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Abstract

Background: Mycobacterium tuberculosis senses and responds to the shifting and hostile landscape of the host.

To characterize the underlying intertwined gene regulatory network governed by approximately 200 transcription

factors of M. tuberculosis, we have assayed the global transcriptional consequences of overexpressing each

transcription factor from an inducible promoter.

Results: We cloned and overexpressed 206 transcription factors in M. tuberculosis to identify the regulatory

signature of each. We identified 9,335 regulatory consequences of overexpressing each of 183 transcription factors,

providing evidence of regulation for 70% of the M. tuberculosis genome. These transcriptional signatures agree well

with previously described M. tuberculosis regulons. The number of genes differentially regulated by transcription

factor overexpression varied from hundreds of genes to none, with the majority of expression changes repressing

basal transcription. Exploring the global transcriptional maps of transcription factor overexpressing (TFOE) strains,

we predicted and validated the phenotype of a regulator that reduces susceptibility to a first line anti-tubercular

drug, isoniazid. We also combined the TFOE data with an existing model of M. tuberculosis metabolism to predict

the growth rates of individual TFOE strains with high fidelity.

Conclusion: This work has led to a systems-level framework describing the transcriptome of a devastating bacterial

pathogen, characterized the transcriptional influence of nearly all individual transcription factors in M. tuberculosis,

and demonstrated the utility of this resource. These results will stimulate additional systems-level and

hypothesis-driven efforts to understand M. tuberculosis adaptations that promote disease.

Background

Mycobacterium tuberculosis (MTB) is a remarkably suc-

cessful human pathogen, with a global burden of over

1.5 billion latently infected individuals and 1.3 million

deaths due to tuberculosis (TB) per year [1]. To survive

within the hostile environment of the human host, MTB

must sense and respond to a wide variety of microenvi-

ronments including naïve and activated macrophages,

dendritic cells, and evolving conditions within different

types of granulomas [2]. Regulation of these responses

begins by controlling the expression of transcripts that

combine to form transient, often overlapping networks

and collectively coordinate adaptation to shifting host-

mediated stresses. MTB employs a set of approximately

200 transcription factors (TFs) and DNA binding pro-

teins to mediate signals from the changing environment

and, along with the RNA degradation machinery [3],

dictate the expression profiles of genes. Some MTB

TFs have been characterized previously by a variety of

approaches including gene knockout, overexpression,

chromatin immunoprecipitation, and an assortment of in

silico approaches [4-18]. The majority, however, have not

been studied and have unknown regulatory targets and

biological roles.

To investigate the MTB transcriptional landscape in

a systematic manner, we developed a high-throughput
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approach to identify the genes controlled by nearly all

predicted MTB TFs. We individually cloned and condi-

tionally overexpressed 206 MTB TFs to induce the regula-

tory signature of each one. This signature includes both

genes directly controlled by proximal binding of the TF as

well as genes indirectly influenced via a cascade of inter-

actions triggered by the TF. Using this approach we iden-

tified the sets of genes affected by TF overexpression

(TFOE) and assembled them into an easily searchable

map of transcriptional regulation in MTB. This network

defines the influence of 183 TFs and complements a com-

prehensive TF-DNA binding network and transcriptional

modeling efforts performed in parallel [19,20]. Our data

agree well with the small set of MTB regulons previously

reported in the literature, indicating that overexpression

of TFs can stimulate native gene expression even in the

absence of co-stimulatory factors and validating our over-

all approach. We show that the number of regulated genes

per TF varies by nearly 1,000-fold, and that the majority of

expression changes act to repress basal transcription. We

find evidence of regulation for 70% of all MTB genes,

two-thirds of which are controlled by more than one TF.

Identities of regulated genes and their associated gene

ontology categories suggest functional roles for many TFs

and their regulons. We then assessed the fidelity of

network-derived predictions, rewiring the MTB transcrip-

tome selectively to confer inducible phenotypic drug

resistance and testing growth rate predictions of individual

TFOE strains. Altogether, this work offers systems-level

insight into the transcriptome of a devastating bacterial

pathogen, delineates the functional impact of numerous

individual TFs, and should stimulate additional efforts to

understand MTB adaptations that promote disease.

