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Abstract

Background: Amyotrophic lateral sclerosis (ALS) is a progressive, fatal neurodegenerative disease with a lifetime risk

of developing as 1 in 700. Despite many recent discoveries about the genetics of ALS, the etiology of sporadic ALS

remains largely unknown with gene-environment interaction suspected as a driver. Water quality and the toxin beta

methyl-amino-alanine produced by cyanobacteria are suspected environmental triggers. Our objective was to

develop an eco-epidemiological modeling approach to characterize the spatial relationships between areas of

higher than expected ALS incidence and lake water quality risk factors derived from satellite remote sensing as a

surrogate marker of exposure.

Methods: Our eco-epidemiological modeling approach began with implementing a spatial clustering analysis that

was informed by local indicators of spatial autocorrelation to identify locations of normalized excess ALS counts at

the census tract level across northern New England. Next, water quality data for all lakes over 6 hectares (n = 4,453)

were generated using Landsat TM band ratio regression techniques calibrated with in situ lake sampling. Derived

lake water quality risk maps included chlorophyll-a (Chl-a), Secchi depth (SD), and total nitrogen (TN). Finally, a

spatially-aware logistic regression modeling approach was executed characterizing relationships between the

derived lake water quality metrics and ALS hot spots.

Results: Several distinct ALS hot spots were identified across the region. Remotely sensed lake water quality

indicators were successfully derived; adjusted R2 values ranged between 0.62-0.88 for these indicators based on

out-of-sample validation. Map products derived from these indicators represent the first wall-to-wall metrics of lake

water quality across the region. Logistic regression modeling of ALS case membership in localized hot spots across

the region, i.e., census tracts with higher than expected ALS counts, showed the following: increasing average SD

within a radius of 30 km corresponds with a decrease in the odds of belonging to an ALS hot spot by 59%; increasing

average TN within a radius of 30 km and average Chl-a concentration within a radius of 10 km correspond with

increased odds of belonging to an ALS hot spot by 167% and 4%, respectively.

Conclusions: The strengths of satellite remote sensing information can help overcome traditional field limitations

and spatiotemporal data gaps to provide the public health community valuable exposure data. Geographic scale

needs to be diligently considered when evaluating relationships among ecological processes, risk factors, and

human health outcomes. Broadly, we found that poorer lake water quality was significantly associated with

increased odds of belonging to an ALS cluster in the region. These findings support the hypothesis that sporadic

ALS (sALS) can, in part, be triggered by environmental water-quality indicators and lake conditions that promote

harmful algal blooms.
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Background
Amyotrophic lateral sclerosis (ALS) is a progressive, fatal

neurodegenerative disease with a lifetime risk of devel-

opment as 1 in 700 [1]. The pathologic hallmark of ALS

is the selective death of motor neurons in the brain and

spinal cord producing debilitating symptoms of progres-

sive weakness, muscle wasting and spasticity. The aver-

age life expectancy of a person with ALS is two to five

years from time of diagnosis with 5,600 new cases diag-

nosed per year in the USA [2]. Approximately 30,000

people in the United States have ALS at any one time.

ALS is one of the most common neuromuscular diseases

worldwide, and people of all races and ethnic backgrounds

are affected. Incidence rates vary more widely in industri-

alized nations (an annual incidence rate of 0.2 to 2.4 per

100,000 population), compared to that in developing

countries (1.5-2.0 per 100,000 per year) [3]. Overall, there

is a slight male predominance (M:F ratio ~ 1.5:1).

Approximately two thirds of patients with typical ALS

have a spinal form of the disease (limb onset) and

undergo symptoms related to focal muscle weakness and

wasting, where the symptoms may start either distally or

proximally in the upper and lower limbs. Gradually,

spasticity may develop in the weakened atrophic limbs,

affecting manual dexterity and gait. Patients with bulbar

onset ALS usually present with dysarthria and dysphagia

for solid or liquids, and limbs symptoms can develop al-

most simultaneously with bulbar symptoms, and in the

vast majority of cases will occur within 1–2 years. Paraly-

sis is progressive and leads to death due to respiratory fail-

ure within 2–3 years for bulbar onset cases and 3–5 years

for limb onset ALS cases.

The onset of ALS is age-related, with the highest inci-

dence between 55 and 75 years of age [2,4]. As a conse-

quence, the number of affected individuals should

dramatically increase in future decades as the number of

elderly persons rises. Mutations in genes underlying fa-

milial ALS (fALS) have been discovered in only 5-10% of

the total population of ALS patients [5]. Approximately

90% of ALS cases have no known genetic cause; this

group is commonly called sporadic ALS (sALS) [6,7].

Wijesekera and Leigh [8] provide a thorough review of

ALS.

Despite many recent discoveries about the genetics of

ALS, the etiology of sALS remains largely unknown.

