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MAPK signalling: ERK5 versus ERK1/2
Satoko Nishimoto & Eisuke Nishida+

Kyoto University, Sakyo-ku, Kyoto, Japan

Extracellular-signal-regulated kinase 5 (ERK5) is a member of the
mitogen-activated protein kinase (MAPK) family and, similar to
ERK1/2, has the Thr–Glu–Tyr (TEY) activation motif. Both ERK5 and
ERK1/2 are activated by growth factors and have an important role
in the regulation of cell proliferation and cell differentiation.
Moreover, both the ERK5 and the ERK1/2 pathways are sensitive to
PD98059 and U0126, which are two well-known inhibitors of the
ERK pathway. Despite these similarities, recent studies have
revealed distinctive features of the ERK5 pathway: ERK5 has a key
role in cardiovascular development and neural differentiation; ERK5
nuclear translocation is controlled by its own nuclear localizing and
nuclear export activities; and the carboxy-terminal half of ERK5,
which follows its kinase catalytic domain, has a unique function.
Keywords: signal transduction; nuclear translocation; growth factor
signaling; gene expression; kinase cascade
EMBO reports (2006) 7, 782–786. doi:10.1038/sj.embor.7400755

Introduction
The mitogen-activated protein kinase (MAPK) cascade is a highly con-
served module that is involved in various cellular functions, including
cell proliferation, differentiation and migration. Extracellular stimuli
such as growth factors and environmental stresses induce the sequen-
tial activation of MAPK kinase kinase (MAPKKK), MAPK kinase
(MAPKK) and MAPK. At least four members of the MAPK family have
been identified—extracellular-signal-regulated kinase 1/2 (ERK1/2), 
c-Jun-amino-terminal kinase ( JNK), p38 and ERK5 (Sturgill & Wu,
1991; Nishida & Gotoh, 1993; Robinson & Cobb, 1997; Davis, 2000;
Kyriakis & Avruch, 2001; Wang & Tournier, 2006). 

ERK1 and ERK2 are isoforms of the ‘classical’ MAPK. Both ERK1
and ERK2 (referred to as ERK1/2) are activated by MAP/ERK kinase 1
(MEK1) and MEK2 (referred to as MEK1/2), which are members of the
MAPKK family. After stimulation by a variety of mitogens including
peptide growth factors, MEK1/2 is activated by MAPKKK-mediated
phosphorylation. These MAPKKKs include Raf and Mos. MEK1/2 then
phosphorylates threonine and tyrosine residues in the Thr–Glu–Tyr
(TEY) sequence of ERK1/2, resulting in the activation of ERK1/2.
Activated ERK1/2 phosphorylates many substrates including transcrip-
tion factors, such as Elk1 and c-Myc, and protein kinases, such as 

ribosomal S6 kinase (RSK). Subsequently, immediate early genes, such
as c-Fos, are induced. ERK1/2 is therefore an important contributor to
cell proliferation (Lewis et al, 1998).

ERK5, also known as big MAP kinase 1 (BMK1), is twice the size
of other MAPKs (Lee et al, 1995; Zhou et al, 1995). The amino-terminal
half contains the kinase domain, which is similar to that of ERK1/2
and has the TEY activation motif, whereas the carboxy-terminal half
is unique. On stimulation, MEKK2 and MEKK3, members of the
MAPKKK family, activate MEK5, a specific MAPKK for ERK5,
although these two MAPKKKs are associated differently with
upstream signalling pathways (Chao et al, 1999; Sun et al, 2001).
Subsequently, MEK5 phosphorylates and activates ERK5, and then
the activated ERK5 phosphorylates substrates including myocyte
enhancer factor 2 (MEF2; Kato et al, 1997). The interaction of MEK5
with MEKK2, MEKK3 or ERK5 is mediated by the PB1 domain of
MEK5 (Nakamura & Johnson, 2003; Seyfried et al, 2005; Nakamura
et al, 2006). So far, the function of the MEK5 PB1 domain in the
ERK5 signalling pathway is controversial. Seyfried et al (2005) pro-
posed that MEKK2 and ERK5 compete for binding to the MEK5 PB1
domain. However, Nakamura et al (2006) showed that the PB1
domain functions as a scaffold for a MEKK2–MEK5–ERK5 complex.