Results

Construction and expression profiling of a library of TFOE

strains

All known and predicted TFs were selected for cloning

based on previously characterized function, sequence

similarity to known TFs in other organisms, and protein

domains with DNA binding motifs (Figure 1, Additional

file 1: Table S1). Tuberculist [21] annotated 178 genes as

TFs and an additional 13 as sigma factors. We excluded

a methyltransferase (Rv0560c) and three putative MoxR

orthologs (Rv1479, Rv3164c, and Rv3692), as those genes

do not have DNA binding domains and appear to be

mis-annotated. We then supplemented this list of 187

with 27 additional genes that matched to transcriptional

regulation-relevant COG domains [22]. Of the set of 214

candidates, 206 were subcloned into a vector under the

control of an anhydrotetracycline (ATc) inducible pro-

moter to allow overexpression of each TF independent

of the native stimulatory factors unique to each TF. The

resulting set of TFOE plasmids was transformed into the

MTB strain H37Rv. The remaining eight TF genes have

resisted our efforts at cloning thus far.

Overexpression assays were performed under stan-

dardized culture conditions (see Methods and [23]) in

order to facilitate transcriptome-wide comparisons and

potentially to identify activating environmental condi-

tions and/or small molecule triggers of these TFs. TF

overexpression was induced for a duration time of ap-

proximately one cell doubling (18 h) with 100 ng/mL of

anhydrotetracycline (ATc) and cells were subsequently

harvested for transcriptome analysis and ChIP-seq, as

described separately [19]. Global transcriptional changes

were assayed using densely tiled microarrays with 60mer

probes for both strands of the genome at an average

density of one probe per 100 nucleotides. This resulted

in a compendium of 702 transcriptome profiles for 206

strains, representing a sum total of 95 million data points

that we incorporated into a transcriptional regulatory

network of MTB.

TFOE defined regulatory effects

Altogether we identified 9,335 instances where TF over-

expression led to a significant gene expression change

(two-fold change, P value ≤0.01), driven by 183 of the

206 TFs assayed (Figure 2A, Additional file 1: Table S2).

Each TFOE regulon includes both direct interaction at

promoter regions and indirect effects, providing a holis-

tic picture of a TFs role in a system-wide context. We

expected that some TFs would be inactive in the absence

of their physiological trigger, but only approximately

10% of TFOE strains (23 of 206) failed to yield any genes

with significantly altered expression.

The level of induction for each TF is strongly influenced

by the baseline expression of that gene (Figure 2B). TFs that

are highly expressed prior to induction were not induced

much further, whereas TFs expressed at low levels were

induced up to 100-fold. In nearly all cases, after induction

the TF was among the more abundant transcripts in the

cell. However there were on average 40 genes more highly

expressed in each case, suggesting that TF overexpression

did not result in artificial saturation of the microarray.

To assess if the inducible promoter and standard

growth condition that we employed could in some

cases result in TF overexpression that exceeds physio-

logical levels, we assembled a collection of 2,483 publicly-

available MTB gene expression profiles [20] and compared

the level of induction seen in the TFOE experiments with

the largest fold change of the relevant TF in any previ-

ously published condition. For 82% of TFs there was at

least one condition where the level of induction was equal

to or larger than we report here, and for 94% of TFs

the level of induction was no more than 2X higher than

the largest previously reported change (Additional file 2:

Figure S1).
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Characteristics of the TFOE dataset

When examined in aggregate, some features of the TFOE

regulons stand out. The number of regulated genes varied

over nearly three orders of magnitude (Figure 2A, bar

height). Overexpression of one TF, Rv0023, induces 488

genes and represses 404, leading to differential expression

of nearly a quarter of the genome. At the other extreme,

17 TFs changed the expression of only a single gene and

for 23 we could identify no regulated genes. Four of the

TFs with only a single responsive gene are induced to

a larger fold change than Rv0023, highlighting the

general phenomena that the number of genes differen-

tially regulated did not correlate with the level of induc-

tion (Figure 2C) or with uninduced expression levels (data

not shown). These results also suggest that overexpression

of these TFs does not induce a common stress response.

