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ABSTRACT The identification and documentation of health disparities are important
functions of public health surveillance. These disparities, typically falling along lines
defined by gender, race/ethnicity, and social class, are often made visible in urban settings
as geographic disparities in health between neighborhoods. Recognizing that premature
mortality is a powerful indicator of disparities in both health status and access to health
care that can readily be monitored using routinely available public health surveillance
data, we undertook a systematic analysis of spatial variation in premature mortality in
Boston (1999–2001) across neighborhoods and sub-neighborhoods in relation to census
tract (CT) poverty. Using a multilevel model based framework, we estimated that the
incidence of premature mortality was 1.39 times higher (95% credible interval 1.09–
1.78) among persons living in the most economically deprived CTs (Q20% below
poverty) compared to those in the least impoverished tracts (G5% below poverty). We
present maps of model-based standardized mortality ratios that show substantial within-
neighborhood variation in premature mortality and a sizeable decrease in spatial
variation after adjustment for CT poverty. Additionally, we present maps of model-
based direct standardized rates that can more readily be compared to externally
published rates and targets, as well as maps of the population attributable fraction that
show that in some of Boston’s poorest neighborhoods, the proportion of excess deaths
associated with CT poverty reaches 25–30%. We recommend that these methods be
incorporated into routine analyses of public health surveillance data to highlight
continuing social disparities in premature mortality.

KEYWORDS Age standardization, Area-based socioeconomic measures, Geocoding,
Mapping, Multilevel models, Poverty, Premature mortality.

INTRODUCTION

An important function of public health surveillance and monitoring is the
identification of systematic disparities in who experiences the burden of disease and
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death in the population. These health disparities, falling along lines of gender, race/
ethnicity, and class, often reflect underlying social inequalities.1 Efforts to identify,
document, investigate, reduce, and ultimately eliminate these health disparities are
thus of paramount interest to a just and democratic society. Additionally, public
health practitioners must be concerned not only with who is at risk, but also where
they live and how the communities in which they live do or do not support the
health of their residents. To date, public health reports on health inequities have
tended to present statistical summaries devoid of spatial analysis or depiction. To
address this gap, we use a multilevel modeling approach in this paper to quantify and
map social disparities in premature mortality in Boston, using techniques that yield
age-standardized rates that can be readily depicted and compared to externally
published rates and targets.

Given patterns of racial/ethnic and socioeconomic residential segregation, it
should be no surprise that social disparities are often reflected in geographic variation
in health. Over 175 years ago, the French physician Louis René Villermé published a
pathbreaking paper examining patterns of mortality across different neighborhoods
of Paris.2,3 By linking newly available administrative census data with health records,
he was able to demonstrate, for the first time, that the strongest predictor of
neighborhood mortality was neighborhood poverty, which he measured using the
number of households in each Parisian arrondissement exempt from rent tax due to
low income. His study is not just remarkable for explicitly linking health to social
inequities, but also for demonstrating how documentation of the geographic
inequalities in health provided the initial impetus to investigate the social inequal-
ities. To put it another way, geography does not just tell us where something
happened, but also tells us who lived there and to what social circumstances they
were exposed.

To quantify, depict, and routinely monitor the social geography of health, three
conditions must be met. First, we require a routinely collected indicator of population
health that is geographically locatable and sensitive to social disparities. Second, we
require a valid measure of socioeconomic position that can be linked to both the
public health data and relevant denominator data. And third, we require a statistical
methodology that can handle estimation of small area rates and allow comparison of
the variability in rates before and after adjustment for socioeconomic position.

Premature mortality lends itself to being monitored as a salient indicator of social
disparities in health in the United States (U.S.), since all deaths must be reported to
state health departments, and death certificates include the decedent’s address and
age. Additionally, a growing body of research documents that premature mortality is
a powerful indicator of disparities in both health status and access to health care,
with risk of premature death directly increasing with economic deprivation.4–8

For example, in Massachusetts in 2001, the premature mortality rate (deaths before
age 75, age-standardized to the year 2000 standard million) was two times higher in
the worst-off cities and towns (with rates in excess of 450 per 100,000) compared
with the best-off areas (rates õ220/100,000).9

