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Abstract

MAPPFinder is a tool that creates a global gene-expression profile across all areas of biology by
integrating the annotations of the Gene Ontology (GO) Project with the free software package
GenMAPP (http://www.GenMAPP.org). The results are displayed in a searchable browser,
allowing the user to rapidly identify GO terms with over-represented numbers of gene-
expression changes. Clicking on GO terms generates GenMAPP graphical files where gene
relationships can be explored, annotated, and files can be freely exchanged.
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Background 
DNA microarray experiments simultaneously measure the

expression levels of thousands of genes, generating huge

amounts of data. The analysis of these data presents a

tremendous challenge to biologists and new tools are needed

to help gain biological insights from these experiments.

Although the data are generated for individual genes, exam-

ining a dataset on a gene-by-gene basis is time consuming

and difficult to carry out across an entire dataset. One way of

accelerating the pace of data analysis is to approach the data

from a higher level of organization. This can be done using

data-driven methods, such as hierarchical clustering and self-

organizing maps [1,2], which identify groups of genes with

similar expression patterns. A complementary approach is to

view the data at the level of known biological processes or

pathways. Identifying those groups of biologically related

genes that are showing a large number of gene-expression

changes will create an informative description of the biology

that is occurring in a particular dataset, making it possible to

generate new hypotheses and identify those specific areas of

biology that warrant more detailed investigation.

One tool that assists in the identification of important bio-

logical processes is GenMAPP (Gene MicroArray Pathway

Profiler) [3], a program for viewing and analyzing microar-

ray data on microarray pathway profiles (MAPPs) represent-

ing biological pathways or any other functional grouping of

genes. When a MAPP is linked to a gene-expression dataset,

GenMAPP automatically and dynamically color codes the

genes on the MAPP according to criteria supplied by the

user. GenMAPP is a useful starting point for pathway-based

analysis of gene-expression data, but there are several criti-

cal requirements to be met before this tool can be used to

identify correlated gene-expression changes across all

biology. On a practical level, pathway-based analysis of

microarray data needs to be automated, so that all possible

pathways can be explored. Identifying correlated gene-

expression changes in an individual pathway is often inter-

esting, but it is necessary to know if the gene-expression

changes seen on a particular pathway are unique to this

pathway or are occurring in many other pathways. Equally

important to automation is expanding the pathway informa-

tion that is digitally represented. GenMAPP currently has
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over 50 MAPP files depicting various biological pathways

and gene families, but this is still only a small fraction of all

known biology [3]. Several other pathway programs such as

KEGG [4], EcoCyc/MetaCyc [5], Pathway Processor (which

uses KEGG) [6] and ViMAc [7] are available for integration

with microarray data analysis, but these programs focus on

well-defined metabolic pathways, and like GenMAPP, would

benefit from a broader base of pathway information.

To address this issue, we have used information available

from the Gene Ontology (GO) Consortium [8]. The GO Con-

sortium is creating a defined vocabulary of terms describing

the biological processes, cellular components and molecular

functions of all genes. The GO is built in a hierarchical

manner, with a parent-child relationship existing between

GO terms. Curators at the public gene databases are assign-

ing genes to GO terms to provide annotation and a biological

context for individual genes. In addition to providing gene

annotation, GO also provides a structure for organizing

genes into biologically relevant groupings. These groupings

can serve as the basis for identifying those areas of biology

showing correlated gene-expression changes in a microarray

experiment. While GO has been used to annotate microarray

data both by hand and by some software packages [9-11],

there has been no automated way to use it for pathway-

based analysis.

We have developed a tool called MAPPFinder that dynami-

cally links gene-expression data to the GO hierarchy. For

each of the 11,239 ([12]; as of May 6, 2002]) GO biological

process, cellular component and molecular function terms,

MAPPFinder calculates the percentage of the genes mea-

sured that meet a user-defined criterion. This is done for

each specific GO node, and for the cumulative total of the

number of genes meeting the criterion in a parent GO term

combined with all of its children, giving a complete picture

of the number of genes associated with a particular GO term.

Using this percentage and a z score (see Materials and

methods), the user can rank the GO terms by their relative

amounts of gene-expression changes. MAPPFinder therefore

generates a gene-expression profile at the level of biological

processes, cellular components and molecular functions,

rapidly identifying those areas of biology that warrant

further study (Figure 1).

MAPPFinder and GenMAPP are both available free-of-

charge at [13].

Results and discussion
To demonstrate the utility of MAPPFinder, we used the

program to analyze the publicly available mouse microarray

dataset, the FVB benchmark set for cardiac development,

maturation and aging [14]. This dataset measures gene-

expression levels in the hearts of 12.5-day embryos and adult

mice. We have used the 12.5-day embryonic time point to

identify those biological processes that show differentially

expressed genes between embryonic and adult hearts. We

ran the MAPPFinder analysis on this dataset using two crite-

ria, either an increase (fold change > 1.2 and p < 0.05) or

decrease (fold change < -1.2 and p < 0.05) in gene expres-

sion for the 12.5-day embryo. We chose this dataset for

demonstration because of the large number of differences in

gene expression observed in the 12.5-day embryo compared

to the adult mouse heart tissue.
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Figure 1
How MAPPFinder works. Microarray data is imported into MAPPFinder
as a GenMAPP gene-expression dataset. Using a relational database and
the gene-association files from GO, MAPPFinder assigns the thousands of
genes in the dataset to the thousands of GO terms. Using a user-defined
criterion for a significant gene-expression change, MAPPFinder calculates
the percentage of genes meeting the criterion and a statistical score for
each GO term. Using the ranked list and GO browser generated by
MAPPFinder the user can quickly identify interesting GO terms with high
levels of gene-expression changes. The specific genes involved in these
GO terms can be examined on automatically generated MAPPs using
GenMAPP.
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MAPPFinder linked the 9,946 probe sets measured in this