Most of the TFs were bifunctional, with some downstream

genes induced and others repressed. TFs acting exclusively

or primarily as repressors are nearly twice as common as

inducers (Figure 2B, bar color, Figure 3). Correspondingly,

57% of all instances of altered expression were repressions,

consistent with the pattern of regulation seen in the well-

studied model bacterium, E. coli [24].

Comparison of TFOE results with existing datasets

To assess the fidelity of our results, we compared 12

previously defined MTB putative regulons, with the

TFOE-derived regulatory influences of these TFs. Ectopic

induction necessarily masks potential autoregulation, as

auto-induction of the native gene is difficult to distinguish

from induced expression from the plasmid, so the TF-

encoding gene was excluded from the comparisons. The

majority of TFOE-defined regulons overlap significantly

with those previously identified (Table 1). For example,

overexpressing DosR in aerobic conditions produces

induction of nearly every gene previously included in

the DosR regulon (45 of 48 genes) [25], which was de-

fined using a DosR deletion mutant and hypoxic stress

Figure 1 Schematic diagram of a high-throughput screen of transcription factor overexpression constructs. We cloned 206 of 214

annotated DNA binding proteins (TFs) into a plasmid that placed the tagged protein under control of a tetracycline inducible promoter and

fused the TF to a FLAG tag. Each of these TFs was then induced for one doubling period (approximately 18 h) and analyzed via expression

profiling and ChIPseq [19]. Expression profiles were characterized using microarrays that covered both strands of the genome with a probe every

approximately 100 bp.
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Figure 3 Manually constructed TFOE network. Genes were grouped into sets with similar regulation patterns and the interaction of each TF

with each set was mapped. The size of each set of genes is indicated beneath the gene set name. The color of each TF indicates whether the

regulatory influence of that is primarily to repress (blue) or induce (orange) genes. Genes repressed by multiple TFs and those with no change in

expression were enriched for essential genes, many of which have GO terms assigned to them.

Figure 2 Features of the TFOE dataset. (A) TFOE-induced transcriptional changes vary widely in size and composition. Each of the 183 TFOE

regulons (genes differentially expressed (DE) two-fold with a FDR adjusted P value <0.01) is represented as a single bar indicating the total

number of genes DE. Each column representing a TF was further characterized as either entirely or primarily an inducer (red), repressor (blue), or

bifunctional regulator (yellow). (B) Ectopic induction inversely correlates with baseline expression level. The level of induction for each TF is

strongly correlated with the uninduced expression level, however neither of those variables is correlated with the size of the regulon (C).
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[15,26]. Additionally, two previously characterized regu-

lons of cholesterol metabolism, KstR and KstR2, overlap

very significantly with their TFOE derived regulons

(P value <0.001). On average, the genes triggered by TF

overexpression included 70% of genes in previously char-

acterized regulons (P value on average less than 0.001). In

two-thirds of cases, the number of genes regulated by

TFOE is substantially larger than the corresponding regu-

lons described in the literature. Perhaps by inducing TFs

we were better able to capture secondary/indirect regula-

tion when compared to gene knockout or in silico studies.

Only two previously reported regulons, from Rv0195 and

Rv2034, showed poor overlap with the TFOE dataset. Both

are associated with the MTB Enduring Hypoxic Response

(her) [27] and might therefore require reduced oxygen

tension as a signal to trigger their activity.

Network model of the MTB transcriptional network

Using Cytoscape [28], we manually constructed a net-

work of TFs and targets that reveals a highly intercon-

nected landscape with a complex pattern of regulatory

influences (Figure 3). This network divides the MTB

genome into six sets of similarly regulated genes: genes

that are exclusively induced or repressed; those both

induced and repressed; and those with no change in

expression in response to overexpression of any TF.

