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Fig. 1. Typical RFID tags used to label objects. The size of the tag depicted
in the center is 11× 5 cm.

Abstract— In this paper we analyze whether recent Radio
Frequency Identification (RFID) technology can be used to
improve the localization of mobile robots and persons in their
environment. In particular we study the problem of localizing
RFID tags with a mobile platform that is equipped with a
pair of RFID antennas. We present a probabilistic measurement
model for RFID readers that allow us to accurately localize
RFID tags in the environment. We also demonstrate how such
maps can be used to localize a robot and persons in their
environment. Finally, we present experiments illustrating that
the computational requirements for global robot localization can
be reduced strongly by fusing RFID information with laser data.

I. INTRODUCTION

Recent advances in the field of radio frequency identification

techniques have reached a state that will allow us within the

next years to equip virtually every object in an environment

with small, cheap Radio Frequency Identification (RFID)

tags [6]. Such tags contain circuitry that gain power from

radio waves emitted by readers in their vicinity. They use this

power to reply their unique identifier to the reader. Figure 1

depicts three different RFID tags that were used to carry out

the experiments described in this paper. The detection range

of these tags is approximately 6 m.

RFID tags open up a wide variety of applications. For

example, an important problem in the health-care sector is

the recognition of daily activities a home patient is engaged

in. The Guide project [13] uses small RFID readers worn by a

person to identify the objects the person touches. The sequence

of touched objects is used by a Bayesian reasoning system to

estimate the activity of the person and to provide support if

needed. Location context can provide important information

for the interpretation of RFID readings. For example, touching

the toothpaste has very different meanings depending on

whether it happens in the storage room or in the bathroom.

In this paper, we investigate how RFID technology can be

enhanced by location information. We use a mobile robot

equipped with RFID antennas to determine the locations of

RFID tags attached to objects in an indoor environment.

Figure 2 (left) depicts the robot built to carry out this re-

search. The robot consists of an off-the-shelf Pioneer 2 robot

equipped with a laser range scanner and two RFID antennas.

The antennas are mounted on top of the robot and point

approximately 45 degrees to the left and to the right with

respect to the robot. To use these antennas for estimating

the locations of objects, we first learn a sensor model that

describes the likelihood of detecting an RFID tag given its

location relative to one of the antennas. Since the noise of these

sensors is highly non-Gaussian, we represent the measurement

likelihood model by a piecewise constant approximation. Then

we describe a technique to estimate the locations of RFID tags

using a mobile robot equipped with RFID antennas to detect

tags. This process uses a map previously learned from laser

range data. We then apply Monte Carlo localization [4], [7]

to estimate the pose of the robot and even of persons in this

environment. Experimental results suggest that it is possible to

accurately localize moving objects based on this technology.

Further experiments demonstrate that RFID tags greatly reduce

the time required for global localization of a mobile robot in

its environment. Additionally, this technology can be used to

drastically reduce the number of samples required for global

localization.

This paper is organized as follows. After discussing related

work we will present the sensor model for RFID receivers in

Section III. Then we describe how this model can be used

in combination with a laser-based FastSLAM [8] approach to

effectively determine the locations of RFID tags. In Section V

we describe how the resulting beliefs about the locations

of the tags can be utilized to determine the position of the

robot and of persons in the environment. Finally, we present

experimental results illustrating the advantages of RFID tags

for robot localization and person tracking.

II. RELATED WORK

In the last years RFID sensors [6] have started to enter the

field of mobile robotics. Nowadays RFID readers can detect

low-cost passive tags in the range of several meters. These

improvements in the detection range of passive tags make this



Fig. 2. Pioneer 2 with Sick Laser Range Finder, RFID reader and two
antennas (left). Experimental setup used for learning the likelihood function
of tag detections (right).

technology more and more attractive for robotics applications

since the information provided by tags can be used to support

various tasks like navigation, localization, mapping, and even

service applications such as people tracking.