There is a broad scientific consensus that ALS is caused

by gene-environment interactions [9]. It is most likely

that sALS results from a combination of underlying gen-

etic susceptibility and environmental exposure to one or

more toxins, but much remains to be discovered. There

has been no definitive incriminated environmental risk

factor for ALS because not all studies of a particular en-

vironmental risk factor have been positive; tobacco is the

only risk factor that seems to be consistently associated

with ALS. The underlying genetic predisposing factors

that render certain individuals more susceptible to a par-

ticular environmental toxin are also not well understood

in ALS. The recently discovered hexanucleotide repeat

expansion C9orf72 present in 7% of patients with sALS

but only 0.2% of controls is likely to be one of those pre-

disposing genetic factors [10].

Evidence has shown potential linkages between water

quality, cyanobacteria, and ALS clusters [9]. Cyanobac-

teria are ubiquitous throughout all ecosystems and are

particularly noxious when anthropogenic eutrophication

of water bodies causes large concentrations to form

“blooms”. Cyanobacteria are well-known to produce acute

and chronic toxins that have human health implications,

including cylindrospermopsins, lyngbyatoxins, anatoxins,

lipopolysaccharide endotoxins and beta methyl-amino-

alanine (BMAA) [11]. The 50- to 100-fold higher inci-

dence of ALS documented amongst the Chamorro people

of Guam implicated the cyanobacterial neurotoxin BMAA

found in components of their diet [9,12-14].

The examination of other ecosystems has demonstrated

the presence of BMAA in fish and crustaceans in the hu-

man food chain in Florida, Chesapeake Bay, France and

Sweden [15-18]. BMAA has been demonstrated to be con-

centrated in the brains of ALS patients (but not controls)

in Florida [19] and to be mis-incorporated into neuronal

proteins via the L-serine tRNA-synthetase system [20-22].

Clusters of ALS have been reported near cyanobacterial

bloom outbreaks in France, Japan, New Hampshire, and

Wisconsin [23-27]. Caller et al. [28] shows a statistically

significant 2.3-fold increased incidence of ALS in subjects

residing within 0.5 miles of a New Hampshire lake that

experienced cyanobacteria blooms. Potential routes of ex-

posure include aerosolization, dermal contact, ingestion of

water, and dietary exposure through the aquatic food web.

The Baltic Sea suffers extensive cyanobacterial blooms

generating BMAA as well as bottom-dwelling animals that

contain BMAA and are a human food source [18].

Water quality remote sensing

Assessment of lake conditions using traditional assess-

ment methods can be costly and time consuming, severely

limiting the temporal frequency and spatial coverage of

these measurements. In the northeast US, typically no

more than 15% of a State’s lakes are sampled using trad-

itional field measurements. For instance, Maine has over

6,000 water bodies categorized as significant, yet rarely are

more than 400 lakes sampled in a given year; typically

New Hampshire samples about 150 of 950 lakes. Thus the

use of operational satellite remote sensing has proven to

be valuable technology to provide decision makers in-

formation on lake water quality, trends, and stressors.

As the frequency and magnitude of Harmful Algal

Blooms (HABs) have gained attention, many regions
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desire improved knowledge to begin to address public

health threats and mitigate drivers. For example, best

management practices, such as conservation tillage or

storm water control, are being implemented in many

regions to reduce flow of anthropogenic nutrients (e.g.,

nitrogen and phosphorus) contributing to algal growth,

including cyanobacteria blooms that produce toxins

such as BMAA.

The use of satellite remote sensing technologies has

been used as an effective tool to derive information on lake

water quality [29-41]. The choice sensor must consider a

balance among spatial resolution, temporal overpass fre-

quency, and spectral sensitivity as well as availability and

cost. Cost efficient “wall-to-wall” maps of lake conditions

over a large geographic region require the use of moderate

resolution sensors, such as Landsat, due to the spatial con-

figuration of small lakes and ponds [42]. A common appli-

cation for inland lakes is to generate a Trophic Status

Index [43] from Secchi depth (SD), a metric of clarity,

or chlorophyll-a (Chl-a), a metric of quality and indictor

of algae. In addition to lake state metrics, in situ lake

measurements can also include biochemistry metrics

such as total phosphorus (TP) or total nitrogen (TN),

and ecohealth measures such as cyanobacteria density,

diatom biovolume, or phytoplankton functional types.

Typically, a regression model using remotely sensed

observations as independent variables is calibrated using

a sample of in situ lake measurements to derive maps of

lake quality. More analytical techniques that are sensitive

to Inherent Optical Properties have been effective for

single waterbodies or more advanced lake metrics such

as Color Dissolved Organize Matter, cyanobacteria bio-

volume, or Non-Purgable Organic Carbon; however,

analytical techniques for these metrics usually require

remote sensing observations to be collected with narrow

spectral channels with near-simultaneous in situ collec-

tion. Currently narrow spectral channels available on

satellite platforms either have small footprints (e.g., EO-

1) or relatively coarse spatial resolution (e.g., MERIS).

Therefore, the use of Landsat to generate spatially com-

prehensive exposure metrics using chlorophyll-a as a

surrogate of cyanobacteria along with complementing

lake clarity (e.g., SD) and lake biochemistry (e.g., TN) is

an effective approach for addressing public health con-

cerns and identifying ‘hot spots’ [42].

