

LIF model, which equals to e−
1t
τ . Ĩ[t] is the normalized pre-

synaptic input current, which equals to (1 − e−
1t
τ )RI[t]. In the

discrete simulation, s[t] represents the spike activity during the

time interval (t − 1t, t], defined as:

s[t] = g(v[t]) =

{

0, v[t] < Vth

1, v[t] ≥ Vth

(6)

By unifying the accumulation activity and spike activity, the

hard-reset LIF model (Wu et al., 2018; Eshraghian et al., 2021)

for discrete computation becomes:

v[t] = τdecay × v[t − 1t]×
(

1− s[t − 1t]
)

+ Ĩ[t] (7)

A crucial assumption of the LIF iterative discrete model is

1t → 0, which guarantees: 1. The input term Ĩ[t] is sufficiently

small such that sup{v[t]} ≈ Vth; 2. In the span of time (t−1t, t],

only one spike may fire. Under these conditions, the hard-reset

LIF model effectively matches neuronal dynamics (Equation 1).

Notably, observe that in the hard-reset version, sup{v[t]} >

Vth is always present. Assuming v[t0] − Vth = Vǫ[t0] > 0 at

t0, hard-reset resets the membrane potential straight to zero and

disregards the membrane potential difference Vǫ[t0], as shown

in Figure 2A. It is reasonable because when 1t is sufficiently

small, Vǫ[t0] → 0.

The soft-reset model is introduced to keep the portion of

Vǫ that exceeds the threshold (Figure 2A), and its expression is

as follows:

v[t] = τdecay ×
(

v[t − 1t]− s[t − 1t]× Vth

)

+ Ĩ[t] (8)

Soft-reset is based on the claim that the membrane potential vǫ

beyond the threshold contains implicit information that must be

retained, which is often employed in the ANN-SNN conversion

technique (Han et al., 2020). However, as shown in Figure 2A,

the vǫ[t0] produced via the soft-reset approach remains distinct

from the theoretical value Vtheoretical(t0). In Section 2.2.3, we

will demonstrate that when 1t
τ → 0 and

Vth
RI[t] → 0, vǫ[t0] =

Vtheoretical(t0) holds.

Iterable neural models applied to time-iteration work

similarly to recurrent neural model, which is discretized into

minimal iterative step length 1t. Nevertheless, the difference

is that the two common iterable LIF models, the hard-reset

model and the soft-reset model, only rely on binary signals

to indicate whether a spike activity is generated or not. To

differentiate, we refer to discrete models that transmit binary

digits (the hard-reset model and the soft-reset model) as Single-

Spike Pattern (SSP).

2.2.2. Extending single-spike pattern to
multiple-spike pattern

BP-based SNNs simulate the spike activities by discrete

time-iteration. Nonetheless, the discreteness presents significant

issues with spike multiplicity (Figure 2A). 1t must be carefully

set as the minimal iterative step length for simulation inside

recursive time-iterations in order to reduce the mismatch

between brain dynamics and its discrete behavior.

It should be noted that when 1t begins to rise, the input

term coefficient (1 − e(−1t
τ )) rises as well, raising ˜I[t]. Two

presumptions, at most one spike firing in each time period, and

the occurrence of sup{v[t]} ≈ Vth, may be erroneous when1t is

large. Since models with SSP represent spike activities as binary

sequences, only one spike activity can be handled per iterative

step. Under this circumstance, the temporal feature is restricted

with lost spikes. Therefore, in discrete time-iteration, the proper

selection of the iterative step lengths is always an indispensable

part of SSP.

To address the issue of spike loss and lessen the discrepancy

between discrete models and neuron dynamics, the idea of
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Multiple-Spike-Pattern (MSP) is developed, where the number

of spikes in (t−1t, t] is permitted to be greater than one, relaxing

the restrictions of discrete iterative models and improving

the model’s stability under various 1t choices. Multiple-Spike

Pattern relies on the integer digits transmission, which requires

neural models to produce countable spike activities during a

minimal time window. Spiking neurons defined with MSP can

be represented mathematically as follow:

v[t] = τdecay ×
(

v[t − 1t]− u[t − 1t]
)

+ Ĩ[t] (9)

s[t] = g(v[t]) u[t] = h(s[t]) (10)

Here, the spike activities s[t] is determined by membrane

potential v[t] as integer numbers. u[t] is the consumed

membrane potential that produces multiple spike activities,

determined by s[t]. The implementation of MSP neurons is

flexible, that can be achieved with different g(·) and h(·), to

represent different neural dynamics. The definition of MSP

neurons is similar with soft-reset SSP (Equation 8), where u[t −

1t] corresponds to s[t − 1t] × Vth, representing the cost of

membrane potential for spike activities. It can be shown that

the membrane potential dynamics of SSP (Equations 7, 8) and

MSP (Equations 9, 10) are extremely similar. The only difference

between SSP and MSP is that MSP redefines the computation of

the firing stage, including spike number s(·) and cost membrane

potential g(·). The maximum number of spikes allowed by SSP

is 1, but the maximum number of spikes permitted by MSP is

more than 1. As shown in Figure 3, the SSP, including both the

soft-reset and hard-reset models, could be regarded as the special

implementation of the MSP.

The above-described MSP is quite simple and scalable,

allowing it to directly replace the LIF model in the BP-

SNN. Similar to our MSP, Xu et al. (2021) used a multi-

threshold neuron model to achieve SNNs with ultra-low latency,

demonstrating the feasibility of multiplicity in compressing

features. They provide a suitable MSP implementation, which

we refer to as Linear mode, defined as:

s[t] = g(v[t]) =























0, v[t] < Vth

⌊
v[t]

Vth
⌋, Vth ≤ v[t] < SmaxVth

Smax, SmaxVth ≤ v[t]

(11)

u[t] = h(s[t]) = Vth × s[t] (12)

Here, Smax is the maximum integer value of g(·), representing

the upper limit of spike activities within a certain iterative

state. We regard the implementation as Linear mode because

it provided a linear estimate of spike intensity, as shown in

Figure 4A.

2.2.3. From neural dynamics to multiple-spike
pattern

Now, we return to the differential model and re-examine

the discretization method of MSP from the standpoint of

theoretical calculation. First, it must be made clear that we

still require the input current in the discrete window to be

constant (corresponding to Input Quantified in Figure 3), and

let Ic = I[t0], which means that the current input to the neuron

at the time t0 is used as the assumed constant in the time of

(t0 − 1t, t0]. There is no way to avoid the quantization error of

the current during discretization, but fortunately, when1t → 0,

the quantization error approaches zero.

Theoretically, the firing time interval of the LIF model is

consistent under a constant current; consequently, we establish

the process of membrane potential change and spike activity

with the spike time interval inside the 1t window. As shown

in Figure 2B, let tα represent the time necessary to fire the initial

spike, tω represent the time between successive pulses, and tr

represents the time difference between the final spike and t0.