Most of the applications of RFID technology, however,

assume that the readers are stationary and only the tags that

are attached to objects or persons move. The main focus is

to trigger events if a tag is detected by a reader or entering

the field of range (for example, to keep track of the contents

of storage places [2]). Recently Kantor and Singh used RFID

tags for mapping. Their system relies on active beacons which

provide distance information based on the time required to

receive the response of a tag. Additionally, the positions of

the tags have to be known more or less accurately [14], [9].

Tsukiyama [16] also requires given RFID tag positions. Their

system assumes perfect measurements and does not include

techniques to deal with the uncertainty of the sensor.

The problem considered here is closely related to the

simultaneous localization and mapping (SLAM) problem, in

which a robot has to generate a map while simultaneously

estimating its pose relative to this map. However, due to the

limited accuracy of the RFID sensors, SLAM-techniques for

range-only [14], [9], bearing-only [3] or range and bearing [5],

[11], [15] cannot be applied directly to the data provided by

the RFID system. Our algorithm instead uses a variant of Fast-

SLAM [12] to learn the geometric structure of the environment

using laser data [8] and then estimates the positions of the tags

based on the trajectory computed by the FastSLAM algorithm.

III. LEARNING A PROBABILISTIC SENSOR MODEL FOR

THE RFID ANTENNA

To localize an RFID tag in a global reference frame, we

estimate the posterior p(x | z1:t, r1:t), where x is the position

of the tag, z1:t are the observations at time steps 1, . . . , t,

and r1:t are the possibly different locations of the RFID

antenna. According to Bayes rule and under the assumption of

independence of consecutive measurements given we know the

location x of a tag we obtain the following recursive update

rule:

p(x | z1:t, r1:t) ∝ p(zt | x, rt) p(x | z1:t−1, r1:t−1) (1)

According to this equation, the key term is the quantity p(zt |
x, rt) which specifies the likelihood of the observation zt given

Fig. 3. Detection field for the left (upper/green histogram) and right
(lower/red histogram) antenna. The middle/blue histogram shows the area
where the tag can be seen by both antennas.

the position x of the tag and the location rt of the antenna.

We make the simplifying assumption that this likelihood only

depends on the relative offset between tag and antenna, that

is, it only depends on the difference between x and rt. The

following aspects need to be considered when designing an

observation model for RFID tags.

1) There are plenty of false-negative readings, i.e., situa-

tions in which the tag is not detected although it is in

the vicinity of the antenna

2) Additionally, we obtain false-positive readings. In such

a case the antenna detects a tag that is not in range spec-

ified by the manufacturer. This also includes detection

of the RFID tag with the wrong antenna.

There are several reasons for this. For example, the orientation

of the tag with respect to the RFID receiver influences the

energy absorbed by its own antenna. Depending on this angle,

the energy will vary and sometimes not be high enough to

power the chip inside the tag. In such a case the tag will simply

not respond. Furthermore, the shape and size of the detection

range largely depends on the environment. For example, metal

typically absorbs the energy sent by the RFID reader and

therefore tags attached to metallic objects will be detected

only in a short range. But even other, non-metallic objects

greatly influence the detectability of tags. For example, if a tag

is attached to a concrete wall its detection statistics typically

changes drastically. Furthermore, the radio frequency waves

emitted by the antenna can be reflected by objects such that

the antenna even detects objects outside the specified detection

range. Note that the observation model for the RFID antennas

should be able to cover this wide range of situations and

should not make the robot overly confident in the location of

a particular tag or even in its own location during localization.

To determine the observation model for the RFID antennas

we generated a statistics by counting frequencies. We pro-

ceeded in the following way. We attached an RFID tag to a

box and rotated the robot in front of the box. We repeated this

for different distances and counted for every point in a discrete
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Fig. 4. Simplified sensor model for the left antenna.

grid the frequency of detections of the antenna given the tag

was placed at a position covered by this grid cell relative to

the robot.