Similarities between the ERK5 and ERK1/2 pathways
ERK5 was initially documented as a MAPK family member that is
activated by stress stimuli, as ERK5 was reported to be activated by
oxidative stress and hyperosmolarity but not by platelet-derived
growth factor (PDGF), a strong stimulus for ERK1/2 (Abe et al,
1996). Subsequently, it was shown that ERK5 can be activated in
response to serum, one of the well-known activators of ERK1/2
(Kato et al, 1997). Nerve growth factor (NGF), another stimulator of
ERK1/2, can also increase ERK5 activity (Kamakura et al, 1999).
Remarkably, PD98059 and U0126, which were identified as
MEK1/2-specific inhibitors, also inhibit the MEK5–ERK5 pathway
(Kamakura et al, 1999; Mody et al, 2001). However, the
MEK5–ERK5 pathway is less sensitive to PD184352, which is also
known as a MEK1/2 inhibitor (Mody et al, 2001). 

ERK5 can phosphorylate the ERK1/2 substrates, Sap1a, c-Myc
and RSK (English et al, 1998; Kamakura et al, 1999; Pearson et al,
2001). However, it has also been reported that low doses of
PD184352 block epidermal growth factor (EGF)-induced activa-
tion of RSK, indicating that ERK5 is probably not involved in RSK
activation (Mody et al, 2001). ERK5, as well as ERK1/2, can also
induce immediate early genes, such as c-Fos and c-Jun (Kato et al,
1997; Kamakura et al, 1999). 
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ERK5, similar to ERK1/2, has a role in the regulation of EGF-
induced cell proliferation, mainly during the G1/S transition (Kato 
et al, 1998). ERK5 is involved in the regulation of cell proliferation 
in several ways. For example, the phosphorylation of serum and 
glucocorticoid-inducible kinase (SGK) by ERK5 is required for 
S-phase entry (Hayashi et al, 2001). In addition, ERK5, as well as
ERK1/2, is able to drive cyclin D1 expression—a key regulator of the
G1/S transition. However, ERK5 and ERK1/2 regulate cyclin D1
expression by different mechanisms: cAMP response element (CRE)
is required for induction by ERK5 but not by ERK1/2 (Mulloy et al,
2003). It has also been reported that serum-stimulated cyclin D1
expression is inhibited by low doses of PD184352 that specifically
inhibit the ERK1/2 pathway (Squires et al, 2002). 

Thus, there are similarities between the ERK5 and the ERK1/2 path-
ways in their activation modes and function. However, recent studies
have also identified some distinctive features of the ERK5 pathway. 

Roles of ERK5 and ERK1/2 in vivo
Previous studies with cultured cells have revealed the involve-
ment of ERK5 and ERK1/2 in many cellular responses, including
cell proliferation. Recent genetic studies have identified their role
in vivo in the development of whole organisms. ERK5 is essential
for cardiovascular development and neural differentiation,
whereas ERK1/2 is important for mesoderm formation.