experiment to the 11,239 GO terms [12] in the hierarchy and

calculated the percentage of genes meeting the criterion and

a z score for each GO term. Table 1 gives an overall

summary of the linkages made between the dataset and GO

and calculations carried out by MAPPFinder. Nearly half of

the 9,946 probe sets measured in the FVB benchmark

dataset were connected to a GO term, representing approxi-

mately 70% of the mouse genes associated with GO terms

[15] and covering a good portion of what is currently known

about mouse biology. The proportion of genes in the

microarray dataset that link to GO terms will increase as

more GO terms and gene associations are added by the

Mouse Genome Database (MGD) [16].

After MAPPFinder assigns the genes in the microarray

dataset to the GO structure, it calculates for each GO term

the percentage and z score (see Materials and methods) for

the genes that meet the user’s criterion. These two values

can be used to identify GO terms with an over- (or under-)

represented number of gene-expression changes. The

MAPPFinder results are displayed in two forms. The first is a

GO browser that graphically displays the MAPPFinder

results in the structure of the GO hierarchy (Figures 2a,3a).

The second is a text file listing all the GO terms measured,

ranked by the z score. The number of genes meeting the cri-

terion, the number of genes measured in the experiment,

and the number of genes assigned to each GO term by MGD

are given, along with the respective percentages and z score,

in the text file and GO browser (Figure 2b). Table 2 shows

the list of process, component and function terms with a z

score greater than 2 for the significantly increased and

decreased criteria at the 12.5-day embryonic time point. GO

terms that had fewer than 5 or more than 100 genes changed

were removed from the list because these terms were either

too specific or too general for our data analysis. This filter

identified the top 108 (8.0%) GO terms for the significantly

increased criterion and the top 63 (4.8%) GO terms for the

significantly decreased criterion. The stringency of this filter

can be increased or decreased by raising or lowering the z

score cutoff, or by including terms with larger or smaller

numbers of genes. The filtered list was then pruned by hand

for related GO terms to remove any over-represented

branches of the GO hierarchy (for the complete results, see

Additional data files). When both a parent and a child term

were present in the list, the parent term was removed if its

presence was due entirely to genes meeting the criterion for

the child term. The remaining terms on the list still have a

large degree of interrelatedness, but have been retained here

for completeness.

The MAPPFinder results present a global picture of the bio-

logical processes, cellular components and molecular func-

tions that are increased and decreased in the 12.5-day embryo

compared with the adult mouse (Table 2). Using the criterion

for a significantly increased gene-expression change,

MAPPFinder primarily identified GO terms involved in cell

division and growth. Notable GO terms include the processes

‘mitotic cell cycle’ (62.9% of 70 genes, z score of 8.1), ‘mRNA

splicing’ (90.5% of 21 genes, z score of 7.5), and ‘protein

biosynthesis’ (50% of 104 genes, z score of 6.8). The top-

ranked component and function terms reflected the same bio-

logical processes. For example, the component term

‘spliceosome’ shows that 17 out of 20 genes (85%, z score of

6.7) were upregulated. The upregulation of these processes is

consistent with the fact that cardiomyocytes remain mitoti-

cally active throughout embryonic development [17]. Apart

from processes involved in cell division and growth, the

MAPPFinder results indicate that the processes ‘transmem-

brane receptor protein serine/threonine kinase signaling

pathway’ and ‘induction of apoptosis’ are upregulated, with a

z score of approximately 2. The presence of the term ‘trans-

membrane receptor protein serine/threonine kinase signaling

pathway’ is due to the upregulation of genes involved in trans-

forming growth factor-� (TGF�) receptor signaling, which is

thought to regulate the induction of apoptosis required for

morphogenesis during heart development [18,19].
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Table 1

Numbers of genes used in the MAPPFinder calculations

FVB benchmark dataset 
for development

Genes measured 9,946

Genes linked to MGD directly 6,267

Genes linked to MGD via UniGene 220

Genes linked to GO terms 5,120

Unique genes linked to GO 4,574

Genes measured/associated in GO process 3,544/4,962 (71.4%)

Genes measured/associated in GO component 3,238/4,691 (69.0%)

Genes measured/associated in GO function 3,999/5,846 (68.4%)

12.5-day embryo

Increased Decreased

Genes changed 2,219 1,775

Genes linked to GO process 806 711

Genes linked to GO component 726 657

Genes linked to GO function 885 783

Of the 9,946 genes measured by this array, 6,267 were linked to the
MGD database via the GenBank accession numbers referenced by MGD.
An additional 220 genes were linked to MGD using UniGene as an
intermediate step (see Materials and methods). Of these 6,487 genes,
5,120 were found in the mouse GO gene-association files. Once duplicate
probes were removed, 4,574 unique genes were used for the
MAPPFinder analysis. This dataset comprised 71.4% of the 4,962 genes
associated with GO process terms, 69% of the 4,691 genes associated
with GO component terms, and 68.4% of the 5,846 genes associated with
GO function terms [15]. In the 12.5-day embryo, 2,219 genes met the
criterion for increased gene expression, 806 having process annotation,
726 having component annotation, and 885 having function annotation.
The decreased criterion found 1,775 genes, 711 in process, 657 in
component, and 783 in function.