Genes that are only repressed or induced can be further

separated into those regulated by a single TF as opposed

to multiple TFs. We then showed the interaction, if any,

with each of those gene sets for every TF assayed. Of

the 4,026 genes in MTB, the majority (70%) change

expression in response to overexpression of at least

one TF, and two-thirds of those are regulated by

more than one TF.

To understand better the underlying differences in the

sets of genes with similar patterns of regulation we

looked for gene ontology (GO) terms that were enriched

in each set using the R application TopGO (Additional

file 1: Table S3). The 636 solely induced genes were not

enriched for any GO terms, suggesting that their func-

tional distribution matches that of the MTB genome as a

whole. Exclusively repressed genes were broadly enriched

in GO terms associated with growth and metabolism. In

particular, those genes regulated by multiple repres-

sors are enriched in terms involved in energy production

through central metabolism. Genes with more complex

regulation (–that is, those that were induced in response

to some TF overexpression and repressed in response to

others) were enriched for four GO terms, all linked to syn-

thesis and use of acyl carrier proteins.

In contrast, genes that did not change expression in

any of the TFOE experiments had 272 GO terms

enriched - 10 times as many as the other categories

combined. These terms include many unrelated categor-

ies, including the essential processes of DNA synthesis

and repair, protein synthesis, and ATP synthesis. We

therefore assessed the behavior of essential genes [29] in

the TFOE dataset. We found that the more often a gene’s

expression was regulated the less likely it was to be essen-

tial. In fact, genes with no changes in expression were 50%

more likely to be essential than random (Additional file 1:

Table S4).

Table 1 Regulons culled from the literature compared to TFOE defined regulons

TF Name Type of analysisa Reference regulonb TFOE regulonc Overlapd P value Reference

Rv0022c whiB5 OE 61 436 59 <0.001 [4]

Rv0182c sigG OE 7 20 4 <0.001 [5]

Rv0195 KO 179 27 1 0.708 [6]

Rv0465c ramB KO 2 15 1 0.007 [8]

Rv0586 mce2R KO 4 11 4 <0.001 [9]

Rv1909c furA KO 1 12 1 0.003 [11]

Rv2034 Various 11 67 0 1.000 [12]

Rv2359 furB KO 23 6 5 <0.001 [13]

Rv3124 moaR OE 4 9 4 <0.001 [14]

Rv3133c dosR KO 48 127 45 <0.001 [15]

Rv3557c kstR2 KO 15 19 15 <0.001 [16]

Rv3574 kstR KO 70 74 32 <0.001 [16]

For each transcription factor set of genes differentially expressed by overexpression was compared to a previously reported regulon.
aThe type of analysis done in the reference (OE, KO, or various).
bThe number of genes in the previously published regulon.
cThe number of genes differentially expressed in our assay.
dThe number of genes that change in both our assay in prior reports.

KO, knockout; OE, overexpression.
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Gene ontology terms significantly enriched in TFOE

regulons

To assess the potential role of each TF, we performed

gene ontology (GO) enrichment analyses on their regu-

lated genes. Very small regulons can appear to be highly

enriched if only a single gene falls by chance into an

uncommon GO term, so this analysis was limited to the

130 TFs with at least five genes differentially regulated

after TF overexpression. For similar reasons, this analysis

was limited to GO terms with at least three member

genes.

Enrichment of one or more GO terms was evident in

67 of the TFOE regulons (Additional file 1: Table S5).

The few previously well-characterized TFs were enriched

for expected GO terms. For example, the genes induced

by DosR include the Rv0082-87 operon, which leads to

an enrichment of terms related to electron transport

(GO:0003954); and the ArgR regulon was enriched for

small molecule biosynthesis of nitrogen-containing com-

pounds (GO:0006807). In addition, many of the TFs with

no previously identified function have putative roles sug-

gested by the enriched GO terms. For instance, the TF

Rv1990c is strongly induced by hypoxic stress [27], but

has no identified role or regulatory function. We found that

the TFOE-identified Rv1990c regulon is enriched for genes

linked to DNA damage repair (GO:0042578), DNA synthe-

sis (GO:0006281), and stress response (GO:0006950), sug-

gesting that it may be involved in protecting the organism

from DNA damage under hypoxic non-replicative con-

ditions. Similarly, the TF Rv0023 is poorly studied at

present. We found that the Rv0023 regulon is enriched for

regulation of NAD reductases (GO:0016655). Rv0023

represses the type I NADH dehydrogenase (nuoD-N), but

induces the alternate enzymes ndh and ndhA. Interest-

ingly, ndh is essential for replenishing NADH during hyp-

oxic stress [30], and the nuo operons are repressed in

hypoxia [23,27], suggesting that Rv0023 has a heretofore

unappreciated role in the MTB adaptation to reduced

oxygen tension.