Eco-epidemiological modeling

Eco-epidemiology can be defined as the study of the re-

lationships between ecological change and its influences

on human health [44]. Epidemiology has traditionally fo-

cused on locations of disease, mortality and morbidity,

and their distribution over space, trajectories of the dis-

ease, and causation. It has evolved over time, improving

our understanding of infectious disease as well as risk

factors. Eco-epidemiology is generally concerned with a

broader spatial scale than that of traditional epidemi-

ology, confronting human health risks on varying spatial

scales, often synthesizing information on climate and

landscape with changes in human behavior [44]. While

many epidemiological or eco-epidemiological studies

strive to understand infectious disease patterns, in which

population dynamics of a disease vector are of concern

[45-51], this study seeks to quantify exposures to lake

risk factors and environmental toxins.

A variety of statistical models have been used to model

disease risk. Messina et al. [47] conducted an aspatial

multilevel logistic regression analysis, incorporating data

at the level of individual and community, to estimate

probability of malarial infection in the Democratic Repub-

lic of Congo; geographically-weighted regression was used

to study the relationship between conflict and malaria

prevalence. Loth et al. [50,51] used autologistic regression

as a spatially explicit technique to model a dichotomous

outcome (presence/absence of disease). However, short-

comings in this method have been identified by Dormann

[52], resulting in biased estimates compared to aspatial lo-

gistic regression and underestimation of the effect of en-

vironmental variables. Paul et al. [49] utilized hierarchical

Bayesian modeling to compute area-specific relative risk

estimates while considering spatial interactions through a

spatial smoothing based on a Gaussian auto-regressive

model. Goovaerts [53] describes the application of poisson

kriging to map mortality risk, and geographically-weighted

regression to account for varying regression coefficients

over space. Following approaches summarized above the

characterization of relationship linkages, or stressor – re-

sponse patterns, between landscapes and public health

outcomes is feasible. Further, eco-epidemiological model-

ing can help identify valuable ecosystem services that sup-

port public health, and in turn be used to promote

management practices and policies that foster sustainable

resource use.

Results and discussion
ALS Hot spots

Normalized excess case counts were estimated for each

census tract within the study area. These results were

evaluated for global spatial autocorrelation using the glo-

bal Moran’s I statistic at a variety of nearest-neighbor

configurations (Figure 1) to identify an optimal scale for

estimating spatial autocorrelation. A configuration of 4

nearest neighbors (i.e., 4 nearest census tracts) was se-

lected for further analysis. In other words, spatial auto-

correlation among the excess case counts was found to

be highest when considering the four nearest census

tracts rather than considering a larger number of census

tracts or larger distances.
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Local indicators of spatial autocorrelation were calcu-

lated to identify localized clustering of census tracts

with higher incidence or ‘hot spots’. Results are mapped

by census tract in Figure 2. Census tracts shown in dark

red indicate significant positive spatial autocorrelation

among census tracts. Large clusters of census tracts

identified in red are located around Burlington, VT, ad-

jacent to Lake Champlain which undergoes periodic

harmful algal blooms. Another large cluster is identified

in the greater Hanover region, which is a short distance

from DHMC. Individual hot spot census tracks are also

located along coastlines, in higher elevation mountain

regions, within populated suburban communities, and

in largely rural tracts. This indicates a dispersed geography

of sALS hot spots in New England. This cluster analysis

expands upon [24,28] with additional methodologies that

reflect similar patterns of clustering across the northeast,

USA.

Figure 1 Global Moran’s I, a global measure of spatial autocorrelation, calculated using tract-level aggregated ALS case data. Results

are shown for 4 and 8 nearest neighbors (NN) and distance bands of 0.68 DD and 1.0 DD. The highest level of spatial autocorrelation is observed

at a scale of 4 nearest neighbors.
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Mapping lake water quality

Remotely sensed water quality metrics were generated

for Chl-a, SD, and TN. The Landsat band ratio regression

approach had adjusted R2 of 0.62, 0.88, and 0.79 for Chl-a,

SD, and TN, respectively. Figure 3 shows the predicted

out-of-sample results for TN for lakes across Maine path

12 indicating a rigorous algorithm with generally low scat-

ter along the 1:1 line. Considering the range of lake states,

number of path-row combinations, and large geographic

region these are satisfactory adjusted R2 results compared

to similar applications (e.g., [37,41,42]). The Chl-a algo-

rithm might be improved with more concordant in situ

sampling on Color Dissolved Organic Matter samples

that potentially creates signal noise within the broad

Landsat spectral channels, especially in lakes with lower

production. A more complex chl-a model did achieve a

higher significant adjusted R2; however, the F-statistic

and AIC values, along with a lack of explanatory power

of significant bands, did not support the case to replace

the model executed in this application. The lake metrics

selected for use in this application are effective and

well-established indicators of lake water quality, were

not highly correlated thus yielding independent infor-

mation, and can be accurately mapped with satellite re-

mote sensing technologies.

Water quality in northern New England is geographic-

ally variable, even among lakes and watersheds. Evident in

the maps is that many of the watersheds with poorer

water quality conditions are associated with areas and cor-

ridors of higher development and resource utilization.

