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MAPK activation and HRAS mutation identified in pituitary 
spindle cell oncocytoma
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ABSTRACT

Pituitary spindle cell oncocytoma (SCO) is an uncommon primary pituitary 
neoplasm that presents with mass effect on adjacent neurovascular structures, 

similar to non-hormone-producing pituitary adenomas. To determine the molecular 
etiology of SCO, we performed exome sequencing on four SCO cases, with matched 
normal controls, to assess somatic mutations and copy number alterations. Our 
analysis revealed a low mutation rate and a copy-neutral profile, consistent with 
the low-grade nature of this tumor. However, we identified a co-occurring somatic 
HRAS (p.Q61R) activating point mutation and MEN1 frameshift mutation (p.L117fs) 
present in a primary and recurrent tumor from one patient. Other SCOs demonstrated 
mutations in SND1 and FAT1, which are associated with MAPK pathway activation. 
Immunohistochemistry across the SCO cohort demonstrated robust MAPK activity in 
all cases (n=4), as evidenced by strong phospho-ERK staining, while phospho-AKT 
levels suggested only basal levels of PI3K pathway activation. Taken together, this 
identifies the MAPK signaling pathway as a novel therapeutic target for spindle cell 
oncocytoma, which may offer a powerful adjunct for aggressive tumors refractory to 
surgical resection.

INTRODUCTION

Spindle cell oncocytoma (SCO) is a rare non-

endocrine neoplasm of the hypophysis, which exhibits 

WHO grade I histology [1]. SCO presents similarly to non-

functioning pituitary adenomas, clinically demonstrating 

pituitary hypofunction, visual field deficits, and potential 
headache and nausea, due to mass effect. Although they 

were initially regarded as benign, several subsequent 

recurrent and locally aggressive SCO cases have been 

reported [2–6]. SCO is primarily treated with surgical 

resection, while radiation therapy has been reported for 
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patients with recurrence [2]. Invasion of nearby structures, 

including the cavernous sinus, suprasellar space, and 

sphenoid sinus, can challenge traditional therapeutic 

strategies.

Histologically, SCOs show an interlacing fascicular 

pattern of spindled to epithelioid cells, with eosinophilic and 

variably oncocytic cytoplasm. Nuclear atypia is generally 

minimal and mitotic indices are low [2]. Ultrastructural 

features of abundant mitochondria and a paucity of secretory 

granules help distinguish SCOs from non-functioning 

adenomas [1, 2]. Expression of S-100, vimentin, galectin-3, 

and epithelial membrane antigen (EMA) is typical of SCOs, 

which lack expression of pituitary adenoma markers such as 

synaptophysin, chromogranin, and pituitary hormones [1]. 

SCOs generally do not express glial fibrillary acidic protein 
(GFAP), distinguishing them from pituicytoma, a tumor 

derived from neurohypophyseal glial pituicytes [1, 2, 7]. 

SCOs also do not express cytokeratins, smooth muscle actin 

(SMA), CD34, or CD68.

The cell of origin for SCOs remains unclear. They 

have been postulated to derive from folliculostellate cells 

of the adenohypophysis, based on shared expression 

of S-100, vimentin, galectin-3, and EMA, as well as 

desmosomes and intermediate junctions found using 

electron microscopy [1]. However, the pituicyte has also 

been proposed as a potential cell of origin, on the basis 

of shared expression of thyroid transcription factor 1 

(TTF-1), prompting a potential classification of SCOs as 
oncocytic pituicytomas [8].

Little is known about the genetic drivers of 

proliferation and infiltration in SCO. A recent report 
on seven cases found no BRAF V600E mutations, 

BRAF-KIAA fusions, or IDH R132H mutation-specific 
immunoreactivity [8]. One case report observed mild-

to-moderate expression of phospho-AKT, phospho-

mTOR, and GLI2, suggesting some degree of activation 

of mammalian target of rapamycin (mTOR) and sonic 

hedgehog (SHH) pathways [9].

In order to further examine the molecular drivers 

of oncogenesis in spindle cell oncocytoma, we performed 

whole exome sequencing and signal pathway profiling on 
four cases of SCO. Here we report novel genetic mutations 

that may provide additional insights into the future 

treatment of this disease.

RESULTS

Mutational profile of SCO

We identified all cases of SCO resected at 
Brigham and Women’s Hospital since its first report 
at this institution in 2002, yielding four cases from 

three patients (Table 1). Patient three manifested with 

recurrent/residual tumor less than a year after initial 

resection, and therefore two separate samples were 

available for study (cases 3A and 3B). Each SCO case 

was reviewed and the diagnosis confirmed on the basis 
of histologic appearance and immunohistochemical 

profile (Table 2). Figure 1 illustrates typical histologic 
and immunohistochemical features. In concordance 

with a recent report [8], we found strong nuclear TTF-1 

expression in each case of SCO.