According to the neuron parameters τ , R, the input current Ic,

and the membrane potential V0 = v[t0 − 1t], the number of

spike n and the residual membrane potential Vr = v[t0] can

be calculated.

The specific computation procedure is as described below.

First, according to the differential definition (Equation 1), the

estimated potential value Ve at time t0 is solved,

Ve = e−
1t
τ V0 +

(

1− e−
1t
τ

)

RIc (13)

In the case of Ve < Vth, the potential cannot be charged

to the threshold, and no spike activity is generated (so-called

Integration Stage in Figure 3), at this moment:







n = 0

Vr = Ve = e−
1t
τ V0 +

(

1− e−
1t
τ

)

RIc
(14)

When Ve ≥ Vth, there exists spike activities (n ≥ 1)

within window. In this case, the two criteria RIc > Vth

and tα ≤ 1t are satisfied. The following equations are

determined mathematically:































































tα = −τ ln

(

1−
Vth − V0

RIc − V0

)

tω = −τ ln

(

1−
Vth

RIc

)

n =

⌊

1t − tα

tω

⌋

+ 1

tr = 1t − tα − (n− 1)tω

Vr =
(

1− e−
tr
τ

)

RIc

(15)

Note that if
Vth
RIc

→ 0, the calculation of case Ve ≥ Vth could

be simplified:
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FIGURE 2

Extension of the single-spike pattern (SSP) to multiple-spike pattern (MSP). (A) Modeling LIF neural dynamics with Hard-Reset Model and

Soft-Reset Model, which derives the multiplicity issue with larger 1t. (B) Extending the SSP into MSP with integer transmission, which estimates

the number of spike activities inside a 1t time span.















































































































tα = −τ ln

(

1−
Vth − V0

RIc − V0

)

≈ τ
Vth − V0

RIc − V0

tω = −τ ln

(

1−
Vth

RIc

)

≈ τ
Vth

RIc

n =

⌊

1t − tα

tω

⌋

+ 1

≈

⌊

1t − τ
Vth−V0
RIc−V0

τ
Vth
RIc

⌋

+ 1

≈

⌊

1t
τ
RIc + V0

Vth

⌋

tr = 1t − tα − (n− 1)tω

Vr =
(

1− e−
tr
τ

)

RIc

(16)

Through the above-mentioned standard numerical model

and simplified numerical model, we are able to construct the LIF

model under discrete circumstances, whose membrane potential

change and number of spike activities closely resemble the

neuron dynamics under quantified input.

Regarding the unconstrained Linear mode (Equation 11)

with Smax → ∞), it can be shown that if the condition 1t
τ → 0

is met, the Linear mode can achieve the same number of spikes

as the simplified analytic model (Equation 16):

s[t0] = g(v[t0]) =

⌊

Ve

Vth

⌋

=











e−
1t
τ V0 +

(

1− e−
1t
τ

)

RIc

Vth











≈









(

1− 1t
τ

)

V0 +
1t
τ RIc

Vth









≈

⌊

V0 +
1t
τ RIc

Vth

⌋

= n

(17)
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At this time, considering the reset of membrane potential,

Vǫ[t0] = v[t0]− u[t0] = Ve − n× Vth

= e−
1t
τ V0 +

(

1− e−
1t
τ

)

RIc −

⌊

1t

τ
RIc + V0

⌋

≈ V0 +
1t

τ
RIc −

⌊

1t

τ
RIc + V0

⌋

=
tr

τ
RIc

≈
(

1− e−
tr
τ

)

RIc = Vr (18)

Accordingly, when the condition 1t
τ → 0 is met, we

demonstrate that the linear mode is an approximation of the

simplified analytical model. Also, we may easily switch the

standard numerical model to the linear mode by adjusting R →

∞, and τ = RC → ∞ (while keeping the conductance

coefficient C = τ
R constant), at which point the membrane

potential will no longer decrease and the LIF model will

degenerate into the IF model. All obtained models and their

approximation relations are summarized in Figure 3, which

simplifies the top-down modeling of neuron dynamics. Notably,

Hard-Reset Model and Soft-Reset Model are positioned at the

bottom of the discrete model, implying they are the most basic

and simplest models.

2.3. Multiple-spike pattern with
adaptability

2.3.1. Spike frequency adaptation for spike
activities

Spike-frequency adaptation (SFA) is a biological neural

phenomenon describing a neuron fires with a frequency that

reduces over time when stimulated with constant input. The

phenomenon occurs in both vertebrates and invertebrates, in

peripheral and central neurons, and plays an essential role in

neural information processing (Benda and Herz, 2003). The

SFA mechanism leads to non-linearity in spike activities and

enriches the temporal feature for a single spike. Specifically,

Adibi et al. (2013) suggest that the SFA mechanism in real

neurons like whisker sensory cortexes helps improve the

information capacity of a single spike defined by the average

mutual information (MI). Therefore, this work adopts the SFA

mechanism with MSP to improve spike transmission efficiency.

2.3.2. MSP implementation with SFA

Under the SFA mechanism, the threshold of the neural

model will be temporarily raised when a spike occurs to suppress

the excitement of dense spike activities.

Vth[sn+1] = q× Vth[sn] (19)

Here Vth[sn] indicates the membrane threshold when nth spike

activity occurs, q is the inhibition coefficient used to control the

temporary raising of Vth, making the intensity of spike activity

drop exponentially.

In this case, the required membrane potential u to generate

s times of spike activities is given by the sum of geometric

sequence with the neural threshold basis Vth:

u =

s
∑

i=1

(qi × Vth) =
qs − 1

q− 1
× Vth (20)

Similarly, we can directly estimate the value of spike

activities through analytic expressions:

v =
qn

∗
− 1

q− 1
× Vth (21)

Equivalently,

n∗ = logq

[

v

Vth

(

q− 1
)

+ 1

]

(22)

Here n∗ is the estimated intense spike activity. Then, the

exact value of spike activities s is given by:

s =
⌊

n∗
⌋

(23)

On this basis, g(·) and h(·) in Equation (10) are clearly

defined, which shows that the SFA implementation under MSP

can be directly determined without step-by-step calculation.

As shown in Figure 4B, when the membrane potential v

increases, the intensity of spike activity gradually deviates from

linearity, showing adaptability to the current input. In this case,

the total number of spike activities decreases, and each spike

activity brings more features, potentially saving computation

operations with less spike transmission while maintaining

high performance.

In order to apply backpropagation, we assign a particular

pseudo derivative as follows:

∂s

∂n∗
= 1 (24)

This pseudo-derivative provides a unit vector for gradient

descent without complicated computations.

