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Abstract 

Nonlinear dimensionality reduction is formulated here as the problem of trying to 
find a Euclidean feature-space embedding of a set of observations that preserves 
as closely as possible their intrinsic metric structure - the distances between points 
on the observation manifold as measured along geodesic paths. Our isometric 

feature mapping procedure, or isomap, is able to reliably recover low-dimensional 
nonlinear structure in realistic perceptual data sets, such as a manifold of face 
images, where conventional global mapping methods find only local minima. 
The recovered map provides a canonical set of globally meaningful features, 
which allows perceptual transformations such as interpolation, extrapolation, and 
analogy - highly nonlinear transformations in the original observation space - to 
be computed with simple linear operations in feature space. 

1 Introduction 

In psychological or computational research on perceptual categorization, it is generally taken 

for granted that the perceiver has a priori access to a representation of stimuli in terms of 

some perceptually meaningful features that can support the relevant classification. However, 

these features will be related to the raw sensory input (e.g. values of retinal activity or image 

pixels) only through a very complex transformation, which must somehow be acquired 

through a combination of evolution, development, and learning. Fig. 1 illustrates the feature

discovery problem with an example from visual perception. The set of views of a face from 

all possible viewpoints is an extremely high-dimensional data set when represented as image 

arrays in a computer or on a retina; for example, 32 x 32 pixel grey-scale images can be 

thought of as points in a 1 ,024-dimensional observation space. The perceptually meaningful 

structure of these images, however, is of much lower dimensionality; all of the images in 

Fig. 1 lie on a two-dimensional manifold parameterized by viewing angle. A perceptual 

system that discovers this manifold structure has learned a model of the appearance of 

this face that will support a wide range of recognition, classification, and imagery tasks 

(some demonstrated in Fig. 1), despite the absence of any prior physical knowledge about 

three-dimensional object geometry, surface texture, or illumination conditions. 

Learning a manifold of perceptual observations is difficult because these observations 
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Figure 1: Isomap recovers a global topographic map of face images varying in two viewing 
angle parameters, azimuth and elevation. Image interpolation (A), extrapolation (B), and 
analogy (C) can then be carried out by linear operations in this feature space. 

usually exhibit significant nonlinear structure. Fig. 2A provides a simplified version of 
this problem. A flat two-dimensional manifold has been nonlinearly embedded in a three
dimensional observation space, 1 and must be "unfolded" by the learner_ For linearly 

embedded manifolds. principal component analysis (PCA) is guaranteed to discover the 
dimensionality of the manifold and produce a compact representation in the form of an 
orthonormal basis_ However, PCA is completely insensitive to the higher-order. nonlinear 

structure that characterizes the points in Fig. 2A or the images in Fig. 1. 

Nonlinear dimensionality reduction - the search for intrinsically low-dimensional struc
tures embedded nonlinearly in high-dimensional observations - has long been a goal of 
computational learning research. The most familiar nonlinear techniques. such as the 
self-organizing map (SOM; Kohonen, 1988), the generative topographic mapping (GTM; 
Bishon, Svensen, & Williams, 1998), or autoencoder neural networks (DeMers & Cottrell, 
1993), try to generalize PCA by discovering a single global low-dimensional nonlinear 

model of the observations. In contrast, local methods (Bregler & Omohundro. 1995; Hin
ton, Revow, & Dayan, 1995) seek a set of low-dimensional models, usually linear and 
hence valid only for a limited range of data. When appropriate, a single global model is 

IGiven by XI = ZI COS(ZI), X2 = ZI sin(zJ), X3 = Z2, for Zl E [311"/2 ,911"/2], Z2 E [0,15]. 
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Figure 2: A nonlinearly embedded manifold may create severe local minima for "top-down" 

mapping algorithms. (A) Raw data. (B) Best SOM fit. (C) Best GTM fit. 

more revealing and useful than a set of local models. However, local linear methods are in 

general far more computationally efficient and reliable than global methods. 

For example, despite the visually obvious structure in Fig. 2A, this manifold was not 

successfuly modeled by either of two popular global mapping algorithms, SOM (Fig. 2B) 
and GTM (Fig. 2C), under a wide range of parameter settings. Both of these algorithms 
try to fit a grid of predefined (usually two-dimensional) topology to the data, using greedy 

optimization techniques that first fit the large-scale (linear) structure of the data, before 

making small-scale (nonlinear) refinements. The coarse structure of such "folded" data sets 

as Fig. 2A hides their nonlinear structure from greedy optimizers, virtually ensuring that 

top-down mapping algorithms will become trapped in highly suboptimal solutions. 

