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Abstract

Many traditional challenges in reconstructing 3D mo-

tion, such as matching across wide baselines and handling

occlusion, reduce in significance as the number of unique

viewpoints increases. However, to obtain this benefit, a new

challenge arises: estimating precisely which cameras ob-

serve which points at each instant in time. We present a

maximum a posteriori (MAP) estimate of the time-varying

visibility of the target points to reconstruct the 3D motion

of an event from a large number of cameras. Our algo-

rithm takes, as input, camera poses and image sequences,

and outputs the time-varying set of the cameras in which a

target patch is visibile and its reconstructed trajectory. We

model visibility estimation as a MAP estimate by incorpo-

rating various cues including photometric consistency, mo-

tion consistency, and geometric consistency, in conjunction

with a prior that rewards consistent visibilities in proximal

cameras. An optimal estimate of visibility is obtained by

finding the minimum cut of a capacitated graph over cam-

eras. We demonstrate that our method estimates visibility

with greater accuracy, and increases tracking performance

producing longer trajectories, at more locations, and at

higher accuracies than methods that ignore visibility or use

photometric consistency alone.

1. Introduction

Thousands of images exist for most significant land-

marks around the world. The availability of such imagery

has facilitated the development of large-scale 3D recon-

struction algorithms, which fully leverage the number of

views to produce dense and accurate 3D point clouds [16,

13, 8]. Increasingly, landmark events are also being cap-

tured at scale by hundreds of cameras at major sports games,

concerts, and political rallies. However, analogous large-

scale reconstruction algorithms, that are able to fully lever-

∗http://www.cs.cmu.edu/˜hanbyulj/14/visibility.html

age a large number of views of an event to produce long,

dense, and accurate 3D trajectories, do not yet exist.

Such video-based 3D motion reconstruction is challeng-

ing, as natural motion produces a greater occurrence of

measurement loss due to occlusion and also causes artifacts

in imagery (e.g., motion blur and texture deformation). Uti-

lizing a large number of cameras can address these chal-

lenges, because it is likely to (1) narrow the average base-

line between nearby cameras, (2) reduce the occurrence of

occlusion, and (3) provide robustness to measurement noise

due to the surplus views. However, previous approaches are

unable to fully leverage the increasing number of views to

improve 3D tracking performance (in terms of the average

length of reconstructed trajectories, the density of the tra-

jectories, and the accuracy of localization). The principal

cause of failure emerges from errors in reasoning about the

time-varying visibility of dynamic 3D points. Poor visibil-

ity reasoning severely affects tracking performance, as an

algorithm cannot benefit from an alternate viewpoint if it is

unaware that the point is visible in the alternate view. Fur-

thermore, an erroneous conclusion that a point is visible in a

camera can bias the reconstruction, often producing a char-

acteristic “jump” artifact where a point assumes the identity

of a different location.

In this paper, we demonstrate that precise inference of

point visibility allows reconstruction algorithms to fully

leverage large numbers of views to produce longer 3D tra-

jectories with higher accuracy. In particular, our core algo-

rithmic contributions are: (1) the use of motion consistency

as a cue for the visibility of moving points; (2) the use of

viewpoint regularity as a prior and a measure for viewpoint

proximity; and (3) a maximum a posteriori (MAP) estimate

for visibility estimation by probabilistically incorporating

these cues with photometric and geometric consistency. We

report empirical performance in reconstructing 3D motion

captured by 480 cameras in scenes that contains significant

occlusion, large displacement, and changes in the topology

of the scene.
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2. Related Work

Dynamic 3D reconstruction approaches can be broadly

categorized in methods that use silhouettes for reconstruc-

tion (e.g., [5, 6, 18, 24, 3]) and methods that use correspon-

dence for reconstruction (e.g., [22, 4, 7]. Silhouette-based

approaches typically use visual hulls to produce highly

dense reconstruction, but require subsequent processing to

estimate 3D trajectories [5, 18]. Surface matching algo-

rithms are used to provide dense correspondences between

consecutive frames [20, 17, 21]. In these approaches, mesh

models in each frame are independently generated using

shape-from-silhouette techniques, and sparse matching be-

tween key mesh vertexes are performed using various cues

such as shape and appearance features. Dense matching is

then carried out based on the sparse matches using a regu-

larized cost function based on geodesic distance. The ac-

curacy of motion estimation depends highly on the initial

surface and texture, and is limited by the vertex resolution.