Genes involved in energy metabolism showed the highest

levels of downregulation in the 12.5-day embryo heart versus

the adult heart. In particular, the process terms ‘fatty acid

metabolism’ (63.3% of 30 genes, z score of 5.9) and ‘main

pathways of carbohydrate metabolism’ (51.3% of 39 genes, z

score 4.8), which is the parent of the terms ‘glycolysis’ and

‘tricarboxylic acid cycle’, indicate that metabolic genes as a

whole are downregulated in an embryo when compared to
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Figure 2
The MAPPFinder browser. (a) The branch of the GO hierarchy rooted at the biological process term ‘RNA processing’ is shown. The terms are colored
with the MAPPFinder results for genes significantly increased in the 12.5-day embryo versus the adult mice. Terms with 0-5% of genes changed are
colored black, 5-15% purple, 15-25% dark blue, 25-35% light blue, 35-45% green, 45-55% orange, and greater than 55% red. The term RNA processing is
highlighted in yellow, indicating that it meets the search or filter requirements. (b) The MAPPFinder results. The term RNA processing is shown with the
various MAPPFinder results labeled. The percentage of genes meeting the criterion and the percentage of genes in GO measured in this experiment are
calculated. The results are calculated for both this node individually and in combination with all of its child nodes (that is, nested results). The z score
indicates whether the number of genes meeting the criterion is higher or lower than expected. A positive score indicates that more genes are changed
than expected; a negative score means fewer genes are changed than expected, and a score near 0 indicates that the number of changes approximates to
the expected value for that GO term.

-

-

mRNA modification    0/0 0%, 0/0 0% NESTED 1/2 50%, 2/2 100% z score = 0.93
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an adult mouse. In addition, the component term ‘mitochon-

drion’ shows that 88 out of 187 genes (47.1%, z score of 9.1)

are downregulated. The downregulation of genes involved in

fatty-acid metabolism is consistent with research that has

shown that the developing heart, unlike the adult heart, does

not derive its energy from fatty acids [20].

Overall, the MAPPFinder results provide a global perspec-

tive of the processes that are up- and down-regulated in the

12.5-day embryonic heart compared to an adult heart. The

results confirmed what was expected: when compared to the

adult heart, the embryonic heart is undergoing increased cell

division and growth and has decreased energy metabolism.

In addition, the global gene-expression profile presented by

MAPPFinder allows the gene-expression changes observed

for cell division and growth and energy metabolism to be put

in the context of other regulatory and developmental

processes such as TGF� signaling and apoptosis. 

The MAPPFinder browser 
Viewing the MAPPFinder results as a ranked list is informa-

tive, but it does not take full advantage of the fact that GO is

arranged in a hierarchy. MAPPFinder also presents the

results in the context of the GO hierarchy (Figures 2a,3a)

showing the entire hierarchy, color-coded by the percentage

of genes changed. Users can step through the hierarchy,

expanding those branches of the tree that are showing gene

expression changes, moving from broad terms to more spe-

cific categories. Often the ranked list of terms will show many

interrelated terms, and it is necessary to view the results in

the hierarchy to identify the relationships among them. For

example, the terms ‘RNA metabolism’, ‘RNA processing’,

‘mRNA processing’, and ‘mRNA splicing’ appear as upregu-

lated in Table 2. However, the tree view (Figure 2a) clearly

shows that mRNA splicing is a child term of both RNA splic-

ing and mRNA processing, which are in turn child terms of

RNA metabolism. Similarly, the terms ‘main pathways of car-

bohydrate metabolism’, ‘catabolic carbohydrate metabolism’,

and ‘glycolysis’ also appear as downregulated in Table 2. The

MAPPFinder browser (Figure 3a) shows that ‘glycolysis’ is

related to ‘main pathways of carboyhydrate metabolism’

through the hierarchical relationship between these terms. 

The MAPPFinder browser also provides three search and nav-

igation functions. First, the user can search by a keyword or an

exact GO term name. Second, the user can search by a gene

identifier to find which GO term(s) the gene is associated

with. For example, searching for the gene alpha-myosin

heavy chain using its SWISS-PROT identifier

MYH6_MOUSE or its MGD identifier MGI:97255 finds the

GO process terms ‘striated muscle contraction’, ‘cytoskele-

ton organization and biogenesis’, ‘protein modification’,

and ‘muscle development’. Third, the user can expand the

GO tree automatically to show all nodes with a minimum

number of genes or minimum percentage of genes meeting

the criterion or with a minimum z score. The terms meeting

the filter are highlighted in yellow to clearly indicate the

results of the search.

Once the GO terms of interest have been identified with

MAPPFinder, the user will want to know exactly which genes

are associated with these terms and exactly which genes are

being differentially expressed. This can be accomplished

using GenMAPP. Selecting a GO term in the MAPPFinder

browser automatically builds a MAPP containing the genes

associated with that GO term and all of its children, and

opens this MAPP in GenMAPP. Figure 3b shows the MAPP

generated by selecting the GO term ‘glycolysis’ in the

MAPPFinder browser. The genes on the MAPP are color-

coded with the same criteria used to calculate the

MAPPFinder results, significantly increased and decreased at

the 12.5-day embryo time point. Clicking on a gene on the

MAPP opens a ‘back page’ containing annotations, gene-

expression data and hyperlinks to that gene’s page in the

public databases. By integrating GenMAPP and MAPPFinder,

it is possible to seamlessly move from a global gene-expres-

sion profile at the level of all biological processes, compo-

nents and functions to a detailed description of the

gene-expression levels for the specific genes involved. For

example, a closer examination of the glycolysis MAPP indi-

cates that hexokinase I is upregulated in the 12.5-day embryo

and isoforms II and IV are downregulated, as compared with

the adult heart. This is consistent with hexokinase I being the

predominant isoform in the embryonic heart [21].