Regarding socioeconomic measures, major obstacles have been the lack of
routinely collected socioeconomic data in U.S. public health surveillance systems and
the inability to link to population denominators stratified by the same measures.
Though death certificates include information on decedent’s education, these data
may be misclassified.10 Moreover, until recently the U.S. census public release files
did not provide the necessary denominator data by age, race/ethnicity, and
education.11 To overcome these obstacles, in our Public Health Disparities
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Geocoding Project we have validated the use of geocoding and linkage of public
health records and population denominators to area-based socioeconomic measures
at the census tract level.12–14 In particular, the census tract (CT) level measure
Bpercent of persons below the U.S. poverty line^ consistently detects expected
socioeconomic gradients in health across a wide range of health outcomes, among
both the total population and diverse racial/ethnic-gender groups; yields maximal
geocoding and linkage; and is readily interpretable by a wide range of audiences.
Using this methodology, we found that overall premature mortality rates in
Massachusetts in 1989–1991 were 2.2 times higher (95% confidence interval (CI)
2.0–2.3) for persons living in CTs with Q20% of the population below poverty (the
federal definition of a poverty area15) compared to G5% of the population below
poverty.14

With respect to statistical considerations, multilevel modeling using generalized
linear mixed models has become an increasingly popular method for dealing with
small area rate instability by Bsmoothing^ over unstable rates.16–20 This approach
decomposes overall variation at multiple levels of spatial aggregation and models
the contribution of Bplace^ using random effects that are assumed to be drawn from
a common underlying distribution. This effectively permits one to Bborrow strength^
across neighboring areas in the multilevel hierarchy to yield more stable place level
estimates. These models, which provide a framework for validly combining data
from different spatial scales (e.g., neighborhood and CT) and also permit adjustment
for multiple individual and area-level covariates, have been used in the spatial
analysis of relationships between social environmental exposures and a wide variety
of health outcomes.21–27 However, to date these types of models have rarely been
used by U.S. state and local health departments to analyze social disparities in
routinely collected public health surveillance data.28

Instead, in order to communicate associations between social variables and
health outcomes, the cartographic approach used by some health departments and
health researchers is to present two maps side by side, one showing area-variation
in health outcomes, the other area variation in socioeconomic conditions.28–30 The
net effect is to ask the map viewer to Beyeball^ the two maps to gauge whether worse
health occurs in poorer areas. While maps are an appealing way to display spatially
varying data, this visual comparison of two adjacent maps, however, is not the same
as a rigorous statistical analysis of the contribution of area socioeconomic conditions
to area health profiles. State and local health departments rightly place a priority on
being able to communicate health disparities clearly and succinctly to community
groups and policy makers. Thus, it would be desirable to be able to translate the results
of a multilevel model-based analysis of social disparities in health into easily
interpretable epidemiologic quantities that can be effectively represented on a map.

Accordingly, to advance efforts to routinely monitor and map health disparities,
in this study we examine the social geography of premature mortality at both the
neighborhood and CT levels. We include both area-levels because (1) neighborhoods
are a key level for the work of health departments, community health clinics, and
community groups, and (2) our prior research has suggested the importance of
addressing CT variation of economic conditions and health status within neighbor-
hoods. The specific aims of our study were (1) to characterize CT and neighborhood
variation in premature mortality in the city of Boston (1999–2001); (2) to estimate
the magnitude of the socioeconomic gradient in premature mortality based on CT
poverty and the contribution of CT poverty to census tract and neighborhood var-
iation; and (3) to map the population impact of CT poverty on premature mortality.
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MATERIALS AND METHODS

Study Population
We obtained records for all reported deaths in the city of Boston in 1999–2001
(n = 13,361) from the Massachusetts Department of Public Health (MDPH) and
geocoded all records using the address on the death certificate. According to
MDPH, reporting of deaths for this time period was effectively 100% complete.31

Employing a commercial geocoding firm with known high accuracy,32 we were able
to geocode 97% of the records with certainty to the CT level. We also assigned
deaths to 1 of 16 Boston neighborhoods defined by the Boston Public Health
Commission based on the identified CT of residence. Premature mortality was
defined as death before age 75 (n = 5,945). Age of the decedent was categorized as
follows: G1, 1–4, 5–14, 15–24, 25–34, 35–44, 45–54, 55–64, and 65–74. We
extracted the corresponding population counts by CT and age category from
Summary File 1 of the U.S. 2000 Census.33 Person-time denominators were
calculated by multiplying these population counts by 3 years, such that estimated
premature mortality rates from our analysis are interpretable as average annual
rates. Following the methodology of the Public Health Disparities Geocoding
Project,12–14 we calculated the CT percent of persons below poverty measure based
on Table P87 of the U.S. 2000 Census Summary File 3.34 The CT poverty measure
could be determined for all of the 156 CTs in Boston in 2000. The population
distribution by CT poverty and neighborhood and corresponding age-standardized
premature mortality rates (standardized using the direct method to the year 2000
standard million35) are presented in Table 1.