We performed whole exome next-generation 

sequencing on each SCO case, using matched DNA as 

control. Sequencing revealed 43 nonsynonymous somatic 

mutations, insertions, or deletions (Table 3). Among the 

mutations present, samples 3A and 3B both showed a 

Q61R mutation in the Harvey rat sarcoma viral oncogene 

homolog (HRAS) gene on chromosome 11, a specific 
variant that has been previously reported in multiple 

cancers [10–13]. Cases 3A and 3B also both showed two 

frameshift mutations in the multiple endocrine neoplasia 

type 1 (MEN1) gene, also on chromosome 11; these 

variants have been previously reported as both germline 

and sporadic mutations in tumors of the pituitary and other 

sites [14].

Other tumor-associated genes found to be mutated 

as single events in individual tumors in the SCOs within 

our cohort include FAT atypical cadherin 1 (FAT1) [15], 

staphylococcal nuclease domain-containing protein 

1 (SND1) [16, 17], Cbl proto-oncogene E3 ubiquitin 

protein ligase (CBL), frizzled class receptor 7 (FZD7), 

phosphatidylinositol-4,5-bisphosphate 3-kinase subunit 

gamma (PIK3CG), and SH3 domain binding kinase 1 

(SBK1).

Copy number profile of SCO

We found no significant recurrent copy number 
changes or aneuploidy across the examined cohort of 

SCO cases. We observed a loss of chromosome 13 in 

case 3A, which was not detected in the recurrent tumor, 

case 3B (Supplementary Figure S1). However, this may 

be attributable to a lower tumor cell fraction in case 3B, 

limiting its detection.

Immunohistochemical assessment of MAPK and 
PI3K signaling pathways

Prompted by the HRAS mutation identified in cases 
3A and 3B, we examined activation of its canonical 

intracellular signaling cascade, the mitogen-activated 

protein kinase (MAPK) pathway. Ras signals activate Raf, 

resulting in phosphorylation of downstream MEK and of 

ERK. This leads to multiple cellular responses, including 

phosphorylation of ribosomal protein S6, which regulates 

protein translation and activates cell cycle regulators. We 

found robust expression (>90% positivity) of downstream 

pathway effectors, phosphorylated ERK (p-ERK) and S6 

(p-S6), in all four SCO cases, using immunohistochemistry 

(Figure 2). In contrast, IHC for phosphorylated protein 

kinase B (p-AKT) showed only a weak signal, indicating 
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basal activation of the phosphoinositide 3-kinase (PI3K) 

pathway.

DISCUSSION

Strong evidence of activated downstream effectors 

of the MAPK pathway in each pituitary SCO tumor in 

this study suggests a perturbation that may drive cellular 

proliferation. In cases 3A and 3B, we identified an HRAS 
Q61R mutation by whole exome sequencing, which is 

associated with multiple other cancers and may have 

caused MAPK pathway activation. Case 2 contained 

a mutation in SND1, which has been reported to be 

involved in glioblastoma and carcinomas of the colon, 

prostate, and liver [16, 18–20]. SND1 is a component 

of the RNA-induced silencing complex (RISC) and has 

been reported to activate the MAP kinase ERK [17]. Case 

1 contained a mutation in the tumor suppressor FAT1 

atypical cadherin gene, which has been implicated in 

glioblastoma, colorectal adenocarcinoma, and head and 

neck squamous cell carcinoma [15]. While FAT1 is best 

known for promoting Wnt signaling, FAT1 expression has 

Table 1: Clinical profiles of spindle cell oncocytoma cases

Case Age (Yr) Imaging characteristics

1 66 2.4 cm sellar mass, abutting cavernous sinuses and third ventricle, and extending into 

sphenoid sinus and posterior to optic chiasm

2 50 1.4 cm sellar mass, partially surrounding bilateral internal carotid arteries and 

abutting optic nerves

3A 63 2.7 cm sellar mass, extending into sphenoid sinus, partially encasing bilateral internal 

carotid arteries, and displacing optic chiasm and optic nerves

3B 63 1.7 cm residual/recurrent enhancing sellar mass, partially encasing left internal 

carotid artery, with displacement of optic chiasm and optic nerves

Table 2: Immunohistochemical profiles of spindle cell oncocytoma cases

Case EMA S100 Galectin-3 GFAP Chromogranin TTF-1 MIB-1

1 + + + - - + 5%

2 + + + - - + 2%

3A - + + - - + 5%

3B + (focal) + + - - + 5%

Figure 1: Histologic and Immunohistochemical Features of Spindle Cell Oncocytoma. A. H&E stain. Immunohistochemistry 

for: B. S100, C. Galectin-3, D. TTF-1, E. EMA, F. Vimentin, G. Chromogranin, H. GFAP, I. CD68 and J. MIB-1 (Ki-67). (A-J, 600X 

magnification; A-I, case 1; J, case 2)
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Table 3: Mutations identified by whole exome sequencing of spindle cell oncocytoma cases