Rather than trying to force a predefined map onto the data manifold, this paper shows how a 
perceptual system may map a set of observations in a "bottom-up" fashion, by first learning 

the topological structure of the manifold (as in Fig. 3A) and only then learning a metric map 

of the data (as in Fig. 3C) that respects this topology. The next section describes the goals and 
steps of the mapping procedure, and subsequent sections demonstrate applications to two 

challenging learning tasks: recovering a five-dimensional manifold embedded nonlinearly 

in 50 dimensions, and recovering the manifold of face images depicted in Fig. I. 

2 Isometric feature mapping 

We assume our data lie on an unknown manifold M embedded in a high-dimensional 

observation space X. Let xci) denote the coordinates of the ith observation. We seek a 

mapping I : X - Y from the observation space X to a low-dimensional Euclidean feature 
space Y that preserves as well as possible the intrinsic metric structure of the observations, 

i.e. the distances between observations as measured along geodesic (locally shortest) paths 
of M . The isometric feature mapping, or isomap, procedure presented below generates 

an implicit description of the mapping I, in terms of the corresponding feature points 

y(i) = I( xci)) for sufficiently many observations x(i). Explicit parametric descriptions 

of I or I-I can be found with standard techniques of function approximation (Poggio & 

Girosi, 1990) that interpolate smoothly between the known corresponding pairs {x( i) , y( i)} . 

A Euclidean map of the data's intrinsic geometry has several important properties. First, 

intrinsically similar observations should map to nearby points in feature space, support
ing efficient similarity-based classification and informative visualization. Moreover, the 

geodesic paths of the manifold, which are highly nonlinear in the original observation space, 

should map onto straight lines in feature space. Then perceptually natural transfonnations 

along these paths, such as the interpolation, extrapolation and analogy demonstrated in 
Figs. IA-C, may be computed by trivial linear operations in feature space. 
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Figure 3: The results of the three-step isomap procedure. (A) Discrete representation of 

manifold in Fig. 2A. (B) Correlation between measured graph distances and true mani

fold distances. (C) Correspondence of recovered two-dimensional feature points {Yl, Y2} 
(circles) with original generating vectors {ZI' Z2} (line ends). 

The isomap procedure consists of three main steps, each of which might be carried out by 

more or less sophisticated techniques. The crux of isomap is finding an efficient way to 

compute the true geodesic distance between observations, gi ven only their Euclidean dis
tances in the high-dimensional observation space. Isomap assumes that distance between 

points in observation space is an accurate measure of manifold distance only locally and 

must be integrated over paths on the manifold to obtain global distances. As preparation for 
computing manifold distances, we first construct a discrete representation of the manifold 

in the form of a topology-preserving network (Fig. 3A). Given this network representation, 

we then compute the shortest-path distance between any two points in the network using 

dynamic programming. This polynomial-time computation provides a good approximation 

to the actual manifold distances (Fig. 3B) without having to search over all possible paths in 

the network (let alone the infinitely many paths on the unknown manifold!). Finally, from 
these manifold distances, we construct a global geometry-preserving map of the observa

tions in a low-dimensional Euclidean space, using multidimensional scaling (Fig. 3C). The 

implementation of this procedure is detailed below. 

Step 1: Discrete representation of manifold (Fig. 3A). From the input data of n observations 

{x(1) , . • . , xC n)}, we randomly select a subset of T points to serve as the nodes {g(1) , .. . , gC r)} of the 

topology-preserving network. We then construct a graph G over these nodes by connecting gCi) and 

g(;) if and only if there exists at least one xCk ) whose two closest nodes (in observation space) are gC i) 

and gCi) (Martinetz & Schulten, 1994). The resulting graph for the data in Fig. 2A is shown in Fig. 3A 

(with n = 104, T = )03). This graph clearly respects the topology of the manifold far better than the 

best fits with SOM (Fig. 2B) or GTM (Fig. 2C). In the limit of infinite data, the graph thus produced 

converges to the Delaunay triangulation of the nodes, restricted to the data manifold (Martinetz & 
Schulten, 1994). In practice, n = 104 data points have proven sufficient for all examples we have 

tried. This number may be reduced significantly if we know the dimensionality d of the manifold, 
but here we assume no a priori information about dimensionality. The choice of T, the number of 

nodes in G, is the only free parameter in isomap. If T is too small, the shortest-path distances between 
nodes in G will give a poor approximation to their true manifold distance. If T is too big (relative to 

n), G will be missing many appropriate links (because each data point XCi) contributes at most one 

link). In practice, choosing a satisfactory T is not difficult - all three examples presented in this paper 

use T = n /10, the first value tried. I am currently exploring criteria for selecting the optimal value T 

based on statistical arguments and dimensionality considerations. 