Modeling
The numerator, denominator, and CT poverty data were organized in a multilevel
structure of age cells nested within CTs nested within neighborhoods. We modeled
premature mortality using Poisson mixed effects models as follows. Let yijk

represent the count of cases observed in age stratum i, census tract j, and
neighborhood k, and let nijk represent the corresponding person-time denominator.
Then a simple age-adjusted model can be fit as:

yijk � Poisson lijk

� �

log lijk

� �
¼ log nijk

� �
þ �0 þ �age

i þ ujk þ �k

ð1Þ

where ujk and vk are CT and neighborhood specific random effects, respectively, and
exp(ujk + vk) and exp(vk) are interpretable as CT and neighborhood specific
standardized premature mortality ratios. For these analyses, we treated age as a
categorical covariate so that �

age
i is a coefficient associated with age category i, with

�
age
1 ¼ 0. To model the additional contribution of CT poverty, we fit:

log lijk

� �
¼ log nijk

� �
þ �0 þ �age

i þ �p
CTPOV þ ujk þ �k ð2Þ

where p corresponds to categories of CT poverty (0– 4.9%, 5–9.9%, 10–19.9%,
20–100%). We treated the random ujk and vk terms as independent normal random
effects with variances �2

u and �2
v , respectively.

We took a Bayesian approach to model fitting, using a Markov Chain Monte
Carlo (MCMC) algorithm that yields simulated samples from the posterior
distribution of the parameters given the data. We present the posterior means and
95% credible intervals corresponding to these posterior samples when reporting
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results of model fitting. Non-informative but proper priors were specified for all
regression coefficients and variance components. We specified Normal(0,10000)
priors for the b regression coefficients, and Uniform(0,50) priors for each of the
random effect standard deviations.36 Models were fit by calling the WinBUGS
package37 from within R, using functions from the R2WinBUGS library38 and
specifying 70,000 iterations with 10,000 burn-in and thinning the chain by 30. We
evaluated model convergence by examining traceplots, the autocorrelation function
for the model parameters, and Gelman–Rubin statistics. All these methods
supported convergence, with all Gelman–Rubin statistics within 0.001 of 1.0.
Model fit was evaluated using the deviance information criterion (DIC),39 which
weighs overall model fit against a penalty term for decreased model parsimony. We
further evaluated the sensitivity of our models to choice of prior distributions for
the variance components by re-running models using the half-Cauchy distribution
recommended by Gelman36 and found negligible differences.

Mapping
We obtained Census tract TIGER shape files for the year 2000 from the U.S. Bureau
of the Census website.40 We constructed neighborhood level shape files as
aggregations of CTs based on neighborhood definitions from the Boston Public

TABLE 1. Premature deaths (GGGG75 years old), person-years, average annual age-standardized
premature mortality rate and 95% confidence interval by CT poverty and Boston neighborhood,
1999–2001

Deaths Person-years Age-standardized1 Rate (95% CI)

CT poverty
0–4.9% 360 91,155 323.3 (271.03,339.41)
5–9.9% 996 271,830 382.8 (335.83,384.77)
10–19.9% 2239 598,674 429.1 (385.39,421.57)
20–100% 2350 713,334 474.4 (426.40,465.79)

Neighborhood
Back Bay/Beacon Hill 195 104,577 260.8 (212.44,316.87)
Allston/Brighton 404 198,486 327.0 (294.75,361.88)
North End 103 33,441 332.5 (270.73,404.26)
Roslindale 305 97,059 334.6 (297.86,374.63)
West Roxbury 298 69,897 347.2 (308.44,389.51)
Jamaica Plain 265 84,660 389.6 (342.77,440.94)
Chinatown 162 43,494 395.2 (336.18,461.65)
Fenway 139 87,387 427.2 (356.28,508.14)
Hyde Park 411 96,537 436.7 (395.28,481.19)
South End 396 95,022 437.7 (393.92,484.91)
Mattapan 221 57,369 438.6 (382.19,500.98)
East Boston 410 107,946 439.4 (397.36,484.58)
North Dorchester 908 241,773 490.5 (458.52,524.02)
South Dorchester 562 129,420 495.6 (455.18,538.73)
Roxbury 671 143,979 566.1 (523.72,611.04)
South Boston 495 83,946 590.2 (538.92,645.00)