Silhouette-based methods also require stationary cameras to

be able to estimate accurate silhouettes.

In comparison to silhouette-based reconstruction ap-

proaches, correspondence-based methods produce sparser

reconstructions, but do not require stationary cameras

and can directly produce 3D trajectories. Among

correspondence-based methods, perhaps the most related

approaches are scene flow reconstruction methods, intro-

duced by Vedula et al. [22]. Independently estimated 2D op-

tical flow from multiple calibrated cameras was triangulated

to generate the 3D flow, assuming that visibility was given

a priori via reconstructed object shape. Several subsequent

algorithms also have been proposed to recover both shape

(depth) and motion simultaneously [1, 23, 11]. The ba-

sic assumption in these approaches is brightness constancy

(or photometric consistency), which is used to determine

the correspondences across views; spatial regularization is

used to condition the optimization and reduce the noise.

While these approaches represent the target as a 3D point,

other approaches use richer 3D representation such as dy-

namic surfels [4, 7] or meshes [9]. Mesh-based approaches

have demonstrated robust results, producing trajectories of

longer duration, but at the cost of assuming a fixed topology

with a known mesh, and through the use of regularization.

Typically, in previous work, only a small number of

cameras are considered. In scene flow approaches, stereo

cameras are usually used, and other approaches also use at

most 10 to 20 cameras (17 by Vedula et al. [22], 22 by Fu-

rukawa and Ponce [9], 8 by Huguet and Devernay [11], 7

by Carceroni and Kutalakos [4]). At this scale, informa-

tion loss due to motion blur, texture deformation, occlu-

sion, and self-occlusion are severe, and therefore necessi-

tate significant spatiotemporal regularization of reconstruc-

tions. In most algorithms, precise camera visibility infor-

mation is not considered, because the noise from a small
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Figure 1. The motion of a patch between time t− 1 and t is recon-

structed from multiple cameras.

number of outlier cameras can be ignored. Camera visibil-

ity is either assumed to be given by the 3D reconstruction al-

gorithm [22] or handled by a robust estimator [23, 7, 1, 14].

Patch-based methods use photometric consistency to de-

termine visibility by comparing the texture across views

[4, 7, 9]. However, these approaches require the texture of

the 3D patch, which depends heavily on the accuracy of the

recovered patch shape.

3. Notation

Our algorithm takes, as input, image sequences from N

calibrated and synchronized cameras over F frames and

produces, as output, 3D trajectories of P moving points

with their instantaneous orientations and associated visibil-

ity in each camera frame. Since the method is applied to

each point independently, we consider only a single point

here to simplify the exposition.

As shown in Figure 1, we track a parallelogram patch

centered on a target 3D point X ∈ R
3, whose extent is

defined by two additional points Yu and Yv ∈ R
3. The

texture information Q ∈ Rm associated with the patch is

defined by a unit vector concatenating normalized inten-

sity values at a fixed number of grid positions on the patch,

where m is the number positions in the grid1. The patch

S(t) is denoted by the set {X(t),Yu(t),Yv(t),Q(t)},

which is associated with the camera visibility set V(t) =
{v1(t), · · · ,vN (t)}, where vi(t) is a binary value repre-

senting visibility with respect to the ith camera. A 3D point

is projected onto the ith camera associated with a 3×4 pro-

jection matrix Pi. The projection matrix is parametrized by

1The texture vector Q is normalized as follows:

Q =
1

√

∑m
j=1

(Qj −Q)2









Q1 −Q
.
.
.

Qm −Q









, (1)

where Q =
∑m

j=1
Qj/m and Qj is the jth intensity value of the texture.
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a camera center vector Ci ∈ R
3 and a 3×3 rotation matrix

Ri ∈ SO(3). The “look-at” vector oi is aligned with the

z-axis of the camera, i.e., the third column of RT

i .