2.4. Plasticity with state-free synaptic
response model

2.4.1. Modeling spike activity through synaptic
dynamics

In biological neural networks with synaptic dynamics, a

spike is thought to originate in the soma, travel up the axon to
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FIGURE 3

Pipeline for discretization from neuron dynamics to discrete models of varying complexity. By incorporating the prior assumptions, we infer the

neural dynamics from top to bottom and derive the more reduced discrete models with the approximation conditions. Notably, Hard-Reset

Model and Soft-Reset Model are positioned at the bottom of the discrete model, implying they are the most basic and simplest models.

the synapse, and then be transformed into an electric current

in the dendrites of the connected neuron. Spike Response

Model (SRM) is presented for describing synaptic dynamics by

transforming spike activity into current response flowing into

post-synaptic dendrites (Gerstner and Kistler, 2002), defined as:

o(t) = f (s, t) = (K ∗ s)(t) (25)

Here s(t) is the spike activities, o(t) is the spike response signal

transmitted from axon terminal to dendrite over time, K(t)

is the spike response kernel relating current intensities with

spike activities. The incoming spikes s(t) is converted into

spike response signal o(t) by convolving with a spike response

kernel K(·). General expressions for spike response kernel K(t)

are 1- and 2-exponential functions (Rothman, 2013), such as

the following:

K(t) = e−t/τd (26)

K(t) = e−t/τd − e−t/τr (27)

Here τr and τd are the rise and decay time constants. The

disadvantage of the simple 1-exponential ignores the finite rise

time of the synaptic conductance, rising instantaneously from 0

to 1. Hence, the 2-exponential function is used in the proposed

model since it contains a finite rise time.

By discretizing the convolutional operation, the spike

response signal o(t) can be represented as:

o(t) =

i·1t≤t
∑

i=0

s(t − i · 1t)K(i · 1t) (28)
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FIGURE 4

Plots of spike gate function s = g(v) (Equation 10): the spike activity vs. membrane potential. The blue plot indicates the continuous estimate of

the spike intensity n∗, and the green plot indicates the discrete count of the spike activities s. The threshold is set as Vth = 1. (A) Spike activities in

Linear mode. (B) Spike activities in Spike Frequency Adaption mode with q = 1.5.

The dendrites synthesize the input current intensity from

all connected axon terminals and act directly on the membrane

potential state of the neuron at some certain time t as

Equation (29).

Ii(t) =
∑

j

wijoj(t)+ biasi(t) (29)

Here I(t) is the overall pre-synaptic input current and is

accumulated into the membrane potential, wij is the synaptic

connecting weight from neuron j to neuron i and biasi is the

constant background input.

2.4.2. Potential plasticity in spike response
model (SRM)

SRM provides richer temporal information for the network

by allowing the varying effect of certain spike activity. However,

the constant parameters of response kernel K(t) are widely pre-

defined as a “ground truth” before training, which limits the

potential diversity and plasticity for SRM. Shrestha and Orchard

(2018) first considered the plasticity of SRM by setting response

delay as learnable parameters, which unsurprisingly improved

the performance. As shown in Figure 5, this work further frees

up the shape parameters for better plasticity, allowing shape

parameters a, b, and delay parameter delay to be learnable

during training. In this case, the plasticity of spike activity allows

each neuron to learn different temporal features, improving the

complexity and fitting ability of the model.

FIGURE 5

Model the SRM K(t) into 1-D convolution kernel Cn. K(t) is

modeled with three trainable parameters, with a, b for shape,

and delay for the time delay.

2.4.3. Spike response model as 1-D convolution

Common techniques for implementing synaptic dynamics

and SRM require indicating state variables inside the synapse

for generating post-synaptic currents through time iterations

(Jin et al., 2018; Gu et al., 2019; Fang et al., 2020). As shown

in Figure 5, SRMs used for spike activities are going up to

the peak and subsequently decreasing toward zero (Rothman,

2013). We observe that it is feasible to minimize computing

complexity when constructing a state-free synaptic response

model (SFSRM) by omitting the long-term spike response.

This work applies one-dimensional convolution operation in
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computing SRM by defining a valid time window tk to make the

SRM more efficient and more compatible with nowadays deep

learning frameworks. The convolution operation follows as:

o (t) = f (s, t) =

i·1t≤tk
∑

i=0

s (t − i · 1t) × Ci (30)

Here Cn is the one-dimensional convolutional kernel of spike

responses, modeled with three variables a, b and decay. tk is

the time-window constant that describes the necessary scope

of spike response, defined as Equation (31) with the minimal

iterative step length 1t and convolution kernel size.

tk = (kernel_size− 1)× 1t (31)

Then, as shown in Figure 5, the discrete self-learning Cn works

as the delayed spike response kernel K(t). According to the

2-exponential kernel in Equation (27), we model the discrete

convolutional kernelCn by delay parameter delay, and two shape

parameters a and b, as:

K∗(t) = e−at − e−bt (32)

K(t) =

{

K∗(t − delay), t ≥ delay

0, t < delay
(33)

Ci = K (i · 1t) (34)

Based on the above definition, we can use a simple

convolution operation to describe the integration of information

in the temporal dimension. The SFSRM is defined as trainable

if its three shape parameters are adjusted toward the objective

throughout the learning process. The idea of spike plasticity is

then linked to the adjustability of the SRM.

2.5. The model dataflow overview

Figure 6A shows the spatio-temporal dataflow of the neural

model in a certain iterative state. The solid arrows indicate

spatial and temporal feedforward; the red dotted arrows

indicate the error backpropagation correspondingly along with

the reverse directions of feedforward. We list more specific

mathematical relationships of each variable below:

Îni [t] =

Ln
∑

i=1

wn
ijO

n−1
j [t]+ biasni (35)

Vn
i [t] = τdecay ×

(

Vn
i [t − 1t]− Un

i [t − 1t]

)

+ Îni [t] (36)

Sni [t] =

⌊

logqni

[

Vn
i [t]

Vn
thi

(

qni − 1
)

+ 1

]⌋

(37)

Un
i [t] =

Sni [t]
∑

k=1

(

(qni )
k × Vn

thi

)

=
(qni )

Sni [t] − 1

qni − 1
× Vn

thi
(38)

On
j [t] =f

(

Sni [t − tk], ...S
n
i [t − 1t], Sni [t]

)

=

d·1t≤tk
∑

d=0

(

Sni [t − d · 1t]× Kn
i (d · 1t)

)

(39)

Kn
i (t) =

{

e−ani (t−delayni ) − e−bni (t−delayni ) (t ≥ delayni )

0 (t < delayni )

(40)

The explanation of the formulas is as follows:

• The sequences with three indices n, i, t represent states

of i-th neuron at the n-th layer and the t-th time point.

The variables with two indices n, i represent learnable

parameters of i-th neuron at the n-th layer. Ln indicates the

number of neurons in the n-th layer.

• Îni [t] represents the input weighted summation of the

output currents from the previous layer.

• Vn
i [t] represents the neuron’s membrane potential.

• Sni [t] ∈ Z represents the number of spikes activities of the

neuron within iterative time (t − 1, t].

• Un
i [t] represents the consumed mem-potential used for

producing spike activities.

