
 Open access Proceedings Article DOI:10.1109/UCC.2012.25

MAPCloud: Mobile Applications on an Elastic and Scalable 2-Tier Cloud Architecture
— Source link

M. Reza Rahimi, Nalini Venkatasubramanian, Sharad Mehrotra, Athanasios V. Vasilakos

Institutions: University of California, Irvine, National and Kapodistrian University of Athens

Published on: 05 Nov 2012 - Utility and Cloud Computing

Topics: Mobile search, Cloud computing, Mobile computing, Cloud testing and Mobile device

Related papers:

 MuSIC: Mobility-Aware Optimal Service Allocation in Mobile Cloud Computing

 The Case for VM-Based Cloudlets in Mobile Computing

 MAUI: making smartphones last longer with code offload

 CloneCloud: elastic execution between mobile device and cloud

 Mobile Cloud Computing: A Survey, State of Art and Future Directions

Share this paper:

View more about this paper here: https://typeset.io/papers/mapcloud-mobile-applications-on-an-elastic-and-scalable-2-
2vfyfhjtn0

https://typeset.io/
https://www.doi.org/10.1109/UCC.2012.25
https://typeset.io/papers/mapcloud-mobile-applications-on-an-elastic-and-scalable-2-2vfyfhjtn0
https://typeset.io/authors/m-reza-rahimi-83znhvnwcw
https://typeset.io/authors/nalini-venkatasubramanian-2mvj77bydo
https://typeset.io/authors/sharad-mehrotra-5441wjj0ff
https://typeset.io/authors/athanasios-v-vasilakos-1xthz9en0b
https://typeset.io/institutions/university-of-california-irvine-3ptiah2u
https://typeset.io/institutions/national-and-kapodistrian-university-of-athens-10fq6463
https://typeset.io/conferences/utility-and-cloud-computing-2xnke6dt
https://typeset.io/topics/mobile-search-1lrzdpz5
https://typeset.io/topics/cloud-computing-23j8n0mk
https://typeset.io/topics/mobile-computing-3es7kt3z
https://typeset.io/topics/cloud-testing-he5cumx2
https://typeset.io/topics/mobile-device-f53b9ubg
https://typeset.io/papers/music-mobility-aware-optimal-service-allocation-in-mobile-1mdoxfg5fd
https://typeset.io/papers/the-case-for-vm-based-cloudlets-in-mobile-computing-1rofse2vmh
https://typeset.io/papers/maui-making-smartphones-last-longer-with-code-offload-go3o1uwp1u
https://typeset.io/papers/clonecloud-elastic-execution-between-mobile-device-and-cloud-17imp9i7uj
https://typeset.io/papers/mobile-cloud-computing-a-survey-state-of-art-and-future-2y6j9ucm9r
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/mapcloud-mobile-applications-on-an-elastic-and-scalable-2-2vfyfhjtn0
https://twitter.com/intent/tweet?text=MAPCloud:%20Mobile%20Applications%20on%20an%20Elastic%20and%20Scalable%202-Tier%20Cloud%20Architecture&url=https://typeset.io/papers/mapcloud-mobile-applications-on-an-elastic-and-scalable-2-2vfyfhjtn0
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/mapcloud-mobile-applications-on-an-elastic-and-scalable-2-2vfyfhjtn0
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/mapcloud-mobile-applications-on-an-elastic-and-scalable-2-2vfyfhjtn0
https://typeset.io/papers/mapcloud-mobile-applications-on-an-elastic-and-scalable-2-2vfyfhjtn0

MAPCloud: Mobile Applications on an Elastic and
Scalable 2-Tier Cloud Architecture

M. Reza Rahimi1*, Nalini Venkatasubramanian1*, Sharad Mehrotra1*, and Athanasios V. Vasilakos2†

1School of Information and Computer Science, University of California, Irvine, USA.
2National Technical University of Athens, Athens, Greece.

*{mrrahimi, nalini, sharad}@ics.uci.edu, †vasilako@ath.forthnet.gr

Abstract—The rise in popularity of mobile applications creates
a growing demand to deliver richer functionality to users exe-
cuting on mobile devices with limited resources. The availability
of cloud computing platforms has made available unlimited and
scalable resource pools of computation and storage that can be
used to enhance service quality for mobile applications. This
paper exploits the observation that using local resources in close
proximity to the user, i.e. local clouds, can increase the quality
and performance of mobile applications. In contrast, public cloud
offerings (e.g. Amazon Web Services) offer scalability at the cost
of higher delays, higher power consumption and higher price
on the mobile device. In this paper we introduce MAPCloud, a
hybrid, tiered cloud architecture consisting of local and public
clouds and show how it can be leveraged to increase both
performance and scalability of mobile applications. We model the
mobile application as a work�ow of tasks and aim to optimally
decompose the set of tasks to execute on the mobile client
and 2-tier cloud architecture considering multiple QoS factors
such as power, price, and delay. Such an optimization is shown
to be NP-Hard; we propose an ef�cient simulated annealing
based heuristic, called CRAM that is able to achieve about
84% of optimal solutions when the number of users is high.
We evaluate CRAM and the 2-tier approach via implementation
(on Android G2 devices and Amazon EC2, S3 and CloudFront)
and extensive simulation using two rich mobile applications(
Video-Content Augmented Reality and Image processing). Our
results indicate that MAPCloud provides improved scalability
as compared to local clouds, improved ef�ciency (power/delay)
(about 32% lower delays and power) and about 40% decrease
in price in comparison to only using public cloud.

