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Abstract—We demonstrate how positioning concepts enable in-
service condition monitoring of railway tracks. Specifically, it
is shown that accurate georeferencing of monitoring data can
be achieved by sensor fusion of GNSS and IMU measurements
with a map of the railway network. Because such georeferencing
is an offline positioning problem, a two-stage approach that
operates on batches of data is developed: First, path hypotheses
are estimated from the GNSS data and the railway map.
Second, a nonlinear Rauch-Tung-Striebel smoother provides on-
track positions and speeds in path coordinates given each path
hypothesis and the IMU and GNSS data.

The developed methods are an essential part of a track
condition monitoring system developed at DLR. The positioning
results are used for the track-dependent analysis of axle-box-
acceleration data. Accordingly, all results shown in this paper
have been obtained on real data collected in the harbor railway
network of Braunschweig, Germany.

I. INTRODUCTION

Maintenance costs for railway infrastructure operators are

high. The DLR Institute of Transportation Systems works

on infrastructure monitoring systems that can reduce these

costs by facilitating condition-based maintenance [1], [2].

One application example is the monitoring of railway tracks

via the analysis of axle-box accelerations (ABA) recorded

by sensors on in-service rail vehicles (specifically: switchers

(US), shunters (UK)) [3]. In order to associate anomalies in

the ABA data with defects in the track, position information is

required. The task of generating accurate position stamps with

a high spatial resolution is here referred to as georeferencing

and the main subject of this paper.

Georeferencing comes with several challenges. Railway reg-

ulations permit only little interaction with in-service vehicles,

such that the applicable sensors are limited. For example,

access to odometry signals is difficult on most rail vehicles.

Furthermore, sensors systems for retrofitting in-service vehi-

cles are restricted to low-cost hardware to be economically

viable. The comparably expensive ABA sensors leave little

budget for positioning sensors. Therefore, only a minimum set-

up consisting of a global navigation satellite system (GNSS)

receiver and an inertial measurement unit (IMU) is used here.

Low-cost GNSS receivers provide sampling rates of 1 . . . 5Hz,

which is too low for accurate georeferencing. At a speed of

100 km/h, for instance, the distance traveled between two

sampling instances is 28m at 1Hz. A typical IMU sampling

rate of 100Hz translates to a spatial resolution of 0.28m

instead. So, sensor fusion of the GNSS and IMU data is

required to obtain position stamps with a sufficiently high

sampling rate for the position-dependent analysis of ABA

data. Low-cost IMUs often exhibit large calibration errors that

need to be taken into account, in addition to the permanent

vibrations due to the large Diesel engine. Typical areas of op-

eration, i.e., marshalling yards, industrial and harbor railways,

often challenge the GNSS reception. Satellite visibility is

compromised next to, e.g., buildings, cranes, container stacks,

and in underpasses. Restrictions on the antenna placement

challenge the GNSS reception further.

However, there are also simplifying aspects compared to

other positioning problems. First, the analysis of monitoring

data is often carried out after all data has been collected.

Hence, the georeferencing is an offline problem and the fusion

of map, GNSS, and IMU data can be performed by smoothing

rather than filtering algorithms [4], [5]. Moreover, this allows

for data pre-processing to correct time stamps and systematic

sensor errors, and to sort out irrelevant data. Second, rail

vehicles are bound to move on tracks that are connected

only at switches. Track-constrained motion models can be

used to exploit this fact in a sensor fusion algorithm. Here,

map information is required, which can be obtained from,

e.g., construction drawings or aerial photographs. The digital

representation of such a map allows for different tests to, e.g.,

see if the tracks are properly connected.