1 Age standardized using the direct method to the year 2000 standard million.
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Health Commission. We constructed all maps using ArcGIS41 (map colors based on
http://www.ColorBrewer.org).42

In order to generate maps that clearly communicate patterns of premature
mortality, area-level poverty, and the relationship between the two, we calculated
several model-based quantities. First, we mapped CT- and neighborhood-specific
standardized premature mortality ratios (SMR) before and after adjustment for CT
poverty, where SMRneigh = exp(vk) and SMRct = exp(ujk+ vk). Secondly, we
calculated a corresponding model-based directly age-standardized rate, based on
the expected count of cases that would be observed in an area if the total
population of that area were assigned to age categories based proportionately on
the U.S. 2000 standard million. Finally, we also estimated a model-based
population attributable fraction, defined as the proportion of cases that would
not have been observed if the population of the area experienced the premature
mortality burden of the least impoverished tracts (i.e., if residents in each CT had
the same average age-specific premature mortality rates as those experienced in the
least impoverished CTs). We calculated this quantity by predicting the expected
number of cases that would have arisen if CT poverty = 0–4.9%, based on the
model, and by expressing the difference from the observed number of cases as a
percent. Note that because they are model-based, both the model-based direct
standardized rate and the population attributable fraction incorporate the CT- and
neighborhood-specific random effects.

FIGURE 1. (a) Average annual age-standardized premature mortality rates (deaths before age 75) by
Boston neighborhood, 1999–2001 (not smoothed) (b) Dotchart of average annual age-standardized
premature mortality rates and 95% confidence intervals by Boston neighborhood, 1999–2001 (not
smoothed) (c) Percent persons living below poverty in Boston census tracts, 2000 (U.S. Census).
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RESULTS

In 2000, the population of Boston included 589,141 persons, of whom 19.5% were
living below the poverty line. For the time period of our study, 1999–2001, the
overall average annual premature mortality rate in Boston, age standardized to the
year 2000 standard million using the direct method, was 353.4 per 100,000 (95%
CI 344.4–362.6). This overall premature mortality rate represents a composite of
the premature mortality rates experienced in the city’s different neighborhoods and
the CTs within them, which in turn are shaped in part by their poverty levels, as
shown by our analysis.

Overall, we found significant variation in premature mortality rates across CTs
and neighborhoods in Boston, with notable variation at the CT level within the
neighborhood units recognized by the Boston Public Health Commission.
Importantly, neighborhoods with relatively low premature mortality rates can
nevertheless contain CTs with high rates and vice versa. Inclusion of CT poverty in
the model considerably reduced observed CT and neighborhood level variation,
although spatial variation in premature mortality persisted.

Figure 1a presents a map of the neighborhood level direct age-standardized
premature mortality rates tabulated in Table 1, with a corresponding dotchart (Fig. 1b)
showing associated 95% credible limits. This neighborhood level map shows higher
premature mortality rates in South Boston, Roxbury, and North and South
Dorchester. The analogous CT level map is not presented, due to the sparseness of
population in some of the age cells in many CTs and the resulting rate instability.
However, in Fig. 1c, we do present the CT poverty rates in CTs in Boston, with
neighborhood boundaries also shown. This is the type of socioeconomic map that
might typically be paired with the health outcome map to invite visual inspection of
whether areas with high poverty also have high rates of premature mortality. While
it is tempting to draw conclusions about the overlap of neighborhoods with high
premature mortality and census tracts with high poverty, one can do so only
casually because of the different levels of aggregation in the two maps
(neighborhood vs. CT).43

When CT poverty was added in Model 2, we observed increasing rate ratios for
premature mortality across categories of CT poverty (Table 2). Rates were 39%
higher in the most compared to least impoverished CTs (rate ratio of 1.39, 95% CI
1.09–1.78, comparing CTs meeting the federal criterion for Bpoverty areas,^15

i.e., Q 20% poverty, to those with G 5% poverty). This estimate was similar to
that presented in Table 1, based on aggregation of deaths and population at risk
across census tracts and neighborhoods into strata defined by CT poverty. This
suggests that, in the case of Boston, estimation of the overall impact of CT poverty
on premature mortality was not biased by aggregation of counts across CTs with
similar CT poverty. Comparison of the estimates of �2

u and �2
v from Model 2 to

Model 1 shows that inclusion of CT poverty in the model reduced CT variation by
8.3% and neighborhood variation by 13.2%.