I. INTRODUCTION

The past two decades of explosive growth of wireless

networking, mobile computing and web technologies has

profoundly in�uenced society at large. Almost anyone with

access to a mobile device has access to services on the Internet

and has reaped the bene�ts of instant accessibility to Internet-

enabled technologies such as mapping applications, media

streaming applications, games, instant messaging and email.

We argue that the next generation of mobile applications

involves signi�cant use of rich media with more stringent

Quality of Service (QoS) needs. Examples of technologies

changing the mobile landscape include web-based learning

tools, serious games that blur the distinction between education

and entertainment, digital libraries that provide information

of various topics, and technologies to empower the public to

collaboratively develop, maintain, and share information.

The emerging Cloud Computing environment enables a

new framework that shifts the physical location of computa-

tion and storage into the network to reduce operational and

maintenance costs [19]. This paper aims to synergistically

exploit mobile and cloud computing to enable services that

can enrich the experience and capabilities of mobile users in

a pervasive environment. While mobile computing empowers

users with anywhere, anytime access to the Internet, cloud

computing harnesses the vast storage, computing, and software

infrastructure resources of large organizations (e.g Amazon,

Google) into a single virtualized infrastructure within reach

of the general population.

In the cloud market, infrastructure providers offer reliable

and customized services by enabling Service Level Agreements

(SLAs) with consumers that dictate resource levels and QoS

(in terms of speed, size, bandwidth, delay) bounds. One of

the main bottlenecks in ensuring mobile QoS is the level of

wireless connectivity offered by last hop access networks such

as 3G and Wi-Fi. These networks exhibit varying character-

istics. For example, 3G networks offer wide area ubiquitous

connectivity; however, 3G connections are known to suffer

from long delay and slow data transfers [14] resulting in

increased power consumption and cost at the user side. In

contrast, Wi-Fi deployments, e.g. 802.11 hotspots, exhibit low

communication latencies/delays, connected to or collocated

with Wi-Fi access points can be used to form a nearby local

cloud [4], [14]. Using a local only solutions with Wi-Fi

networks creates scalability issues; as the number of users

increases the latency and packet losses increase causing a

decrease in application performance. Fig. 1 illustrates actual

delays incurred with an increasing number of users in a local

Wi-Fi-based cloud network executing OCR (Optical Character

Recognition) mobile application.

In this paper, we will consider a 2-Tier architecture for

the mobile cloud that synergistically combines the capabilities

of local clouds and public cloud offerings to increase the

performance and scalability of mobile applications. Specif-

ically, we will develop ef�cient techniques for discovering

and allocating resources in such a tiered cloud architecture

to meet the multidimensional QoS needs (price, power, delay)

of diverse mobile applications in the system.

Key Contributions : The main contributions of this paper

are as follows:

2012 IEEE/ACM Fifth International Conference on Utility and Cloud Computing

978-0-7695-4862-3/12 $26.00 © 2012 IEEE

DOI 10.1109/UCC.2012.25

75

2012 IEEE/ACM Fifth International Conference on Utility and Cloud Computing

978-0-7695-4862-3/12 $26.00 © 2012 IEEE

DOI 10.1109/UCC.2012.25

83

Fig. 1. The total delay of OCR application when the number of requests
increases using local cloud, public cloud (Amazon Web Services) and com-
bination of local and public clouds.

1) We design a 2-tier cloud architecture for rich mobile

applications and develop a mathematical formulation of

the tiered cloud resource allocation problem (Sec II).

Here, each application is modeled as a work�ow of

tasks which could be optimally decomposed in the 2-

tier architecture based on a utility metric that combines

service price, power consumption and delay. The result-

ing optimization problem is shown to be NP-hard.

2) We propose an ef�cient simulated annealing based

heuristic, CRAM (Cloud Resource Allocation for

Mobile Applications) to achieve a near optimal solution

to the tiered cloud resource allocation problem (Sec III).

3) We develop a prototype of the MAPCloud system us-

ing Amazon Web Services: EC2, S3, CloudFront as

the public cloud, a local campus cloud and Android

devices. We implement two real-world rich media mo-

bile applications in MAPCloud, (a) an OCR-based text

reader (OCRS) that involves intensive image and speech

processing and (b) a video Content augmented reality

(VCAR) application, which augments user’s video clip

with real data. We pro�le their power/delay characteris-

tics under different con�gurations IV. The results from

pro�ling on the prototype system were used to drive a

thorough simulation study.

4) The simulation results indicate that the CRAM heuristic

achieves close to 84% of the optimal solution when the

number of users is high. They also indicate that the 2-tier

cloud architecture for mobile cloud computing decreases

power consumption and delay in average 32% when the

price is �xed for each users in comparison to using

only public cloud. This implies that while the resources

are high in public cloud the wireless connectivity and

capacity plays a bottleneck for system performance.

This 2-tier cloud architecture also decreases the average

user’s price about 40% (with �xed value of delay and

power consumption)in comparison to only using public

cloud.