The majority (82%) of lakes over 6 hectares in Maine,

New Hampshire, and Vermont were categorized as oligo-

trophic and mesotrophic according to a derived trophic

status index [43], indicating relatively healthy waters. Ap-

proximately 13% were classified as eutrophic waters with

eutrophic lakes located across the region. Of the 4,453

lakes mapped, 185 were characterized as hypereutrophic

or nutrient-rich lakes. It is not uncommon for hypereu-

trophic lakes to undergo frequent and intense algal

blooms. We note that large lakes can have substantial

Figure 2 Tract scale ALS hot spots (red) representing census tracts with statistically significant higher than expected normalized ALS

cases with yellow dots showing ALS patients and blue lakes across northern New England. Yellow dots have been geomasked as to not

show exact locations to protect privacy.

Figure 3 Example landsat total nitrogen algorithm with out of

sample predictions and in situ samples with 1:1 line included.
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variability often with bays, coastlines, and inlets having el-

evated biological and physiochemical indicators. For ex-

ample, overall, Lake Winnipesauke is considered an

average oligotrophic lake; however, Alton and Wolfeboro

Bays and Chestnut Cove have blooms and relatively higher

concentrations of cyanobacteria algae. So, a recreational-

use boater using the entire lake might have a completely

different risk profile compared to an individual swimming

along a beach located in a bay with elevated indicators.

When considering ecological processes and patterns of

exposure to varying levels of water quality, it is import-

ant to carefully consider geographic scales. In some wa-

tersheds a few extreme lakes that are large in size can

influence metrics. Further, the possible breadth of ‘geo-

graphic’ metrics- such as driving distance to lake, prob-

lematic beaches, or drinking water source -is daunting

so we diligently considered a range of metrics while tak-

ing into account the availability of spatial data and ob-

jective of the research. Therefore, we generated a suite

of lake metrics at a range of scales to evaluate as poten-

tial risk factors. Figure 4 shows average, lake area-

weighted TN and Chl-a at the watershed (HUC12) scale.

Euclidean distance represents a distance a population, or

ALS patient, lives from a water body; we focused on ex-

posures within 10 and 30 km which were chosen based

on the size and distribution of lakes, census tracts, and

road networks. We also generated a suite of geographic

measures such as the number of lakes within 10 and

30 km of an ALS case and minimum distance to a lake..

We systematically summarized lake data at these given

scales and tested these metrics within our modeling

framework.

More direct measures of cyanobacteria density and

biovolume are required to generate operational cyano-

bacteria metrics from Landsat as these have remained a

challenge due to broad spectral bands and lack of data

availability. With more intensive cyanobacteria sampling,

Landsat-derived cyanobacteria indices (e.g., [40,42])

might become more commonplace for small lakes across

expansive geography. The use of hyperspectral data,

more direct analytical techniques sensitive to Inherent

Optical Properties (IOP), or platforms with narrow spec-

tral channels (i.e., MERIS) have shown promise to more

precisely map attributes (e.g., [54-56]); however, hyper-

spectral data tend to be expensive and limited, analytical

techniques are challenging to apply in diverse Case II

waters, and sensors such as MERIS (no longer oper-

ational) do not have adequate spatial resolution for

smaller inland lakes. With 30 m spatial resolution and

spectral coverage in the visible and near infrared wave-

length domains, Landsat has the ability to map lake met-

rics for waterbodies as small as 6 hectares to provide

wall to wall exposure data, which is required for a com-

prehensive evaluation of lakes as potential ALS risk

factors.

It is feasible that the amount of calibration data

needed for operational Landsat water quality metrics will

become less of an obstacle as the number of citizen sci-

entists and volunteer monitoring groups continue to

grow. However, teasing out phytoplankton functional

types or measuring cyanobacteria biovolume requires ex-

pertise and laboratory facilities. Thus the continued edu-

cation of the public on lake quality indicators as well as

support for monitoring programs is essential if we are to

Figure 4 Area-weighted mean total nitrogen and chlorophyll-a concentration at the watershed scale.

Torbick et al. International Journal of Health Geographics 2014, 13:1 Page 6 of 14

http://www.ij-healthgeographics.com/content/13/1/1



achieve cost efficient, operational cyanobacteria risk maps

for small lakes. The literature ranges in the use of terms

such as phytoplankton functional types, blue green algae,

toxin producing cyanobacteria, or harmful algal blooms

(eukaryotes) to describe lake events and outcomes. In this

research application we highlight that varying toxin pro-

ducing cyanobacteria (prokaryotes) can produce BMAA at

different magnitudes and frequencies. Further, the stressor

response behavior between nutrients (e.g., TN and total

phosphorus), productivity and algae growth, and many

biological and physicochemical indicators are interlinked

with complex and non-linear patterns that can vary by

lake state.