Expanding MAPPFinder beyond GO 
GO is a good starting point for analyzing microarray data in

the context of biological pathways, but this is by no means the

only way to group related genes. Instead of representing each

GO process as an alphabetical list on a MAPP, it would be

more useful to represent the relationships between these

genes as a fully delineated pathway. As a start in this direction,

GenMAPP.org [13] has created over 50 MAPPs depicting

metabolic pathways, signaling pathways and gene families.
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Figure 3 (see figure on the next page)
Linking MAPPFinder to GenMAPP. (a) The MAPPFinder browser displaying the 12.5-day embryo increased results for the GO process term ‘glycolysis’.
Color-coding of GO terms is the same as in Figure 2. (b) Clicking on the GO term glycolysis in the MAPPFinder browser builds the corresponding
GenMAPP MAPP file. This MAPP file contains a list of genes associated with this term and all of its children. (c) Genes in the GO list were rearranged
with the tools in GenMAPP to depict the glycolysis pathway with the metabolic intermediates and cellular compartments. Color-coding of genes for (b)
and (c) is as follows: Red, fold change >1.2 and p < 0.05 in the 12.5-day embryo versus adult mice. Blue, fold change < -1.2 and p < 0.05. Gray, neither of
the above criteria met. White, gene not found on the array. 
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Figure 3 (see legend on the previous page)

energy derivation by oxidation of organic compounds     0/0 0%, 0/0, 0%  NESTED 23/50 46%, 50/66 75.8% z score = 4.54 energy derivation by oxidation of organic compounds     0/0 0%, 0/0, 0%  NESTED 23/50 46%, 50/66 75.8% z score = 4.54 

glycolysis      10/23 43.5%, 23/28 82.1 %  NESTED 12/26 46.2%, 26/32 81% z score = 3.29glycolysis      10/23 43.5%, 23/28 82.1 %  NESTED 12/26 46.2%, 26/32 81% z score = 3.29
Enter-Doudoroff pathway

catabolic carbohydrate metabolism    0/0 0%, 0/0 0%  NESTED 18/36 50%, 36/45 80% z score = 4.45catabolic carbohydrate metabolism    0/0 0%, 0/0 0%  NESTED 18/36 50%, 36/45 80% z score = 4.45
gluconeogenesis      2/5 40%, 5/7 71.4%  NESTED 2/5 40%, 5/7 71% z score = 1.10gluconeogenesis      2/5 40%, 5/7 71.4%  NESTED 2/5 40%, 5/7 71% z score = 1.10

anabolic carbohydrate metabolism    0/0 0%, 0/0 0%  NESTED 2/5 40%, 5/7 71% z score = 1.10anabolic carbohydrate metabolism    0/0 0%, 0/0 0%  NESTED 2/5 40%, 5/7 71% z score = 1.10
main pathways of carbohydrate metabolism     0/0 0%, 0/0 0%  NESTED 20/39 51.3%, 39/50 78% z score = 4.83main pathways of carbohydrate metabolism     0/0 0%, 0/0 0%  NESTED 20/39 51.3%, 39/50 78% z score = 4.83

anaerobic glycolysis
Embden-Meyerhoff pathway
glycerol metabolism      1/1 100%, 1/1 100%  NESTED 2/3 66.7%, 3/4 75% z score = 2.00

glycerol biosynthesis
glycerol catabolism
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glycerol-3-phosphate metabolism     1/2 50%, 2/3 66.7%  NESTED 1/2 50%, 2/3 66.7% z = 1.05 glycerol-3-phosphate metabolism     1/2 50%, 2/3 66.7%  NESTED 1/2 50%, 2/3 66.7% z = 1.05 
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Pyruvate Dehydrogenase E1 beta

Pyruvate Dehydrogenase E2

Pyruvate Dehydrogenase E3 Binding Protein

Aldolase A, muscle

Aldolase C, brain

6-Phosphofructokinase A, muscle

6-Phosphofructokinase C, platelet

Glucose-6-phosphate Isomerase

Legend
Increased with p < 0.05
Decreased with p < 0.05
No criteria met
Not measured in this experiment

-5.0

-4.1

-1.3

4.8

1.3

4.5

-4.8

1.0

-2.8

1.0

-4.6

-1.1

1.1

-8.0

2.7

-4.1

2.0

-1.6

-1.6

4.7

1.1

-3.0

1.2

-2.7

-5.0

1.5

4.5

-4.8

-4.9

1.3

1.1

-1.5

4.7

(a)

(b) (c)
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Table 2

MAPPFinder results for genes significantly increased and significantly decreased in 12.5-day embryos versus adult mice