ERK5-deficient mice die around embryonic day 10.5 because of
cardiovascular defects and angiogenic failure in embryonic and
extraembryonic tissues (Regan et al, 2002; Sohn et al, 2002; Yan 
et al, 2003). Similar phenotypic abnormalities are seen in mice with
an endothelial-specific conditional knockout of ERK5 and in MEK5-
deficient mice (Hayashi et al, 2004; Hayashi & Lee, 2004; Wang 
et al, 2005). Endothelial-specific ERK5 knockout mice show cardio-
vascular defects, whereas cardiomyocyte-specific knockout mice
do not, suggesting that ERK5 is required in endothelial cells
(Hayashi et al, 2004; Hayashi & Lee, 2004). It has also been reported
that ERK5 inhibits apoptosis of endothelial cells in vitro (Pi et al,
2004). Another function of ERK5—the regulation of neural differen-
tiation—has been revealed by a study in Xenopus laevis (Nishimoto
et al, 2005). ERK5 knockdown with antisense morpholino oligo-
nucleotides resulted in the reduction of head structures and the
inhibition of neural differentiation. Furthermore, the forced activa-
tion of ERK5 promoted neural differentiation. Although these results
might be related to the observation that ERK5-deficient mice show
severe growth retardation in the head region (Sohn et al, 2002; Yan
et al, 2003), it remains to be shown whether ERK5 regulates neural
differentiation in mice. In Caenorhabditis elegans, the sma-5 gene
encodes a homologue of ERK5, although it does not contain the TEY
activation motif (Watanabe et al, 2005). The sma-5 mutant has a
smaller body size than wild-type C. elegans.

Studies with knockout mice have shown that ERK2 and MEK1,
rather than ERK1 and MEK2, are essential for embryonic develop-
ment: ERK2- or MEK1-deficient mice show defects in development
of the placenta, whereas ERK1- or MEK2-deficient mice are viable,
fertile and of normal size (Giroux et al, 1999; Pages et al, 1999;
Mazzucchelli et al, 2002; Belanger et al, 2003; Hatano et al, 2003).
Recently, it was reported that another line of MEK2-deficient mice
lacks mesoderm differentiation, suggesting that ERK2 has a key role
in mesoderm formation (Yao et al, 2003). Similarly, in Xenopus,
which seems to have an ERK2 but not an ERK1 gene, ERK2 regulates
mesoderm formation (Gotoh et al, 1995; LaBonne et al, 1995;

Umbhauer et al, 1995). Furthermore, the duration of ERK2 activation
regulates the dorsoventral patterning of the mesoderm (H. Hanafusa, K.
Matsumoto & E.N., unpublished data). ERK2 is also essential for oocyte
maturation and metaphase arrest of unfertilized eggs in Xenopus
(Gotoh & Nishida, 1995). In addition, it is well known that the
Ras/ERK1/2 signalling pathway has a central role in vulval develop-
ment in C. elegans (Sundaram & Han, 1996) and the differentiation
of R7 photoreceptor cells in Drosophila (Perrimon, 1994). 

These observations suggest that ERK5 and ERK1/2 have distinct
roles in vivo. However, as some redundancy between ERK1 and
ERK2 might exist, the production and analyses of ERK1/2 double-
knockout mice are needed to understand fully the distinct roles of
the ERK1/2 and the ERK5 pathways. Also, ERK5 and ERK1/2 might
regulate different stages of neural development, as the ERK1/2
pathway regulates neural induction in Xenopus (Pera et al, 2003;
Kuroda et al, 2004) whereas the ERK5 pathway is involved in the
regulation of the subsequent neural differentiation (see above;
Nishimoto et al, 2005).

Signalling to the nucleus
MAPK pathways control cell proliferation and cell differentiation
mainly through the regulation of transcription factors in the nucleus.
Thus, to transmit extracellular signals to the nucleus, the terminal
component of the MAPK pathways—that is, MAPK—must translocate
from the cytoplasm to the nucleus. 

Overexpressed ERK5 localizes to the cytoplasm in resting cells and
translocates to the nucleus when co-expressed with constitutively
active MEK5 (Fig 1A; Kato et al, 1997). Endogenous ERK5 is cytoplas-
mic, nuclear or pancellular, depending on the cell line (Buschbeck &
Ullrich, 2005; Kondoh et al, 2006). In human breast carcinoma MCF7
cells and mouse myoblast C2C12 cells, endogenous inactive ERK5
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Fig 1 | Two mechanisms to transmit the signal from the cytoplasm to the nucleus