The 3D patch is projected onto the camera plane to form

the projected patch si(t) = {xi(t),y
u
i (t),y

v
i (t),qi(t)},

where xi(t), yu(t), and yv(t) ∈ R
2 are the projected

points, i.e., x̂i(t) ∼= PiX̂(t), ŷu
i (t)

∼= PiŶ
u(t), and

ŷv
i (t)

∼= PiŶ
v(t), where ·̂ is the homogeneous coordinate

representation of each vector. qi ∈ Rm is the texture in-

formation of the projected patch, which is defined by a con-

catenation of all the intensities from the ithcamera, corre-

sponding to the projected grid positions of S, and normal-

ized as in Equation (1). Ideally, Q = qi if the 3D patch

S is visible from the ith camera, discounting illumination

variation. We denote mi as 2D optical flow at xi(t − 1) in

the ith camera, as shown in Figure 1.

The relationship between the ith camera and patch can

be defined by the co-visibility set Γi = {γc
i , γ

p
i }, where

γc
i =

(X−Ci)
Toi

||X−Ci||
and γ

p
i =

(Ci −X)TN

||Ci −X||
,

γc
i encodes the angle cosine of the patch location with re-

spect to the camera “look-at” vector oi and γ
p
i encodes the

angle cosine of the camera location with respect to the 3D

patch normal N.

4. Overview

At the initial time instance t0, a target 3D patch is recon-

structed and, over time, the algorithm alternately estimates

the patch position and normal and its visibility with respect

to all cameras. It should be noted that t0 can be any arbi-

trary frame and that the tracking and the visibility compu-

tation are performed both forwards and backwards in time

from t0. We consider only forward tracking, from t− 1 to t

to simplify the description. The flow chart of our algorithm

is shown in Figure 2.

Patch Initialization. Given the images from different cam-

eras at the same time instance t0, the algorithm recon-

structs 3D points by matching features and triangulates

them within a RANSAC framework. A 3D patch centered

on X is reconstructed by maximizing the photometric con-

sistency among the cameras where the patch is visible2.

This initializes S(t0) and V(t0).
Patch Tracking. Given the previously obtained 3D patch

S(t−1) and visibility V(t−1), the algorithm estimates the

next 3D patch S(t) based on 2D optical flow in the cameras

defined by V(t − 1). For the ith camera in V(t − 1), op-

tical flow [12] is estimated at multiple scales at the points

xi(t − 1), yu
i (t − 1), and yv

i (t − 1). To eliminate unre-

liable flow, a backward-forward consistency check [19] is

performed for flow at each scale and only the most reliable

flow is retained. The next 3D positions, X(t), Yu(t), and

Yv(t), are estimated by triangulating optical flow outputs

within a RANSAC framework. The RANSAC process is

crucial since V(t − 1) may not be valid anymore at time

t, due to motion. After RANSAC, the normal is refined by

maximizing the photometric consistency among the images

that belong to the inliers of RANSAC, as in the patch ini-

tialization process.

Visibility Estimation. Based on the reconstructed S(t) and

its motion from S(t− 1), our approach finds the MAP esti-

mate of the current visibility set V(t) by fusing photomet-

ric consistency, motion consistency, and geometric consis-

tency, in conjunction with a Markov Random Field (MRF)

prior. Typically, the tracking process is severely affected

by false positive cameras where the target is not visible.

Poor visibility reasoning at the RANSAC stage can cause

a characteristic “jump” error to a different scene point, and

also reduces the normal refinement performance causing

frequent local minima during the optimization process. Our

precise visibility estimation results in longer trajectories of

higher accuracy.

Patch tracking and visibility estimation are interdepen-

dent processes. At each time instance, we can iterate these

two procedures until convergence; in practice, a single iter-

ation is usually sufficient.

