
Mapping a Fuzzy Logic Approach for QoS-aware
Service Selection on Current Web Service Standards

Ioana Şora, Gabriel Lazăr and Silviu Lung
Department of Computers

Politehnica University of Timisoara, Romania

Abstract—We propose FQ (Fuzzy-QoS), a complete archi-
tecture for including user preferences and quality of service
characteristics in the selection process of web services. Besides the
flexibility of the selection and ranking algorithm, we consider of
equal importance the properties of the implementation: compli-
ance with standards, backwards compatibility and compatibility
with non-FQ users, and performance of the selection mechanisms
implementation.

We present our approach that relies on a combination of
two standards from the domain of web service and semantic
web technologies: UDDI, for storing and retrieving syntactic
and semantic information about web services and SAWSDL, for
creating semantically annotated web service descriptions.

I. INTRODUCTION

Service Oriented Architectures are based on the notion
that programs can be constructed by composing independent
services. A service is defined as “a loosely-coupled, reusable
software component that encapsulates discrete functionality
which may be distributed and programmatically accessed over
standard Internet protocols” [1], [2].

The general scenario in service oriented computing is that
Service Providers design and implement services, hosting
them as network-accessible modules, and advertise them by
defining service descriptions that are published in Service
Registries. Clients or Service Requesters use the published
service descriptions in order to find the needed services.

The major fact that assured the succes of service oriented
computing is that the development of service technologies has
been governed from the beginning by an active standardisation
process. Two important standards for web services are:

• UDDI (the Universal Description Discovery and Inte-
gration specification) that defines how to publish and
discover information about web services

• WSDL(Web Services Description Language) - for the
description (functional aspects) of web services [3]

In the field of web service discovery and selection, the
major research challenges include enhancing web service
discovery and selection with semantic aspects [4]. Achiev-
ing automated web service discovery and selection requires
adding semantic annotations to web service definitions and
including user preferences - quality of service characteristics
and non-functional properties - in the selection process. When
several functionally equivalent web services are available, their
quality of service characteristics and non-functional properties
become important. These factors should have the final word
in the selection process when several web services provide the

same functionality, but they could also be a decision factor in
the choice between several alternative functionalities.

In our previous works [5], [6], we have developed a novel
fuzzy logic approach for the specification, selection and rank-
ing of services according to individual QoS preferences. Our
approach uses fuzzy inference for ranking the candidates, but
based on sets of automatically generated fuzzy rules for each
set of individual preferences. Fuzzy rules have a big expressive
power, and the fact that they are generated automatically
makes this approach user-friendly. As we have shown in [5],
the advantage of using fuzzy inference with generated rules for
service ranking is that it is more flexible and has a bigger and
more controllable expressive power than the classical fuzzy
multicriteria decision making (FMCDM), especially in the
case when several properties with different importance degrees
are considered.

The goal of our current work is to fully prove the feasability
of our fuzzy selection and ranking approach, both from the
point of view of the integration with current standards that
govern the domain of web services and the performance of
the implementation of fuzzy selection and ranking in service
registries. In Section II we present the global architecture
of FQ (Fuzzy-QoS). Section III summarizes the character-
istics of our FQ ontology. Sections IV and V describe the
implementation using UDDI data structures and SAWSDL
annotations. Experimental results measuring the performance
of the implementation of our fuzzy selection and ranking
mechanism are presented in section VI. Section VII discusses
related work in the field of QoS-aware selection of services.
Conclusions are drawn in section VIII.

II. GLOBAL FQ ARCHITECTURE

In this work, we propose an approach that supports semantic
web service descriptions using registries conforming to UDDI
V2 specification. We present how we store QoS-related se-
mantics in the UDDI data model and how we make use of
that information in the fuzzy selection and ranking process.

Our approach is completely backwards compatible support-
ing service requestors and service providers who wish to take
advantage of FQ’s semantic capabilities and also those that
do not. Not requiring any modification to the existing UDDI
registries is considered an important advantage.

We propose an architecture where the UDDI server stands
independently to the semantically-enabled modules, as de-
picted in Figure 1.



 
 
 

 
 
 
 
 
 
 
 
 

Fig. 1. Arhitecture of our approach

The service registry component of the classical service
computing architecture is formed, in our approach, by the
UDDI registry together with a FunctionalityFindingService
and a DomainOntologyService.