The relevant literature related to this paper can be split

into condition monitoring and positioning papers. Examples

of the former include [6] and [7], that both describe advanced

acceleration data analysis but merely mention GPS for geo-

referencing. The DLR works [1]–[3] describe georeferencing

challenges and solutions in more detail, and are here com-

plemented with a description of the currently implemented

georeferencing system. The rail vehicle positioning literature

is focused on online applications with a range of on-board

sensors. An early example of map-supported positioning using

turn rate and speed measurements is [8]. Positioning with an

eddy current sensor and a map is described in [9]. Mag-

netometer measurements are explored in [10]. Most recent

approaches rely on GNSS data in some form, as seen in

the survey [11]. Examples include [12], which claims high

accuracy through tightly coupled GNSS/IMU integration [13]

with maps; [14], which discusses the potential of map-
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Fig. 1. Braunschweig harbor area with a part of the railway network. Aerial
photograph: Stadt Braunschweig (Abteilung Geoinformation).

based multi-sensor positioning for safety critical applications;

[15], which employs Rao-Blackwellized particle filters [4]

for loosely coupled GNSS/IMU integration; and the DLR

contributions [16], [17] with approaches to handle multiple

track hypotheses. Aspects of path-constrained positioning, also

beyond the rail, are discussed in [18] and [19].

In contrast to the aforementioned positioning resources, this

paper focuses on an offline positioning algorithm that com-

bines map information with GNSS and IMU data. Our system

employs batches of data to first determine likely hypotheses

of the driven path in a network. Based on these, a Rauch-

Tung-Striebel smoother [4], [5] with a path-constrained motion

model estimates on-track positions and speeds. With the

georeferencing application and the limited sensor setup in

mind, a simple and pragmatic approach with a solid theoretical

sensor fusion foundation is developed. The development has

been carried out on large data sets collected on in-service

vehicles in the Braunschweig harbor railway, which provides

direct proof of the developed concepts.

The outline of the paper is as follows. Sec. II introduces

our multi-sensor system, the testbed, and the collected data.

Sec. III describes the developed algorithms. Experimental

results on real data are shown in Sec. IV. Concluding remarks

are given in Sec. V.

II. THE TEST SITE, SENSORS, AND DATA

DLR collaborates with the Braunschweig harbor1 as rail

infrastructure operator and prospective user of the developed

condition monitoring system. The harbor railway network

comprises more than 15 km of tracks with a connection to

the national rail network and is used as test site for the

developments of this paper. A segment of the network is shown

in Fig. 1.

In the harbor, two switchers arrange the transfer of goods

between water and rail. Both are equipped with modular

multi-sensor systems developed at DLR. The systems collect

monitoring data from ABA sensors and positioning data from

1Hafenbetriebsgesellschaft Braunschweig mbH, http://www.braunschweig-
hafen.de/

a GNSS receiver and an IMU. Due to the modular system

architecture, further sensors could be included in principle.

The minimal GNSS and IMU set-up is here selected for its low

cost and simple deployment without interfaces to safety critical

parts of the rail vehicles. The data management is performed

by the Robot Operating System2 on a Linux platform.

The ABA data are provided by an analog acceleration

sensor connected to a high-end analog-to-digital converter. For

experimental reasons, a rate of 20 kHz is used for recording,

which motivates for georeferences at high sampling rates. The

employed GNSS receiver is a u-Blox NEO-M8N3 with a roof-

mounted antenna. Its sampling rate is set to a desired value

5Hz but varies often. Besides horizontal position and speed

measurements, a large number of parameters are provided by

the receiver. Also accuracy information is included, though

without concise specifications. Similar GNSS receivers could

also provide raw data (pseudo-range, phase, and Doppler for

each satellite in view [13]). For simplicity reasons, we choose

to employ the internally calculated position and speed data

though. The employed IMU is an Xsens MTi4 that provides

3D accelerations, turn rates, and magnetic field strengths.

Currently, only the acceleration data are used, although the use

of turn rates can be viable [8], [16], [17]. The IMU frequency

of 100Hz determines the sampling rate of the georeferencing

system. Newer versions of the DLR multi-sensor system (used

in follow-up projects) are equipped with less expensive IMU

hardware.

In addition to the sensor data, a highly accurate digital map

of the harbor railway is used. Within the Application Platform

for Intelligent Mobility (AIM) research project [20], the map

has been produced from measurement data and accurate aerial

photographs provided by the city of Braunschweig. The map

comprises labeled line segments for each railway track, with

new track identifiers after every switch. Track connections are

encoded via common track start or end points.

All the presented work has been implemented in Python,

so as to make the tools easily distributable without the need

to purchase extra licenses. Hence, established Python modules

for handling large data sets or graph theoretic methods could

be used.