TFOE network predicts function and phenotype of a

regulator of isoniazid susceptibility

The TFOE regulatory map allows rapid identification of

potential regulators of genes and gene sets, and the TFOE

strains (available from BEI Resources: NR-46512) can be

used to help form and test hypotheses of gene and regu-

latory function. To demonstrate the potential of these

tools we explored the regulation of katG (Rv1908c), which

encodes the catalase/peroxidase that converts isoniazid

prodrug to its active form and is therefore essential for

activity of this front-line TB drug [31]. Querying the TFOE

dataset revealed that the repressor furA (Rv1909c) is the

only transcriptional regulator of katG. These genes lie

in an operon along with Rv1907c. Autoregulation of this

operon by FurA has been suggested in MTB [32] and

demonstrated in M. smegmatis using a deletion of the

orthologous gene [11]. We found that over-expression of

furA had limited transcriptional impact: repression of

three genes other than katG, including the next gene

downstream (Rv1907c); and induction of seven genes,

three of which are in an operon of ribosomal proteins. To

test if this transcriptional change resulted in reduced

sensitivity to isoniazid, we induced a furA overexpressing

strain before adding isoniazid. We found that the strain

overexpressing furA grew in the presence of a concen-

tration of isoniazid that completely inhibited growth of

uninduced strains (Figure 4).

TFOE expression data predict MTB strain growth rates

We mapped transcriptional profiles generated from the

TFOE strains onto a published genome-scale metabolic

model [33] of MTB to generate condition-specific meta-

bolic models that predict growth rates of the TFOE strains

(see Methods for details). To demonstrate the utility of

these models, we compared the model-predicted growth

phenotypes with experimental growth data for 51 TFOE

strains, and we compared the ratio of the uninduced vs.

induced growth rates for each strain to the growth ratios

predicted by their corresponding TFOE condition-specific

metabolic models. Figure 5 shows the measured growth

ratios of the TFOE strains, color-coded by whether the

corresponding TFOE condition-specific metabolic models

predicted a growth defect. The TFOE condition-specific

metabolic models demonstrated a statistically significant

predictive ability to identify strains with growth ratio of

greater than the 85% quantile (corresponding to 1.8-fold

reduction), with sensitivity = 1.0 and specificity = 0.72

(P <0.001, Fisher’s Exact Test), and TFOE strains with

a predicted growth defect had significantly greater unin-

duced vs. induced growth ratios than strains without a

predicted growth defect (P = 0.01, t-test). Growth defects

were associated somewhat with repression of essential tar-

get genes (sensitivity = 0.88, specificity =0.56, P = 0.0496,

Fisher’s Exact Test; P = 0.0498, t-test comparing growth

ratios of TFOE strains with repressed targets and those

without), but the TFOE condition-specific metabolic

models achieved higher performance and improved confi-

dence. Therefore, the TFOE datasets contextualize the

metabolic model to gain additional physiological insight

and predictive power.