GO name Number changed Number measured Number in GO % Changed % Present z score

Significantly increased
Process

Mitotic cell cycle 44 70 89 62.9 78.7 8.1631
DNA metabolism 67 135 163 49.6 82.8 7.6807
mRNA splicing 19 21 30 90.5 70 7.4868
RNA processing 29 41 60 70.7 68.3 7.4411
RNA metabolism 30 44 66 68.2 66.7 7.3038
Cell cycle 98 240 291 40.8 82.5 7.0096
mRNA processing 24 33 45 72.7 73.3 6.9456
Protein biosynthesis 52 104 152 50 68.4 6.8095
Macromolecule biosynthesis 57 121 172 47.1 70.3 6.5863
DNA replication 28 46 55 60.9 83.6 6.2752
DNA replication and chromosome cycle 29 49 62 59.2 79 6.1944
Ribosome biogenesis 19 28 37 67.9 75.7 5.7749
Biosynthesis 89 242 334 36.8 72.5 5.4866
DNA dependent DNA replication 13 18 22 72.2 81.8 5.0697
Mitosis 13 18 24 72.2 75 5.0697
Nuclear division 14 21 30 66.7 70 4.8663
DNA packaging 20 36 46 55.6 78.3 4.7782
Cell organization and biogenesis 74 207 294 35.7 70.4 4.6913
M phase 15 25 36 60 69.4 4.5110
mRNA splice site selection 7 8 8 87.5 100 4.4125
DNA replication initiation 6 7 7 85.7 100 4.0138
Chromosome organization and biogenesis 18 37 51 48.6 72.5 3.8338
(sensu Eukarya)
DNA repair 21 46 53 45.7 86.8 3.7895
Protein folding 12 22 31 54.5 71 3.6157
Cytoplasm organization and biogenesis 56 169 241 33.1 70.1 3.3912
Establishment and/or maintenance of 13 27 35 48.1 77.1 3.2089
chromatin architecture
Protein synthesis elongation 6 9 37 66.7 24.3 3.1815
Chromatin assembly/disassembly 10 20 25 50 80 2.9585
Biological process unknown 34 98 250 34.7 39.2 2.9354
Protein-ligand dependent protein degradation 17 43 58 39.5 74.1 2.6968
Ubiquitin-dependent protein degradation 16 42 57 38.1 73.7 2.4404
Protein-nucleus import 5 9 10 55.6 90 2.3820
Ubiquitin cycle 6 12 16 50 75 2.2896
Nucleocytoplasmic transport 6 12 17 50 70.6 2.2896
Actin cytoskeleton organization and biogenesis 6 12 19 50 63.2 2.2896
Transmembrane receptor protein Ser/Thr 10 25 31 40 80.6 2.1081
kinase signaling pathway
Induction of apoptosis 7 16 24 43.8 66.7 2.0449

Component
Spliceosome 17 20 42 85 47.6 6.7175
Cytosolic ribosome (sensu Eukarya) 19 26 33 73.1 78.8 6.2032
Cytosol 40 85 112 47.1 75.9 5.4872
Ribosome 35 71 93 49.3 76.3 5.4624
Chromosome 19 36 55 52.8 65.5 4.3772
Nuclear envelope-endoplasmic reticulum network 9 12 17 75 70.6 4.3676
Adherens junction 6 7 14 85.7 50 4.0138
Endoplasmic reticulum membrane 7 9 13 77.8 69.2 3.9811
Chromatin 15 28 41 53.6 68.3 3.9579
Cellular component unknown 41 117 291 35 40.2 3.3057
Nucleolus 10 19 34 52.6 55.9 3.1587
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Table 2 (continued)

GO name Number changed Number measured Number in GO % Changed % Present z score

26S proteasome 11 22 23 50 95.7 3.1036
Endoplasmic reticulum 39 117 141 33.3 83 2.8569
20S core proteasome 9 19 19 47.4 100 2.6078
Nuclear membrane 6 11 18 54.5 61.1 2.5536
Cytoskeleton 64 223 306 28.7 72.9 2.2918
Collagen 10 25 31 40 80.6 2.1081
Golgi membrane 7 16 18 43.8 88.9 2.0449
Actin cytoskeleton 16 46 63 34.8 73 2.0140

Function
RNA binding 51 113 155 45.1 72.9 5.8498
Cyclin-dependent protein kinase 17 24 33 70.8 72.7 5.6944
Structural constituent of ribosome 39 83 101 47 82.2 5.4055
Cyclin-dependent protein kinase, regulator 12 17 24 70.6 70.8 4.7646
Structural molecule 77 223 278 34.5 80.2 4.4306
Pre-mRNA splicing factor 7 8 12 87.5 66.7 4.4125
mRNA binding 10 14 19 71.4 73.7 4.3979
Protein serine/threonine kinase 62 181 243 34.3 74.5 3.8821
Actin binding 25 58 83 43.1 69.9 3.7927
Proteasome endopeptidase 11 19 19 57.9 100 3.7096
DNA-directed DNA polymerase 7 10 15 70 66.7 3.6069
RHO small monomeric GTPase 7 10 10 70 100 3.6069
Nucleotidyltransferase 16 33 41 48.5 80.5 3.5964
Kinase regulator 15 33 42 45.5 78.6 3.1777
DNA dependent adenosinetriphosphatase 8 14 16 57.1 87.5 3.1151
Cytoskeletal protein binding 33 93 144 35.5 64.6 3.0423
DNA repair protein 11 23 27 47.8 85.2 2.9232
Translation factor, nucleic acid binding 14 32 43 43.8 74.4 2.8970
Transcription co-activator 6 10 14 60 71.4 2.8483
Chromatin binding 5 8 11 62.5 72.7 2.7166
Kinase 89 311 394 28.6 78.9 2.6983
Phosphotransferase, alcohol group as acceptor 87 305 386 28.5 79 2.6301
Protein kinase 76 263 336 28.9 78.3 2.5796
Exonuclease 6 11 15 54.5 73.3 2.5536
Small monomeric GTPase 15 38 46 39.5 82.6 2.5247
GTP binding 43 141 201 30.5 70.1 2.3248
Peptidylprolyl cis-trans isomerase 6 12 16 50 75 2.2896
Translation elongation factor 6 12 16 50 75 2.2896
Transcription factor binding 11 27 43 40.7 62.8 2.2838
Guanyl nucleotide binding 46 155 219 29.7 70.8 2.1927
Adenosinetriphosphatase 12 31 38 38.7 81.6 2.1763
Molecular_function unknown 29 91 230 31.9 39.6 2.1739
Protein binding 99 368 539 26.9 68.3 2.1328
Chaperone 16 45 62 35.6 72.6 2.1166
Extracellular matrix structural constituent 10 25 31 40 80.6 2.1081
conferring tensile strength
DNA-directed RNA polymerase 5 10 11 50 90.9 2.0897
Structural constituent of cytoskeleton 21 63 79 33.3 79.7 2.0838
Transferase, transferring one-carbon groups 8 19 29 42.1 65.5 2.0570
GTPase 25 78 95 32.1 82.1 2.0488
Isomerase 12 32 42 37.5 76.2 2.0468