in the ERK5 pathway. (A) ERK5 and (B) MEKK2 can translocate from the

cytoplasm to the nucleus on stimulation. ERK, extracellular-signal-regulated

kinase; MEKK, MAP/ERK kinase kinase.
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localizes either to the cytoplasm or diffusively throughout the whole
cell, and translocates to the nucleus on stimulation (Fig 1A; Esparis-
Ogando et al, 2002; Kondoh et al, 2006). In COS7, HeLa and Rat1
cells, endogenous ERK5 localizes to the nucleus even before stimula-
tion, although the nuclear accumulation of ERK5 is enhanced by the
stimulation of HeLa cells (Raviv et al, 2004; Buschbeck & Ullrich,
2005; Kondoh et al, 2006). In HeLa and Rat1 cells, MEKK2 translo-
cates from the cytoplasm to the nucleus on stimulation (Fig 1B; Raviv
et al, 2004). 

Recently, a mechanism for the nucleocytoplasmic transport of
ERK5 has been proposed (Fig 2A; Kondoh et al, 2006). ERK5 has
nuclear localizing activity in its C-terminal region (Yan et al, 2001),
owing to a bipartite nuclear localization signal (NLS; Kondoh et al,
2006). In addition, ERK5 has nuclear export activity (Raviv et al,
2004; Buschbeck & Ullrich, 2005), and the balance between
nuclear import and export determines the subcellular localization of
ERK5 (Kondoh et al, 2006). In quiescent cells, the intramolecular
interaction between the N-terminal and the C-terminal halves of

ERK5 forms a region responsible for a CRM1-dependent nuclear
export signal (NES). It is possible that the region itself constitutes an
NES. However, an NES in ERK5 has not been identified so far.
Therefore, it is also possible that the region is responsible for the
interaction of ERK5 with a cytoplasmic anchor protein containing an
NES. In any case, this NES activity might be stronger than the NLS
activity under non-stimulated conditions, meaning that ERK5 is
cytoplasmic. On stimulation, ERK5 undergoes activating phosphory-
lation, and the intramolecular association between the N-terminal
and C-terminal halves is dissociated, resulting in the disruption of
the nuclear export activity. ERK5 then translocates to the nucleus, as
the NLS is constantly active. 

ERK1/2 also translocates from the cytoplasm to the nucleus on
stimulation but, unlike ERK5, it does not have an obvious NLS or
NES. Instead, MEK1/2 has an NES in its N-terminal region and
localizes mainly to the cytoplasm (Fukuda et al, 1996). In quies-
cent cells, MEK1/2 retains ERK1/2 in the cytoplasm through direct
interaction (Fig 2B; Fukuda et al, 1997). On stimulation, ERK1/2
becomes phosphorylated at threonine and tyrosine residues and
the latter results in the dissociation of ERK1/2 from MEK1/2.
ERK1/2 then translocates to the nucleus by three mechanisms: pas-
sive diffusion of a monomer, active transport of a dimer, and direct
interaction with the nuclear pore complex (Fig 2B; Khokhlatchev
et al, 1998; Adachi et al, 1999; Matsubayashi et al, 2001;
Whitehurst et al, 2002; Kondoh et al, 2005). To export ERK1/2 from
the nucleus, MEK1/2 enters the nucleus by passive diffusion
(Adachi et al, 2000; Yao et al, 2001). The nuclear localization of
MEK1/2 is also regulated by a stimulus-dependent rapid transport
mechanism (Jaaro et al, 1997; Yao et al, 2001). MKP3, a member of
the MAP kinase phosphatase family, also has an NES and anchors
ERK1/2 in the cytoplasm under non-stimulated conditions
(Karlsson et al, 2004). 

As the MAPK substrates are present in both the cytoplasm and
the nucleus, the spatial control of MAPKs is essential for the pre-
cise regulation of signal transduction. Phosphoprotein enriched in
astrocytes 15 (PEA15) and Sef are spatial regulators of ERK1/2
(Formstecher et al, 2001; Torii et al, 2004; Whitehurst et al, 2004).
As for ERK5, the muscle-specific A-kinase anchoring protein
(mAKAP) complex at the perinuclear membrane anchors ERK5 to
inhibit the activity of phosphodiesterase (PDE) 4D3, which hydro-
lyses cAMP (Dodge-Kafka et al, 2005). It is also reported that the
activation of ERK5 is disrupted by cAMP (Pearson et al, 2006). 

