
 Open access Proceedings Article DOI:10.1063/1.52386

Mapa-an object oriented code with a graphical user interface for accelerator design
and analysis — Source link

Svetlana G. Shasharina, John R. Cary

Published on: 01 Feb 1997

Topics: Graphical user interface

Related papers:

 Generating Graphic User Interface of Web Applications Using Source Code Generator Based on Dynamic Frames

 SPITZER bandmerge GUI

GUI generation based on language extensions: a model to generate GUI, based on source code with custom
attributes

A source code based model to generate GUI: GUI generation based on source code with declarative language
extensions

 Go4 on-line monitoring

Share this paper:

View more about this paper here: https://typeset.io/papers/mapa-an-object-oriented-code-with-a-graphical-user-interface-
2bp1jtr4df

https://typeset.io/
https://www.doi.org/10.1063/1.52386
https://typeset.io/papers/mapa-an-object-oriented-code-with-a-graphical-user-interface-2bp1jtr4df
https://typeset.io/authors/svetlana-g-shasharina-6baeez56bu
https://typeset.io/authors/john-r-cary-539uz94zrv
https://typeset.io/topics/graphical-user-interface-28pdd62o
https://typeset.io/papers/generating-graphic-user-interface-of-web-applications-using-4fzac50r47
https://typeset.io/papers/spitzer-bandmerge-gui-41uh3924v9
https://typeset.io/papers/gui-generation-based-on-language-extensions-a-model-to-4cqli3918l
https://typeset.io/papers/a-source-code-based-model-to-generate-gui-gui-generation-2rwh41y1nv
https://typeset.io/papers/go4-on-line-monitoring-4uswaixhre
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/mapa-an-object-oriented-code-with-a-graphical-user-interface-2bp1jtr4df
https://twitter.com/intent/tweet?text=Mapa-an%20object%20oriented%20code%20with%20a%20graphical%20user%20interface%20for%20accelerator%20design%20and%20analysis&url=https://typeset.io/papers/mapa-an-object-oriented-code-with-a-graphical-user-interface-2bp1jtr4df
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/mapa-an-object-oriented-code-with-a-graphical-user-interface-2bp1jtr4df
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/mapa-an-object-oriented-code-with-a-graphical-user-interface-2bp1jtr4df
https://typeset.io/papers/mapa-an-object-oriented-code-with-a-graphical-user-interface-2bp1jtr4df

MAPA - AN OBJECT-ORIENTED CODE WITH A GRAPHICAL USER
INTERFACE FOR ACCELERATOR DESIGN AND ANALYSIS

Svetlana G. Shasharina, Weishi Wan and John R. Cary

Center for Integrated Plasma Studies and Department of Physics
University of Colorado

Boulder, CO 80309-0390 USA

Abstract

We developed a code for accelerator modeling which will

allow users to create and analyze accelerators through a

graphical user interface (GUI). The GUI can read an

accelerator from files or create it by adding, removing and

changing elements. It also creates 4D orbits and lifetime

plots. The code includes a set of accelerator elements

classes, C++ utility and GUI libraries. Due to the GUI,

the code is easy to use and expand.

1 OBJECT ORINTED APPROACH

C++ was chosen for the project (mapa) because it is the

most commonly used object-oriented programming (OOP)

language in scientific and programming communities. It

is portable across many platforms and works elegantly

with C procedures of X/Motif. This language provides

data encapsulation, inheritance (including multiple

inheritance) and dynamic binding [1]. It allows overriding

and overloading of methods. The code, written in OOP

language has a better chance to be clear, expandable,

flexible and reusable.

Mapa uses many patterns (idioms) of OOP [2]. First of

all, we used classical patterns of canonical classes, which

emulate behavior of built-in types. Thus, we can treat

vectors, Matrices, strings in a most convenient way (i.g.

we can add them and perform other "natural" operations).

We also used the Composite pattern for building

primitive (single) and composite (beamline) accelerator

elements, so that we can treat them equally. From

behavioral patterns we used the Handle/Body pattern to

build the garbage collection for strings, vectors and

matrices. The Observer pattern was used for realization of

Model/View-Controller structure, which allows to

separate model from views and update the views upon

changes in models. The Template method, which

encapsulates logical parts of algorithms and leaves their

definition to derived classes, saved us a lot of coding and

made the code more transparent. We also used the

Letter/Envelope pattern for providing polymorphic

behavior for arithmetic classes (latter will be used for

implementation of TPSA).

2 SYSTEM HIERARCHY AND MAPA'S

CAPABILITIES

The code has two hierarchy trees describing the models of

interest. One tree has to do with general systems, which

have names (class System), parameters and options with

unified I/O (class SimpleSystem). The map hierarchy

describes systems with dynamic features (the Advance

methid propagates dynamic variables though time). The

two hierarchies meet to create (through multiple

inheritance) the SimpleMap class (which is still an

abstract class), from which most of mapa systems are

derived. Thus, an abstract Element is derived from the

SimpleMap, as well as Accelerator, set of classical

nonlinear dynamics maps (Henon's, standard map etc.) and

Torus (class for studying motion of particles on toroidal

fusion devices). Concrete elements and composite

element (Beamline) are derived from Element. Accelerator

and Element are related through aggregation: Accelerator

has a list of Element pointers.

3 GRAPHICAL USER INTERFACE

One of the main efforts in building mapa was to make the

code user friendly. To reach the goal, we created a set of

C++ classes for encapsulation and convenient use of

X/Motif. These classes became the base of the GUI. The

use the GUI of makes computing interactive. First of all,

it allows the user to select the system of interest through

a menu-like widget. Click of the mouse button brings up

the controller of the system. The controller can read/write

the system from/to files, list parameters and options,

change them. It also brings up, start, stops and saves

simulations relevant to the system (like now we have

Monte Carlo simulations resulting in showing average

behavior of dynamic variables of the system versus time).

It also allows users to see the orbits in phase or real space

(each orbit can be start by a click on the plot) and lifetime

plots. The accelerator controller can change the beamline

by visual adding and removing of elements from a table,

whose parameters can be changed through the same

interface. A special widget allows to find fixed points of

different order by using various solvers, with the initial

guess being being found and input graphically.

The set of controllers mirrors the abstract part of the

system hierarchy, so that particular systems do not need a

specialized controller. The GUI allows coexistence of

many systems and simulations simultaneously, which

makes the task of design and analysis more fast easy.

4 DISCUSSION

We are planning to

1. teach mapa to read from diffirent file formats

(like MAD and other popular formats);

2. implement TPSA for non-linear map analysis;

3. include possibilities of missalignments;

4. improve fitting;

5. make the set of accelerator elements richer;

6. create survival plots.

REFERENCES

1. B. Stroustrup, The C++ progamming lanquage,

second edition (Addison-Wesley, Reading, Massachusetts,

1991).

2. E. Gamma, R. Helm et. al, Design Patterns

(Addison-Wesley, Reading, Massachusetts, 1995).