To visualize the geographic variation in premature mortality before and after
adjusting for CT poverty, we generated maps of the standardized premature
mortality ratio, derived from the posterior estimates of the model-based neighbor-
hood and CT random effects. These ratios are interpretable as deviations from the
mean rate for Boston overall. Figure 2a presents these quantities at the neigh-
borhood level before adjustment for CT poverty. Though not directly comparable
to the direct standardized rates in Fig. 1, we can see a similar pattern of geographic
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variation in premature mortality rates, with the lowest rates seen in the
neighborhoods of Back Bay/Beacon Hill and Allston/Brighton and the highest rates
in South Boston and Roxbury.

Showing, however, that there can be substantial variation of premature
mortality rates within the conventional neighborhood demarcations, in Fig. 2b we
present the analogous map for CT level standardized premature mortality ratios.
This map also depicts the boundaries of Boston’s 16 neighborhoods. Results
indicated that neighborhoods with overall relatively low premature mortality rates
nevertheless can contain CTs with high premature mortality rates. Moreover, even
among neighborhoods with an overall high premature mortality rate, some CTs
fared far worse than others. For example, although overall the South End had a
lower premature mortality rate than the adjacent Roxbury and South Boston
neighborhoods, which together had the highest neighborhood premature mortality
rates in Boston, the CT with the highest premature mortality rate nevertheless was
in the South End. Additionally, within both Roxbury and South Boston, while the
premature mortality rates in every CT were above the mean premature mortality
rate for Boston, the ratios for excess premature mortality among their CT ranged
from relatively low (1.05–1.25) to substantial (1.75–2.00).

Figure 3a and b shows the impact of additionally adjusting for CT poverty on
the neighborhood and CT level standardized premature mortality ratios. As
predicted by comparison of �2

u and �2
v from Models 1 and 2, this adjustment did

on average reduce the overall spatial variation, although it did not alter the
ordering of elevated rates in South Boston, Roxbury, and North and South
Dorchester. Importantly, however, not all neighborhood and CT specific standard-
ized premature mortality ratios were uniformly adjusted towards the null. For
example, while standardized premature mortality ratios in Roxbury and North
Dorchester were reduced after adjustment (8 and 6%, respectively), the standard-
ized premature mortality ratio for South Boston actually increased by 4%. That is,
South Boston had an unusually high premature mortality rate in spite of its relatively
lower CT poverty composition. Conversely, adjustment for CT poverty reduced the
already low standardized premature mortality ratio for Allston/Brighton even
further, by 3%.

TABLE 2. Model estimates of fixed and random effects from Models 1 (BEFORE adjustment for
CT poverty) and 2 (AFTER adjustment for CT poverty) for premature mortality in Boston, MA,
1999–2001

Fixed effects Model 1a Model 1b

IRR� (95% CI) IRR (95% CI)
CT poverty

0–4.9% 1.00 (reference)
5–9.9% 1.11 (0.87,1.42)
10–19.9% 1.27 (1.00,1.63)
20–100% 1.39 (1.09,1.78)

Random effects Estimate (standard error) Estimate (standard error) Percent change s2

CT level �2
u 0.048 (0.010) 0.044 (0.009) 8.3%

Neighborhood
level �2

v

0.068 (0.035) 0.059 (0.029) 13.2%

� Incidence Rate Ratio (IRR).
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FIGURE 2. (a) Neighborhood standardized premature mortality ratios BEFORE adjustment for CT
poverty, Boston, MA, 1999–2001. (b) Census tract standardized premature mortality ratios BEFORE
adjustment for CT poverty, Boston, MA, 1999–2001.
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FIGURE 3. (a) Neighborhood standardized premature mortality ratios AFTER adjustment for CT
poverty, Boston, MA, 1999–2001. (b) Census tract standardized premature mortality ratios AFTER
adjustment for CT poverty, Boston, MA, 1999–2001.
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FIGURE 4. (a) Neighborhood model-based direct standardized rates BEFORE adjustment for CT
poverty, Boston, MA, 1999–2001. (b) Census tract model-based direct standardized rates BEFORE
adjustment for CT poverty, Boston, MA, 1999–2001.
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FIGURE 5. (a) Neighborhood model-based direct standardized rates AFTER adjustment for CT
poverty, Boston, MA, 1999–2001. (b) Census tract model-based direct standardized rates AFTER
adjustment for CT poverty, Boston, MA, 1999–2001.
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Next, to generate neighborhood and CT level rates that are directly interpretable
as being age standardized to the year 2000 standard million and, hence, comparable
to other data using the same age standard, we calculated the model-based direct
standardized rates as described above. The maps for the neighborhood and CT levels
before adjustment for CT poverty are shown, respectively, in Fig. 4a and b. They
depict a similar spatial patterning to Fig. 2a and b. However, rather than requiring
interpretation relative to an unspecified mean rate for Boston, the quantities being
mapped are the actual age standardized premature mortality rates, that is, the rates
that would have been observed if the area in question had the same age distribution
as the year 2000 standard million. Interpretation of the geographic patterning from
low to high is further enhanced by the sequential scheme of shading, compared with
the two-ended diverging scheme required for the standardized premature mortality
ratio maps (Fig. 2a and b).