Discussion

MTB is arguably the world’s most successful bacterial

pathogen, adapting readily to changing conditions within

the human host and responsible for one death every 25 s

[2]. We describe here a transcriptional regulatory net-

work that includes 183 TFs regulating 2,834 genes via

9,335 discrete regulatory events. For comparison, the
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best characterized prokaryotic regulatory network is

arguably that of the model organism E. coli, which is

catalogued in the actively curated RegulonDB [24] that

includes data from over 5,000 publications and identifies

3,122 regulatory interactions from 197 TFs. The number

of regulated genes per TF in MTB varies from one to

nearly 1,000 and most TFs are bifunctional, producing

both increases and decreases of selected genes. Altogether

however, 57% of gene expression changes repress tran-

script levels. We found no correlation between the level of

Figure 4 Isoniazid susceptibility regulator predicted from the TFOE dataset. (A) KatG converts the prodrug isoniazid (INH) into its active

form. One TF, Rv1909c, repressed katG when overexpressed, which should lead to reduced levels of KatG, less efficient conversion of INH, and a

reduced effect of INH. (B) We confirmed this prediction by showing that, in the presence of twice the MIC of isoniazid (0.2 μg/mL), the furA TFOE

strain was able to grow only when the TF was induced. This increased resistance to isoniazid was not seen in a control strain carrying the parent

empty-vector plasmid.

Figure 5 TFOE expression data mapped onto a a model of MTB metabolism predicts growth restriction. The gene expression from the

TFOE dataset was binarized and applied as constraints on simulations using a MTB genome-scale metabolic model [33]. The growth rates of a set of

51 TFOE strains were measured in the presence and absence of TF overexpression. Each bar shows the ratio of growth rates (uninduced/induced) for a

given TF, and the strains predicted to have restricted growth are colored red. Of the 10 strains with the largest increase in doubling time, nine were

successfully predicted using this approach.
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TF expression or its level of induction and the number of

attendant gene expression changes (Figure 2).

About 11% of MTB TFs (23 total) produced no tran-

scriptional changes when overexpressed. As mentioned

above, this could in some cases result from the absence

of a needed activating cofactor. Alternatively, a TF may

be present at a saturating level under baseline condi-

tions, in which case the addition of more TF would have

no further impact. It is also possible in some cases that

the cloned TF was inactivated by interference from the

FLAG tag we added or through other artifacts intro-

duced during cloning. However, these issues were likely

minor. Both the high percentage of induced TFs that

triggered expression changes and the strong overlap with

previously reported regulons (Table 1) argue for the gen-

eral validity of the TFOE approach and results. For the

12 previously studied TFs, we sometimes detected more

downstream expression changes than in earlier reports.

This is not surprising given that the earlier reports stem

from a wide range of experimental conditions and me-

thods of varying sensitivity, which we compare to a sin-

gle, highly sensitive transcriptomic platform [23,25]. A

few TFs may produce exaggerated effects as a conse-

quence of inflated overexpression. However, all but 13

TFs (6% of total) were induced to within two-fold of ex-

pression levels previously reported in other experiments

(Additional file 2: Figure S1).

The TFOE expression data described here are com-

plemented by ChIP-seq experiments done in parallel to

map the DNA-transcription factor binding sites [19].

The TFOE and DNA-binding regulatory networks

exhibit significant overlap, with nearly 1,000 cases where

TF binding within promoters could be tied directly to

significant gene expression changes (P value <1 × 1010;

Additional file 1: Table S2, and [19]). The majority of indi-

vidual TFs for which we generated both expression and

ChIP-seq data show significant overlap (P value <0.05)

that will likely increase as additional data are collected

and incorporated. For example, we hypothesize that the

physical TF-DNA binding measured in ChIP-seq may

sometimes require additional condition-specific co-factors

(sigma factors, small molecules, and so on) not present

in our experiments to produce expression changes. In

addition, the TFOE expression changes were measured

18 h after TF induction, allowing ample time for indirect

transcriptional effects to accumulate.

To visualize the MTB transcriptome, we manually

constructed a Cytoscape [28] network portraying the

influence of individual TFs on groups of similarly regu-

lated genes. As evident in Figure 3, at least 50% of all

MTB genes are subject to multiple transcriptional in-

fluences. Genes that were not regulated in TFOE experi-

ments and those controlled by a single repressor were

more likely to be essential. Essential genes may be under

more complex regulation than is revealed in TFOE

experiments, with their expression levels potentially

less susceptible than other genes to change within

cells.

The TFOE system suggests a new approach to explor-

ing transcriptional regulation and phenotypes in MTB.