Related Work : The idea of remote execution of resource-

intensive tasks to alleviate resource constraints in mobile

device is not new in itself. The typical application runs a

simple GUI on the mobile device and intensive-processing

tasks on a remote server, [20], [22]. Ef�cient execution of

mobile applications by leveraging grid computing platforms

has been addressed in systems such as MAPGrid [21]. In Map-

Grid [21], intermittently available resources on grid platforms

have been used to intelligently process and cache data for

rich mobile applications such as video streaming. However,

adapting the above techniques to work in the current cloud

framework brings in new challenges and constraints. The

autonomy of cloud resources leads to challenges in using

the cloud effectively for mobile applications. In a grid en-

vironment, a grid proxy can provide storage, computational

and network resources and it is often enough to �nd one

resource node to service a mobile request. However, in the

cloud environment, e.g. Amazon cloud services, storage and

computational resources may be provided independently and

charged individually. A single resource discovery process (for

a request) may now need to be partitioned into multiple

requests, one for each type of resource. The fact that users

have to pay for public cloud resources also impacts the utility

of these resources in the overall framework. The Cloudlets

[16] platform provides mechanisms for creation of resources

near access points (AP) that provide computational and storage

services for mobile users. Other efforts [17], [14], [4], use

concepts from work�ow technologies to partition applications

between the mobile device and a local cloud. In particular,

parameters such as code-size, allocated memory and com-

putational needs of the application are shown to be crucial

in effective partitioning of the work�ow for high utility[17].

The MAUI [14], CloneCloud [4] and [2] systems enable

�ne-grained energy-aware of�oading of mobile application to

the infrastructure. In particular, CloneCloud uses static and

dynamic application pro�lers to optimize execution of mobile

applications in terms of energy consumption. Mechanisms

to of�oad the execution tasks include method shipping (in

MAUI) and on-demand delivery of execution state to pre-

instantiated threads. In contrast to the above efforts, MAP-

Cloud integrates the use of current public cloud technology

with local resources, enabling us to scale the mobile cloud

system effectively to large deployments (via the public cloud)

and ensure continuous availability (via the local cloud). There

are some other approaches base on parallel processing of

mobile applications such as Hyrax and [12], [3]. In Hyrax [10],

a system architecture based on MapReduce [13] architecture

has been proposed. It uses the network of smart phones and

infrastructure to do intensive computational tasks. Although

it has a nice and scalable architecture, the performance of

Hyrax is poor for CPU-bound tasks. In [12], they proposed

the architecture based on group of mobile devices to upload

the task. They claimed that this architecture could improve the

mobile application performance but they did not considered the

performance of the application such as power and delay which

are critical for mobile applications. In WhereStore [11], the

authors considered the data sharing application. They showed

that the locality of these storage can signi�cantly improve the

performance of the application, specially for location-based

data search and sharing. In this work they mainly target to

7684

Fig. 2. 2-Tier Mobile Cloud Architecture.

reduce the missing rate of replicas in such applications.

II. MODELING RESOURCE ALLOCATION ON THE TIERED

CLOUD

Fig. 2 shows the 2-tier cloud architecture for mobile appli-

cations [1]. Tier 1 nodes in the system architecture represents

public cloud resources such as Amazon Web Services [25] and

Google Application Engine [27]. Services that are provided

by these vendors provide high scalability and availability on

demand, but do not have �ne grain location granularity that

are required for high performance mobile applications (in the

best case they have city level granularity)[16]. The second tier,

i.e. local cloud consists of nodes that are connected to access

points - location information of these resources are available

at �ner levels of granularity (campus and street level). Mobile

users are typically connected to local clouds through Wi-Fi

(via access points) or cellular (via 3G cell towers) connectivity

- this enables us to of�oad device tasks onto cloud nodes.

To manage and run mobile applications in this architecture

we need a middleware broker which exploits this architecture

ef�ciently. MAPCloud performs task/resource mapping at a

middleware broker node. The broker maintains a registry of

resources and services in both tiers of the cloud. For each

incoming application request (modeled as a work�ow of tasks)

from a mobile device, the broker consults the registry of

available resoruces/services and executes admission control

that determines whether the task is schedulable or not. Once

admitted, the broker runs a scheduling policy to schedule

the various work�ow tasks onto speci�c nodes in the 2-tier

cloud architecture. This middleware could be located mainly

in the second tier to warranty the ef�ciency of the system (low

delay).

To more formally model concepts and services in the

2-tier mobile cloud architecture, we use terminology from

the Service Oriented Architecture SOA [23], [18] literature.

SOA provides a �exible framework for modeling, reusing

and composing existing services based on a work�ow model.

Furthermore, SOA enables representation of QoS parameters

at multiple levels of abstraction - i.e. using an atomic service

level QoS and a composite system-wide QoS [23].

Criteria De�nition

������(��� ����) The price of using service �� when user is in location
����.

���	��(��� ����) The power consumed on user mobile device using
�� when user is in location ����.

�
����(��� ����) The delay of executing service �� when user is in
location ����.

TABLE I
QOS PARAMETERS THAT WILL BE USED IN MOBILE CLOUD COMPUTING

ENVIRONMENT

We start by de�ning the concept of service set as follows:

:Cloud Service Set , the set of all services(e.g.

storage and computation capabilities) provided by local and

public cloud providers. It is denoted as:

�� , {�1� �2� ���� �|�|}

Cloud Location ���� is the location of the cloud

resource � in 2-D space.