We next predicted the model-based direct standardized rates after adjustment
for CT poverty (based on Model 2a) based on Bstandardizing^ the CT poverty level
of all CTs to the least impoverished category (G5%). The resulting maps are
presented in Fig. 5a and b and show a substantial predicted reduction in premature
mortality across all census tracts, although areas of elevated premature mortality
still persist in South Boston, Roxbury, and North and South Dorchester. This
persistence corresponds to the areas in Fig. 3a and b where the standardized
premature mortality ratio increased after adjustment for CT poverty.

Finally, we mapped the model-based population attributable fraction in relation
to CT poverty for Boston neighborhoods (Fig. 6a) and CTs (Fig. 6b). This fraction
represents the proportion of premature deaths that would not have occurred if
residents in every CT enjoyed the same age-specific premature mortality rates as
residents of the least impoverished CTs. Thus, they provide a representation of the
population impact of CT poverty on premature mortality, assuming that the
association between CT poverty and premature mortality arises from a causal
mechanism. This proportion exceeded 20% for 50% of Boston’s 16 neighborhoods
and 68% of Boston’s 156 CTs. Within 14 of the 17 CTs (82%) in Roxbury and 12
of the 22 CTs (55%) in North Dorchester (two of Boston’s poorest neighborhoods),
the proportion of premature deaths that would not have occurred if residents had
the same mortality experience as residents in the least impoverished CTs in Boston
reached 25–30%.

DISCUSSION

Our results demonstrate how a multilevel model-based framework can be used to
explore the social geography of premature mortality in an urban setting based on
routinely collected public health surveillance data. The multilevel framework allows
us to partition observed variation in premature mortality at the neighborhood, CT,
and within-CT levels and to model this variation as a function of fixed and random
effects. As a result, this framework allows for: (a) statistical smoothing in the
estimation of small area rates; (b) estimation of variance at each of the specified
levels; and (c) adjustment for multiple covariates. We have also presented a set of
measures and corresponding 95% credible intervals based on Monte Carlo
simulation, including model-based direct standardized rates, standardized premature
mortality ratios, and population attributable fraction that can be easily calculated
based on the model and mapped at the CT and neighborhood levels.
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FIGURE 6. (a) Neighborhood model-based population attributable fraction due to CT poverty,
Boston, MA, 1999–2001. (b) Census tract model-based population attributable fraction due to CT
poverty, Boston, MA, 1999–2001.
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Together, our results provide evidence of the role of CT poverty in patterning
premature mortality within and across neighborhoods. In the most afflicted areas,
whether neighborhoods or CTs, for every 100 premature deaths, 25 to 30 of the
deaths would not have occurred if residents of these areas had the same age-specific
premature mortality rates as residents of the city’s least impoverished neighborhoods
or CTs. To our knowledge, the population attributable fraction of premature mortal-
ity in relation to CT poverty has not previously been reported in the U.S. at either the
neighborhood or CT level.

Before providing interpretation of additional aspects of our findings, however,
we note a set of caveats relevant to interpretation of the causal effect of poverty on
premature mortality. These include ecologic bias, the modifiable areal unit problem,
etiologic period, and omitted variable bias.