Instead of perturbing single genes we can now leverage

the multiplicative effect of TFs that evolved to rewire

the transcriptome in response to complex and shifting

signals. TFOE data can be readily searched for regulators

of specific genes and gene sets of interest, producing

testable hypotheses as with FurA regulation of the iso-

niazid activator KatG (Figure 4). Similarly, we identified

67 TFs whose regulated genes were enriched in parti-

cular functional categories (Additional file 1: Table S5),

suggesting further experiments to test regulon func-

tion. We can also merge TFOE transcriptional data

with other systems-level analyses to generate robust

and testable condition-specific phenotypic predictions

(Figure 5) [19,20]. The fidelity with which TFOE tran-

scriptional signatures mapped onto the previously de-

scribed MTB metabolic model [34] predicts growth

defects highlights the utility of both the TFOE dataset

and metabolic models, as well as the synergy to be

realized in combining methods. We are currently employ-

ing such approaches to investigate regulatory modules

responsible for adaptation to physiologically relevant

stresses, both in vitro and in vivo.

Conclusion

The TFOE dataset and strain library presented here pro-

vide valuable information and novel tools for exploring

the transcriptome of MTB, identifying sets of co-regulated

genes, and generating/testing hypotheses by simultan-

eously manipulating co-regulated sets of genes. All tools,

reagents, and data described here are available through

public repositories. The TFOE strains are available through

the BEI strain repository at ATCC ([35], NR-46512). Acces-

sing large datasets like the TFOE expression data can be

difficult when the data spread over thousands of genes and

hundreds of regulators. To address the difficulties usually

associated with accessing large datasets, we have designed

a simple Excel spreadsheet for querying TFOE data to find

regulators of specific genes or sets of genes. This spread-

sheet and all associated data are available in searchable

form [36].

Methods

Expression vectors and strains

Transcription factor overexpressing strains were generated

as described previously [23,25]. In brief, we attempted to

clone 214 putative DNA binding genes in the M. tubercu-

losis genome into a tagged, inducible vector using a Gate-

way Entry Clone library (PFGRC/Colorado State University
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under NIAID contract HHSN266200400091c, currently

available from BEI). For a small set of TFs that were not in

the library we created entry clones de novo. Eight genes

proved recalcitrant to sub-cloning efforts and so were

removed from subsequent analyses leaving 206 TFs used in

this study. Each of these entry clones was then sub-cloned

into a vector via a Gateway cloning recombination cassette

(kind gift of Eric Rubin) that placed the TF under con-

trol a tetracycline inducible promoter [37] and added a

C-terminal FLAG epitope tag. This construct was then

transformed into M. tuberculosis H37Rv using standard

methods. These strains are available from the BEI strain

repository at ATCC ([35], NR-46512).

Culturing conditions

M. tuberculosis strain H37Rv was cultured in Middlebrook

7H9 with the ADC supplement (Difco), 0.05% Tween80 at

37°C with constant agitation. Strains containing the ATc-

inducible expression vector were grown with the addition

of 50 μg/mL hygromycin B to maintain the plasmid. All

experiments were performed under aerobic conditions

and growth was monitored by OD600. At an OD600 of

0.35, expression of a gene of interest was induced for the

approximate duration of one cell doubling (18 h) using an

ATc concentration 100 ng/mL culture.

RNA isolation

RNA was isolated as described previously [27,38]. Briefly,

cell pellets in Trizol were transferred to a tube containing

Lysing Matrix B (QBiogene, Inc.), and vigorously shaken

at max speed for 30 s in a FastPrep 120 homogenizer

(Qbiogene) three times, with cooling on ice between steps.

This mixture was centrifuged at max speed for 1 min

and the supernatant was transferred to a tube containing

300 μL chloroform and Heavy Phase Lock Gel (Eppendorf

North America, Inc.), inverted for 2 min, and centrifuged

at max speed for 5 min. RNA in the aqueous phase was

then precipitated with 300 μL isopropanol and 300 μL

high salt solution (0.8 M Na citrate, 1.2 M NaCl). RNA

was purified using an RNeasy kit following manufacturer’s

recommendations (Qiagen) with one on-column DNase

treatment (Qiagen). Total RNA yield was quantified using

a Nanodrop (Thermo Scientific).