User Service Set, the set of all services that a user

has on his device (e.g. decoders, language translators, image

editors etc.) is represented as:

�� , {�
�
1� �

�
2� ���� �

�
|��|}

User Location ���� is the user location in 2-D space.

A generic mobile application is modeled as awork�ow, [23],

[18] where a work�ow is consists of a number of logical and

precise steps, each of which is known as a task. A work�ow

begins at the start task and �nishes in the �nal task. Tasks in

a work�ow can be composed together in different patterns.

The SEQ pattern indicates a sequential execution of tasks.

The AND pattern models the parallel execution of the tasks.

XOR is a conditional execution of tasks and LOOP pattern

indicates an iterative repetition of the tasks. Each task is

associated with a set of services that are capable of realizing

and implementing the task in the tiered cloud architecture.

Several Quality of Service (QoS) parameters such as delay,

power and price are associated with each service. Table. I

shows the quality of service parameters that we will use in

our mobile cloud computing environment. As it can be seen

from the table, these QoS factors depend on user location.

This is primarily due to the fact that communication link

characteristics (Wi-Fi, 3G) vary based on user location and

this in turn has an effect on the delay, power and price of

the services and hence impacts the QoS. The delay of the

service is considered as the difference between the time when a

service is called (on the mobile device or cloud) and when the

service is terminated. If the service on the cloud is being used

we also account for the network delay (Wi-Fi or 3G). Power

consumption of the service refers to the power consumed on

mobile device to execute the service. If the service executes on

the cloud, power consumed includes the power overheads of

the network connection and data transfer related to that service.

Finally, the price of the service is the actual price/cost to the

end user of executing the service on the public cloud.

7785

For each task �� in work�ow 	 we de�ne
	� as:

	� , {�
 | �
 � �� � ��� �
 �
���
���� ��}

Intuitively
	� is the set of all services that could realize

task ��. For the work�ow 	 consisting of of � tasks, the set

� describes all the feasible solutions or execution plans [23].
It is de�ned as:

� ,
	1 ×
	2 × �����×
	�

Table II de�nes the QoS for the application work�ow based

on the execution plan ��� � �. The QoS of a work�ow is

evaluated based on the QoS of its atomic services while taking

into account the composition patterns [23]. The QoS of a SEQ

pattern is the sum of the QoSs of the constituent tasks for

all QoS parameters (price, power, delay). In the case of the

AND pattern, that models parallel task �ow, each of the QoS

parameters is calculated independently. The price (power) of

an AND work�ow is the sum of the price (power) of the

constituent tasks; the delay of the work�ow is set to be the

maximum delay of the parallel �ows. In the XOR pattern, the

maximum among the constituent values determines the QoS

value all QoS types; for iterative tasks (i.e., structured as a

LOOP), the QoS is determined by the number of executions

of the service.

In order to formally state the tiered cloud resource allocation

problem, we require normalized values (for price, power,

delay)that can be used to calculate the utility of a service set

to an application. This process is necessary while power, price

and delay have different units like dollar, joule and second.

The normalization process [23] that generate a normalized

values for price is as follows (the extrapolation to delay and

power is straightforward):

• ���
����� : The total price of the services in work�ow when

the most expensive services are selected.

• ��������� : The total price of the services in work�ow when

the cheapest services are selected.

• k	�����(
��� �����)k : Normalized price of the work�ow

with speci�c service plan ��� � � is de�ned as:

k	�����(
��� �����)k =

�
��

��

����
�	�
����	�
�(

��
 ���

)

����
�	�
�

�����
�	�
�

�
�������

6=���������

1 else

From the above de�nition, we see that the higher the

normalized price, the cheaper is the real price. We de�ne

a conservative notion of Utility of a service plan ��� , at a
given location as the minimum achievable performance of that

QoS SEQ AND XOR LOOP

������

P�
�=1 �

�
�����

P�
�=1 �

�
����� max� ������ ������ × �

���	��

P�
�=1 �

�
��	��

P�
�=1 �

�
��	�� max� ���	�� ���	��×�

�
����

P�
�=1 �

�

����

max� �
���� max� �
���� �
���� × �

TABLE II
WORKFLOW QOS MODEL

service set at the location.

�������(��� �����) =

��{k	�����(
��� �����)k� k	�����(

��� �����)k�

k	�����(
��� �����)k}

Based on these de�nitions we will de�ne following opti-

mization problem for resource allocation in the tiered cloud.

Our objective is to maximize the utility function as mentioned

above. In other words we try to maximize the minimum

performance of the application or maximize the savings on

price, power or delay. It can be formally stated as:

max
��

�������(��� �����)

������� �� :

	�����(
��� �����) � ������

	�����(
��� �����) � ������

	�����(
��� �����) � ������

(1)

The �rst constraint says that the price of the work�ow

should not be greater than a budget. The second and the third

constraints place limits on the total power consumption and

delay of the work�ow.

The above optimization problem is NP-Hard - with the

Knapsack problem being a special case of it [23]. In the next

section we propose CRAM, a heuristic algorithm for solving

this problem ef�ciently.