Significantly decreased
Process

Fatty acid metabolism 19 30 41 63.3 73.2 5.9082
Main pathways of carbohydrate metabolism 20 39 50 51.3 78 4.8600
Energy derivation by oxidation of organic compounds 23 50 66 46 75.8 4.5739
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Table 2 (continued)

GO name Number changed Number measured Number in GO % Changed % Present z score

Catabolic carbohydrate metabolism 18 36 45 50 80 4.4754
Tricarboxylic acid cycle 6 8 10 75 80 3.8664
Hexose metabolism 18 41 49 43.9 83.7 3.8016
Lipid metabolism 42 127 167 33.1 76 3.6708
Lipid transport 5 7 11 71.4 63.6 3.3807
Glycolysis 12 26 32 46.2 81.2 3.3091
Peroxisome organization and biogenesis 7 12 15 58.3 80 3.2972
Glucose metabolism 15 36 42 41.7 85.7 3.2247
Lymph gland development 8 15 17 53.3 88.2 3.2043
Cell proliferation 10 21 34 47.6 61.8 3.1400
Humoral immune response 15 37 79 40.5 46.8 3.0982
Carbohydrate metabolism 31 95 135 32.6 70.4 3.0557
Regulation of cell proliferation 5 8 15 62.5 53.3 2.9848
Muscle contraction 9 20 28 45 71.4 2.7716
Muscle development 13 34 43 38.2 79.1 2.6328
Mesoderm development 28 90 111 31.1 81.1 2.6096
Potassium transport 17 49 60 34.7 81.7 2.5450
Metal ion transport 24 77 100 31.2 77 2.4230
Monovalent inorganic cation transport 21 67 88 31.3 76.1 2.2935
Complement activation 8 20 23 40 87 2.2132
Cation transport 28 98 135 28.6 72.6 2.0923
Electron transport 25 87 113 28.7 77 2.0075

Component
Mitochondrion 88 187 293 47.1 63.8 9.3508
Peroxisome 18 29 42 62.1 69 5.6381
Mitochondrial inner membrane 19 36 60 52.8 60 4.8922
Mitochondrial electron transport chain complex 10 14 32 71.4 43.8 4.7848
Mitochondrial membrane 20 40 72 50 55.6 4.7195
Cytochrome C oxidase 6 8 16 75 50 3.8664
Mitochondrial matrix 9 22 33 40.9 66.7 2.4283
Basement lamina 5 11 11 45.5 100 2.0910
Cytoskeleton 57 223 306 25.6 72.9 2.0527

Function
Hydrogen ion transporter 11 15 33 73.3 45.5 5.1373
Primary active transporter 27 64 107 42.2 59.8 4.4175
Cation transporter 17 36 61 47.2 59 4.0585
Ion transporter 19 43 79 44.2 54.4 3.9406
Cytochrome c oxidase 6 8 16 75 50 3.8664
Oxidoreductase 48 149 207 32.2 72 3.7213
Major histocompatibility complex antigen 13 30 54 43.3 55.6 3.1700
Oxidoreductase, acting on the aldehyde or 7 13 16 53.8 81.2 3.0285
oxo group of donors
Carrier 40 131 196 30.5 66.8 2.9960
Complement component 8 16 19 50 84.2 2.9770
P-type ATPase 5 9 11 55.6 81.8 2.6467
Hydrolase, acting on acid anhydrides, catalyzing 15 42 67 35.7 62.7 2.5199
transmembrane movement of substances
Nucleobase, nucleoside, nucleotide kinase 7 16 19 43.8 84.2 2.3531
Phosphotransferase, phosphate group as acceptor 5 10 13 50 76.9 2.3520
Glutathione transferase 5 10 13 50 76.9 2.3520
P-P-bond-hydrolysis-driven transporter 17 52 78 32.7 66.7 2.2609
ATP-binding cassette (ABC) transporter 11 30 50 36.7 60 2.2573
Potassium channel 15 45 56 33.3 80.4 2.2093
Carbon-carbon lyase 5 11 18 45.5 61.1 2.0910

All terms with a z score of 2 and at least 5, but less than 100 genes meeting the criterion are shown. 



MAPPFinder can incorporate any MAPP file into its analysis

to augment the GO hierarchy. For the FVB benchmark devel-

opmental dataset, we have run MAPPFinder on an archive of

54 mouse MAPPs available from [13] (see Additional data

files for the complete results). These results for the 12.5-day

embryonic time point agree with the GO results, showing

that the expression of genes involved in the metabolic path-

ways ‘tricarboxylic acid cycle’ (83.3% of 12 genes measured,

z score of 5.91) and ‘fatty acid degradation’ (69.2% of 13

genes measured, z score 4.82) is significantly decreased. In

addition, the significantly increased criterion identified

genes encoding ribosomal proteins (71.1% of 45 genes, z

score 6.75) and genes involved in the cell cycle (53.3% of 15

genes, z score 2.4).