III. THE PROPOSED POSITIONING APPROACH

The following paragraphs describe the implemented posi-

tioning system. With the georeferencing application in mind,

we suggest a two-stage offline approach that separates finding

the driven path from a smoothing problem in path coordinates.

While having a solid theoretical foundation, the outlined

methods are simple to implement and simple to adjust for

alternative sensor configurations.

A. Separation into journeys

The analysis of ABA data yields useful results only when

the vehicle is moving. Therefore, the collected data is divided

2ROS, http://www.ros.org/
3https://www.u-blox.com/
4https://www.xsens.com/
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Fig. 2. The graph of the railway network with track identifiers as node labels.

into journeys that comprise the motion between two stops.

Vehicle motion can be easily detected from the GNSS speed

or IMU data. Thresholds for minimum journey lengths (e.g.,

>10 s) and minimum speeds (e.g., >1m/s) ensure that irrele-

vant stop-and-go motion is excluded, e.g., while loading bulk

cargo to attached wagons.

The intuitive separation into journeys comes with several

advantages. Journeys start and end with zero speed, and within

a journey the speed does not change sign. The driving direction

(forward or backward facing) can be determined from the signs

of the longitudinal acceleration data at the beginning of a

journey. The data recorded between journeys can be employed

to determine the start and end tracks and positions. Without

any motion between journeys, the start position of journey i is

the end position of journey i−1. The recorded data in standstill

can be used for sensor calibration, i.e., bias correction of the

acceleration data. Finally, the track-bound motion within a

journey can be used to find the driven path, i.e., a sequence

of tracks.

B. A graph of the railway network

The digital railway map of Sec. II comprises information

about the Nt tracks of the network, e.g., track identifiers ti and

lengths Lt,i with i = 1, . . . , Nt. The connection information

enters in the form of shared start or end points and can be used

to construct a mathematical graph G [21] with one vertex per

track. Edges of G are included only for allowed transitions at

track switches, which can be determined from the angles of

the connected line segments. Fig. 2 illustrates the graph of our

test railway network with 89 tracks. The node labels are the

track identifiers ti.

Positions on track t are determined by a scalar distance dt ∈
[0, Lt]. The connection type of adjacent tracks, e.g., that dt,i =
Lt,i on ti corresponds to dt,j = 0 on tj , can be encoded in the

edge weights of G. This is relevant to create path coordinate

frames from the railway network graph.

Our Python implementation uses the NetworkX package5

for representing G, which provides several useful functions.

5http://networkx.github.io/

C. Local Cartesian, track, and path coordinates

Arbitrary horizontal positions are expressed in a local

Cartesian coordinate frame and denoted as p = (x, y). For the

conversion of the GNSS latitude and longitude, the Universal

Transverse Mercator projection (UTM, grid zone 32N) is used.

However, the origin is shifted such that p = (0, 0) corresponds

to the position of the vehicle depot in the harbor area.

On-track distances dt can be easily mapped to positions p

by finding the corresponding line segment of the track t. Let

p = φt(t, dt) denote the function for this conversion from

track coordinates to Cartesian coordinates.

For arbitrary p there are no exact (t, dt) in general. How-

ever, orthogonal projections can be used to find the closest

track coordinates. Such simple map-matching is denoted by

(t, dt) = ψt(p).
Journeys typically comprise motion on a sequence of tracks.

Therefore, we introduce the concept of a path P which

comprises an ordered sequence of tracks [ti], i = 1, . . . ,MP,

visited during a journey. Valid paths must comply with the

structure of G. That is, for ti−1 and ti that are connected

at dt,i = 0, ti and ti+1 must be connected at dt,i = Lt,i.

To simplify the handling of such information, track orienta-

tions ot,i ∈ {−1, 1} with respect to the path are introduced.

The length L of a path P follows from the sum of track lengths:

L =
∑MP

i=1
Lt,i. (1)

Similar to track coordinates (t, dt), we can introduce path

coordinates (P, d) that describe positions on the path P with

a scalar variable d ∈ [0, L]. Using the track lengths Lt,i and

the orientations ot,i of P, distances d can be easily mapped to

(t, dt) and subsequently to Cartesian coordinates. Let

p = φ(P, d) (2)

denote the function for this conversion. Furthermore, let

d = ψ(p,P) (3)

denote the path distance obtained by projecting p onto the

tracks of P, expressed in the path coordinates of P.