III. CRAM: A SIMULATED ANNEALING BASED

HEURISTIC FOR RESOURCE ALLOCATION IN THE TIERED

CLOUD

In this section, we develop CRAM (Cloud Resource

Allocation for Mobile Applications), an ef�cient heuristic

for tiered-cloud resource allocations for mobile applications.

We begin by introducing some notational conventions. First,

we will apply a normalization process[23] for services. We

illustrate it in the context of power, but is easily generalized

to price and delay.

• �����
(
	�) : The maximum power consumption of

the services that could realize task ��.

• ������(
	�) : The minimum power consumption of the
services that could realize task ��.

• For each services � �
	� the normalized power could
be de�ned as:

�̂��� =

�
�

�

������(���)���
�
������(���)�������(���)

�����
(
	�)

6= ������(
	�)
1 else

For each services � � �	� the total normalized QoS is

de�ned as:

�̂ =
q
�̂2��� + �̂

2
����� + �̂

2
�����

In general the higher the �̂ is, the better the

QoS/performance (small delay, power consumption and

price) of the service. The CRAM algorithm is a greedy

heuristic that generates a near-optimal solution to the

7886

tiered cloud resource allocation problem using a simulated

annealing based approach. A simulated annealing based

approach typically starts out with an initial solution in the

potential solution space and iteratively re�nes this to generate

increasingly improved solutions. The ef�cacy of simulated

annealing (i.e. the speed with which one approaches the

optimal solution) is dictated by the choice of the initial

solution. CRAM uses a greedy approach for initial solution

selection. There are two intuitions behind such a greedy

selection:

• It is known that services in close proximity to the user

usually provide better Qos performance in terms of delay

and power consumption.

• Using services with high QoS will increase system utility.

In our context, improved QoS can be realized using one

of four metrics – normalized delay, power, price and total

normalized QoS.

In CRAM, we facilitate a better initial solution by veering

the service selection towards those services in close proximity

to the user. This is realized by storing the services in broker

directory service/registry using a structure that enable ef�cient

retrieval of nearby user services. Speci�cally, we store services

using an R-tree based data structure [15]. Such an R-tree

based data structure has been used for storing geometrical

data and has been shown to enable ef�cient search, insertion,

deletion and updates. Fig. 3 shows a sample R-Tree data

structure for services. The R-tree structure splits the search

space into hierarchically nested, and possibly overlapping,

minimum bounding rectangles. We next illustrate how ef�cient

retrieval of services near a user can be realized using an R-

Tree data structure. As an example suppose we are interested

in query ”Retrieve all services in distance � of point A ”

as shown in Fig. 3 (a). The system will create a minimum

rectangle that contains a circle with center � and radius �.

This rectangle is called �� in Fig. 3 (a). Then it will search

and �nd all overlapping rectangle with �� which is in our

case is �6 and retrieve all services in �6.

Table III contains pseudo code for the CRAM algorithm.

While CRAM uses simulated annealing as the core approach

in selecting and re�ning service selection; custom policies

Fig. 3. R-Tree Data Structure: (a) Partitioning the 2-D space into rectangles
(b) R-Tree structure of services

�	
� (����
��
� ������
������)

� : Work Flow, �: Service Set,
��
� : Constraint Vector, ����: User Location,

������ : Number of Iteration in Simulated Annealing.
Begin

(1) ���������������� = �����������(��
��
� �����)

(2) ����0 = ��
�����������(�����������������)
(3) For i=1 to
������ do

(4) ����������������� = �����������(��
��
� �����)

(5) ����1 = ��
�����������(�����������������)
(6) � =����1 � ����0
(7) If � � 0
(8) ����0 = ����1
(9) Else
(10) Replace ����0 = ����1 when ���(
������) � � [0� 1]

/* U[0,1] means the uniform distribution function */
(11) End if
(12) Return ����������������� ����1
End

TABLE III
CRAM ALGORITHM PSEUDO CODE

have been designed to make it ef�cient for the 2-tiered

cloud architecture with mobile applications. CRAM begins

with a service selection �����������(�
��
� �����) function that

returns the list of services near the user that could realize

the work�ow and satisfy the constraints (of price, power and

delay). The utility function of this solution is computed in

line 2. Following this, the CRAM algorithm will enter a loop

which is the main core for every simulated annealing based

algorithm. The difference between the initial utility function

and current utility function is extracted in line 6. If it is

positive, it will be then considered as the new service list

else with probability it will be kept and the algorithm will go

to the next round of iteration. The while loop is eventually

terminated when the number of iterations exceeds a limit ��.

After the iterations are done the �nal utility and service set

will be returned as the solution.

Table IV illustrate the ����������� routine, which is the

main module of CRAM. This routine returns the candidate

list of services that realize the work�ow by using a nearest,

best service policy. In other words, the routine selects services

that (a) have a high normalized QoS and (b) are within close

proximity to the user location. To begin with, we select a can-

didate set of services within a threshold distance � = ��� from
the user. Four sorted lists are generated from the candidate

set, sorted based on the normalized price, power, delay and

total QoS from high to low. CRAM performs a randomized

selection of services from these lists; the random selection is

evaluated for satisfaction of the the input constraints. If input

constraints are satis�ed, the list is returned; else the process

is repeated with an increased search distance.