The resulting histogram is shown in Figure 3. This figure

contains the detection statistics for both sensors. The his-

tograms were built from 12,822 measurements. As can be seen

from the figure, both antennas show quite different behaviors

although they were measuring the same RFID tag.

The resulting sensor model used to conservatively approxi-

mate the histograms depicted in Figure 3 is shown in Figure 4.

This model consists of three components. The major detection

range for each antenna consists of an arc with an opening angle

of 95 degrees in the direction of the antenna. Additionally, an

antenna always detects RFID tags that are close to it even if

they are behind the antenna. This is modeled by a circular

region around the center of the receiver. The corresponding

likelihood for the two detection ranges are also depicted in

Figure 4. For locations outside these areas we assume a

constant likelihood of 0.5.

IV. MAPPING RFID TAGS

The first application of the sensor model described in the

previous section is estimating the location of RFID tags in

the environment using a mobile robot. To learn the positions

of the tags our system proceeds in two steps. First it learns

the geometric structure of the environment using a laser range

sensor. Afterwards we estimate the positions of the tags based

on the path of the robot.

Since our robot is equipped with a laser range scanner, we

apply the FastSLAM algorithm [8] to learn the geometrical

structure of the environment. The resulting map used for the

experimental results is depicted in Figure 5. Given this map

and the maximum likelihood path of the robot computed by

the FastSLAM algorithm we can now estimate the locations of

the RFID tags. Here we apply the recursive Bayesian filtering

scheme given in Equation 1, with r1:t representing the path of

the robot.

To represent the belief about the location of an RFID tag

we use a set of 1000 randomly chosen positions uniformly

distributed in a 25 square meter wide area around the current

pose of the robot. This area is independent of the antenna that

detected the tag in order to avoid that a detection failure of

Fig. 5. Map of the Intel Research Lab Seattle generated by our FastSLAM
routine.

an antenna results in a suboptimal placement of the sampled

positions. It is initialized at the first detection of the RFID tag

by the robot.

To each of the randomly chosen potential positions we

assign a numerical value storing the posterior probability p(x |
z1:t, r1:t) that this position corresponds to the true position of

the tag. Whenever the robot detects a tag, the posterior is

updated according to Equation (1) and using the sensor model

described in the previous section.

V. LOCALIZATION WITH RFID TAGS

Given the posterior distribution p(x | z1:t, r1:t) over poten-

tial positions of an RFID tag we are now ready to compute

the likelihood of an observation y during localization, given

the robot or a person is placed at a location l. According to

the law of total probability we obtain

p(y | l) =
∑

x

p(y | x, l) p(x | z1:t, r1:t). (2)

In this equation the term p(y | x, l) corresponds to the relative

sensor model described in Section III. The relative offset of the

sensor is computed from the global coordinates of the detected

RFID tag, x, and the robot position, l. Thus, to determine the

likelihood of a tag detection given the robot is at location l,

we have to integrate over the posterior probability of the tag’s

location given the data obtained during the mapping process.

To estimate the pose l of the robot or of persons in the

environment, we apply the well-known recursive Bayesian

filtering scheme:

p(lt | y1:t, u0:t−1) = α · p(yt | lt)

·

∫
l′
t

p(lt | ut−1, l
′

t−1
) · p(l′

t−1
| y1:t−1, u0:t−2) d l′

t−1
(3)

Here α is a normalization constant ensuring that p(lt |
y1:t, u0:t−1) sums up to one over all lt. The term p(lt |
ut−1, l

′

t−1
) describes the probability that the object is at

position lt given it executed the movement ut−1 at position

l′
t−1

. This quantity is computed depending on the object

we are tracking. In the case of the robot we compute this



Fig. 6. Evolution of the posterior about the localization of an RFID tag over time. The width of the circles represents the importance weight of the
corresponding particle. It is drawn proportional to the ratio between the importance weights of the particular sample and the maximum likelihood sample.

quantity based on the odometry measurements [7]. If we

are tracking persons, we simply represent this density by a

Gaussian centered around lt. Furthermore, the quantity p(yt |
lt) denotes the likelihood of the observation yt according to

our observation model, which is computed using Equation (2).