The Domain Ontology Service (DOS) is a server component
responsible for storing in a local database all the known
ontologies gathered from the UDDI registry. It is the enabling
element for our QoS-aware approach. QoS ontologies define
the semantics of QoS parameters for different service types.

The Functionality Finding Service (FFS) is a server compo-
nent responsible for retrieving the web services from the UDDI
registry in response to requests coming from clients. Here
the functionally equivalent web service candidates are ranked
according to their QoS properties matching the individual
client request. In order to complete its information about
the semantics of QoS parameters found in the description
of service candidates, it interacts with the Domain Ontology
Service to obtain additional semantic information. The ranking
is done the FuzzyRanking subsystem (FR), which implement
the approach based on automatically generating fuzzy rules
starting from individual user preferences and using them in a
fuzzy inference process ranking the web service candidate, as
described in our previous work [5].

The FQPublisherTool component allows providers to
add/remove/update web services or ontologies. The FQPub-
lisher tool is to be used by Service Providers that adhere to
our proposed approach. Service providers that are not aware
of the approach access the UDDI registry via its regular API

and mechanisms. Also, authorised Domain Definers can use it
in order to create and publish domain ontologies.

The FQRequestTool component allows users to construct
valid web service requests and to receive an ordered list of
candidates descriptions for their request. In order to ensure the
validity of the request, it interacts with the Domain Ontology
Service. The request is sent and results are received from
the Functionality Finding service. The FQRequestTool is to
be used by Service requestors that want to make use if
the facilities of expressing individual QoS preferences and
of the facility of fuzzy selection and ranking. Other service
requestors can access the service discovery facility via the
usual UDDI API.

III. FQ DOMAIN ONTOLOGIES

Characteristic to our approach is that we need domain
ontologies that can help in defining value categories for
different non-functional or QoS properties through linguistic
variables. For example, the response time of a service could
be described with the terms very fast, fast, slow, very slow.
The membership functions of these terms can be established
by domain experts, separately for each type of service - as the
expectations are different for different types of services.

For each functionality (service type), the domain expert
establishes the valid non-functional properties. For each non-
functional property, following description items have to be
provided, in the context of describing the given functionality:

• domain: the range of values for measurable quantities, or
a default range 0-100 for description-only properties.



<?xml version="1.0" encoding="utf-8" ?>
<ontology xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:noNamespaceSchemaLocation="ontology.xsd">
<functionality name="StockMarket">
<property name="Availability" start="0" end="100">

<term name="Low" start="0" left="0" right="66" end="80" />
<term name="Normal" start="70" left="80" right="90" end="95" />
<term name="High" start="90" left="95" right="100" end="100" />

</property>
<property name="ResponseTime" start="Infinity" end="0">

<term name="Slow" start="Infinity" left="Infinity" right="20000" end="15000" />
<term name="Normal" start="20000" left="15000" right="7500" end="2500" />
<term name="Fast" start="7500" left="2500" right="0" end="0" />

</property>

Fig. 2. Example of QoS ontology: excerpt of the StockMarket FQ ontology

<tModel tModelKey="uuid:a9ff70e4-32a2-48dd-a38b-86f7b28d52eb" operator="UDDI" authorizedName=*>
<name>StockMarket</name>
<overviewDoc>

<overviewURL>http://193.226.12.174/Ontologies/StockMarket.xml</overviewURL>
</overviewDoc>
<categoryBag>
<keyedReference tModelKey=uuid:a035a07c-f362-44dd-8f95-e2b134bf43b4

keyName="QoS" keyValue="ontology" />
</categoryBag>

</tModel>

Fig. 3. Exemple of QoS tModel: tModel of the StockMarket FQ ontology

• optimization direction: specifies what is better, for the
current property, a bigger value (as for availability) or a
smaller value (as for response time)

• fuzzy terms: the fuzzy terms which can be used to
describe this property have to be enumerated, for each
term providing its name and the shape of its membership
function as defined by a domain expert. In our approach,
we assume that the terms have to be defined of trapezoidal
shape.