Assessing lake water quality as risk factors

Logistic regression modeling was completed to evaluate

for significant relationships between ALS case member-

ship in census tracts identified as hot spots, and a number

of potential predictors or risk factors of hot spots. Figure 2

shows the approximate locations of the individual ALS

cases with red census tracts highlighting areas of statisti-

cally significant, higher than expected counts, thus depict-

ing the geographic distribution of the dependent variable

used in our eco-epidemiological model. For modeling pur-

poses, the dependent variable was coded 1 if an ALS case

lived within a census tract identified as part of a hot spot,

0 if not. When the dependent variable is coded this way

for a logistic regression analysis, predictions can be made

that correspond to the probability of hot spot member-

ship. We found that of the 754 ALS cases included in the

model, 83 (11%) belong to hot spots across the region in

34 hot spots.

Table 1 summarizes the independent variables, or hot

spot risk factors, and the final subset of models consid-

ered, illustrating selection of scale for the water quality

variables included in the final logistic regression model.

Ultimately, no geographic variables were included in the

analysis. Numbers of lakes within a radius of 10 or 30 km

were excluded due to high multicollinearity with other

risk factors. Minimum distance to a lake was excluded

due to difficulty in interpreting results. The difficulties in

interpreting the relationship between minimum distance

to a lake and risk of belonging to an ALS hot spot likely

arose due to multicollinearity with other risk variables, or

methods in estimating the minimum distance (e.g., use of

distance to lake centroid versus distance to nearest coastal

point). Additional work is necessary to further evaluate

the influence of distance from ALS cases to lakes. It is

possible that other geographic factors such as driving

distance to beach, location of water treatment plants, or

location along hydrological network might influence the

model, but these other types of geographic parameters

were not included in this initial study exploring relation-

ships between lake water quality and ALS cases. The first

set of models shown on Table 1 that include one water

quality parameter each was used to identify optimal scale

for each parameter. Based on lower AIC values, scales of

10 km, 30 km, and 30 km were selected for Chl-a, SD, and

TN, respectively. Including two water quality parameters

generally improved model fit. Including all three water

quality parameters (model 9) yielded the lowest AIC

value.

The final selected model is provided in Table 2. As

shown in Table 2, SD (30 km) and TN (30 km) are sig-

nificant predictors of ALS hot spots at a 5% level of sig-

nificance with Chl-a (10 km) a significant predictor of

ALS hot spots at a 10% level of significance (p = 0.0678).

In logistic regression, the regression coefficients (β) are

not easily interpreted. However, odds ratios (OR) can be

calculated as exp(β), and can be interpreted as a measure

of association between a predictor, or potential risk fac-

tor, and an outcome. The OR represents the increase or

decrease in the odds that an outcome will occur given a

unit increase in the potential risk factor. The ORs for

TN (30 km) and Chl-a (10 km) are greater than 1, indi-

cating that increasing values of these variables are asso-

ciated with higher odds of belonging to an ALS hot spot

(Table 2). Specifically, each unit increase in TN is associ-

ated with a 2.4 times increase in the odds of belonging

to an ALS hot spot. A 5% increase in odds is associated

with every unit increase in Chl-a. The odds ratio for SD

is less than 1, indicating that the odds of belonging to an

ALS hot spot decrease with increasing values for SD: the

likelihood of belonging to an ALS hot spot is approxi-

mately 59% lower for each unit increase in SD (i.e., for

increasing water clarity). This analysis illustrates, in gen-

eral, that poorer water quality is associated with higher

odds of belonging to an ALS hot spot.

Table 1 Summary of eco-epidemiological models and AIC

rankings for predicting ALS hot spot membership

AIC Notes

Models with 1 WQ parameter, varying scales

1) CHLA30 km 502.43

2) CHLA10 km 483.63 Best scale is 10 km

3) SD30 km 463.53 Best scale is 30 km;
best single parameter

4) SD10 km 501.65

5) TN30 km 491.16 Best scale is 30 km

6) TN10 km 508.61

Models with 2 WQ parameters, varying scales

7) SD30 km + CHLA10 km 461.73

8) SD30 km + TN30 km 453.62

Model with 3 WQ parameters at best scales

9) SD30 km + TN30 km + CHLA10 km 452.36 Best WQ and GEO model
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We note that, in this study, TN was a stronger pre-

dictor of ALS hot spot membership than Chl-a concen-

tration. It is well established that nitrogen, along with

phosphorus, are drivers of cyanobacteria and harmful

algal blooms in inland freshwater lakes [57]. The lower

R2 and thus greater uncertainty of the Chl-a algorithm

relative to SD and TN models also potentially diminish

the role of Chl-a as a surrogate for BMAA exposure.

The non-linear relationship between Chl-a concen-

tration and cyanobacteria biovolume [42] will require

additional modeling and field data to confirm this

hypothesis.