• On
i [t] represents the output currents of the neuron, which is

determined by the past spike activities with the convolution

operation f (·). The kernel of convolution is defined as

Kn
i (t), modeled with delayni , a

n
i , b

n
i .

• Vn
thi
, qni , a

n
i , b

n
i , and delay

n
i are parameters of i-th neuron at

the n-th layer, as previously described.

2.6. Objective and training process

The entire dataflow of the training procedure is shown

in Figure 6B. The whole training process is based on BPTT,

which derives gradients for certain parameters through error-

backpropagation and applies gradients decent for optimization.

Input layer collects all spikes arising during (t − 1t, t]

as O0
i [t]. The O0

i [t] is then fully connected (Equation 35) to

the integrated inputs for the first hidden layer, following the

dataflow shown by Equations (35)–(40).
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FIGURE 6

The overall model dataflow. (A) The spatio-temporal feedforward and backward dataflow in the proposed model. Each box of MAP-LIF indicates

a certain spatio-temporal iterative state. (B) The training process for classification tasks.

Before applying the BP-based SNNs to classification tasks, we

need to define the decoding map from the output spikes to the

corresponding target labels. Refer to the rate coding, we count

the total number of output spikes EZ and derive the predicted

probability distribution of targets Ep based on the softmax of

spike counters,

Zi =

T
∑

t

Souti [t] (41)

pi =
eZi

∑Lout
j eZj

(42)

Here T is the total number of simulation timesteps, Souti [t]

represents the spike activity of i-th output neurons at t-th time

point. Lout is the number of output neurons, equal to the number

of classes. This definition gives a voting policy in that the neuron

with the most spikes will be given the highest probability of

determining the classification. Giving the one-hot teach signal

Ey during training,

yi =

{

1, i is target

0, otherwise
(43)

The loss function L is then defined as the Cross-Entropy error,

which will be minimized for all samples during training,

L =

Lout
∑

i

yi log(pi) (44)

3. Experiments and results

According to themathematical assumptions and constraints,

we first construct experiments for the discretemodels at different

discretization levels, and examine their stability issues under

different timescales. Then, to evaluate the performance of the
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FIGURE 7

The numbers of spikes via 1t with di�erent discrete models. Four experiments with di�erent τ and R: (A) R = 2�, τ = 4ms, (B) R = 2�, τ = 40ms,

(C) R = 20�, τ = 4ms, (D) R = 20�, τ = 40ms.

proposed SNNmodules, we selected two neuromorphic datasets:

N-MNIST (Orchard et al., 2015) and SHD (Cramer et al., 2020).

They are used as experimental objects for classification error

rates in neuromorphic tasks, including ablation experiments.

In addition, we set up control experiments to analyze and

discuss the significance of the three characteristics (MAP) to the

model performance.

3.1. Timescale robustness analysis of
discrete models

We conducted a simulation experiment to validate the

discretization-based theoretical analysis presented in Section

2.2. We set constant input current I = 1(mA), membrane

potential threshold Vth = 1(mV), total runtime T = 1000(ms),

membrane time constant τ ∈ {4(ms), 40(ms)}, and membrane

resistance R ∈ {2�, 20�}. By simulating discrete models in

Figure 3, we obtain the findings presented in the Figure 7. The

results obtained under various τ and R confirm the derivation

presented in Section 2.2.3. First, the Standard Numerical Model

yields perfectly stable results, and the number of recorded spikes

does not vary with 1t. Comparing Figures 7A,B, the Simplified

Numerical Model is a good approximation of the Standard

Numerical Model when R is large; comparing Figures 7A,C, the

Linear Mode of the MSP is closer to the Standard Numerical

Model as τ increases. Notably, these findings indicate that Soft-

Reset Model initially displays performance that is highly close

to Linear Mode, but is restricted by binary transmission when

1t is large, where the number of recorded spikes is inversely

proportional to 1t, indicating that the extension of the SSP to

the MSP is rational.

3.2. Classification of neuromorphic
datasets

To demonstrate the reliability of our approaches, we train

our SNN models with spike-based datasets for image and sound

classification and compare the achieved error rates with related

works on SNN algorithms.

3.2.1. Experiment setting and parameters
initialization

The proposed model is built on the deep learning

framework, PyTorch (Paszke et al., 2019), and the weights are

initialed using the default Xavier Normal (Glorot and Bengio,

2010)method. Besides, we use Adam as the optimizer and Cross-

Entropy as the criterion during training. Hyperparameters
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TABLE 1 Hyperparameters setting.

Network

parameters

Description Value

T # of Timesteps (N-MNIST/SHD) 15,50

dt Timestep length (N-MNIST/SHD) 20, 16 ms

r Learning rate (Adam) 10−3

Vth Threshold 2.0

q Inhibition coefficient 1.2

τdecay Initial decay factor 0.2

delay Initial kernel delay factor 0.8

a, b Initial kernel shape factors randam[0.5, 1.0],

randam[0.5, 1.0]

kernel_size Kernel size of synaptic convolution 7

of experimental settings are shown in Table 1. We built

fully connected networks for classification as the Multilayer

Perceptron (MLP) structure.

3.2.2. Neuromorphic image dataset

N-MNIST (Orchard et al., 2015) is a neuromorphic version

ofMNIST digits, which contains 60,000 train samples and 10,000

test samples aligning with MNIST. The samples of N-MNIST

are event-based spike signals captured by recording MNIST

images displayed on an LCD screen using Dynamic Vision

Sensors (DVS) mounted on a moving platform. The N-MNIST

images record overall 300ms frames and have two channels that

separately record brighter and darker brightness changes. We

process the two channels in parallel with two groups of 400

hidden neurons, where the network architecture is (2× 1156)−

(400+ 400)− 10.

3.2.3. Neuromorphic sound dataset

Spiking Heidelberg Digits (SHD) (Cramer et al., 2020) is

a spike-based speech dataset consisting of 0–9 spoken digits

recordings in both English and German. The audio recordings

are converted into spikes using an artificial inner ear model,

transforming into temporal structures with 700 input channels.

There are 8156 train samples and 2,264 test samples in SHD, and

each of them lasts for at most 800 ms. SHD requires multiple

layers to fit. Therefore, we built the architecture of 700 − 400 −

400− 20 with two hidden layers of 400 neurons.

3.2.4. Error rate comparison

We compare the obtained model performance with state-

of-the-art SNN models, The results of N-MNIST are in Table 2

and SHD is in Table 3, including ablation experiments with

MSP and SFSRM alone. The experimental results show that

TABLE 2 Performance of di�erent algorithms on N-MNIST.

Model Size of hidden layer Error rate (%)

Spiking-MLP (Cohen et al., 2016) 10,000 8.13

Spiking-CNN (Neil and Liu, 2016) - 4.28

LSTM (Neil et al., 2016) - 2.95

Phased-LSTM (Neil et al., 2016) - 2.62

MLP (Lee et al., 2016) 800 2.20

Spiking-MLP (Lee et al., 2016) 800 1.26

STBP (Wu et al., 2018) 800 1.22

Spiking-MLP (Fang et al., 2021) 500-500 1.60

This work (SSP) 800 1.60

This work (SSP+SFSRM) 800 1.43

This work (MSP) 800 1.11

MAP-SNN (MSP+SFSRM) 800 1.06

The bold contents are the results of this work.