Microarray analysis

RNA was converted to Cy dye-labeled cDNA probes as

described previously [27]. For all microarrays described

here, 3 μg of total RNA was used to generate probes.

Sets of fluorescent probes were then hybridized to

custom NimbleGen tiling arrays consisting of 135,000

probes spaced at approximately 100 bp intervals around

the M. tuberculosis H37Rv genome (NCBI Geo Acces-

sion #: GPL14896). These arrays provide 105,000 data

points for each expression profile covering approximately

13,000 sense, antisense, and intergenic genome features.

For background we compared the expression levels of

these probes to a set of 30,000 randomers of equivalent

GC distribution. These arrays are no longer commercially

available, but arrays with identical probes are available

from Agilent (Array ID ‘MTB.tiled.3.2013’). Arrays were

scanned and spots were quantified using Genepix 4000B

scanner with GenePix 6.0 software. Each TFOE strain

was analyzed a minimum of three times. These data

were exported to NimbleScan for mask alignment and

robust multichip average (RMA) normalization [39]. Sub-

sequent statistical analysis and data visualization were

carried out using Arraystar software. To compare against

a standard, baseline, expression set, median expression

values were calculated for all genes across all 698 input

microarrays. Altered gene expression was considered

significant if it produced a moderated t-test P <0.01

after Benjamini Hochberg multiple testing correction.

Array data are available at NCBI-GEO, series GSE59086

and [36].

Mapping TFOE expression data to metabolism

We generated condition-specific metabolic models based

on the transcriptional profiles of TFOE strains and a

published genome-scale metabolic model of MTB [21]

using the iMAT approach implemented in the COBRA

Toolbox [40-42]. The transcriptional profiles of all repli-

cates for each TFOE strains were summarized and binar-

ized such that genes with negative fold change relative

to the median over all experiments in at least 75% of the

replicates are designated ‘off ’, and the remaining genes

are designated ‘on’. The binarized transcriptional profiles

of each TFOE strain were mapped to the genome-scale

metabolic model to generate a predicted growth and

reaction flux profile that obeys stoichiometric and

thermodynamic constraints and maximizes the number

of reactions with nonzero flux activity that map to ‘on’

genes and minimizes the number of reactions with non-

zero flux that map to ‘off ’ genes. The resulting simulated

growth rate of each TFOE condition-specific model was

compared to the simulated wild-type growth rate simu-

lated from the genome-scale metabolic model. The

TFOE-specific models yielded essentially binary simu-

lated growth rates, with ratios relative to wild-type of ei-

ther less than 0.01 or greater than 0.95. Therefore,

TFOE strains with models that predicted growth rates of

less than 95% of wild-type were deemed to predict a

growth defect. To assess predictive performance of the

models, we set TFOE strains with experimental unin-

duced vs. induced growth ratios above the threshold

value as having a growth defect and those below the

threshold of having no growth defect, and we calculated

sensitivity as the fraction of strains correctly predicted to
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have a growth defect true positive
true positiveþfalse negative

� �

and specifi-

city as the fraction of strains correctly predicted not to

have a growth defect true negative
true negativeþfalse positive

� �

.
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Additional file 1: Table S1. Table of transcription factor overexpression

strains and characteristics of the resulting transcriptional impact. Table S2.

Expression changes triggered by transcription factor overexpression.

Table S3. Gene ontology enrichment in sets of similarly regulated genes.

Table S4. Level of regulation compared to essentiality. Table S5. Gene

ontology enrichment in the set of differentially expressed genes for each TF.

Table S6. Predicted and observed growth rates of TFOE strains.

Additional file 2: Figure S1. Comparison of TFOE induction to

previously published expression analyses. For each TF the largest fold

change was found among the collection of 2,483 expression profiles and

that change was compared to the TFOE induction. A histogram of the

differences shows a large majority of TFs are not induced beyond what is

seen in at least one other condition (the bins under the bracket).
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