As previously noted, an aspatial logistic regression ana-

lysis was conducted to evaluate for significant relationships

between ALS case membership in hot spots and potential

risk factors of hot spots. An autologistic regression analysis

was not used due to expected bias in the resulting regres-

sion coefficients; this bias would consistently underestimate

the effect of the environmental variable or risk factor in

the model compared to a non-spatial logistic regression

[52]. Consequently, an aspatial logistic regression model

was fit initially, and residuals were evaluated for spatial

autocorrelation. As shown in Figure 5, a large portion of

the spatial autocorrelation in hot spot membership is ex-

plained by use of spatially varying risk factors in the aspa-

tial logistic regression model. This is illustrated when

comparing the semi-variogram for the dependent vari-

able, hot spot membership (left), to the semi-variogram

for the final model residuals (right). The nugget to sill

ratio is much smaller for the hot spot membership

semi-variogram than the residuals semi-variogram. A

small nugget to sill ratio indicates that the dependent

variable, hot spot membership, is much less variable at a

small spatial scale than at larger spatial scales, indicating

the presence of spatial autocorrelation. Conversely, the

difference between the nugget and sill is very small for

the model residuals, indicating that there is little added

variability in the residuals as spatial scales increase.

Table 2 Summary of selected logistic regression model for hot spot membership

Independent
variables

Regression
coefficient

Std.
error

z- value p-value OR 95% confidence interval

LCL UCL

(Intercept) −0.066 0.972 −0.07 0.9461 0.94 0.142 6.498

SD30 km −0.921 0.231 −3.99 0.0001 0.40 0.249 0.614

TN30 km 0.884 0.262 3.38 0.0007 2.42 1.460 4.124

CHLA10 km 0.045 0.024 1.83 0.0678 1.05 0.996 1.098

p-values are interpreted as follows: < 0.10 significant at the 90% significance level; < 0.05 significant at the 95% significance level; < 0.01 significant at the 99%

significance level. Odds ratio (OR) represents the odds of belonging to a hot spot: OR > 1 indicates increasing odds of belonging to a hot spot for each unit

increase in the independent variable, OR <1 indicates decreasing odds of belonging to a hot spot for each unit increase in the independent variable. Lower

confidence limits (LCL) and upper confidence limits (UCLs) are provided.

Figure 5 Variogram of dependent variable (hot spot membership) (left) and variogram of residuals from logistic regression

model (right).
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Consequently, the aspatial logistic regression model ad-

equately modeled a spatially varying dependent variable

with spatially varying independent variables, leaving lit-

tle spatial autocorrelation in the residuals.

This study successfully used an aspatial logistical re-

gression model in a spatially-aware context to develop

an eco-epidemiological framework for predicting ALS

hot spot membership based on lake water-quality indica-

tors. This approach, which quantifies exposures to lake

risk factors and environmental toxins, can be used to

evaluate the environmental health of valuable ecosystem

services that link to public health, and in turn be used to

promote management practices and policies that foster

sustainable resource use.

Map of the probability of belonging to an ALS hot

spot was derived at the census tract scale and the scale

of individual ALS case from the final eco-epidemiological

model and lake water quality satellite remote sensing

metrics (Figure 6). These maps will be used to guide

additional research for higher resolution analyses and gen-

erating long term exposure data from image archives.

Conclusions, limitations, and future work

This research demonstrates a significant association be-

tween remotely sensed indicators of lake water quality and

the odds of an ALS case belonging to an ALS hot spot, i.

e., a census tract with higher than expected ALS counts.

In general, poorer water quality was significantly associ-

ated with higher risk of belonging to an ALS hot spot.

The research findings support the hypothesis that sALS

can be triggered by environmental lake water quality and

lake conditions that promote HABs and increases in

cyanobacteria. This study found that significant predictors

of ALS hot spot membership included Chl-a which served

as a surrogate for cyanobacteria growth, TN a direct driver

of algae growth, and SD, a broad measure of water clarity.

To the best of our knowledge this work represents one of

the first studies to spatially link residential location, sALS

cases, and inland lake water quality. The results emphasize

the valuable role of fresh water lakes in providing ecosys-

tem services that influence public health.

We recognize and highlight there are other potential

risk factors and that some of these risk factors potentially

interact or reside in lakes that undergo HABs. The array

of environmental and occupational toxins that have been

implicated include several other exposure pathways that

were not included in this study. For example, heavy metals

lead and mercury [58-61], selenium [62], and agricultural

pesticides [63,64] have all been proposed as influential

drivers of sALS. Lifestyle factors and other toxins impli-

cated also include tobacco [65,66], military service [67,68],

and head injuries [69-71].

We aim to improve upon the remote sensing algorithms

and include additional in situ lake sampling for cyanobac-

teria biovolume and density in future work. Collection of

additional field data will reduce uncertainty in satellite re-

mote sensing algorithms and improve the accuracy and

precision of mapping risk factors. Our eco-epidemiological

model will benefit from increased precision in risk factors,

improving our understanding of the relationship between

these factors and membership in sALS clusters. We also

hope to expand our eco-epidemiological model and spatial

data analysis to include additional geographic variables

that summarize patterns of exposure to inland lakes and

further refine our analysis of spatial scale, i.e., looking at

watershed histories, landscape pattern metrics of agricul-

ture, and road distances to beaches. Adding temporal

components that assess trends in lakes, clusters of sALS,

Figure 6 Risk of belonging to a localized cluster of higher than expected ALS counts based on eco-epidemiological model by census

tract (left) and ALS patient location (right) scales (risk displayed as low (green) to high (red)).
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and the influence of other forcings (e.g., climate change),

will enhance the work and help address the etiology of

ALS. Patient questionnaires detailing exposure history are

being compiled which will shed more insight on the po-

tential role of BMAA in driving sALS patterns in NNE. To

the best of our knowledge this work represents one of the

first studies to spatially link residential location, ALS cases,

and inland lake water quality. Potentially, the approach

outlined in this research is applicable to other neurodegen-

erative diseases such as Parkinson’s Disease; however,

more work is required to evaluate spatial location, expos-

ure history, and toxins as a driver. Overall, we emphasize

the value of the holistic approach using multiple lake qual-

ity attributes and the role of freshwater lakes in supporting

human health.