To represent the posterior about the pose of the object being

tracked we apply Monte-Carlo localization [4], [7]. In Monte-

Carlo localization, the belief of the robot is represented by a set

of random samples [1]. Each sample consists of a state vector

of the underlying system, which is the pose l of the robot in

our case, and a weighing factor ω. The latter is used to store

the importance of the corresponding particle. The posterior

is represented by the distribution of the samples and their

importance factors. The particle filter algorithm used by our

system is also known as sequential importance sampling with

resampling [1]. It updates the belief about the pose of the robot

according to the following two alternating steps:

1) In the prediction step, we draw for each sample a

new sample according to the weight of the sample and

according to the model p(lt | ut−1, l
′

t−1
) of the robot’s

dynamics given the movement ut−1 executed since the

previous update. In the case of localizing a person, this

model is simply a Gaussian centered at lt−1.

2) In the correction step, the new observation yt is inte-

grated into the sample set. This is done by bootstrap

resampling, where each sample is weighted according

to the observation likelihood p(yt | lt).

To globally localize the object, we initialize the particle set

with a uniform distribution. In the case of RFID sensors, we

fortunately can efficiently sample potential locations of the

object. We simply place samples only in the potential detection

range of the RFID sensor. Such an approach has been applied

successfully in the past, for example by Lenser et al. [10].

VI. EXPERIMENTAL RESULTS

Our approach described above has been implemented and

tested using a Pioneer 2 robot equipped with a SICK LMS

laser range-finder and an Alien Technology’s 915 MHz RFID

reader with two circularly polarized antennas (see left image

of Figure 2). The experiments described here were carried

out in the Intel Research Lab, Seattle, WA. Figure 5 shows

a two-dimensional occupancy grid map generated with our

FastSLAM routine. The size of the environment is 28m by

28m. We installed 100 tags in this environment (see Figure 7).

The tags were of the types depicted in Figure 1 and all of them

Fig. 7. RFID tags attached to walls.

were able to communicate with the robot. Most of them were

installed along the circular corridor of the environment.

A. Mapping RFID tags

As already mentioned above, we use the trajectory estimated

by our FastSLAM routine to determine the posterior about

the locations of the tags. When a tag is detected for the first

time, we initialize a discrete set of randomly chosen points

around the robot and use a uniform distribution to initialize

the belief. Whenever a tag is detected, the posterior probability

of each sample in that set is multiplied with the likelihood of

the observation given the tag is at the position corresponding

to that sample. Afterwards we normalize the belief over all

samples.

Figure 6 shows a typical example for the evolution of

the belief of an RFID tag. The leftmost image shows the

initial sample set after the first detection of an RFID tag.

The remaining images illustrate how the belief focuses on the

true position of the tag as more measurements are obtained.

They show the corresponding beliefs after 6, 17, 65, and

200 measurements. Note that the diameter of each circle

representing a particle corresponds to its importance weight.

As can be seen from the figure, the belief quickly converges

to a unimodal distribution. Note that this is not necessarily

the case. In principal, our representation can also handle

ambiguities in which the location of an RFID tag cannot be

determined uniquely, for example, because the robot cannot

reach locations which are required to resolve the ambiguity.

Figure 8 depicts the positions of the robot when it detected

the tag, for which the beliefs are plotted in Figure 6. Detections

of the right antenna are displayed by filled circles and for each



Fig. 8. Places where the robot has detected the RFID tag with the left
(unfilled circle) or right antenna (filled circle)
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Fig. 9. Error (in m) during global localization with (green or light grey) and
without (red or dark grey) odometry using RFID tags only.

detection of the left antenna we draw an unfilled circle. As

can be seen from the figure, the measurement noise is quite

high and there are several false detections. Nevertheless, our

algorithm is able to accurately localize the tag at the wall close

to the entrance.