Gene Chr. Variant Protein 
Change

Allele 
Frequency

Case Functional 

Prediction 
Score (SIFT)

NAV1 1 Missense 

Mutation

L85V 0.31, 0.15 3A, 3B 0.00

TCEB3 1 Frameshift 

Deletion

K451fs 0.16 3A —

ADD2 2 Missense 

Mutation

E480K 0.11 1 0.00

C2orf16 2 Nonsense 

Mutation

Q788* 0.39, 0.20 3A, 3B —

FZD7 2 Missense 

Mutation

D3N 0.41, 0.27 3A, 3B 0.30

SH3BP4 2 Missense 

Mutation

D922G 0.14 1 0.00

STAT4 2 Missense 

Mutation

E388D 0.44, 0.25 3A, 3B 0.04

ZNF717 3 Frameshift 

Insertion

T45fs 0.4 2 —

FAT1 4 Missense 

Mutation

N109H 0.25 1 0.00

FAT4 4 Missense 

Mutation

N3706S 0.25 3B 0.10

ANKH 5 Missense 

Mutation

E43D 0.39, 0.09 3A, 3B 0.08

ASCC3 6 Missense 

Mutation

S221Y 0.12 3A 1.00

EXOC2 6 Missense 

Mutation

H736Q 0.33, 0.21 3A, 3B 0.34

GPR115 6 Missense 

Mutation

N230S 0.13 2 0.74

GTPBP2 6 Missense 

Mutation

R335Q 0.11 1 —

PIK3CG 7 Missense 

Mutation

E1073K 0.38, 0.15 3A, 3B 0.47

SND1 7 Missense 

Mutation

S578N 0.18 2 0.17

TRPV5 7 Missense 

Mutation

M440T 0.13 3A 0.25

AGO2 8 Missense 

Mutation

P430R 0.13 2 0.00

C8orf76 8 Frameshift 

Deletion

PERR21fs 0.47 3A —

TRPM6 9 Missense 

Mutation

L333V 0.12, 0.14 3A, 3B 0.14

(Continued )
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Gene Chr. Variant Protein 
Change

Allele 
Frequency

Case Functional 

Prediction 
Score (SIFT)

CALHM1 10 Missense 

Mutation

R178C 0.40, 0.13 3A, 3B 0.02

CBL 11 Missense 

Mutation

R280Q 0.41, 0.21 3A, 3B 0.01

HRAS 11 Missense 

Mutation

Q61R 0.42, 0.19 3A, 3B 0.04

IPO7 11 Nonsense 

Mutation

Y689* 0.21 3B —

MEN1 11 Frameshift 

Deletion

K459fs 0.36, 0.17 3A, 3B —

MEN1 11 Frameshift 

Deletion

LV117fs 0.36, 0.18 3A, 3B —

OR1S2 11 Missense 

Mutation

P300S 0.42, 0.20 3A, 3B 0.00

XRRA1 11 Missense 

Mutation

R76Q 0.12 1 0.77

CCER1 12 Nonsense 

Mutation

R40* 0.13 2 —

ITGA7 12 Missense 

Mutation

D312A 0.42, 0.13 3A, 3B 0.43

TAOK3 12 Missense 

Mutation

E496D 0.39, 0.14 3A, 3B 0.11

CCNK 14 Missense 

Mutation

G53A 0.26 3B 0.27

KLHDC1 14 Frameshift 

Deletion

W28fs 0.36 1 —

LTB4R 14 Nonsense 

Mutation

Y172* 0.35, 0.14 3A, 3B —

RIN3 14 Nonsense 

Mutation

W275* 0.06, 0.21 3A, 3B —

CHD2 15 Missense 

Mutation

R550S 0.19 1 0.00

DENND4A 15 Missense 

Mutation

R865C 0.1 1 0.00

LTK 15 Missense 

Mutation

A480T 0.13 1 0.11

TYRO3 15 Missense 

Mutation

A48V 0.18 2 0.08

SBK1 16 Frameshift 

Deletion

G304fs 0.33 3B —

CD300A 17 Missense 

Mutation

W49L 0.21 3B 0.00

FMNL1 17 Missense 

Mutation

P49R 0.27, 0.10 3A, 3B 0.00
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also been associated with ERK activation [21]. Therefore, 

mutations in HRAS, SND1, and FAT1 may constitute 

separate genetic drivers that underlie the common MAPK 

activation observed in each SCO.