For example, a type of web services providing stock market
informations can be described by following non-functional
properties: Availability, ResponseTime, Cost, PublisherRepu-
tation, UserRating, UpdatesPerDay, ListedCompaniesNo, Re-
questLimitPerDay, TotalAssetsValue. The value categories of
these properties in the context of stock market services are
defined in the StockMarket FQ-Ontology. An excerpt of this
ontology for the first two properties is shown as example
in Figure 2, where we can see that in this example both
properties have 3 fuzzy terms of trapezoidal shapes defined
by their coordinates. The domain ontology can be published
by authorized domain definers with help of the FQPublisher
tool.

IV. FQ UDDI DATA STRUCTURES

The UDDI specification defines an XML-based data model
for storing descriptive information about web services and
their providers, and a web service-based API for publishing
this type of information to the registry and performing in-
quiries.

Two important structures of the UDDI data model are
tModels and bindingTemplates. A tModel is a data struc-
ture representing a service type in the UDDI registry. Each

business registered with UDDI categorizes all of its Web
services according to a defined list of service types. The
tModel is an abstraction for a technical specification of a
service type. Another UDDI data structure, the bindingTem-
plate organizes information for specific instances (particular
implementations) of service types. When businesses want to
make their specification-compliant services available to the
registry, they include a reference to the tModel key for that
service type in their bindingTemplate data.

In our approach we use TModels for the storage of ontology
information. The QoS Ontology tModel, used in our imple-
mentation, serves as a place holder for the ontology as a whole.
It contains information including the ontology name and URL
of external descriptions. The QoS Ontology tModels can be
published in the UDDI registry in order to allow providers to
state that their web services are semantically described using
concepts from these ontologies.

Published using general keywords (KeyName = QoS, Key-
Value = ontology), the QoS Ontology tModels are used to
specify the functionality of web services and the valid vocab-
ulary used for describing the quality of service characteristics
and non-functional properties allowed to occur in web service
descriptions (ex: availability, reliability, response time, cost,
publisher reputation).

Figure 3 presents as an example the QoS ontology tModel
for the StockMarket domain.

V. FQ SAWSDL ANNOTATIONS

The Web Services Description Language (WSDL) describes
Web services on a syntactic level. Semantic Annotations for
WSDL and XML Schema (SAWSDL) [7] defines a set of
extension attributes for WSDL and XML Schema definition



<bindingTemplate serviceKey="a2a16918-bc88-48d4-a6d6-f69f558298e9"
bindingKey="c2fceee7-a3bd-44b7-8acb-5aeff7b50b00">

<accessPoint URLType="http">http://193.226.12.174/WebServices/StockMarket/StockMarket_01.wsdl</accessPoint>
<tModelInstanceDetails>

<tModelInstanceInfo tModelKey="uuid:a9ff70e4-32a2-48dd-a38b-86f7b28d52eb" />
</tModelInstanceDetails>

</bindingTemplate>

Fig. 4. Example of service implementation adhering to the FQ StockMatket ontology

<wsdl:service name="StockMarket_01"
sawsdl:modelReference="http://193.226.12.174/Annotations/StockMarket_01.xml">

<wsdl:port name="StockMarket_01Soap" binding="tns:StockMarket_01Soap">
<soap:address location="http://193.226.12.174/WebServices/StockMarket/StockMarket_01.asmx" />

</wsdl:port>
<wsdl:port name="StockMarket_01Soap12" binding="tns:StockMarket_01Soap12">

<soap12:address location="http://193.226.12.174/WebServices/StockMarket/StockMarket_01.asmx" />
</wsdl:port>

</wsdl:service>

Fig. 5. Example of SAWSDL annotated StockMarket implementation

<?xml version="1.0" encoding="utf-8"?>
<service>

<property name="Availability" crisp="30" />
<property name="ResponseTime" crisp="14000" />
<property name="Cost" crisp="1200" />
<property name="PublisherReputation" crisp="4" />
<property name="UserRating" crisp="3" />
<property name="UpdatesPerDay" crisp="75" />
<property name="ListedCompaniesNo" crisp="200" />
<property name="RequestLimitPerDay" crisp="450" />
<property name="TotalAssetsValue" crisp="125" />

</service>

Fig. 6. Example of SAWSDL annotation of a StockMarket implementation

language that allows description of additional semantics of
WSDL components. The specification defines how semantic
annotation is accomplished using references to semantic mod-
els, e.g. ontologies. SAWSDL does not specify a language for
representing the semantic models, but it provides mechanisms
by which concepts from the semantic models, typically defined
outside the WSDL document, can be referenced from within
WSDL components using annotations.