TABLE 3 Performance of di�erent algorithms on SHD.

Model Size of hidden layerError rate (%)

Spiking-MLP (Cramer et al., 2020) – 52.5

SNN-base (Cramer et al., 2020) – 28.6

R-SNN (Cramer et al., 2020) – 16.8

R-SNN (Zenke and Vogels, 2021) – 18.0

SNN-SoTa (Perez-Nieves et al., 2021) – 17.3

SRNN (Yin et al., 2020) – 15.6

Spiking-MLP (Fang et al., 2021) 400-400 14.3

This work (SSP) 400-400 36.1

This work (SSP+SFSRM) 400-400 33.0

This work (MSP) 400-400 17.1

MAP-SNN (MSP+SFSRM) 400-400 13.0

The bold contents are the results of this work.

MAP-SNN can decrease the error rate by 0.16% on N-

MNIST and 1.30% on SHD, which has achieved the highest

performance among SNN-based algorithms under the same

MLP structure. Furthermore, we observe that MSP and

SFSRM can independently improve the model accuracy and be

combined for significantly better performance, which supports

the complementarity of MAP properties.

3.2.5. Visualization results

To help understand the signal transmissions of SNNs and

highlight the difference between the MSP and the SSP, we derive

the spike raster plot of an SHD sample. The network structure

consists of two hidden layers of 700 − 400 − 400 − 20. The

plot shows the neural spike activities in layers on the 800-th

SHD training sample with label 0 in Figure 8. The horizontal

and vertical axes indicate the time interval and the indices of
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spiking neurons in layers. In detail, we implement the SSP based

on STBP (Wu et al., 2018) for comparison with the proposed

MSP. In Figure 8B, it is observed under MSP that spike activities

are more concentrated in the temporal dimension, while there

are fewer nearby sparse spikes in deep layers (Layer 2 and Layer

3). In contrast, Figure 8C shows that the spike channels of Layer

2 are almost full, which is because the neurons under SSP are

“encouraged” to keep fire to maintain signal integrity within

restricted binary signals.

3.3. Control experiments and
performance analysis

To explore the potentials of the proposed MSP, SFA, and

SFSRM, we carry out control experiments on N-MNIST and

SHD datasets and discuss the impacts of MAP properties on

improving model performance.

3.3.1. The impact of multiplicity on discrete
iteration

The selection of minimal iterative step lengths 1t influences

model performance in the discrete iterative models. For the

sake of completeness of the analysis, we analyze this instability

in the ablation experiments by building control experiments

under MLP architecture with different iterative step lengths, as

shown in Figures 9A,B. The experiments are based on N-MNIST

and SHD, respectively, where the unified network structure

is (2×1156)-200-10 on N-MNIST and 700-400-20 on SHD.

With the MAP properties, the error rates of the model have

been significantly improved. Compared with benchmark SSP,

our MAP-SNN with the combination of MSP and SFSRM

reduces error rates among different iterative step lengths by

the range of (1.0, 2.8%) on N-MNIST, and (19, 41%) on SHD,

which demonstrates the reliability of the proposed methods.

Furthermore, themodel trained withMSP keeps almost constant

error rates across different 1t, supporting that multiplicity

alleviates the discretization problem and improves the model

stability over time-iteration with different iterative step lengths.

3.3.2. The impact of adaptability on spike
e�ciency

To demonstrate the effectiveness of SFA in spike

reduction, we establish a set of controlled experiments

on the SHD dataset with the 700-400-20 MLP structure.

Figure 9C shows the error rates and spike numbers in

the training process of models in both SFA mode and

Linear mode. The experimental results show that SFA

effectively suppresses spike activities by 1.48× times while

slightly improving model accuracy by 1.52%. In this case,

the reduced signal transmissions helpfully decrease the

amount of computation in synapses, which will help save

the power consumption of neuromorphic hardware based on

spike transmissions.

3.3.3. The impact of plasticity on feature
extraction

To highlight the importance of plasticity for feature

extraction, we set up a control experiment to compare

the SRM with and without the plasticity, as shown in

Figure 9D. The untrainable SRM refers to the fixed SRM

(the parameters fixed after initialization) and the trainable

SFSRM refers to our proposed method in Section 2.4. The

experiment is set on the SHD with the 700-400-20 MLP

structure, where the SRM or SFSRM is inserted on 400

hidden neurons. Figure 9D shows the changes in model error

rate and loss during the training epoch. The experimental

results show that the plasticity allows the model to converge

faster by 4.2% and reduces the error rate by 15.6% during

epoch [10, 80]. This demonstrates the advantage of SFSRM

in temporal feature extraction. We conclude that plasticity

helps shorten the training process of models and improve the

model’s performance.

4. Discussion

In this work, we refer to the Multiplicity, Adaptability,

and Plasticity (MAP) properties and model spike activities

with Multiple-Spike Pattern (MSP), Spike Frequency Adaption

(SFA), and State-Free Synaptic Response Model (SFSRM) that

improve BP-based methods with better performance. For the

spiking neural models, the existing methods rely on the

neurons with the single-spike pattern (SSP) that only outputs

the binary events (Lee et al., 2016; Wu et al., 2018; Cheng

et al., 2020), introducing discrepancies between the discrete

iterative simulation and biological network. To mitigate this

discrepancy due to time discretization, we propose an MSP

spiking neural model that supports the neurons to output the

number of spike events. We set up the control experiments

on neuromorphic datasets and tested SSP and MSP in the

same MLP architecture. The results demonstrate that the SSP

is sensitive to the selection of iterative time step 1t, while the

MSP is more robust under different time steps 1t compared

with the SSP, as shown in Figures 9A,B. Considering the smaller

number of simulation timesteps and lower inference latency,

the spiking neurons with multiple thresholds are proposed in

recent works (Chowdhury et al., 2021; Xu et al., 2021), which

refer to the linear mode of MSP implementation. The spike

activity increases linearly as the increase of input currents in

such linear mode MSP. More spike activities require more

energy for spike transmission and subsequent operations. While

a biological neuron fires with a reduced frequency over time
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FIGURE 8

Spike raster plot: Visualization of spike transmission on SHD sample. (A) Input spikes. (B) Spike transmission in multiple spike pattern. (C) Spike

transmission in single spike pattern.