D. Time considerations

A main objective of the georeferencing is to obtain regularly

sampled position stamps with a higher sampling rate than the

GNSS frequency, which is varying around an average of 5Hz.

This is achieved by running algorithms that are based on

discrete-time state-space models with the IMU sampling rate

of 100Hz. Let k = 0, . . . , L be the time index that describes

the times of a journey in steps of T = 10ms. The GNSS and

IMU time stamps are quantized to appear as multiples of T.

Furthermore, delayed IMU measurements that sporadically

arrive in batches are re-distributed before processing.

Clearly, GNSS and IMU data are not available for all k due

to the low GNSS rate and sporadic inconsistencies in the IMU

data. Hence, we introduce the index sets SGNSS and SIMU that

contain the k with available GNSS and IMU data, respectively.



E. Generation of path hypotheses

A central idea of our approach is to first estimate likely path

hypotheses from the GNSS data, and second, to perform state

estimation in path coordinates given each path hypothesis.

Hence, the objective is to estimate a path P and a sequence of

states x0:L = {x0, x1, . . . , xL} from a sequence of measure-

ments y1:L. Even without specifying x0:L and y1:L, we can

assert that the Bayesian solution [4] amounts to finding the

conditional mixed point mass and probability density function

p(P, x0:L | y1:L) = p(P | y1:L)p(x0:L |P, y1:L). (4)

Apparently, the problem can be split into finding the con-

ditional path probabilities p(P | y1:L) and a smoothing prob-

lem [4] given the paths, p(x0:L |P, y1:L).
Now, the point mass function p(P | y1:L) is not simple to

compute. After all, it would require assessing all possible paths

in the network. Instead, we pursue the following pragmatic

approach based on the GNSS position measurements p̄k,

k ∈ SGNSS. With the standstill data between journeys at hand,

likely start and end tracks can be estimated easily. A list of

path hypotheses Pi, i = 1, . . . , NP, between these track pairs

can be queried using the network graph G. For each Pi, path-

matched Cartesian positions can be obtained using (2) and (3),

p̄′k = φ
(

Pi, ψ(p̄k,Pi)
)

. (5)

The above positions on the path Pi allow for computing

projection errors p̄′k − p̄k from the GNSS data, which can be

assessed to find the best Pi. The intuition behind this method

is that the GNSS position sequences, although corrupted by

local errors, still contain enough information about the path.

Metrics for assessing the projection errors are subject to closer

investigation. Important is that they are robust with respect to

spurious large errors (unlike mean squared errors) but also take

into account the entire error sequence (unlike median errors).

F. Filtering and smoothing in path coordinates

The following paragraphs describe the sensor fusion of

GNSS and IMU data given a valid path P. By working in path

coordinates, the horizontal positioning is reduced to estimating

scalar distances dk. This exploits the track-bound vehicle

motion and reduces the number of unknowns to be estimated.

By working on journeys, we furthermore know whether the

vehicle is moving forward or backward and that the speed sk
does not change sign.

The employed Kalman filter (KF) framework is based on

discrete-time state-space models. The state vector is given by

xk =
(

dk, sk
)

(6)

and comprises the distance and speed in path coordinates.

The temporal evolution of xk is well described by a constant

velocity model

xk+1 =

[

1 T

0 1

]

xk +

[

T2/2
T

]

vk = Fxk +Gvk, (7)

which is a common choice for positioning problems. The

process noise vk is characterized by

vk ∼ N (āk, Q), k ∈ SIMU, (8)

and used to include the longitudinal acceleration measure-

ments āk. Hence, the IMU data are interpreted as noisy

model input rather than measurements. For k /∈ SIMU we

assume āk = 0. Depending on the driving direction of the

rail vehicle, the sign of all āk is adjusted such that positive

values increase sk.