5. Visibility Estimation

In this section, we present a method to compute the

maximum a posteriori (MAP) estimate of visibility V us-

ing photometric consistency, motion consistency, and ge-

ometric consistency, with a proximity prior. These cues

are represented using 2D texture {qi}
N
i=1, 2D optical flow

{mi}
N
i=1, and the co-visibility set {Γi}

N
i=1. Given these

cues and by applying Bayes theorem, the probability of vis-

2The cameras that participate in RANSAC are used as an initial visible

set, and the reference camera Pref is selected as the one closest to the ini-

tial 3D point in the iniler set. A 3D patch centered on X is initialized as a

fixed scale square patch (40mm×40mm), with N parallel to oref . We re-

fine the patch based on the method described by Furukawa and Ponce [10]

and select a new reference camera as the one closest to the current patch

normal. The corresponding visibility set is updated by selecting cameras

that have higher Normalized Cross Correlation (NCC) score than a thresh-

old compared to Pref . Within the patch initialization process, the normal

refinement and visibility update are iterated.



ibility is

P (V|q1,m1,Γ1, · · · ,qN ,mN ,ΓN )

∝ P (q1,m1,Γ1, · · · ,qN ,mN ,ΓN |V)P (V).

Given the visibility of each camera, we assume that (1)

the cues in that camera are conditionally independent to the

cues in other cameras and the visibility of other cameras,

(2) that each cue within the same camera is conditionally

independent to each other. The probability can be written

as

(
N∏

i=1

P (qi|vi)P (mi|vi)P (Γi|vi)

)
P (V). (2)

The MAP estimate of visibility V∗ can be obtained by max-

imizing the expression in Equation (2), i.e.,

V∗ = argmax
V

(
N∏

i=1

P (qi|vi)P (mi|vi)P (Γi|vi)

)
P (V),

or equivalently,

V∗ = argmax
V

N∑

i=1

logP (qi|vi) +

N∑

i=1

logP (mi|vi) +

+

N∑

i=1

logP (Γi|vi) + logP (V). (3)

We describe the probability of each cue and the prior in the

subsequent sub-sections, and compute the MAP estimate by

finding the minimum cut of a capacitated graph over cam-

eras [2].

5.1. Photometric consistency

Photometric consistency has been widely used for rea-

soning about visibility [16, 13, 8, 9, 7]. It measures the cor-

relation between the texture Q of a 3D patch and the texture

qi of the corresponding patch in the ith camera. Normal-

ized Cross Correlation (NCC) is one such measure of pho-

tometric consistency, which is robust to illumination varia-

tion. Since Q and qi are defined as normalized unit vectors

by Equation (1), QTqi measures the NCC. We model the

probability distribution of qi using a von Mises-Fisher dis-

tribution around Q, i.e., qi ∼ V(Q, κ), which is defined

by QTqi. κ is a concentration parameter that controls the

degree of variation of the texture. Lower values of κ allows

more variation between Q and qi. From the distribution,

we can describe the logarithm of the probability of qi given

vi as

logP (qi|vi) ∝ κQTqi. (4)

5.2. Motion Consistency

In dynamic scenes, motion is an informative cue for de-

termining visibility. Given the 3D motion of a patch, the

observed optical flow at the ith camera must be consistent

with the projected 3D motion of the target patch, if the patch

is visible from the camera view. In other words, motion

consistency requires that 2D optical flow mi must be con-

sistent with the projected displacement of the 3D motion

xi(t)− xi(t− 1).

We model the probability distribution of mi using a nor-

mal distribution around the projected 3D displacement, i.e.,

mi ∼ N (xi(t)− xi(t− 1), σ), where σ is the standard de-

viation capturing the certainty of the 3D motion estimation

in pixel units. Therefore, the log likelihood can be written

as

logP (mi|vi) ∝ −
‖mi − (xi(t)− xi(t− 1)) ‖2

2σ2
. (5)

Motion consistency is a necessary condition. We now

characterize cases when the motion consistency cue is am-

biguous. Let X(t) and X′(t) be two distinct points in 3D

space. Motion consistency cue is ambiguous if and only if

the following two conditions hold:

PiX̂(t) ∼= PiX̂
′(t)

PiX̂(t+ 1) ∼= PiX̂
′(t+ 1), (6)

where ‖X −Ci‖ > ‖X′ −Ci‖, i.e., X′(t) occludes X(t)
for the ith camera. In a static scene, motion does not exist

and thus, the motion consistency cue is always ambiguous

because X(t) = X(t+1) and X′(t) = X′(t+1). Another

case that occurs in practice is when the occluding patch and

the occluded patch lie on a body undergoing global transla-

tional motion, under a camera that approaches orthographic

projection.