Transcriptional activation activity of ERK5 
When MAPKs translocate to the nucleus, they control transcrip-
tion to elicit the desired cell response. Recently, a unique mecha-
nism of ERK5-mediated transcriptional regulation has been
revealed. The C-terminal region of ERK5 contains a unique
sequence, and has transcriptional activation activity (Kasler et al,
2000; Terasawa et al, 2003; Akaike et al, 2004). Other MAPKs,
including ERK1/2, do not have this long non-catalytic domain 
(Fig 3). The C-terminal region of ERK5 is required for the maxi-
mum activation of MEF2, peroxisome proliferator activated recep-
tor γ1 (PPARγ1) and members of the AP1 family, c-fos and Fra1.
Activation of the MEK5–ERK5 pathway increases the transcription
activity of these factors, whereas it is significantly decreased 
by the deletion of the C-terminal region of ERK5. Furthermore, 
the C-terminal half of ERK5 alone has the ability to increase 
transcription activity (Kasler et al, 2000).
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Fig 2 | Molecular mechanisms to control nucleocytoplasmic transport of

ERK5 and ERK1/2. (A) ERK5 has a bipartite nuclear localization signal (NLS)

in its carboxy-terminal region. In resting cells, the intramolecular interaction

between the amino-terminal and the C-terminal halves produces a nuclear

export signal (NES) or a domain recognized by cytoplasmic anchor proteins,

which has an NES and retains ERK5 in the cytoplasm (not shown). The NES

activity might be stronger than the NLS activity. On stimulation, the

interaction between the N-terminal and the C-terminal halves is disrupted,

and thus the NES activity is abolished. ERK5 then enters the nucleus. (B) By

contrast, ERK1/2 contains no NLS or NES. In resting cells, MEK1/2, which

has an NES, anchors ERK1/2 in the cytoplasm. On stimulation, ERK1/2
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What regulates the transcriptional activation activity of ERK5?
The activity of the C-terminal region is inhibited by the N-terminal
half of the protein (Kasler et al, 2000). Furthermore, the activity is
positively regulated by MEK5–ERK5 pathway-mediated phospho-
rylation (Y. Morimoto, K. Kondoh & E.N., unpublished data). ERK5
autophosphorylation of its C-terminal half might be required for
the transcriptional activation activity, as it has been shown that
the C-terminal region of ERK5 becomes autophosphorylated
(Mody et al, 2003). Therefore, phosphorylation of the N-terminal
TEY sequence of ERK5 by MEK5 causes the activation of ERK5,
resulting in the phosphorylation of downstream target molecules
and also autophosphorylation of its C-terminal region. This proba-
bly leads to a further increase in the transcription activity of target
molecules (Fig 3, left). Future studies should uncover the molec-
ular mechanisms by which the C-terminal region of ERK5
enhances transcription activity.

Conclusions
The C-terminal region of ERK5, which is unique to ERK5, enables
the kinase to increase the transcription activity of target mol-
ecules. Therefore, ERK5 is able to transmit signals to downstream
molecules in two ways: through either the phosphorylation or the
enhancement of the transcription activity of target molecules. It
will be interesting to uncover the strategy that determines which
of these two mechanisms is used. ERK5 is activated by several
extracellular stimuli, such as stress stimuli and growth factors,
and has an important role in several cellular responses, such as
cell proliferation and cell differentiation. Therefore, ERK5 must
transmit signals in a context-dependent manner. This could be
achieved, at least in part, by altering the balance between the
two mechanisms. 

Finally, only a small number of molecules have been identified so
far as downstream targets of ERK5. A more complete identification of
the downstream factors will be necessary to fully understand the role
of ERK5 in signal transduction.
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