IV. SYSTEM PROTOTYPING AND PROFILING

OCR+Speech (OCRS) and video content augmented reality

(VCAR) applications have been developed as the rich mobile

applications to study the performance of the proposed algo-

rithm and architecture. In the �rst application the user takes a

picture of the text page and the application will return a �le

which contains the spoken text. In the second application the

7987

�����������(��
��
� �����)

/*
We assume that the directory service database contains information
on the normalized QoS of the service with R-Tree indexing.
*/
� : Work Flow, �: Service Set, ����: User Location,
const ��� : Threshold Distance,
const �� : The increase amount of distance,
const �� : Maximum number of iteration
Begin
(1) i=0;
(2) while (i � ��)
begin

(3) � = ��� + � � ��
(4) Service Set=Retrive the related services according to

work�ow in distance � of user.
(5) if Service set contains all of the needed services

then make 4 different lists sorted according to normalized
price, normalized, power, normalizes delay and normalized
total QoS from large to small.

(6) randomly choose from the 4 list services.
(7) check if it satis�es the constraints
(8) if yes return the service set
(9) else
(10) i=i+1;
(11) increase the search radios to � = ��� + � � ��
end while

End

TABLE IV
CRAM FIND SERVICE ALGORITHM PSEUDO CODE

user captures the video from a mobile device and uploads the

video to the server. On the server, ARToolkit [24] will be run

to infuse the 2D object in video. The resulted video will be

send back to the user. For both of these applications 9 different

services (RESTful Web Services) has been extracted such as

image �ltering, noise cancelation, video format conversion,

etc. We measure the delay and power consumption of services

in different situation for both local and public cloud. For

measuring power PowerTutor[7] has been used.

To implement these applications and CRAM a middleware

has been implemented. Fig. 4 shows different components of

this middleware as described below [6]:

: The broker serves as the point of contact for all

applications in the MAPCloud system - its key task is to

perform admission control, i.e. determine whether incoming

mobile application requests (structured as task work�ows) can

be accepted or rejected based on the current system state and

available resources.

: This module serves as a repository of

information on services available in the MAPCloud infrastruc-

ture, i.e. on local cloud, public cloud and user devices along

with their QoS. It is implemented using a MySQL DB [29] and

and R-Tree indexing structure (described earlier) for ef�cient

spatial querying.

: This module implements policies for ef�ciently

(or optimally) decomposing the mobile application work�ow

on the 2-tier cloud architecture using information on service

distribution and QoS from the directory service. In particular,

the CRAM algorithm is implemented in this module.

: Given the

dynamic nature of mobile users and applications, optimized

allocation of resources requires constant and accurate moni-

Fig. 4. Middleware Service Architecture

toring of (a) service executions on user mobile client, such

as power consumption and processing delay. and (b) QoS

associated with each service on local or public cloud.

The operational �ow through this module is simple - a

user request for a mobile application is forwarded to the

broker. If admitted, the scheduler module will compute and

determine the best allocation of services based using the

CRAM algorithm. The broker and scheduler modules con-

sult the directory service (which keeps accurate state of the

resources based on information gathered by the mobile client

and cloud monitoring modules. The allocation of services to

nodes is returned back as service plan (encoded in XML) - the

associated XML �le also contains the URL of each service

in application work�ow. In our prototype implementation,

we have used Android G2 devices as mobile client; a 64bit

Windows dual-core server with 8GB of memory and 500GB

of storage as the local cloud. Mobile users could connect to

local cloud using free Wi-Fi or 3G. For 3G we considered

T-Mobile 3G services for our experiment [28]. We have used

the Amazon Web Services (EC2, S3 and CloudFront) large

instance as the server on cloud with windows OS, this is

equivalent to a PC with 7.5GB of memory, 850 GB of storage.

In our experiment we used Amazon Web Services hourly price

and For 3G we used T-Mobile price plan [28]. It is reasonable

to consider free Wi-Fi connectivity and free local clouds (or

extremely cheaper than public cloud offering).

To test the performance of the architecture and proposed

algorithm, in particular we perform scalability studies on a

cloud simulation engine. In particular, we use CloudSim [5],

an open source cloud simulator which supports modeling

of data centers, virtual machines and resource provisioning

policies in a cloud computing environment. The experimental

result obtained by pro�ling real applications in the prototype

has been used to tune the simulation environment.

We �rst show the optimality of the CRAM algorithm

and 2-tier cloud architecture. This is followed by a detailed

performance study of the two sample applications on varying

con�gurations of the tiered cloud under different CRAM

settings. The basic simulation setup models a region with 225

cells. Local clouds have valid Wi-Fi in 5 cells around and

there exists 3G connectivity in whole region. A LAN provides

8088

Fig. 5. CRAM Algorithm throughput according to different types of
applications, number of users and different combination of cloud resources:
(a) OCRS (b) VCAR

a backbone for local cloud connectivity and data transfer.

Users and local clouds are distributed uniformly in whole

region, and the maximum number of CRAM iterations has

been set to 20. In our experiments, we varied data sizes which

were uniformly distributed from [2Mb, 4Mb]. Each simulation

results is the average of 10 runs. Different experimental

scenarios considered include (a) diverse applications such as

OCRS, VCAR (b) varying numbers of local and public cloud

resources.