Step 2: Manifold distance measure (Fig. 3B). We first assign a weight to each link w,) in the graph 

G, equal to d1 = I\xCi ) - xC)I\ , the Euclidean distance between nodes i and j in the observation 

space X . The length of a path in G is defined to be the sum of link weights along that path. We then 

compute the geodesic distance d~ (i.e . shortest path length) between all pairs of nodes i and j in G, 

using Floyd's O( T 3 ) algorithm (Foster, 1995). Initialize d& = d1 if nodes i and j are connected 
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and 00 otherwise. Then for each node k, set each d~ = min(d~, d~ + d"d). Fig. 3B plots the 

distances d~ computed between nodes i and j in the graph of Fig. 3A versus their actual manifold 

distances d~. Note that the correlation is almost perfect (R > .99), but d~ tends to overestimate d~ 
by a constant factor due to the discretization introduced by the graph. As the density of observations 
increases, so does the possible graph resolution. Thus, in the limit of infinite data, the graph-based 
approximation to manifold distance may be made arbitrarily accurate. 

Step 3: Isometric Euclidean embedding (Fig. 3C). We use ordinal multidimensional scaling (MOS; 
Cox & Cox, 1994; code provided by Brian Ripley), also called "non metric " MOS, to find a k

dimensional Euclidean embedding that preserves as closely as possible the graph distances d~. In 
contrast to classical "metric" MOS, which explicitly tries to preserve distances, ordinal MOS tries 
to preserve only the rank ordering of distances. MOS finds a configuration of k-dimensional feature 

vectors {y(1) • ...• y( r)}, corresponding to the high-dimensional observations {x(I), ... • x(r)}, that 
minimizes the stress function, 

S = min 
d;1 

(1) 

Here d~ = II y( i) - yU) II, the Euclidean distance between feature vectors i and j, and the d~ are 

some monotonic transformation of the graph distances d~. We use ordinal MOS because it is less 
senstitive to noisy estimates of manifold distance. Moreover, when the number of points scaled is 
large enough (as it is in all our examples), ordinal constraints alone are sufficient to reconstruct a 
precise metric map. Fig. 3C shows the projections of 100 random points on the manifold in Fig, 2A 
onto a two-dimensional feature space computed by MOS from the graph distances output by step 2 
above. These points are in close correspondence (after rescaling) with the original two-dimensional 
vectors used to generate the manifold (see note 1), indicating that isomap has successfully unfolded 
the manifold onto a 2-dimensional Euclidean plane. 

3 Example 1: Five-dimensional manifold 

This section demonstrates isomap's ability to discover and model a noisy five-dimensional 

manifold embedded within a 50-dimensional space. As the dimension of the manifold 

increases beyond two, SOM, GTM, and other constrained clustering approaches become 

impractical due to the exponential proliferation of cluster centers. Isomap, however, is 

quite practical for manifolds of moderate dimensionality, because the estimates of manifold 

distance for a fixed graph size degrade gracefully as dimensionality increases. Moreover, 

isomap is able to automatically discover the intrinsic dimensionality of the data, while 

conventional methods must be initialized with a fixed dimensionality. 

We consider a 5-dimensional manifold parameterized by {Z\, . . " zs} E [0,4]5. The first 10 

of 50 observation dimensions were determined by nonlinear functions of these parameters. 2 

2XI = cos( 1rzt}, X2 = sine 1rzI), X3 = cose; zI), X4 = sine; zI) , Xs = cos( fzI), 

X6 = sin(fzl), X7 = z2cos\j~'zl)+z3sin2(lizl)' X8 = z2sin2(lizI)+Z3COS2(~zt}, X9 = 

Z4 cos2(lizt} + Zs sin2(~zl)' XIO = Z4 sin\j~'zl) + Zs COS2(~ZI)' 
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Low-amplitude gaussian noise (4-5% of variance) was added to each of these dimensions, 

and the remaining 40 dimensions were set to pure noise of similar variance. The isomap 

procedure applied to this data (n = 104 , r = 103) correctly recognized its intrinsic five

dimensionality, as indicated by the sharp decrease of stress (see Eq. 1) for embedding 

dimensions up to 5 and only gradual decrease thereafter (Fig. 4A). In contrast, both PCA 

and raw MDS (using distances in observation space rather than manifold distances) identify 

the lO-dimensional linear subspace containing the data, but show no sensitivity to the 

underlying five-dimensional manifold (Fig. 4B). 