Ecologic bias can occur when both the dependent and independent variables
are group-level data, and confounding is introduced through the grouping
process.44,45 This can lead to fallacious inferences, particularly when the
confounded group-level effect is used as a proxy for the corresponding individual
level effect. We are careful to note, therefore, that our estimates of the CT poverty
gradient are to be interpreted as a group-level association that likely reflects a
complex combination of individual-level and area-level processes. However, we
further note that the CT poverty effect is in the expected direction and is unlikely to
reflect the sort of substantial cross-level confounding that can lead to a change in
the direction of the association between poverty and premature mortality.
Furthermore, in previous analyses for which we had individual as well as CT-level
socioeconomic data, we have found that the direction of the socioeconomic
gradient was the same, and also of similar magnitude, for both the individual-level
and CT-level socioeconomic measures.11,21,23

The modifiable areal unit problem pertains to the sensitivity of spatial patterns to
the choice of area level units in the analysis.43 The multilevel approach we have used
addresses one aspect of this problem, as it permits modeling of spatial variation in
premature mortality at each of the three levels (age cell, CT, and neighborhood) at
which we have data. Another aspect concerns whether or not CTs and neighbor-
hoods are meaningful entities (rather than Barbitrary^ spatial units) relevant to
characterizing socioeconomic conditions and to shaping population health. We note
that CT boundaries are drawn to be socially meaningful by local census
committees46 and that CTs serve as administrative areas relevant to resource
allocation and for such programs as BUrban Empowerment Zones,^ BMedically
Underserved Areas,^ and BQualified Census Tracts^ for the purpose of the low-
income housing tax credit.15,47,48 Moreover, in Boston, the Boston Public Health
Commission uses CTs to define Boston neighborhoods for health programs, thereby
having real-life implications for the health and quality of life of their residents.

Regarding etiologic period, in the case of premature mortality, CT characteristics
at the time of death are likely to be temporally relevant to outcomes with a short
etiologic period. These would include deaths among infants and children, as well as
deaths among adults due to Bpreventable and immediate causes^ or for which
survival is drastically curtailed by inadequate access to health care.6 Examples of the
latter include deaths due to motor vehicle and other accidents; asthma, pneumonia
and influenza; suicide, homicide and legal intervention; complications of pregnancy,
diabetes, tuberculosis, and HIV/AIDS; as well as deaths due to temporally proximate
triggers of heart attacks, e.g., pollution.24 In 2000, these causes of death accounted
for nearly 40% of potential years of life lost before age 75 in the U.S.49
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Finally, regarding omitted variable bias, we note that while there are certainly
covariates (e.g., smoking) that may also account for the observed disparities in
premature mortality by CT poverty, these are likely to be in the causal pathways
linking socioeconomic position to premature mortality, such that it may not be
appropriate to control for them when the population impact of CT poverty is of
interest.44 We also emphasize that the primary aim of our analyses was to model the
poverty–mortality relationship from a monitoring perspective, rather than engage
in an exhaustive etiologic investigation of all potential determinants of premature
mortality.

Assuming, then, that our findings present a plausible depiction of the patterning
of premature mortality in Boston in relation to CT poverty, we offer some
preliminary interpretation of additional aspects of our findings. First, our analysis
confirms previously published observations of a socioeconomic gradient in prema-
ture mortality in the U.S., as reported in both the handful of other analyses using CT
poverty,7,14,23 as well as those employing economic indicators based on larger
geographic areas (e.g., neighborhoods, metropolitan areas, and counties).4–6 Only
two of these prior studies used a multilevel analysis7,23; the rest used the more
conventional approach of comparing rates based on aggregating the death and
population data into strata defined by area-based socioeconomic position. Although
this latter approach, by ignoring spatial variation, could potentially yield biased
estimates, we note in our study that this did not occur, as shown by the similarity of
the socioeconomic gradients estimated in Tables 1 and 2.

Interestingly, our estimates for Boston of a rate ratio of õ1.4, comparing
premature mortality in census tracts with 20–100% poverty to those with G5%
poverty, was equal to the analogous rate ratio we computed for Boston for 1988–
1992, i.e., 1.4 (95% CI 1.3–1.5),50 and less than the analogous rate ratio of õ2.2 we
computed for this same time period for Massachusetts as a whole.14 The smaller
magnitude of the CT socioeconomic gradient for premature mortality in Boston
compared to MA overall is likely due to their differing poverty levels. In 2000, the
proportion of the population living in CTs with Q20% below poverty (42%) was 2.5
times greater than for the state as a whole (16%). Given well-established patterns of
wealthier suburban areas surrounding cities with more concentrated poverty,51,52 it
is possible that rates of premature mortality in Boston’s least impoverished
neighborhoods may nevertheless be higher than in their MA counterparts outside
of Boston. If true, the net impact would be to reduce the Boston range of premature
mortality associated with CT poverty level.