We use semantic annotations to describe web services using
concepts from ontologies, represented as tModels in the UDDI
registry.

In order to specify that a web service has the functionality
and makes use of concepts from a published ontology, the
tModel representing the corresponding ontology is referenced
by the bindingTemplate of that service. For example, a web
service(bindingTemplate) may be advertised as having the
StockMarket functionality simply by referencing the Stock-
Market QoS Ontology tModel, like in Figure 4.

Generally, non-functional properties are specific details to a
web services implementation or running environment, thus we
attach references pointing to semantic concepts on the WSDL’s
service element. Figure 5 presents how the service element of
a stockmarket service has a model reference to a SAWSDL
document. The annotation concepts from the StockMarket

ontology and an excerpr is presented in Figure 6.
Web services can be published both by publishers that are

aware of the FQ approach and also by publishers that are not
using FQ. A web service(bindingTemplate) can be published
in the following ways:

• no tModel referenced and WSDL document as access-
Point (service providers not aware of FQ)

• tModel referenced and WSDL document as accessPoint
(service providers aware of FQ but who do not annotate
their service descriptions, thus a default semantic descrip-
tion will be assumed)

• tModel referenced and SAWSDL document as access-
Point (service providers aware of FQ and who provide a
specific semantic description)

VI. EXPERIMENTAL VALIDATION

A. Validation objectives

Our approach uses fuzzy inference for ranking the can-
didates, fuzzy inference performed on sets of automatically
generated fuzzy rules for each set of individual preferences.
Since this process of generating fuzzy rules from custom user
preferences and using them in a fuzzy inference process to
rank candidate services seems computational intensive, we
want to measure its influence on the server’s response time,



in the conditions of a high number of concurrent requests.
In order to do this, we created also a second version of
the system, where the fuzzy ranking is moved from the
FunctionalityFindingService (FFS) to the FQRequestTool. In
this second version, the FFS sends the client only the list with
all the functionality-matching web services found in the UDDI
repository, then the client is responsible to do the ranking.
We compare the response times obtained by the client in the
two versions of the system, in conditions of many concurrent
requests to the server.

B. Experimental setup

The service registry is populated with 300 web services,
representing instances of 2 service types (StockMarket and
Processor), for each service type there are 150 functional
equivalent implementations characterised by different QoS
properties. A query will have to rank through fuzzy inference
up to 150 functional equivalent services.

Out of the 150 services implementing the same function-
ality, 120 have references to SAWSDL descriptions, 24 are
linked to the ontology but have no links to specific semantic
descriptions, thus they will be considered worst cases for
all properties. The services with SAWSDL descriptions are
annotated in such a way that they present a well balanced
distribution of values from all ranges for all their properties.

The tests were done on a network of 7 Dell dual core, 2GB
RAM. One computer hosted the UDDI registry, the Function-
ality Finding Service and the Domain Ontology Service. The
other 6 computers were used to run special ”spammer” pro-
grams that created a number of concurrent threads, with each
thread issuing queries to the Functionality Finding Service.

As far as testing is concerned, we took into consideration
three varying parameters in order to represent objectively
run time variation in the two versions of our system. The
parameters are:

• number of user-specified properties (NP) in each query:
this parameter affects the inference and rule generation
process because as the client (user) assigns values (crisp
or fuzzy) to more properties that describe a chosen
functionality, the more complex the inference process is
and the more rules are generated and thus this process
takes more time.

• number of functional equivalent web services in the
UDDI repository (NWS): this parameter affects the infer-
ence process, that has to be repeated for each candidate.
Also the parameter affects run time when the inference
machine is placed on the client side and the FFS has
to send the client all candidates, this time being also
increased by delays due to network traffic.

• number of threads used by each spammer (NT): this pa-
rameter affects the run time when the inference machine
is placed on the server side (the FFS) because it simulates
multiple simultaneous requests from clients.

C. Results

Figures 7, 8 and 9 show results of the measurements.