FIGURE 9

Experimental results. (A) Error rate curves among di�erent iterative step lengths on N-MNIST. (B) Error rate curves among di�erent iterative step

lengths on SHD. (C) Control experiment of spike frequencies between SFA and Linear modes on SHD. (D) Control experiment of synaptic

plasticity for performance improvement on SHD.
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under a constant stimuli (Benda and Herz, 2003). Therefore,

the SFA mode was implemented under the MSP to reduce

spike activities while keeping on the model accuracy shown

in Figure 9C. Some published works have applied the SRM

model in SNNs to capture the spike temporal information and

thus achieved high performance (Jin et al., 2018; Shrestha and

Orchard, 2018). However, they restrict the shape parameters

inside the kernel function and need to expand the kernel

among temporal domains to do the calculation step by step.

In order to enrich the model representation power and make

the SRM more compatible in deep frameworks, we propose to

substitute the iterative calculation with convolution operations

and allow all parameters inside the kernel to be learned for

plastic synapses.

The implementability of the proposed MAP-SNN is a

major concern. State-of-the-art neuromorphic chips, such as

Tianjic (Pei et al., 2019), Darwin (Ma et al., 2017), and

Loihi (Davies et al., 2018), support the single-spike pattern

directly. The MAP-SNN model with a generalized definition

is feasible to perform the on-chip inference on Tianjic Chip

with proper hardware configuration. In detail, the neural

models of multiple-spike patterns with SFA mode can be

simplified at the hardware level by pre-setting a lookup

table to determine the number of spike activities based

on the value of the current membrane potential. Besides,

in the axonal process of spike traveling, the Tianjic chip

with ANN-SNN hybrid design can compatibly perform the

integer transmission, supportive of the multiple-spike pattern.

Further, at the axonal terminal, the state-free synapses are

implemented by the low-pass filters, which transform the spike

activities into synaptic currents. We believe that algorithms

and hardware can be developed in tandem. The improvements

in algorithms may also inspire the hardware design. The

feasibility of MAP-SNN on Tianjic provides a potential

development perspective for both spike-based algorithms and

neuromorphic hardware.

The aforementioned discrete models (Figure 3) have

great numerical calculation accuracy in simulation and

inference, which may be used in the ANN-SNN conversion

approach to narrow the gap between analytical and numerical

solutions, as well as reduce network latency through time

compression; this is an area worthy of further exploration in the

future.

In conclusion, this work demonstrates the potency of

effectively modeling spike activities, revealing a unique

perspective for researchers to re-examine the significance of

biological facts.

Data availability statement

Publicly available datasets were analyzed in this study.

This data can be found here: the datasets SHD/N-MNIST

for this study can be found in the https://zenkelab.org/

resources/spiking-heidelberg-datasets-shd/ (Spiking Heidelberg

Datasets), and https://www.garrickorchard.com/datasets/n-

mnist (Neuromorphic-MNIST).

Code availability statement

The source code of MAP-SNN can be found in the Github

repository https://github.com/Tab-ct/MAP-SNN.

Author contributions

CY proposed the idea. CY and YD designed and did the

experiments. CY, MC, and AWwrote the manuscript, then GW,

AW, and EL revised it. AW directed the projects and provided

overall guidance. All authors contributed to the article and

approved the submitted version.

Funding

This work was supported in part by the Fundamental

Research Funds for the Central Universities under Grant 2-

2050205-21-688 and in part by the Zhejiang Provincial Natural

Science Foundation Exploration Youth Program under Grant

LQ22F010011.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

References

Adibi, M., Clifford, C. W. G., and Arabzadeh, E. (2013). Informational
basis of sensory adaptation: entropy and single-spike efficiency in rat
barrel cortex. J. Neurosci. 33, 14921–14926. doi: 10.1523/JNEUROSCI.1313-
13.2013

Bellec, G., Salaj, D., Subramoney, A., Legenstein, R., and Maass, W. (2018).
“Long short-term memory and learning-to-learn in networks of spiking neurons,”
in Advances in Neural Information Processing Systems 31, eds S. Bengio, H.
Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (Curran

Frontiers inNeuroscience 17 frontiersin.org

https://doi.org/10.3389/fnins.2022.945037
https://zenkelab.org/resources/spiking-heidelberg-datasets-shd/
https://zenkelab.org/resources/spiking-heidelberg-datasets-shd/
https://www.garrickorchard.com/datasets/n-mnist
https://www.garrickorchard.com/datasets/n-mnist
https://github.com/Tab-ct/MAP-SNN
https://doi.org/10.1523/JNEUROSCI.1313-13.2013
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Yu et al. 10.3389/fnins.2022.945037

Associates, Inc.). Available online at: https://proceedings.neurips.cc/paper/2018/
file/c203d8a151612acf12457e4d67635a95-Paper.pdf

Bellec, G., Scherr, F., Subramoney, A., Hajek, E., Salaj, D., Legenstein, R., et al.
(2020). A solution to the learning dilemma for recurrent networks of spiking
neurons. Nat. Commun. 11, 3625. doi: 10.1038/s41467-020-17236-y

Benda, J., and Herz, A. V. M. (2003). A universal model for spike-
frequency adaptation.Neural Comput. 15, 2523–2564. doi: 10.1162/0899766033223
85063

Cheng, X., Hao, Y., Xu, J., and Xu, B. (2020). “LISNN: improving spiking
neural networks with lateral interactions for robust object recognition,” in IJCAI,
1519–1525. doi: 10.24963/ijcai.2020/211

Chowdhury, S. S., Rathi, N., and Roy, K. (2021). One timestep is all you
need: training spiking neural networks with ultra low latency. arXiv preprint
arXiv:2110.05929. doi: 10.48550/arXiv.2110.05929

Cohen, G. K., Orchard, G., Leng, S.-H., Tapson, J., Benosman, R. B., and van
Schaik, A. (2016). Skimming digits: neuromorphic classification of spike-encoded
images. Front. Neurosci. 10, 184. doi: 10.3389/fnins.2016.00184

Cramer, B., Stradmann, Y., Schemmel, J., and Zenke, F. (2020). “The
Heidelberg spiking data sets for the systematic evaluation of spiking neural
networks,” in IEEE Transactions on Neural Networks and Learning Systems, 1–14.
doi: 10.1109/TNNLS.2020.3044364

Davies, M., Srinivasa, N., Lin, T.-H., Chinya, G., Cao, Y., Choday, S. H., et al.
(2018). Loihi: a neuromorphic manycore processor with on-chip learning. IEEE
Micro 38, 82–99. doi: 10.1109/MM.2018.112130359

Dayan, P., and Abbott, L. F. (2005). Theoretical Neuroscience: Computational
and Mathematical Modeling of Neural Systems. MIT Press.

Diehl, P. U., Zarrella, G., Cassidy, A., Pedroni, B. U., and Neftci, E. (2016).
“Conversion of artificial recurrent neural networks to spiking neural networks for
low-power neuromorphic hardware,” in 2016 IEEE International Conference on
Rebooting Computing (ICRC), 1–8. doi: 10.1109/ICRC.2016.7738691

Diehl, P. U., and Cook, M. (2015). Unsupervised learning of digit
recognition using spike-timing-dependent plasticity. Front. Comput. Neurosci. 9,
99. doi: 10.3389/fncom.2015.00099

Eshraghian, J. K., Ward, M., Neftci, E., Wang, X., Lenz, G., Dwivedi, G., et al.
(2021). Training spiking neural networks using lessons from deep learning. arXiv
preprint arXiv:2109.12894.