The archive of MAPPs provided by GenMAPP is in no way

comprehensive. The growth of this archive depends on assis-

tance from the entire biological community. Our hope is

that, as MAPPFinder users see the added utility of viewing

the GO biological processes as fully delineated pathways,

they will use GenMAPP to organize the gene lists into more

descriptive biological pathways. Figure 3c gives an example

of how the genes from the GO term ‘glycolysis’ can be

rearranged using the tools in GenMAPP to depict the full

pathway showing the direction of the enzymatic cascade,

metabolic intermediates and cellular compartments.

GenMAPP.org is currently accepting submissions of new

MAPP files. MAPPs contributed by the community will be

included in the downloadable MAPP archive.

MAPPFinder is a necessary complement to current
analysis tools 
By approaching large datasets from a higher level or organi-

zation, MAPPFinder helps to ease the data analysis and

shorten the time necessary to gain a biological understand-

ing of the microarray data. MAPPFinder has greatly

expanded current pathway-based tools by using the large

amount of annotations available from the GO. This broad

analysis will help identify biological processes that have not

yet been implicated in a particular experimental condition

and begin to make connections between biological processes

previously thought to be unrelated. 

MAPPFinder is available for yeast, mouse and human data.

We plan to extend the program to many of the other species

that are in GO and updates will be available at [13].

Materials and methods
Gene-expression data 
The publicly available mouse microarray dataset, the FVB

benchmark set for cardiac development, maturation and

aging, was obtained from the CardioGenomics Program for

Genomics Applications [14]. These data compare healthy

mouse hearts at different time points during development,

using male and female FVB/N mice. Specifically, this dataset

examines heart tissue from 12.5-day embryos, 1-day neona-

tal mice, 1-week mice, 4-week mice, and adult mice at

5 months and 1 year. Our analysis focused on the 12.5-day

embryonic time point and the control adult mice. Three

Affymetrix U74A version 1 arrays were used for each time

point. For the embryonic time point, three hearts were

pooled for each array because of their small size. To improve

the statistical power in our analysis, the 5-month and the

1-year mice were combined into a single group of normal

adult mice. Signal intensity values were obtained with

Affymetrix MAS 5.0 software. Signal values less than 20

were raised to 20 and the log base 2 was taken. Log folds

were determined from the average of each time point when

compared with the average of the combined control group.

P values were calculated with a permutation t test. The sta-

tistical analysis was done using the multest package of the

R statistical programming language [22]. These data were

imported into GenMAPP, and the resulting GenMAPP

Expression Dataset file (.gex) was exported to MAPPFinder.

MAPPFinder requires a user-defined criterion for a mean-

ingful gene-expression change. In this case we combined a

fold change with a statistical filter to determine significance.

We are using a fold change of greater than 1.2 with a p value

of less than 0.05 to define a significant gene-expression

increase, and a fold change of less than -1.2 with a p-value of

less than 0.05 to define a significant gene-expression

decrease. To determine the overall number of gene-expres-

sion changes in each GO term, an additional criterion of a

fold change greater than 1.2 or less than -1.2 and a p value of

less than 0.05 is used (data not shown).

It is important to note that while we have used gene-expres-

sion data generated from Affymetrix GeneChips, data from

other microarray platforms and other techniques such as

SAGE (serial analysis of gene expression) can be used

equally easily.

Linking the expression data to Gene Ontology 
MAPPFinder builds a local copy of the GO hierarchy using

the three ontology files (Process, Component and Function)

available from GO [12]. The directed acyclic graph (DAG)

structure of GO [23] allows a node to be a child of multiple

parents. This makes the navigation, visualization and com-

putation of the MAPPFinder results more difficult than if the

GO were stored in a classical tree structure. To ease the pro-

gramming necessary to implement the MAPPFinder algo-

rithm, the DAG structure was converted to a classical tree.

For each node of the DAG that contained multiple parents,

multiple copies were inserted into the tree representation of

the GO using local identifiers to handle duplicate GO terms.

This tree structure maintains the ‘true path’ rule enforced in

the GO DAG structure. MAPPFinder handles this conversion

internally, and to the user the GO hierarchy seen in the

MAPPFinder browser will be identical to that seen in other

GO browsers.
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The links between the GO terms and the genes in the expres-

sion dataset are made with the gene-association files [15].

These associations are taken from the European Bioinfor-

matics Institute [24] for human genes, the Mouse Genome

Database (MGD) [16] for mouse genes, and the Saccha-

romyces Genome Database (SGD) [25] for yeast genes. Cur-

rently, the genes in the input data must be identified with

GenBank, SWISS-PROT or SGD identifiers. 

MAPPFinder uses a relational database to link the expres-

sion dataset to the gene-association files. The MAPPFinder

database relates gene-expression data to the appropriate

gene-identification systems for each species (Figure 1). For

human data, the gene-association files use SWISS-PROT

identifiers, requiring a SWISS-PROT-to-GenBank relational

table to link datasets using GenBank accession numbers to

the GO annotations. For yeast data, the gene-association

files use SGD identifiers. A SWISS-PROT-to-SGD relational

table is also included for expression datasets using SWISS-

PROT identifiers. For mouse data, the GO gene-association

files use MGD identifiers, requiring a GenBank-to-MGD

relational table, and a SWISS-PROT-to-MGD relational

table. MAPPFinder takes advantage of the fact that MGD is

also related to UniGene, allowing additional ESTs that are

not in the MGD-GenBank relational table to be used as gene

identifiers. With this intermediate step, many more

GenBank identifiers can be linked to GO annotations. Cur-

rently, there is no direct relationship between SWISS-PROT

and UniGene, so a similar intermediate step was not used for

human data.