 
 
 
 
 
 
 
 
 
 
 
 
 
 

conditions: NWS=50, NT=10

0

2

4

6

8

10

12

14

3 6 9

NP

T
im

e
 (

se
c)

IM on

Client
IM on FFS

Fig. 7. Response time for a service selection

 
 
 
 
 
 
 
 
 
 
 
 
 
 

conditions: NWS=150, NT=10

0

5

10

15

20

25

30

35

3 6 9

NP

T
im

e
 (

se
c)

IM on

Client
IM on FFS

Fig. 8. Response time for a service selection

 
 
 
 
 
 
 
 
 
 
 
 
 
 

conditions: NWS=150, NT=20

0

10

20

30

40

50

60

70

3 6 9

NP

T
im

e
 (

se
c)

IM on

Client
IM on FFS

Fig. 9. Response time for a service selection

As we can observe, in the worst case, corresponding to the
figure 9, when the server has to proces 6*20=120 concurrent
requests of ranking 150 equivalent services while taking into
account 9 different properties, it takes 4 times more in the
case where the fuzzy ranking is done by the central FFS server
compared to the case when the ranking is done at each client
side. We consider this result satisfactory for the performance
of the fuzzy ranking implemented in the Functionality Finding
Service.

We also can notice that the critical parameter which influ-
ences the most the increase of the response time is NP, the



number of user-specified properties in the request. Requests
with up to 6 specified properties are solved in very good times.
We believe that this case corresponds to the most frequent
user scenario and there are rarely requests that specify more
properties.

VII. RELATED WORK

QoS-aware selection of services is a hot topic in today’s
research. We analyse related work grouping it around the three
main characteristics present in our work: ontologies, selection
and ranking mechanisms, and technologic implementations.

In order to enable automatic semantic matching while keep-
ing a low degree of formalism in the description of services,
most approaches rely on the concept of domain ontologies
[8] [9]. Several approaches of ontologies for semantic or
QoS -aware services have been proposed, as for example in
[10], [9],[11], [12]. None of these ontology approaches is
fully appropriate for the goal of facilitating imprecise (fuzzy)
matching, where we need a domain ontology that can help in
defining value categories through linguistic variables, as it is
the case in the FQontology proposed as part of our approach.

For selection and ranking, different approaches are used:
[13] uses Singular Value Decomposition SVD, based on de-
composing the Quality and Web Services matrix. [14] consid-
ers service selection based on maximizing a utility function
under cost constraints. Utility functions reflect the importance
of different attributes in a request. Other approaches use
constraint programming to check QoS conformance [12], or
hybrid approaches like [15], which combine Integer Program-
ming, genetic algorithms, and case-based reasoning to tackle
the QoS-aware service composition problem. There are also
approaches based on fuzzy logic [16] as a solution for both
the computational complexity and the matching with imprecise
QoS constraints. Most of the fuzzy approaches are variants of
Fuzzy Multi Criteria Decision Making ([17], [18], [19]) or a
version of Fuzzy decision by a committee of evaluators [20].

While many approaches remain theoretical investigations
of selection algorithms or modelling of QoS concepts, a few
researches give full solutions that are integrated with the curent
standards for web services, as for example in [21], [22].

VIII. CONCLUSIONS

We propose FQ (Fuzzy-QoS), a complete architecture for
including user preferences and quality of service characteris-
tics in the selection process of web services.

The implementation of our approach relies on a combina-
tion of two standards from the domain of web service and
semantic web technologies: UDDI, for storing and retrieving
syntactic and semantic information about web services and
SAWSDL, for creating semantically annotated web service
descriptions. This makes our approach fully compatible with
current standards, while assuring backwards compatibility and
compatibility with users that are not using FQ.

The experimental validation proved that our selection and
ranking algorithm can be implemented with a reasonable
overhead in the Functionality Finding Server.

REFERENCES

[1] J. Sommerville, Software Engineering, 8th ed. Addison Wesley, 2006.
[2] T. Erl, Service-oriented Architecture: Concepts, Technology, and Design.

Prentice Hall, 2005.
[3] Web Services Description Language (WSDL) Version 2.0,

W3C Std. Recommendation 26 June 2007. [Online]. Available:
http://www.w3.org/TR/wsdl20

[4] M. Papazoglu, P. Traverso, S. Dustdar, and F. Leyman, “Service-oriented
computing: State of the art and research challenges,” IEEE Computer,
Nov. 2007.