Methods
ALS patient data

Data on ALS cases were derived from an existing database

created by the ALS Center at Dartmouth Hitchcock Med-

ical Center (DHMC). Records from DHMC, the Muscular

Dystrophy Association of Northern New England, and

surveys were searched to identify cases of ALS diagnosed

between January 1997 and October 2009. When possible,

we confirmed accuracy of diagnosis, year of diagnosis,

demographic history of patients identified by review of

medical records, the Social Security Death Index, obitu-

aries, and data supplemented from questionnaires. The

questionnaire assessed all current and prior dwelling

locations, medical history, occupational history, and en-

vironmental exposures. For each identified case, we col-

lected the age at diagnosis, year of diagnosis, family

history, and dwelling address(s). Based on this informa-

tion, we created a geocoded spatial database with more

than 800 ALS patients across New Hampshire, Vermont,

and Maine, or northern New England (USA). Data collec-

tion and study methods were approved and overseen by

the Committee for the Protection of Human Subjects

(#20332) at Dartmouth college and the National Institute

of Health.

Remote sensing

Landsat Thematic Mapper (TM) observations for

Worldwide Reference System (WRS) path rows 10–12/

27–30 were obtained from Earth Explorer (earthex-

plorer.usgs.gov/). Imagery was assessed for cloud cover-

age and quality with target acquisition dates during late

summer to correspond to seasonal lake ecology dynam-

ics. Overpass dates for the years 2009 and 2010 for Day

Of Year 242, 244, and 248 were used in this research ap-

plication to cover the entire study area. Raw data were

resampled using cubic convolution algorithms, orthorec-

tified, and delivered in the Universal Transverse Merca-

tor (UTM) projection as geotiffs. The TM instrument

collects spectral information in seven bands across the

visible (0.45-.69 um), near- (nir: 0.76-0.90 um) and

shortwave-infrared (swir: 1.55-1.75, 2.09-2.35 um), and

thermal (10.40-12.50 um) domains of the spectrum at

16-day repeat intervals. Imagery was preprocessed to

water leaving radiance and lake mapping approach

followed methods detailed by Torbick et al. [42].

In situ lake data from regional government agencies

were aggregated into a Geographic Information System

(GIS). We focused on measurements of SD, TN, and

Chl-a. SD is a common measure of water clarity that is

easy to interpret and track; Chl-a is a common measure

of algae volume; and TN is an important nutrient that

drives trophic states and cyanobacteria blooms in the re-

gion thus providing a key metric of loading and lake

chemistry. These metrics were chosen because they were

not highly correlated, are all well-established water quality

assessment parameters, and can be effectively mapped

with remote sensing data. Lake vector polygons obtained

from local government agencies were then used to extract

the remote sensing information to generate lake average

data for each band. A 60 m buffer was applied to avoid

any mixed pixels or noisy coastlines. Lakes smaller than

six hectares were excluded due to spatial constraints and

sample size, which resulted in 4,453 total lakes studied

across northern New England.

Once a database with concordant satellite data and

lake measurements was constructed we executed an ini-

tial data mining routine. An exhaustive forward and

backward stepwise linear regression using ordinary least

squares was performed in the R statistical software [72]

using an efficient branch-and-bound approach. This step

was performed to highlight potential variables to use for

model building. A correlation matrix was applied to re-

duce redundant variables. Following data mining, stra-

tegic linear regressions were conducted using variables

shown to have spectral relationships with water quality

properties in previous studies. The number of lakes used

for model development varied depending on aggregation

scheme (e.g., scene, path, date, month, etc.…) and all

scales were mined following a ‘big data’ approach. We

examined the behavior of linear models using strategic

bands and band ratios using F-statistics, adjusted R2, sig-

nificance values, root mean squared error (RMSE), normal

probability (Q-Q) plots, and Cook’s Distance. Akaike in-

formation criterion (AIC; [73]) was then applied to a sub-

set of strategic models to further help compare models.

We ended up using a 7 day threshold (<7) between date of

in situ lake sampling and satellite overpass for our final

models; however, the models were relatively rigorous

whether smaller (<3 days) and larger (12 days) temporal

windows were applied. In addition to the statistical results

we considered behavior of lake phenology, image availabil-

ity and quality, and atmospheric conditions to determine

Torbick et al. International Journal of Health Geographics 2014, 13:1 Page 10 of 14

http://www.ij-healthgeographics.com/content/13/1/1



7 days was optimal for this research. After considering

models we performed n-folds cross validation to assess the

performance using out of sample results for each of the

three lake attributes. Lake water quality mapping methods

follow the approach detailed in Torbick et al. [42].