After traveling 791.93m with an average speed of 0.225m/s

the robot had processed 50,933 detections of RFID tags.

The resulting map of the tags (at their maximum likelihood

position) is shown in Figure 11 (left). Thus, our sensor model

allows to learn the positions multiple tags in a standard office

environment.

B. Localization with RFID Tags

The next set of experiments is designed to illustrate that

the RFID map generated in the previous step can be used

to localize the robot and even persons equipped with RFID

antennas.

In the first experiment we steered the robot through the

environment and applied Monte-Carlo localization to globally

estimate the position of the vehicle. To simulate the situation

in which we localize a person instead of the robot we simple

ignored the odometry information and changed the motion

model in the Monte Carlo localization procedure. As already

mentioned above we used a standard motion model [7] to

estimate the pose of the robot. In order to localize and keep

track of a person we simply replaced this motion model by a

Gaussian distribution centered around the current pose. Note
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Fig. 10. Positioning error of the laser based global localization (in m) without
(red or dark grey) and with (green or light grey) RFID data.

that this is only a rough approximation of the motions of a

person. Better models therefore can be expected to result in

more accurate estimates.

Figure 9 shows the localization error during a global lo-

calization run using RFID tags only. The two plots show

the localization error for global localization without odometry

(red/dark grey) and with odometry (green/light grey).

The center image of Figure 11 shows the trajectory for

the object being tracked when no odometry information is

used. The corresponding ground-truth obtained by laser-based

localization is depicted in the right image of the same figure.

As can be seen, even with such noisy sensors the estimated

trajectory is quite close to the ground truth.

C. Improving Global Localization with RFID Tags

The final experiment is designed to illustrate that the RFID

technology can be used to drastically improve the global lo-

calization performance even in the case where highly accurate

sensors such as laser range finders are used. To analyze this we

used a pre-recorded data set to figure out how efficiently the

robot can determine its global position in this map. Since the

RFID tags are only placed close to the corridor we generated

samples only in the corridor of the environment. We compared

the time required for global localization using laser data

with the time needed when laser and RFID tags were used

simultaneously. Figure 10 shows the average localization error

for a typical run for both cases. As the figure illustrates, global

localization can be achieved much faster when laser and RFID

data are combined (green/light grey) compared to a situation

in which only laser data is used (red/dark grey).

Additionally, the use of RFID sensors can greatly reduce the

number of samples required for global localization. Figure 12

shows the localization error depending on the number of

particles for the case in which only laser data is used as well as

for the situation in which the laser data is combined with RFID

information. It turns out that laser-based global localization is

efficient when at least 10.000 particles are used. On the other

hand, if we fuse the laser data with the information about the

RFID tags, we can globally localize the object with as few as

50 samples.



Fig. 11. Map of Intel Lab with most likely positions of the RFID tags (left), estimated trajectory (without odometry) (center) and the corresponding ground
truth (right).
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Fig. 12. Localization error (in m) during global localization for different
numbers of particles and depending on whether only laser data is used (left
image) or whether the combination of laser data and RFID measurements is
used (right image).

VII. CONCLUSIONS

In this paper we presented an approach to generate maps of

RFID tags with mobile robots. We presented a sensor model

that allows us to compute the likelihood of tag detections

given the relative position of the tag with respect to the robot.

Additionally we described how to compute a posterior about

the position of a tag after the trajectory and the map has been

generated with a highly accurate FastSLAM algorithm for

laser range scans. We furthermore present how the posterior

can be used to localize a robot and persons in the environment.

The system has been implemented on a Pioneer 2 robot

that was augmented by two RFID antennas. In practical

experiments we demonstrated that the system can build ac-

curate maps of RFID tags. We furthermore illustrated that

the resulting maps can be used for accurate localization of

the robot and moving objects without odometry information.

Finally we presented an experiment demonstrating that the

combination of a laser-range scanner and RFID technology

can greatly reduce the computational demands for the global

localization of a moving mobile robot.
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