To measure CRAM perfor-
mance we have de�ned the following metric as the CRAM
algorithm throughput:

�������������� =
���� ���	��

	���
� �������� �� ��� 1
× 100

A brute force search has been used to �nd the optimal solution

of Eq.1. Fig. 5 shows the CRAM algorithm throughput for

different types and combination of applications for local and

public cloud resources. In Fig. 5 (a) the OCRS application

has been considered. We have considered up to 100 concurrent

users in the system. Our results indicate that when the number

of users is small, the CRAM algorithm performance is around

52% in average for each user. This is because of the large size

of search space in comparison to the number of users. This

performance will increase to 84% when about 100 concurrent

users in the system. The performance of CRAM is similar for

the VCAR application (See Fig. 5 (b) and (c)). This motivates

that CRAM performs close to the optimal solution independent

of application type. Table V shows the running time of CRAM

and brute-force search method (on a 64bit Windows dual-core

Intel with 8GB of memory and 500GB of hard). According

to this table when the number of mobile users is small such

as 20 CRAM execution time is 4 times faster than brute-force

search method. This ratio increased to 20 when there is a large

number of users in the system (about 100).

In this

Number of Users 20 40 80 100
CRAM (seconds per person) 2s 6s 15s 27s
Brute-Force Search (seconds per person) 8s 55s 240s 550s

TABLE V
PROCESSING TIME OF CRAM AND BRUTE-FORCE SEARCH METHOD

Fig. 6. CRAM algorithm real values for delay and power consumption on
average input data size of 3Mb according to different types of applications
(OCRS, VCAR), different number and types of clouds when there are 100
concurrent users in the system.

section we try to study the performance of each cloud tier.

Fig. 6 (a) and (c) show the real delay of OCRS and VCAR

applications according to different number of local and public

cloud instances. The x axis presents number of public cloud

instances (Amazon Large Instance) and y axis presents the

average delay in seconds when there are 100 users in system.

As it can be derived from graphs, by using large number of

local cloud instances (e.g 16 instances), one could get about

60% decrease in delay in comparison to only using large

number of public cloud instances (e.g 20). This indicates that

communication delay and capacity is still a bottleneck in wire-

less environment. These �gures also indicate that using local

and public cloud resources could improve the performance

in comparison to only using public cloud (in average around

32% by �xing the price for each user). The same is valid for

power consumption as shown in Fig. 6 (a) and (c). By using

only large number of local clouds (e.g 16), one could get 54%

decrease in power in comparison to use only large number of

public cloud instances. This decrease in power consumption

is in average about 25% when using the combination of

local and public cloud. It can be understood from �gures

that power consumption and delay are correlated quantities.

This makes sense while long delay is usually because of long

communication and processing time which results more power

consumption.

Fig. 7 shows another important issue, which is the price of

using Amazon Web Services. We have used the pay as you go

model (per hour usage) [25]. The x axis presents the number

of local cloud and Y axis presents the average price for each

user (when there 100 users in system). When there are large

8189

Fig. 7. CRAM algorithm real average price for different applications (OCRS,
VCAR), according to different number of local and public cloud instances
when there are 100 users in system.

number of local cloud instances in system (e.g 16) the average

price for each user is low (0.06$). This increase to 0.75$ when

the resources on public cloud are used (about 20 public cloud

instances) or 1200% increase in price. By �xing the delay and

power consumption of both OCRS and VCAR applications,

we still could reach the same delay and power consumption

when using 2-tier architecture in comparison to only using

public cloud resources. For example according to the �gures

to achieve delay (20s) and power consumption (35 jole), we

could use 20 instances of public cloud or 8 instances of local

cloud and 8 instances of public cloud by paying only 0.31$

for each person which is decrease around 40% in comparison

to only using public cloud.

V. CONCLUSIONS AND FUTURE DIRECTIONS

In this paper we showed how to use cloud platform to

increase the performance of mobile applications. We introduce

a tier architecture consisting of the local and public clouds,

the CRAM algorithm, which ef�ciently decomposes mobile

applications on mobile client and 2-tier elastic cloud archi-

tecture. Several important QoS factors such as power, price

and delay have been considered. Our results indicate that the

CRAM heuristic achieves close to 84% of the optimal solution

when the number of users is high. Our results also indicate

that the 2-tier cloud architecture for mobile cloud computing

decreases power consumption and delay, i.e. improves QoS

(about 32% as compared to using the public cloud) and

increases scalability (as compared to local clouds) and about

40% decrease in price in comparison to only using public

cloud for rich mobile applications.

In future we try to extend our approach for streaming mobile

applications and study how user trajectory will be used to

design optimal algorithm and architecture.

VI. ACKNOWLEDGMENTS

The authors would like to thank the and group

members in the university of California Irvine, for their

valuable and constructive comments to improve the paper.

REFERENCES

[1] M. Reza. Rahimi, Nalini Venkatasubramania ”Exploiting an Elastic 2-
Tiered Cloud Architecture for Rich Mobile Applications”, poster in the
IEEE/ACM WoWMoM 2012, June 2012, USA.

[2] Vinod Namboodiri, Toolika Ghose ”To Cloud or Not to Cloud: A
Mobile Device Perspective on Energy Consumption of Applications”, in
the IEEE/ACM WoWMoM 2012, June 2012, USA.