Cluster analyses

Spatial analysis was performed at the census tract level

to identify census tracts or clusters of census tracts with

higher than expected numbers of ALS patients. First, an

expected ALS case count was calculated for each census

tract using published ALS data in the United States [74]

after adjusting for local population density and sex dis-

tribution. Noonan et al. [74] reported an overall mortal-

ity rate of 1.82 per 100,000 due to motor neuron disease

from 1994 to 1998. Direct age-adjusted [75] gender-

specific rates of 2.17 (male) and 1.48 (female) are also

reported for the same time period. The gender-specific

rates were applied to the total counts of males and females

by census tract and summed across gender to estimate a

total expected count by census tract. The expected counts

were then used to estimate the normalized excess case

count (ci) for each census tract as follows [16]:

ci ¼
oi−eið Þ

ei

where oi represents the number of observed ALS cases

per census tract and ei represents the expected number

of cases.

Normalized excess case counts were evaluated for glo-

bal spatial autocorrelation using the global Moran’s I

statistic [76]. A variety of nearest-neighbor configura-

tions was used to calculate spatial weights and identify

an optimal configuration for measuring spatial autocor-

relation. A limitation of the global Moran’s I statistic is

that it is calculated with the assumption that any cluster-

ing of results occurs on a broad scale over the study

area, rather than localized clustering. Consequently, local

indicators of spatial autocorrelation (LISA; [76,77]) were

calculated to identify localized clustering of census tracts

with higher incidence. Census tracts with significantly

higher incidence, which are defined here as hot spots,

were identified as statistically significant when z-scores

corresponding to the LISA statistics were greater than

2.58 with p-values less than 0.01. Evaluation of spatial

autocorrelation and cluster analyses were conducted

using GeoDa [78].

Logistic regression

Logistic regression modeling [79,80] was completed at

the case level to evaluate for relationships between indi-

vidual ALS case membership in census tracts with higher-

than-expected ALS counts, or hot spots, and potential risk

factors including water quality indicators based on the

lake risk maps generated from the remote sensing data

(Table 3). The basic form of the logistic regression model

is:

F Y ið Þ ¼ β0 þ β1X1i þ β2X2i þ…þ βkXki þ εi

where Yi represents the dichotomous dependent variable

(1 = ALS case belongs to a hot spot, 0 = ALS case does

not belong to a hot spot); X1,…, Xk represent the inde-

pendent variables or potential risk factors; F(Yi) is a logit

link function to transform the binary dependent variable

to the appropriate scale for estimation of regression co-

efficients (β1,…, βk); and εi represents random residual

errors. Regression coefficients are exponentiated, e(β), for

interpretation as odds ratios.

We strategically tested multiple scales by generating

averages of lake water quality by fixed radii of 10 km

and 30 km. Geographic variables considered included

minimum distance to lake and number of lakes within

various spatial scales. A strategic set of logistic regres-

sion models was evaluated to identify significant risk fac-

tors and scales in predicting hot spot membership.

Initially, models that incorporated the variables that did

not vary by scale were fit and compared to identify a set

of base variables for the model. Scale-dependent vari-

ables were then added to the base model one at a time,

fitting a separate model for each scale, to identify the

scale for each variable that most improved model fit. A

final set of models that combined the scale-dependent

variables at their optimal scales was then evaluated. All

models were evaluated using variance inflation factors

(VIFs; [81]) to evaluate for multicollinearity and AIC

[73] as a measure of model fit. Ultimately, the best fit-

ting and most interpretable models were identified to

create risk maps. Logistic regression modeling was com-

pleted using R statistical software [72], including the

packages “gstat” [82] and “car” [83].

Table 3 Independent variables, or hot spot risk factors,

considered in the analysis are divided in two categories:

water quality parameters or geographic variables

Variable Scale(s) Notes

Water quality parameters 10, 30 km All 754 ALS cases had at
least 1 lake within 30 km;
709 ALS cases had at least
one lake within 10 km.

Chlorophyll-a

Secchi depth

Total nitrogen

Geographic variables 10, 30 km All 754 ALS cases had at
least 1 lake within 30 km;
709 ALS cases had at least
one lake within 10 km.

Minimum distance
to lake

Number of lakes within
given radius
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Researchers have used autologistic regression models

to address issues of spatial autocorrelation in evaluating

the relationship between risk factors and disease occur-

rence [50,51]. Although hot spot membership is spatially

autocorrelated, we chose not to use an autologistic

model due to expected bias in the resulting regression

coefficients [52]. As stated by Dormann, autologistic re-

gression models consistently underestimate the effect of

the environmental variable in the model and give biased

estimates compared to a non-spatial logistic regression.

Rather, an aspatial logistic regression model was fit ini-

tially, and residuals were evaluated for spatial autocorrel-

ation. This approach was deemed most appropriate for

this study because the potential risk factors considered

in the logistic regression model also vary over space.
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