[5] I. Sora, D. Todinca, and C. Avram, “Translating user preferences into
fuzzy rules for the automatic selection of services,” in SACI, 2009, pp.
497–502.

[6] I. Sora and D. Todinca, “Specification-based retrieval of software com-
ponents through fuzzy inference,” Acta Politehnica Hungarica, vol. 3,
no. 3, pp. 121–132, 2006.

[7] Semantic Annotations for WSDL and XML Schema, W3C recommen-
dation Std., 2007. [Online]. Available: http://www.w3.org/TR/sawsdl/

[8] E. Giallonardo and E. Zimeo, “More semantics in QoS matching,” in
Service-Oriented Computing and Applications, 2007. SOCA ’07. IEEE
International Conference on, 2007, pp. 163–171. [Online]. Available:
http://dx.doi.org/10.1109/SOCA.2007.30

[9] G. Dobson, R. Lock, and I. Sommerville, “QoSOnt: a QoS ontology
for service-centric systems,” in Proceedings of the 31st EUROMICRO
Conference on Software Engineering and Advanced Applications. IEEE
Computer Society, 2005, pp. 126–133.

[10] Y. Liu, A. H. Ngu, and L. Z. Zeng, “QoS computation and policing
in dynamic web service selection,” in WWW Alt. ’04: Proceedings of
the 13th international World Wide Web conference on Alternate track
papers & posters. New York, NY, USA: ACM, 2004, pp. 66–73.

[11] G. Dobson, S. Hall, and G. Kotonya, “A domain-independent ontology
for non-functional requirements,” in IEEE International Conference on
E-Bussines Engineering. IEEE Computer Society, 2007, pp. 563–566.

[12] Q. Ma, H. Wang, Y. Li, G. Xie, and F. Liu, “A semantic QoS-aware
discovery framework for web services,” in ICWS, 2008, pp. 129–136.

[13] H. Chan, T. Chieu, and T. Kwok, “Autonomic ranking and selection of
web services by using single value decomposition technique,” in ICWS,
2008, pp. 661–666.

[14] D. A. Menascé and V. Dubey, “Utility-based QoS brokering in service
oriented architectures,” in ICWS, 2007, pp. 422–430.

[15] X. Ye and R. Mounla, “A hybrid approach to QoS-aware service
composition,” in ICWS, 2008, pp. 62–69.

[16] V. X. Tran and H. Tsuji, “QoS based ranking for web services: Fuzzy
approaches,” in Proceedings 4th International Conference on Next
Generation Web Services Practices, NWESP ’08, Seul, Korea, Oct. 2008,
pp. 77–82.

[17] P. Xiong and Y. Fan, “QoS-aware web service selection by a synthetic
weight,” in Proceedings of the 4th International Conference on Fuzzy
Systems and Knowledge Discovery, FSKD (3), 2007, pp. 632–637.

[18] M.-F. Chen, T. Gwo-Hshiung, and C. Ding, “Fuzzy MCDM approach to
select service provider,” in Proceedings IEEE International Conference
on Fuzzy Systems, 2003.

[19] M. De Cock, S. Chung, and O. Hafeez, “Selection of web services
with imprecise QoS constraints,” in Web Intelligence, IEEE/WIC/ACM
International Conference on, 2007, pp. 535–541. [Online]. Available:
http://dx.doi.org/10.1109/WI.2007.92

[20] P. Wang, K.-M. Chao, C.-C. Lo, C.-L. Huang, and Y. Li, “A fuzzy model
for selection of QoS-aware web services,” in e-Business Engineering,
2006. ICEBE ’06. IEEE International Conference on, 2006, pp. 585–
593.

[21] D. Kourtesis and I. Paraskakis, “Combining SAWSDL, OWL-DL and
UDDI for semantically enhanced web service discovery,” in ESWC,
ser. Lecture Notes in Computer Science, S. Bechhofer, M. Hauswirth,
J. Hoffmann, and M. Koubarakis, Eds., vol. 5021. Springer, 2008, pp.
614–628.

[22] J. Luo, B. Montrose, A. Kim, A. Khashnobish, and M. Kang, “Adding
OWL-S support to the existing UDDI infrastructure,” in Web Services,
IEEE International Conference on. Los Alamitos, CA, USA: IEEE
Computer Society, 2006, pp. 153–162.