4 Example 2: 1Wo-dimensional manifold of face images 

This section illustrates the performance of isomap on the two-dimensional manifold of 

face images shown in Fig. 1. To generate this map, 32 x 32-pixel images of a face were 

first rendered in MATLAB in many different poses (azimuth E [-90°,90°], elevation 

E [-10°, 10°]), using a 3-D range image of an actual head and a combination oflambertian 

and specular reflectance models. To save computation, the data (n = 104 images) were 

first reduced to 60 principal components and then submitted to isomap (r = 103). The 

plot of stress S vs. dimension indicated a dimensionality of two (even more clearly than 

Fig. 4A). Fig. 1 shows the two-dimensional feature space that results from applying MDS to 
the computed graph distances, with 25 face images placed at their corresponding points in 

feature space. Note the clear topographic representation of similar views at nearby feature 

points. The principal axes of the feature space can be identified as the underlying viewing 
angle parameters used to generate the data. The correlations of the two isomap dimensions 

with the two pose angles are R = .99 and R = .95 respectively. No other global mapping 

procedure tried (PCA, MDS, SOM, GTM) produced interpretable results for these data. 

The human visual system's implicit knowledge of an object's appearance is not limited to 

a representation of view similarity, and neither is isomap's. As mentioned in Section 2, an 

isometric feature map also supports analysis and manipulation of data, as a consequence of 
mapping geodesics of the observation manifold to straight lines in feature space. Having 

found a number of corresponding pairs {x( i) , y( i)} of images x( i) and feature vectors y( i) , 

it is easy to learn an explicit inverse mapping 1-1 : y -+ X from low-dimensional feature 

space to high-dimensional observation space, using generic smooth interpolation techniques 
such as generalized radial basis function (GRBF) networks (Poggio & Girosi, 1990). All 

images in Fig. 1 have been synthesized from such a mapping. 3 

Figs. lA-C show how learning this inverse mapping allows interpolation, extrapolation, 

and analogy to be carried out using only linear operations. We can interpolate between 

two images x(l) and x(2) by synthesizing a sequence of images along their connecting line 

(y(2) _ yO) in feature space (Fig. lA). We can extrapolate the transformation from one 

image to another and far beyond, by following the line to the edge of the manifold (Fig. IB). 

We can map the transformation between two images xCI) and x(2) onto an analogous 

transformation of another image x(3), by adding the transformation vector (y(2) - y(1» to 

y(3) and synthesizing a new image at the resulting feature coordinates (Fig. 1 C). 

A number of authors (Bregler & Omohundro, 1995; Saul & Jordan, 1997; Beymer & 
Poggio, 1995) have previously shown how learning from examples allows sophisticated 

3The map from feature vectors to images was learned by fitting a GRBF net to 1000 corresponding 
points in both spaces. Each point corresponds to a node in the graph G used to measure manifold 
distance, so the feature-space distances required to fit the GRBF net are given (approximately) by the 

graph distances d~ computed in step 2 of isomap. A subset C of m = 300 points were randomly 

chosen as RBF centers, and the standard deviation of the RBFs was set equal to max;,jEC d~rJ2m 
(as prescribed by Haykin, 1994). 
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image manipulations to be carried out efficiently. However, these approaches do not support 

as broad a range of transformations as isomap does, because of their use of only locally 

valid models and/or the need to compute special-purpose image features such as optical 

flow. See Tenenbaum (1997) for further discussion, as well as examples of isomap applied 

to more complex manifolds of visual observations. 

5 Conclusions 

The essence of the isomap approach to nonlinear dimensionality reduction lies in the 

novel problem formulation: to seek a low-dimensional Euclidean embedding of a set of 

observations that captures their intrinsic similarities, as measured along geodesic paths of the 

observation manifold. Here I have presented an efficient algorithm for solving this problem 

and shown that it can discover meaningful feature-space models of manifolds for which 

conventional "top-down" approaches fail. As a direct consequence of mapping geodesics 

to straight lines in feature space, isomap learns a representation of perceptual observations 

in which it is easy to perform interpolation and other complex transformations. A negative 

consequence of this strong problem formulation is that isomap will not be applicable to 

every data manifold. However, as with the classic technique of peA, we can state clearly 

the general class of data for which isomap is appropriate - manifolds with no "holes" and 

no intrinsic curvature - with a guarantee that isomap will succeed on data sets from this 

class, given enough samples from the manifold. Future work will focus on generalizing 

this domain of applicability to allow for manifolds with more complex topologies and 

significant curvature, as would be necessary to model certain perceptual manifolds such as 

the complete view space of an object. 
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