Calculating the MAPPFinder results 
MAPPFinder calculates the percentage of genes measured

within each GO term that meet a user-defined criterion, and

this measurement is known as the ‘percent changed’.

MAPPFinder also calculates the percentage of the genes

associated with a GO term that are measured in the experi-

ment, and this measurement is known as the ‘percent

present’. Calculating the percent present is necessary to

determine how well represented a GO term is in the dataset.

The GO gene-association files [17] are potentially problem-

atic, because they treat each GO term independently, remov-

ing the implicit parent-child relationship. As a result,

looking at the GO terms individually is often uninformative

because the number of genes associated with any one term is

smaller than the actual number of genes involved in that

process, component, or function. To address this issue, we

calculate the nested percentage for a parent term with all its

children below it in the hierarchy. By combining the child

terms with their parent, the results incorporate genes associ-

ated with the entire branch of the hierarchy, providing a

much more accurate representation of the number of genes

involved in that process, component or function. As more

specific branches of the GO are examined, the denominator

of the two equations will become smaller and the user can

find their desired level of specificity. One complication that

arises from this method is that in some cases a gene is asso-

ciated with both the parent and child terms or multiple child

terms. When the percentages are calculated for the sub-tree,

we ensure that each gene is only counted once, so that genes

with multiple annotations are not weighted more heavily. 

Another complication that arises while calculating the

MAPPFinder results is the issue of multiple probes of the

same gene on the array. In this case, the features or dupli-

cate genes are clustered to one unique gene. If any of the

instances of this gene on the array meet the user-defined cri-

terion, then that gene meets the user-defined criterion. The

number of unique genes is also used to calculate the z score,

meaning that the statistics are based only on a single occur-

rence of each gene in the dataset.

A statistical rating of the relative gene-expression activity in

each MAPP and GO term is also provided. It is a standardized

difference score (z score) using the expected value and stan-

dard deviation of the number of genes meeting the criterion

on a GO term under a hypergeometric distribution. The z

score is useful for ranking GO terms by their relative amounts

of gene expression changes. Positive z scores indicate GO

terms with a greater number of genes meeting the criterion

than is expected by chance. Negative z scores indicate GO

terms with fewer genes meeting the criterion than expected

by chance. A z score near zero indicates that the number of

genes meeting the criterion approximates the expected

number. Extreme positive scores suggest GO terms with the

greatest confidence that the correlation between the expres-

sion changes of the genes in this grouping are not occurring

by chance alone. P values are not assigned to the GO terms or

MAPPs because, while such a standardized difference score

could approximate a normal z score for an individual MAPP,

the lack of independence between GO terms and the multiple

testing occurring among them most certainly makes the

normal p value for such a z score unreliable. As a result, p

values are not assigned to the GO terms and MAPPs. 

The z score is calculated by subtracting the expected number of

genes in a GO term (or MAPP) meeting the criterion from the

observed number of genes, and dividing by the standard devia-

tion of the observed number of genes. The equation used is

(observed - expected)
z =  ————————————————

std.deviation(observed)

or

�r - n R—
N �

z = ———————————————
———————————————–—�n � R—

N ��1 - � R—
N ��1 - n - 1———

N - 1
�

where N is the total number of genes measured, R is the total

number of genes meeting the criterion, n is the total number
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of genes in this specific MAPP, and r is the number of genes

meeting the criterion in this specific MAPP.

Therefore, if two GO terms contain the same number of

genes, the term with the greater number of genes meeting

the criterion will receive a higher score. Dividing by the stan-

dard deviation adjusts for the size of the GO term, ranking a

GO term (or MAPP) with a large number of genes meeting

the criterion higher than a GO term (or MAPP) with the

same percentage of genes changed, but fewer total genes. 

The MAPPFinder results are generated in the GO browser

for analysis in the context of the GO hierarchy and as tab-

delimited text files that can be used for sorting and filtering

the data in a spreadsheet program.

Additional data files
The following additional data files are available with the

online version of this paper. 

The FVBN developmental data in the form of a GenMAPP

expression dataset file (.gex). It contains the microarray

dataset and the criteria used to define increased and

decreased gene-expression change. It can be opened for

editing in GenMAPP and is the appropriate data type for use

with MAPPFinder.

The FVBN developmental data as a database file generated

by MAPPFinder (.gdb). It contains the relationships between

the genes in the dataset and the GO hierarchy. The file can

be opened for viewing in Microsoft Access. This file must be

present to build GenMAPP MAPPs from existing

MAPPFinder results.

The MAPPFinder results for the 12.5-day embryos versus the

adult mice are contained in text files: 12.5-day Embryo - sig-

nificantly increased - Gene Ontology results, 12.5-day

Embryo - significantly increased - Local results, 12.5-day

Embryo - significantly decreased - Gene Ontology results,

12.5-day Embryo - significantly decreased - Local results,

12.5-day Embryo - All Changes - Gene Ontology results, 12.5-

day Embryo - All Changes - Local Results. These text files

contain the MAPPFinder results for both criteria and both the

GO hierarchy and the GenMAPP.org MAPPs. These files can

be loaded into MAPPFinder for view in the MAPPFinder GO

browser. These files are tab-delimited and can also be viewed

as tables in Microsoft Excel. The ‘All Changes’ files contain

the results for a criteria looking for either increased or

decreased gene expression changes. 
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