[3] Emiliano Miluzzo, Ramon Caceres, Yih-Farn Chen, ”mClouds - Comput-
ing on Clouds of Mobile Devices”, in Proc. of Third International Workshop
on Mobile Cloud Computing and Services (MCS’12) with MobiSys’12,
June 25, 2012.

[4] Byung-Gon Chun, Sunghwan Ihm, Petros Maniatis, Mayur Naik, Ashwin
Patti ” CloneCloud: Elastic Execution between Mobile Device and Cloud”,
In EuroSys 2011.

[5] Rodrigo N. Calheiros, Rajiv Ranjan, Anton Beloglazov, Cesar A. F. De
Rose, and Rajkumar Buyya, ” CloudSim: A Toolkit for Modeling and
Simulation of Cloud Computing Environments and Evaluation of Resource
Provisioning Algorithms”, Wiley Press, 2011.

[6] M. Reza. Rahimi, N. Venkatasubramania ”Cloud Based Framework for
Rich Content Mobile Applications”, poster in the IEEE/ACM CCGrid 2011.

[7] Lide Zhang, Birjodh Tiwana, Zhiyun Qian, Zhaoguang Wang, Robert
P. Dick, Zhuoqing Morley Mao, and Lei Yang ” Accurate online power
estimation and automatic battery behavior based power model generation
for smartphones” In ISSS 2010.

[8] E. Marinelli ” Hyrax: Cloud Computing on Mobile Device using MapRe-
duce”, Master Thesis Draft, Computer Science Department, CMU, Sept.
2009.

[9] P. Stuedi, I. Mohomed, and D. Terry ” WhereStore: location-based data
storage for mobile devices interacting with the cloud”, In Proceedings of
the 1st ACM Workshop on Mobile Cloud Computing & Services, MCS
’10 New York, NY, USA, 2010.

[10] E. Marinelli ” Hyrax: Cloud Computing on Mobile Device using
MapReduce”, Master Thesis Draft, Computer Science Department, CMU,
Sept. 2009.

[11] P. Stuedi, I. Mohomed, and D. Terry ” WhereStore: location-based data
storage for mobile devices interacting with the cloud”, In Proceedings of
the 1st ACM Workshop on Mobile Cloud Computing & Services, MCS
’10 New York, NY, USA, 2010.

[12] G. H. Canepa, D. Lee ” A Virtual Cloud Computing Provider for Mobile
Devices”, In Proceedings of the 1st ACM Workshop on Mobile Cloud
Computing; Services: Social Networks and Beyond (MCS ’10), New York,
NY, USA, 2010.

[13] Jeffrey Dean, Sanjay Ghemawat ” MapReduce: simpli�ed data process-
ing on large clusters”, Commun. ACM 51, 1 (January 2008), 107-113.

[14] Eduardo Cuervo, Aruna Balasubramanian, Dae-ki Cho, Alec Wolman,
Stefan Saroiu, Ranveer Chandra, and Paramvir Bahl ” MAUI: Making
Smartphones Last Longer with Code Of�oad”, In MobiSys 2010.

[15] Avi Silberschatz, Henry F. Korth, S. Sudarshan, ”Database System
Concepts”, McGraw-Hill, 2010.

[16] M. Satyanarayanan, P. Bahl, R. Cceres, N. Davies ” The Case for VM-
Based Cloudlets in Mobile Computing”, In PerCom 2009.

[17] I. Giurgiu, O. Riva, D. Juric, I. Krivulev and G. Alonso ” Calling The
Cloud: Enabling Mobile Phones as Interfaces to Cloud Applications”, In
Middleware 2009.

[18] N. B. Mabrouk, S. Beauche, E. Kuznetsova, N. Georgantas, and V.
Issarny ” QoS-aware Service Composition in Dynamic Service Oriented
Environments”, In Middleware 2009.

[19] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner ” A Break
in The Clouds: Towards a Cloud De�nition”, In SIGCOMM 2008.

[20] R. K. Balan, D. Gergle, M. Satyanarayanan, and J. Herbsleb ” Simpli-
fying cyber foraging for mobile devices”, In MobiSys 2007.

[21] Y. Huang, N. Venkatasubramanian ” MAPGrid: A New Architecture
for Empowering Mobile Data Placement in Grid Environments”, In CC-
GRID’2007.

[22] S. Ou, K. Yang, and J. Zhang ”An Effective of�oading Middleware for
Pervasive Services on Mobile Devices”, Journal of Pervasive and Mobile
Computing, 2007.

[23] L. Zeng, B. Benatallah, A. H. NGU, M. Dumas, J. Kalagnanam, and
H. Chang ” QoS-Aware Middleware for Web Services Composition ”, In
IEEE Trans. Software. Eng, 2004.

[24] Kato, H., Billinghurst, M., Poupyrev, I., Imamoto, K., Tachibana, K.”
Virtual Object Manipulation on a Table-Top AR Environment”, In ISAR
2000.

[25] Amazon Web Services: http://aws.amazon.com/
[26] Google Application Engine: http://code.google.com/appengine/
[27] Google Application Engine: http://code.google.com/appengine/
[28] T-Mobile Data Plan: http://www.t-mobile.com/shop/plans/
[29] MySQL DB http://www.mysql.com/

8290