We characterize the set of ambiguous motions where

Equation (6) holds, assuming that X(t) and X′(t) undergo

the same affine transform between frames, as

X(t+ 1) = AX(t) + a

X′(t+ 1) = AX′(t) + a, (7)

where A ∈ R3×3 and a ∈ R3 represent a 3D affine trans-

form. The motion consistency cue is ambiguous if and only

if the following condition holds:

X ∈ null ([a]×A) , (8)

where null(·) is the null space of ·. See the Appendix for a

proof. In ideal cases with infinite precision and zero mea-

surement noise, this condition rarely occurs (if there is mo-

tion).
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5.3. Geometric consistency

Oriented patches are only visible from cameras whose

“look-at” vector oi is in the opposite direction to the patch

normal N and in front of it. We incorporate this geometric

cue based on the co-visibility set Γi considering the cam-

era position relative to the patch normal direction and the

patch position relative to the camera “look-at” vector. The

probability of Γi, given visibility vi, can be written as

P (Γi|vi) =

{
1

(1−τc)(1−τp)
if γc

i ≥ τc, and γ
p
i ≥ τp

0 otherwise,
(9)

where τc < 1 is the cosine angle representing the field of

view of the camera, and τp < 1 is a threshold (cosine angle)

to determine the angular visibility with respect to the patch

normal. Figure 3(a) shows an example of the cue, where the

shaded area represents the valid region according to τp.

5.4. Visibility Regularization Prior

Under a Markov Random Field prior over camera visibil-

ity, we decompose the joint probability of visibility P (V)
into pairwise probabilities, i.e.,

P (v1, · · · ,vN ) =
∏

i,j∈G(i)

P (vi,vj), (10)

where G(i) is the set of adjacent camera indices of the ith

camera. This decomposition captures the prior distribution

of visibility, representing the prior that two cameras that

have similar viewpoints are likely to have consistent visibil-

ity. This proximity constraint constitutes prior knowledge

that can regularize noisy visibility when both photometric

consistency and motion consistency cues are weak (e.g., due

to motion blur in an individual camera). We model the log

likelihood of the joint probability as follows:

logP (v1, · · · ,vN ) ∝
∑

i,j∈G(i)

gs(vi,vj), (11)

where gs is defined by the cost between two cameras using

the overlapping volume of the two camera frustums. This is

estimated as follows:

gs(Pi,Pj) =

∫
V
H(oT

i oj)Fi(v)Fj(v)dv∫
V
Fi(v) + Fj(v)− Fi(v)Fj(v)dv

, (12)

where v is an infinitesimal volume in the working space V

(see Figure 3(c)). Fi(v) is a binary function defined as

Fi(v) =

{
1 if v is visible from the ith camera

0 otherwise.
(13)

H is a Heaviside step function to take into account a pair

of cameras oriented in similar directions. Equation (11)

captures the ratio between the volume of the intersections

of camera frustums and the volume of the union of camera

frustums. Figure 3(b) illustrates gs where the shaded poly-

gon represents
∫
V
H(oT

i oj)Fi(v)Fj(v)dv, and Figure 3(c)

shows an example where H(oT

i oj) = 0.

In practice, we discretize the working volume using vox-

els and count the number of common voxels that are pro-

jected inside both cameras. This enables us to reward con-

sistent visibilities in proximal cameras.

5.5. MAP Visibility Estimation via Graph Cuts

We incorporate Equations (4), (5), (9), and (11) into

Equation (3) to find the MAP estimate of visibility V∗ and,

therefore, Equation (3) can be rewritten as:

V∗ = argmin
V

N∑

i=1

Ed(vi) +
∑

i,j∈G(i)

Es(vi,vj), (14)

where Ed encodes photometric consistency, motion consis-

tency, and geometric consistency, and Es encodes the prior

between cameras.

Ed(vi) =
‖mi−(xi(t)−xi(t−1))‖2

2σ2 − κQi
Tqi + δ(Γi)

Es(vi,vj) =

{
0 if vi = vj

gs(Pi,Pj) otherwise,

where δ = log(1 − τc)(1 − τp) if γc
i > τc and γ

p
i > τp,

or δ = ∞, otherwise. This minimization problem can be

optimally computed via graph cuts [2].