From the above model follows a KF time update [4], [5]

x̂k+1|k = Fx̂k|k +Gāk, (9a)

Pk+1|k = FPk|kF
T +GQGT (9b)

that provides a predicted state estimate and its error covariance

matrix based on the filtering results of time k. The speed

predictions ŝk+1|k are not constrained to be positive, which

would violate the journey assumptions. If necessary, the results

are therefore adjusted according to

ŝk+1|k = max(ŝk+1|k, 0). (10)

The measurement vector yk contains the GNSS position

and speed measurements for k ∈ SGNSS. The measurement

equation is formally given by

yk =
(

p̄k, s̄k
)

= h(xk) + ek, (11)

where ek describes the measurement noise to be specified.

Whereas the speed is linearly related to xk, the position

measurements exhibit a nonlinear relation. Accordingly, a

nonlinear KF update must be performed [22] for the latter.

We propose separate KF measurement updates for p̄k
and s̄k. This provides the means to select which measurements

to process depending on the GNSS accuracy indications,

and retains a linear KF update for s̄k. The theory requires

uncorrelated measurement errors for separate updates [4],

which appears in conflict with the fact that p̄k and s̄k stem

from the same device. However, the speed measurements are

derived from the Doppler shifts in the carrier satellite signals

whereas the positions are computed from the corresponding

pseudo-ranges [13]. Hence, explicit dependencies are difficult

to model and the assumption of zero correlation is justified.

Because the GNSS speed derived from Doppler shifts is

typically very accurate, the measurements s̄k are processed

first. Their relation to the state vector is given by

s̄k =
[

0, 1
]

xk + s̃k = Hsxk + s̃k. (12)

The noise s̃k in the speed measurements is modeled by

s̃k ∼ N (0, Rs
k), (13)

where Rs
k is determined by the accuracy parameter provided

by the receiver, increased by a tuning factor.



The Kalman gain and the updated state estimate and covari-

ance are given by

Ks
k = Pk|k−1(H

s)T/
(

HsPk|k−1(H
s)T +Rs

k

)

, (14a)

x̂sk|k = x̂k|k−1 +Ks
k

(

s̄k −Hsx̂k|k−1

)

, (14b)

P s
k|k = Pk|k−1 −Ks

k

(

HsPk|k−1(H
s)T +Rs

k

)

(Ks
k)

T. (14c)

For absent (or rejected) speed measurements, the prediction

results are maintained, i.e., x̂s
k|k = x̂k|k−1 and P s

k|k = Pk|k−1.

The measurement equation for the GNSS position is

p̄k = φ(P, dk) + p̃k = hp(xk) + p̃k (15)

and contains the nonlinear mapping from path to Cartesian

coordinates. Again, the noise is assumed Gaussian with

p̃k ∼ N (0, Rp
k) (16)

and Rp
k as increased accuracy parameter provided by the

GNSS receiver.

Because of the nonlinear relation in (15), a nonlinear KF

measurement update is required [22]. We employ an extended

Kalman filter (EKF) correction with a numerically computed

Jacobian matrix of φ(P, dk) that is column-wise given by

Hp
k(:, 1) =

1

∆d

(

φ(P, d̂sk|k + ∆d
2
)− φ(P, d̂sk|k − ∆d

2
)
)

,

Hp
k(:, 2) =

(

0 0
)

(17)

and determined by a step length ∆d. The EKF update is

completed by

Kp
k = P s

k|k(H
p
k)

T
(

Hp
kP

s
k|k(H

p
k)

T +Rp
k

)−1

, (18a)

x̂k|k = x̂sk|k +Kp
k

(

p̄k − φ(P, d̂sk|k)
)

, (18b)

Pk|k = P s
k|k −Kp

k

(

Hp
kP

s
k|k(H

p
k)

T +Rp
k

)

(Kp
k)

T. (18c)

Again, previous results are kept for absent or rejected measure-

ments p̄k, i.e., x̂k|k = x̂s
k|k and Pk|k = P s

k|k. Furthermore, the

speed is adjusted similar to (10) after (14) and (18).

There are alternatives to the above EKF correction (18).

Based on experiments, it could be shown that the choice of

KF variant is secondary. Unscented KF and EKF with divided

differences [22] show similar performance in this specific

example.

The KF equations (9), (14), and (18) are initialized with

a state estimate x̂0|0 and its covariance P0|0, computed from

the measurements prior to and at k = 0, and iterated for all

k = 0, . . . , L. The filtering and prediction results form the

basis for the following smoothing iteration.