While our immunohistochemical and exome 

sequencing findings point to MAPK pathway activation 
in SCOs, the finding of two MEN1 mutations in cases 3A 

and 3B suggests that biallelic inactivation of MEN1 may 

be a second mechanism underlying neoplasia in SCO. 

Inactivation of both MEN1 alleles has been found in 

multiple endocrine tumors, including parathyroid adenoma, 

insulinoma, and a small subset of pituitary adenomas [22].

HRAS mutations have been previously associated 

with increased aggressiveness in pituitary adenomas 

[23, 24]. Given this, it is noteworthy that cases 3A and 

3B, which displayed rapid recurrence leading to repeat 

resections, demonstrated a pathogenic HRAS mutation. 

As such, HRAS mutation may be an indicator of more 

aggressive behavior in SCO.

The recurrent tumor of case 3B may also be 

related to the acquisition of new somatic mutations not 

present in the initial tumor, case 3A. Newly mutated 

genes identified in case 3B include FAT atypical 
cadherin 4 (FAT4), Importin 7 (IPO7), Cyclin K 

(CCNK), SH3 domain-binding kinase 1 (SBK1), and 

CD300A. Of these, FAT4, CCNK, and SBK1 have 

been previously linked to neoplasia [25–27] and may 

contribute to the aggressive behavior demonstrated by 

case 3.

Interestingly, the similarities in presentation 

between SCOs and pituitary adenomas are reflected in 
their genetic profiles as well. Various MEN1 mutations 

have been implicated in pituitary adenoma [14], and, 

as mentioned earlier, pituitary adenomas with HRAS 

mutations show increased aggressiveness. The genetic 

similarity between SCO case 3 reported here and pituitary 

adenoma raises the question of diagnostic overlap. 

However, the immunohistochemical profile, including the 
absence of neuroendocrine markers and the presence of 

S100, strongly suggest that case 3 is indeed a spindle cell 

oncocytoma, rather than a pituitary adenoma [1, 28–30].

Pituitary adenomas have been associated with 

mutations in numerous other genes, including succinate 

dehydrogenase (SDH) [31], ubiquitin-specific peptidase 
8 (USP8) [32, 33], cyclin-dependent kinase inhibitor 1B 

(CDKN1B) [34], aryl hydrocarbon receptor interacting 

protein (AIP) [35], and cAMP-dependent protein kinase 

type 1-alpha regulatory subunit (PRKAR1A) [36]. These 

mutations were not identified in our whole exome 
sequences of spindle cell oncocytoma. Cytogenetic studies 

of pituitary adenoma have shown scattered chromosome 

gains and losses, without a significant recurrent signature 

Figure 2: MAPK and PI3K Pathway Signaling in Spindle Cell Oncocytoma Cases. Tissue sections were stained with H&E or 

immunohistochemistry for MIB-1, phosphorylated ERK (p-ERK), phosphorylated AKT (p-AKT), and phosphorylated S6 (p-S6) proteins. 

(600X magnification)
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[37, 38]. The minimal chromosomal abnormalities we 

observed in our SCOs are consistent with the copy number 

profiles of some non-functional pituitary adenomas.
Scarce genetic information on pituicytoma is 

available for comparison with SCO. Comparative 

genomic hybridization (CGH) performed on one case of 

pituicytoma showed multiple copy number imbalances, 

with losses on 1p, 14q, and 22q and a gain on 5p [39]. 

This pattern appears distinct from our findings for SCO. 
Overall, we did not identify any significant copy number 
profile changes in SCO that have been reported in pituitary 
adenoma or pituicytoma.

In this report, we present four cases of SCO, using 

whole exome sequencing to reveal abnormal MAPK 

pathway signaling, suggesting it may be a common 

mechanism underlying oncogenesis as a shared phenotypic 

endpoint of various driver mutations. Inhibition of MAPK 

pathway signal transducers, or downstream nodes such 

as MEK, is under active clinical investigation in multiple 

other cancers [40–42]. Consequently, targeted inhibition 

of MAPK pathway signaling may offer an opportunity 

for treatment of spindle cell oncocytomas that cannot be 

controlled by surgical resection alone. Mutational profiling 
of many other tumor types has opened up successful 

personalized targeted medical treatments, and our findings 
suggest spindle cell oncocytomas may also be amenable to 

this approach.