6. Results

We evaluate our algorithm on a variety of challenging

scenes in the presence of significant occlusion (Circular

Movement and Falling Boxes), large displacement (Confetti

and Fluid motion), and topological change (Falling boxes

and Volleyball). Our visibility estimation enables us to bet-

ter leverage a large number of cameras in producing accu-

rate and long trajectories. The dataset used in the evalua-

tion is summarized in Table 1 and is available on the project
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website. The sequences were captured at the CMU Panop-

tic Studio [15] containing 480 cameras capturing 640×480

video at 25 Hz. The cameras are extrinsically and intrinsi-

cally calibrated, and are synchronized via an external clock.

Table 1. Summary of the datasets.

Sequence Frames Duration # of points Av. traj. length

Circ. Movement 250 10.0 sec 10433 404.9 cm

Volleyball 210 8.4 sec 8422 326.4 cm

Bat Swing 200 8.0 sec 3849 224.1 cm

Falling Boxes 160 6.4 sec 17934 164.7 cm

Confetti 200 8.0 sec 10345 103.0 cm

Fluid Motion 200 8.0 sec 3153 123.1 cm

6.1. Quantitative Evaluation

Visibility Estimation Accuracy. We select an arbitrary

patch in the Circular Movement sequence reconstructed at

a time instance, and manually generate ground-truth visibil-

ity data at each sampled time instance by selecting cameras

where the target patch is visible. We compare our visibility

estimation method (MAP) against a baseline method based

on photometric consistency alone, which is a cue commonly

used by previous approaches [4, 7, 9]. Visibility estima-

tion results generated from each method at a time instance

are visualized in Figure 4. As a criterion, we compute the

true positive detection rate between the ground truth data

and V(t) estimated by both methods. The true positive rate

from each method is shown in Figure 4(e), demonstrating

that our method outperforms the baseline method by a sig-

nificant margin.

Tracking Accuracy and Length. We evaluate our method

considering both tracking accuracy and trajectory length.

Inspired by the evaluation criterion proposed by Furukawa

and Ponce [9], a test sequence is generated by appending it

at the end of itself in reverse order, and the tracking algo-

rithm is performed on the generated sequence. The tracked

patches must return back to the original position, if track-

ing is accurate. In this experiment, the 3D error is defined

by the 3D distance between initial and the final locations of
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Figure 5. (a) Our MAP estimate outperforms the baseline method

in terms of the number of trajectories and the length of trajectories.

(b) Our method leverages the large number of views, and shows a

faster increasing curve than the baseline method.

the target point. We generate five test sequences using the

Circular Movement sequence by changing the duration (10

to 50 frames) from a fixed initial frame. For the evaluation,

we count the number of successfully reconstructed trajecto-

ries that have less than 2 cm drift error. Figure 5(a) shows

a histogram of the number of trajectories using 480 cam-

eras. Our MAP estimate method outperforms the method

based on photometric consistency in terms of both number

of trajectories and length of trajectories. We also perform

experiments with different number of cameras by uniformly

sampling cameras to examine its impact on tracking success

rate. Figure 5(b) shows how our method leverages a large

number of cameras. Note that the number of successfully

tracked trajectories increases faster than the method based

on photometric consistency.

6.2. Qualitative Evaluation

Visibility Boundary. We qualitatively demonstrate the per-

formance of our MAP visibility estimation using the Bat

Swing sequence by illustrating cameras in the visibility set

in 3D, and showing the projection of the target patch in the

images, as shown in Figure 6. This result shows a clean visi-

bility boundary, showing the occluded views by the baseball

bat.

3D Trajectory Recontruction. We generate an initial patch



Figure 6. We qualitatively demonstrate the performance of MAP visibility estimation using the Bat Swing sequence. The normal of the

selected patch is shown as a red arrow in the 3D view (left) and projected patch is shown as a red polygon in each image (right). The images

with a blue boundary are the views that belongs to the visibility set. The bat occludes the patch and its effect can be seen as a “shadow” on

the visibility set of cameras (left).

cloud for a selected time instance, and perform forwards

and backwards patch tracking, up to 150 frames, for all the

sequences summarized in Table 1. Figure 7 shows the re-

constructed trajectories. The reconstructed time instances

are color coded. Note that our method can be applied multi-

ple times to different time instances to increase the density

of the trajectories.