Fang, H., Shrestha, A., Zhao, Z., and Qiu, Q. (2020). Exploiting neuron
and synapse filter dynamics in spatial temporal learning of deep spiking neural
network. arXiv preprint arXiv: 2003.02944. doi: 10.24963/ijcai.2020/388

Fang, H., Taylor, B., Li, Z., Mei, Z., Li, H. H., and Qiu, Q. (2021). “Neuromorphic
algorithm-hardware codesign for temporal pattern learning,” in DAC, 361–366.
doi: 10.1109/DAC18074.2021.9586133

Gerstner, W., and Kistler, W. M. (2002). Spiking Neuron Models:
Single Neurons, Populations, Plasticity. Cambridge University Press.
doi: 10.1017/CBO9780511815706

Ghosh-Dastidar, S., and Adeli, H. (2009). Spiking neural networks. Int. J. Neur.
Syst. 19, 295–308. doi: 10.1142/S0129065709002002

Glorot, X., and Bengio, Y. (2010). “Understanding the difficulty of training
deep feedforward neural networks,” in Proceedings of the Thirteenth International
Conference on Artificial Intelligence and Statistics, 249–256. Available online at:
https://proceedings.mlr.press/v9/glorot10a.html

Gu, P., Xiao, R., Pan, G., and Tang, H. (2019). “STCA: spatio-temporal credit
assignment with delayed feedback in deep spiking neural networks,” in Proceedings
of the Twenty-Eighth International Joint Conference on Artificial Intelligence
(Macao), 1366–1372. doi: 10.24963/ijcai.2019/189

Han, B., Srinivasan, G., and Roy, K. (2020). “RMP-SNN: residual membrane
potential neuron for enabling deeper high-accuracy and low-latency spiking
neural network,” in ICCV, 13558–13567. doi: 10.1109/CVPR42600.2020.
01357

Hodgkin, A. L., Huxley, A. F., and Eccles, J. C. (1952). Propagation of electrical
signals along giant nerve fibres. Proc. R. Soc. Lond. Ser. B Biol. Sci. 140, 177–183.
doi: 10.1098/rspb.1952.0054

Hunsberger, E., and Eliasmith, C. (2016). Training spiking deep
networks for neuromorphic hardware. arXiv preprint arXiv: 1611.05141.
doi: 10.13140/RG.2.2.10967.06566

Ingrosso, A., and Abbott, L. F. (2019). Training dynamically balanced excitatory-
inhibitory networks. PLoS ONE 14, e0220547. doi: 10.1371/journal.pone.0220547

Izhikevich, E. M., Gally, J. A., and Edelman, G. M. (2004). Spike-
timing dynamics of neuronal groups. Cereb. Cortex 14, 933–944.
doi: 10.1093/cercor/bhh053

Jin, Y., Zhang, W., and Li, P. (2018). “Hybrid macro/micro level
backpropagation for training deep spiking neural networks,” in Advances
in Neural Information Processing Systems 31, eds S. Bengio, H. Wallach,
H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett (Curran
Associates, Inc.). Available online at: https://proceedings.neurips.cc/paper/2018/
file/3fb04953d95a94367bb133f862402bce-Paper.pdf

Lechner, M., Hasani, R., Amini, A., Henzinger, T. A., Rus, D., and Grosu, R.
(2020). Neural circuit policies enabling auditable autonomy. Nat. Mach. Intell. 2,
642–652. doi: 10.1038/s42256-020-00237-3

Lee, J. H., Delbruck, T., and Pfeiffer, M. (2016). Training deep
spiking neural networks using backpropagation. Front. Neurosci. 10, 508.
doi: 10.3389/fnins.2016.00508

Liu, S.-C., and Delbruck, T. (2010). Neuromorphic sensory systems. Curr. Opin.
Neurobiol. 20, 288–295. doi: 10.1016/j.conb.2010.03.007

Ma, D., Shen, J., Gu, Z., Zhang, M., Zhu, X., Xu, X., et al. (2017). Darwin: a
neuromorphic hardware co-processor based on spiking neural networks. J. Syst.
Arch. 77, 43–51. doi: 10.1016/j.sysarc.2017.01.003

Maass, W. (1997). Networks of spiking neurons: the third
generation of neural network models. Neural Netw. 10, 1659–1671.
doi: 10.1016/S0893-6080(97)00011-7

Masquelier, T., and Kheradpisheh, S. R. (2018). Optimal localist and
distributed coding of spatiotemporal spike patterns through STDP and
coincidence detection. Front. Comput. Neurosci. 12, 74. doi: 10.3389/fncom.2018.
00074

Muratore, P., Capone, C., and Paolucci, P. S. (2021). Target spike patterns enable
efficient and biologically plausible learning for complex temporal tasks. PLoS ONE
16, e0247014. doi: 10.1371/journal.pone.0247014

Neftci, E. O., Mostafa, H., and Zenke, F. (2019). Surrogate gradient
learning in spiking neural networks: bringing the power of gradient-based
optimization to spiking neural networks. IEEE Signal Process. Mag. 36, 51–63.
doi: 10.1109/MSP.2019.2931595

Neil, D., Pfeiffer, M., and Liu, S.-C. (2016). “Phased LSTM: accelerating
recurrent network training for long or event-based sequences,” in NIPS.
Available online at: https://proceedings.neurips.cc/paper/2016/hash/
5bce843dd76db8c939d5323dd3e54ec9-Abstract.html

Neil, D., and Liu, S.-C. (2016). “Effective sensor fusion with event-
based sensors and deep network architectures,” in ISCAS, 2282–2285.
doi: 10.1109/ISCAS.2016.7539039

Nessler, B., Pfeiffer, M., and Maass, W. (2009). “STDP enables spiking neurons
to detect hidden causes of their inputs,” in Advances in Neural Information
Processing Systems 22, eds Y. Bengio, D. Schuurmans, J. Lafferty, C. Williams, A.
Culotta (Curran Associates, Inc.). Available online at: https://proceedings.neurips.
cc/paper/2009/file/a5cdd4aa0048b187f7182f1b9ce7a6a7-Paper.pdf

Orchard, G., Jayawant, A., Cohen, G. K., and Thakor, N. (2015). Converting
static image datasets to spiking neuromorphic datasets using saccades. Front.
Neurosci. 9, 437. doi: 10.3389/fnins.2015.00437

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., et al.
(2019). “PyTorch: an imperative style, high-performance deep learning library,”
in Advances in Neural Information Processing Systems, eds H. Wallach, H.
Larochelle, A. Beygelzimer, F. d’ Alché-Buc, E. Fox, and R. Garnett (Curran
Associates, Inc.). Available online at: https://proceedings.neurips.cc/paper/2019/
file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf

Payeur, A., Guerguiev, J., Zenke, F., Richards, B. A., and Naud, R. (2021). Burst-
dependent synaptic plasticity can coordinate learning in hierarchical circuits. Nat.
Neurosci. 24, 1010–1019. doi: 10.1038/s41593-021-00857-x

Pei, J., Deng, L., Song, S., Zhao, M., Zhang, Y., Wu, S., et al. (2019). Towards
artificial general intelligence with hybrid Tianjic chip architecture. Nature 572,
106–111. doi: 10.1038/s41586-019-1424-8

Perez-Nieves, N., Leung, V. C. H., Dragotti, P. L., and Goodman, D. F. M.
(2021). Neural heterogeneity promotes robust learning. Nat. Commun. 12, 1–9.
doi: 10.1101/2020.12.18.423468

Pfeiffer, M., and Pfeil, T. (2018). Deep learning with spiking
neurons: opportunities and challenges. Front. Neurosci. 12, 774.
doi: 10.3389/fnins.2018.00774

Rothman, J. S. (2013). “Modeling synapses,” in Encyclopedia of Computational
Neuroscience, eds D. Jaeger and R. Jung (New York, NY: Springer), 1–15.
doi: 10.1007/978-1-4614-7320-6_240-1

Rueckauer, B., Lungu, I.-A., Hu, Y., Pfeiffer, M., and Liu, S.-C. (2017).
Conversion of continuous-valued deep networks to efficient event-driven networks
for image classification. Front. Neurosci. 11, 682. doi: 10.3389/fnins.2017.
00682

Frontiers inNeuroscience 18 frontiersin.org

https://doi.org/10.3389/fnins.2022.945037
https://proceedings.neurips.cc/paper/2018/file/c203d8a151612acf12457e4d67635a95-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/c203d8a151612acf12457e4d67635a95-Paper.pdf
https://doi.org/10.1038/s41467-020-17236-y
https://doi.org/10.1162/089976603322385063
https://doi.org/10.24963/ijcai.2020/211
https://doi.org/10.48550/arXiv.2110.05929
https://doi.org/10.3389/fnins.2016.00184
https://doi.org/10.1109/TNNLS.2020.3044364
https://doi.org/10.1109/MM.2018.112130359
https://doi.org/10.1109/ICRC.2016.7738691
https://doi.org/10.3389/fncom.2015.00099
https://doi.org/10.24963/ijcai.2020/388
https://doi.org/10.1109/DAC18074.2021.9586133
https://doi.org/10.1017/CBO9780511815706
https://doi.org/10.1142/S0129065709002002
https://proceedings.mlr.press/v9/glorot10a.html
https://doi.org/10.24963/ijcai.2019/189
https://doi.org/10.1109/CVPR42600.2020.01357
https://doi.org/10.1098/rspb.1952.0054
https://doi.org/10.13140/RG.2.2.10967.06566
https://doi.org/10.1371/journal.pone.0220547
https://doi.org/10.1093/cercor/bhh053
https://proceedings.neurips.cc/paper/2018/file/3fb04953d95a94367bb133f862402bce-Paper.pdf
https://proceedings.neurips.cc/paper/2018/file/3fb04953d95a94367bb133f862402bce-Paper.pdf
https://doi.org/10.1038/s42256-020-00237-3
https://doi.org/10.3389/fnins.2016.00508
https://doi.org/10.1016/j.conb.2010.03.007
https://doi.org/10.1016/j.sysarc.2017.01.003
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.3389/fncom.2018.00074
https://doi.org/10.1371/journal.pone.0247014
https://doi.org/10.1109/MSP.2019.2931595
https://proceedings.neurips.cc/paper/2016/hash/5bce843dd76db8c939d5323dd3e54ec9-Abstract.html
https://proceedings.neurips.cc/paper/2016/hash/5bce843dd76db8c939d5323dd3e54ec9-Abstract.html
https://doi.org/10.1109/ISCAS.2016.7539039
https://proceedings.neurips.cc/paper/2009/file/a5cdd4aa0048b187f7182f1b9ce7a6a7-Paper.pdf
https://proceedings.neurips.cc/paper/2009/file/a5cdd4aa0048b187f7182f1b9ce7a6a7-Paper.pdf
https://doi.org/10.3389/fnins.2015.00437
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://doi.org/10.1038/s41593-021-00857-x
https://doi.org/10.1038/s41586-019-1424-8
https://doi.org/10.1101/2020.12.18.423468
https://doi.org/10.3389/fnins.2018.00774
https://doi.org/10.1007/978-1-4614-7320-6_240-1
https://doi.org/10.3389/fnins.2017.00682
https://www.frontiersin.org/journals/neuroscience
https://www.frontiersin.org


Yu et al. 10.3389/fnins.2022.945037

Rueckauer, B., Lungu, I.-A., Hu, Y., and Pfeiffer, M. (2016). Theory and tools for
the conversion of analog to spiking convolutional neural networks. arXiv preprint
arXiv: 1612.04052. Available online at: https://www.frontiersin.org/article/10.3389/
fnins.2017.00682

Salaj, D., Subramoney, A., Kraisnikovic, C., Bellec, G., Legenstein, R., and
Maass, W. (2021). Spike frequency adaptation supports network computations on
temporally dispersed information. eLife 10, e65459. doi: 10.7554/eLife.65459

Sengupta, A., Ye, Y., Wang, R., Liu, C., and Roy, K. (2019). Going deeper in
spiking neural networks: VGG and residual architectures. Front. Neurosci. 13, 95.
doi: 10.3389/fnins.2019.00095

Shrestha, S. B., and Orchard, G. (2018). “SLAYER: spike layer error reassignment
in time,” in NIPS. Available online at: https://proceedings.neurips.cc/paper/2018/
hash/82f2b308c3b01637c607ce05f52a2fed-Abstract.html

Song, S., Miller, K. D., and Abbott, L. F. (2000). Competitive Hebbian learning
through spike-timing-dependent synaptic plasticity. Nat. Neurosci. 3, 919–926.
doi: 10.1038/78829

Tavanaei, A., Ghodrati, M., Kheradpisheh, S. R., Masquelier, T., and Maida,
A. (2019). Deep learning in spiking neural networks. Neural Netw. 111, 47–63.
doi: 10.1016/j.neunet.2018.12.002

Tavanaei, A., Masquelier, T., and Maida, A. S. (2016). “Acquisition
of visual features through probabilistic spike-timing-dependent plasticity,” in
2016 International Joint Conference on Neural Networks (IJCNN), 307–314.
doi: 10.1109/IJCNN.2016.7727213

Vanarse, A., Osseiran, A., and Rassau, A. (2016). A review of current
neuromorphic approaches for vision, auditory, and olfactory sensors. Front.
Neurosci. 10, 115. doi: 10.3389/fnins.2016.00115
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