Because of the separate estimation of the driven path, the

above filtering stage is fundamentally different from other

approaches that jointly estimate track identifiers and on-track

positions. The explicit treatment of path hypotheses allows for

the application of KF to achieve the actual fusion of sensor

and map data. With the typically low number of likely path

hypotheses, the computational costs are low compared to, e.g.,

the particle methods of [15] that require a large number of

particles (joint track and state hypotheses in essence) to work

well. A multiple KF approach for online applications with

an online management of path hypotheses, an idea that [18]

implemented for road networks, appears promising and is

subject to future work.

The fact that we operate in an offline-setting allows for

the improvement of the filtering results via smoothing. The

smoothing extension to the KF is called the Rauch-Tung-

Striebel (RTS) smoother [4], [5] and amounts to a backward

iteration for k = L− 1, . . . , 0. The update equations

Λk = Pk|kF
TP−1

k+1|k, (19a)

x̂k|L = x̂k|k + Λk(x̂k+1|L − x̂k+1|k), (19b)

Pk|L = Pk|k + Λk

(

Pk+1|L − Pk+1|k

)

ΛT
k (19c)

exhibit structural similarities with the measurment up-

dates (14) and (18). However, previously obtained prediction,

filtering, and smoothing results are combined without re-

processing any measurements yk. The RTS iteration is typ-

ically initialized with the filtering results at k = L. However,

we include the accurately determined final position from the

standstill data and the zero-speed knowledge here.

A major advantage of the RTS iteration is that possible

jumps in the filtering results at the times k ∈ SGNSS, both

in x̂k|k and Pk|k, are smoothed out. This is especially useful

for longer periods of absent GNSS data during which only

time updates (9) are carried out. Here, Pk|k = Pk|k−1

increases until the next available k ∈ SGNSS. The difference

between x̂k|k and x̂k|k−1 is larger due to the large difference

between the measurements and the predicted outputs. The

results of (19) exhibit much more consistent results in general.

An important requirement for a working smoother is that

the motion model (7) reflects the vehicle motion accurately,

though.

IV. EXPERIMENTAL RESULTS

The here presented experiments have been carried out

on data collected in the Braunschweig harbor railway since

September 2015. In the period until June 2017, more than 6000

journeys longer than 10 seconds were recorded. This amounts

to more than 140 hours of journey motion. The journeys have

a median and mean length of 80 and 50 seconds, respectively.

The longest journey is over 18 minutes long. The deployed

systems are still in use and recording continuously.

Due to space constraints, results are presented for two

representative journeys.

A. On the GNSS and IMU measurements

We discussed the discrepancies in sampling time between

the GNSS and IMU data. Here, we show examples that

demonstrate their error characteristics.

Fig. 3 illustrates the GNSS positions of one journey from

south-east to north-west. The coloring illustrates the respective

GNSS speeds. The positions appear close to the driven tracks

most of the times, but show larger deviations while passing

under a highway bridge in the lower right corner of the figure.

Fig. 4 provides a closer look at this segment. The compromised
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Fig. 3. The GNSS data of one journey, starting in the south-east. The GNSS
positions do not lie on tracks exactly and exhibit larger errors while passing the
highway bridge in the lower right of the figure. The GNSS speed is included
via line coloring and exhibits unlikely deviations next to the bridge.
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Fig. 4. A zoom of the data in Fig. 3 highlights the errors next to the bridge.
The black circles illustrate the optimistic GNSS uncertainty as provided by
the receiver.

satellite view leads to large GNSS errors. Clearly, simple map

matching to the closest tracks leads to inconsistent results here.

Also illustrated is a 95 percent uncertainty circle derived from

the horizontal position accuracy parameter provided by the

receiver. Although the receiver is over-confident, the quali-

tative information is still valuable and used to determine the

position measurement covariance Rp
k used in our sensor fusion

algorithm. Furthermore, the speed measurements exhibit false

accelerations after entering the underpass.