MATERIALS AND METHODS

Sample selection

Analysis of data generated from tumor specimens 

and clinical information was conducted under a Dana-

Farber/Brigham and Women’s Cancer Center (DF/BWCC) 

Institutional Review Board (IRB)-approved protocol. 

Histologic diagnosis was confirmed on all samples by a 
board-certified neuropathologist (S.H.R.) and representative 
paraffin-embedded tissue with average estimated purity 
>70% was selected. Tumor DNA was extracted from 1 mm 

cores and normal DNA was prepared from patient salivary 

samples using standard techniques (Oragene kit, DNA 

Genotek, Kanata, Ontario, Canada; and Qiagen, Valencia, 

CA). The tumor-normal pairs were confirmed by mass 
spectrometric genotyping with an established 48-SNP panel 

(Sequenom, San Diego, CA) [43].

Whole exome sequencing, mutation analysis, and 
copy number analysis

Whole exome sequencing was performed as 

previously described [44]. DNA was sonicated to 150 

bp fragments, size selected with Agencourt AMPure XP 

beads, and ligated to specific barcoded adapors (Illumina 
TruSeq; Illumina Inc., San Diego, CA) for multiplexed 

analysis. Exome hybrid capture was performed using the 

Agilent SureSelect hybrid capture kit (Whole Exome v4; 

Agilent Technologies, Santa Clara, CA) and sequenced on 

a HiSeq 2500 system (Illumina Inc., San Diego, CA). All 

samples achieved at least 80X depth of coverage across 

exons.

Read pairs were aligned to the hg19 reference 

sequence using the Burrows-Wheeler Aligner [45], and 

sample reads sorted and duplicate-marked using SAMtools 

and Picard. Bias in base quality score assignments due to 

flowcell, lane, dinucleotide context, and machine cycle 
were analyzed and recalibrated, and local realignment 

around insertions or deletions (indels) was achieved using 

the Genome Analysis Toolkit (GATK) [46, 47].

Somatic mutations and short indels were called 

and post-filtered using MuTect [48] and IndelLocator 
[49, 50]. These were annotated to genes and compared to 

events in the Catalogue of Somatic Mutations in Cancer 

(COSMIC) using Oncotator and also manually verified in 
the sequence output through visualization in the Integrated 

Genome Viewer (IGV). To analyze somatic copy number 

alterations from whole exome data, we used an allelic 

copy number pipeline, consisting of the ReCapSeg, Allelic 

Capseg and ABSOLUTE algorithms. ReCapseg detects 

total copy ratios from whole-exome sequencing data and 

performs a tangent normalization against a panel of normal 

exomes. Allelic capseg takes the output of ReCapseg and 

splits total copy ratios into homologue-specific copy 
ratios (HSCRs) from segmental estimates of multipotent 

allelic copy-ratios at heterozygous loci incorporating the 

statistical phasing software (BEAGLE) and population 

haplotype panels (HAPMAP3) [51–53]. Allele-specific 
somatic copy number alterations and tumor ploidy status 

were assessed with the ABSOLUTE algorithm [53].

Prediction of possible functional effect of the 

identified mutations was performed using the SIFT 
(Sorting Intolerant from Tolerant) Human Protein 

algorithm (J. Craig Venter Institute) [54]. The SIFT 

prediction score ranges from 0 to 1, and is the scaled 

probability of an amino acid substitution being tolerated. 

Amino acid substitutions with scores that fall below 0.05 

are predicted to affect protein function. Notably, such 

prediction algorithms may be more useful for loss of 

function of tumor suppressor genes than for predicting 

gain of function for proto-oncogenes.

Immunohistochemistry

Diaminobenzidine (DAB) brightfield staining 
was performed according to standard protocols on 5 μm 
paraffin sections [55]. Antigens were retrieved using heat 
and 10 mM sodium citrate buffer (pH 6.0). The following 

primary antibodies were utilized: S100 (DAKO, 1:1000 

dilution), vimentin (DAKO, 1:400), EMA (DAKO, 1:200), 

galectin-3 (Fitzgerald Industries, 1:100), chromogranin 

(Thermo Scientific, 1:4000), GFAP (DAKO, 1:2,000), 
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TTF-1 (DAKO, 1:300), CD68 (DAKO, 1:1000), p-ERK 

(Cell Signaling, 1:200), p-AKT (Cell Signaling, 1:50), 

p-S6 (Cell Signaling, 1:50), and MIB-1 (Ki-67) (Leica, 

1:200). Counterstaining for nuclei was performed using 

Mayer’s hematoxylin stain, and cover slips were mounted 

using Permount (Fisher Scientific).
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