Circular movement: Three people rotate around the per-

son at the center (Figure 7(a)). This experiment is used to

evaluate our method in terms of visibility reasoning

Volleyball: Two people play volleyball (Figure 7(b)). We

demonstrate an event where motion is fast and occlusion is

severe. We are able to reconstruct the trajectories of the ball

and players.

Bat swing: A person swings a baseball bat. The recon-

structed long trajectories can provide a computational basis

for sport analytics, capturing subtle motion (Figure 7(c)).

Falling boxes: A person collides with stacked boxes and

the boxes collapse. The scene includes severe occlusion and

topological change of the structure (Figure 7(d)).

Confetti: A person throws confetti in the air. 3D recon-

struction of such sequences is challenging because of oc-

clusion and appearance changes. Visibility estimation is

challenging as the confetti are small and their appearance

changes abruptly (Figure 7(e)).

Fluid motion: We generate turbulent flow in a room using

a fan and small confetti (Figure 7(e))3.

7. Discussion

We present a method to estimate the time-varying visibil-

ity for 3D trajectory reconstruction to leverage large num-

bers of views. We present novel cues (motion consistency,

geometric consistency, and visibility regularization prior)

for visibility estimation, and fuse them with the commonly

used photometric consistency cue, within a MAP estimation

framework. We demonstrate that our algorithm provides a

more accurate visibility and, consequently, produces longer

3For this result, we turned off geometric consistency by setting τc = 0
and τp = 0, as the objects are well approximated by planes.

and denser 3D trajectories than a baseline using only pho-

tometric consistency. Unlike the photometric consistency

cue, The motion consistency cue is complementary to the

photometric cue, as it does not require the texture and the

explicit 3D shape of the target 3D patch. Although the mo-

tion consistency cue can be ambiguous, this ambiguity, in

practice, usually occurs for the cameras behind the target

patch when the whole object body (including the patch) un-

dergoes pure translation; this case is handled well by the

geometric consistency of the patch and camera.

A key benefit of our approach is that it does not use

any spatial or temporal regularization over the position of

the point—the regularization used in our approach is over

visibility. This results in “faithful” reconstruction of 3D

point motion, that is not biased or smoothed out by prior

models of deformation. The most common cause of failure

are imaging artifacts, such as motion blur and saturation.

As these kinds of artifacts are unavoidable especially when

considering outdoor environments, an important direction

of future work is to investigate techniques to re-associate

points.

Appendix

Proof of Equation (8): Without loss of generality, we

can define the projection matrix as P =
[
I 0

]
. Then,

Equation (6) can be rewritten as,

[X′(t)]× X(t) = 0 (15)

[X′(t+ 1)]× X(t+ 1) = 0, (16)

given P =
[
I 0

]
where [·]× is the skew-symmetric rep-

resentation of cross product. X′(t) is linearly proportional

to X(t) because of Equation (15) and thus, X′(t) = αX(t)
where α is a scalar. α 6= 1 because then X′(t) 6= X(t).

From Equation (7), Equation (16) can be rewritten as,

0 = [AX′(t) + a]× (AX(t) + a)

= [AX′(t)]× AX(t) + [a]× AX(t)

+ [AX′(t)]× a+ [a]× a

= (1− α) [a]× AX(t), (17)



Frame
t0 100− t0 150+0t

(a) Circular movement

Frame
t0 100− t0 100+0t

(b) Volleyball

Frame
t0 150− t0 50+0t

(c) Bat swing

Frame
t0 90− t0 70+0t

(d) Falling boxes

Frame
t0 100− t0 80+0t

(e) Confetti

Frame
t0 50− t0 40+0t

(f) Fluid motion

Figure 7. We reconstruct 3D trajectories in real world scenes in the presence of significant occlusion, large displacement, and topological

change. The color codes the time that trajectory points are reconstructed. Note that each trajectory is individually reconstructed without

any spatial or temporal regularization.

where [AX′(t)]× AX(t) = α [AX(t)]× AX(t) = 0.

Equation (17) implies Equation (8).
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