Speed measurements for a different journey are illustrated

in Fig. 5. Specifically, we show the GNSS speed with uncer-

tainty intervals and the integrated longitudinal acceleration as

functions of time. The GNSS speed exhibits a lower sampling

rate and spurious larger errors, e.g., when going through an

underpass after the 250 second mark. Similar to the GNSS

position, the uncertainty information provided by the receiver

is optimistic. The dead reckoned IMU speed is available at a

much higher rate, but drifts with time and heavily depends on

the IMU bias. After all, a constant acceleration bias results

in linearly and quadratically increasing speed and position

errors, respectively. Clearly, fusion of IMU and GNSS data

is required.
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Fig. 5. GNSS speed measurements and the integrated longitudinal IMU
acceleration. The former exhibits spurious large errors, the latter drifts with
time due to bias errors.
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Fig. 6. Path hypotheses for one journey (zoom). The paths partially occlude
another because of shared tracks. The GNSS positions lie close to P3.
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Fig. 7. Projection errors for the path hypotheses of Fig. 6. Hypothesis P3

shows the best performance.

B. On finding paths

We here illustrate the method to determine the driven path

from a sequence of GNSS positions, described in Sec. III-E.

Fig. 6 shows a segment of the railway network with three path

hypotheses (P1, P2, P3, partially occluded by another). Also

shown are the GNSS measurements that are very close to P3.

Fig. 7 shows the corresponding projection errors between

the measured and path-matched GNSS positions. Again, there

is occlusion because the hypotheses share tracks. Nevertheless,

it can be seen that P3 clearly outperforms its competitors. It

should be noted that several tracks with lower projection errors

could exist, but that they have been excluded because they do
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Fig. 8. RTS smoothing results for the journey of Fig. 3. The large errors
in speed and position next to the bridge have been eliminated. The original
GNSS positions are included in black.
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Fig. 9. RTS smoothing speed estimates including uncertainty intervals for
the journey of Fig. 5. Also included are the GNSS speed measurements.

not belong to a valid path between the start and end tracks.

One such example is the left branch under the bridge in Fig. 4.

C. Filtering and smoothing results

The RTS smoothing results for the journey of Fig. 3 are

shown in Fig. 8. Clearly, the GNSS errors next to the bridge

(Fig. 4) are corrected in terms of speed and position. It should

be noted that the spatial resolution of position stamps has been

increased due to the sampling rate of 100Hz.

The RTS smoothing speed estimates for the journey of Fig. 5

are given in Fig. 9. The smooth signal without the spurious

errors of the GNSS speed reflects the vehicle motion very

well. The robustness towards intermittent GNSS disturbances

is further highlighted in the zoomed segment of Fig. 10.

A comparison of the KF and RTS results is given in Fig. 11.

Illustrated are the distance estimates d̂k|k and d̂k|L obtained

by filtering and smoothing with their respective uncertainty

intervals. In order to highlight the smoothing advantages, the

GNSS data between 140 and 155 seconds have been removed.

Accordingly, the KF results show increasing uncertainties until

the 155 second mark and a subsequent jump in the state

estimate. The RTS results no longer exhibit these jumps and

provide a more consistent picture.
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Fig. 10. A zoom of Fig. 9 shows the smoothed speed in comparison to the
noise-corrupted GNSS data.
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Fig. 11. Comparison of KF and RTS results for the distance in path coordi-
nates. To highlight the smoothing advantages in the absence of measurements,
no GNSS data were processed between 140 and 155 seconds.

V. CONCLUDING REMARKS

It has been shown that accurate track-selective georefer-

encing of monitoring data can be achieved by combining

map information with IMU and GNSS data. Specifically, we

have presented a two-stage approach which first determines

likely path hypotheses from the GNSS positions, and second,

calculates RTS-smoothed position and speed estimates in path

coordinates. All developments have been carried out on real

data collected in the Braunschweig harbor railway, with the

purpose to provide position information for the monitoring

data of a track condition monitoring system developed at DLR.

Future work includes the adaptation of the proposed algo-

rithms to real-time positioning, based on online management

of path hypotheses and multiple path-constrained Kalman

filters. In order to challenge our algorithms in a larger testbed,

a joint research project with the Hamburg Port Authority

as operator of a larger industrial railway network has been

initiated in 2017. From a positioning viewpoint, prospective

research directions include the combination of further sensor

data that is readily available with map information. That

includes the up to now unused IMU data (turn rates, lateral and

vertical accelerations) as well as the GNSS raw data (pseudo

ranges, phase, Doppler).
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