Second, we found that while adjusting for CT poverty overall tended to attenuate
the estimated premature mortality ratio in most neighborhoods and CTs towards the
null, as expected, in some cases it shifted the estimated premature mortality ratios
away from the null. Thus, South Boston had an unusually high premature mortality
rate despite its low poverty rate, whereas Allston/Brighton had an unusually low
premature mortality rate despite its relatively high poverty rate.

Recognizing that interpretation of these anomalous results requires local
knowledge of the social geography of Boston neighborhoods, we drew on the
accumulated knowledge and experience of our local and state public health
department partners to propose possible explanations. For the unusually high
residual premature mortality rates in South Boston, hypotheses include: (1) a spike in
heroin-related overdose deaths during the study period; (2) a high overall rate of
mortality due to substance use, including both drugs and alcohol; (3) excess mortality
due to lung cancer and cardiovascular disease, likely reflecting high rates of smoking;

SOCIAL DISPARITIES IN PREMATURE MORTALITY IN BOSTON NEIGHBORHOODS 1079



and (4) the residential concentration of relatively well-paid police officers and
firefighters, who may experience high premature mortality but do not live in
impoverished CTs.53 Conversely, Allston/Brighton is a neighborhood chiefly
populated by students, who may not be gainfully employed but who do not
experience high mortality. These interpretations, which point to the difference of
student vs. family poverty and also the existence of relatively well-paid but risky jobs,
are conjectural and require further study as possible explanations for the observed
patterns. They also underscore the need for thoughtful interpretation of the
relationship between CT poverty and risk of premature mortality, even as the overall
findings clearly demonstrate that overall increasing CT poverty levels are associated
with increased risk of premature mortality.

Lastly, an additional contribution of our study is to improve visual representa-
tion and interpretation of the social geography of premature mortality in relation to
CT poverty. Previous literature on statistical mapping has noted that maps of
standardized incidence ratios are interpretable only relative to the mean rate across
the study population and, unlike directly standardized rates, are not readily
comparable to externally published rates or policy relevant targets.54 On the other
hand, traditional direct standardization tends to perform poorly in small areas
because it requires stable age-specific rates. At the small area level (e.g., CTs), this is
made further problematic by sparseness of the data and Bempty^ age cells in the
denominators. Moreover, traditional direct standardization does not incorporate
any smoothing at the area-level.

As an alternative to the standardized premature mortality ratio map, we have
proposed a model-based direct standardized rate that overcomes the problems with
traditional direct standardization while permitting comparison with published
standardized rates (e.g., the Healthy People 2010 objectives).55 Our small area rate
estimates incorporate model-based smoothing and are robust to sparse age cells.
Moreover, as we show in Fig. 5a and b, the method can be extended to yield
predicted rates given a Bset^ level for the covariate CT poverty. This is a useful tool,
for example, if one wishes to predict the effect of an intervention by Bsetting^ the
covariate level equal to some target in the model-based calculation.56 Nevertheless,
we note that care should be taken in interpreting the estimated population attrib-
utable fraction as an Betiological^ fraction, since this requires strong assumptions
about the causal relationships between area socioeconomic conditions, premature
mortality, and other unmeasured covariates. For this reason, we stress that the
population attributable fraction should simply be regarded as an Bexcess^ fraction.57

We also note that, in the current analysis, Model 1a has assumed a set of
consistent age effects across all areas. Therefore, the spatial patterning of the
standardized premature mortality ratios and model-based direct standardized rates
at the CT level is the same, although the former are centered around the Bnull^ ratio
of 1.0, rather than expressed on the rate scale. This corresponds to the condition of
Bno age-area interactions^ under which indirectly and directly standardized rates are
identical.54 However, in our model-based framework, this assumption could be
relaxed to allow age x area interactions (a Brandom slopes^ model for age), or even
age x covariate interactions that would be reflected in the model-based standardized
rate, thereby yielding estimates that would be more similar to the purely non-
parametric directly standardized rates than the indirectly standardized rates. In
future analyses, we plan to explore these alternative modeling strategies and also
investigate whether the poverty–premature mortality relationship varies by neigh-
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borhoods, race/ethnicity, gender, and specific causes of death and also whether it
exhibits any non-linearities.

In conclusion, we believe that wider use of our proposed methodology can enable
local and state health departments, as well as academic researchers, to use routinely
available data to generate meaningful, policy-relevant analyses and depictions of
socioeconomic inequities in premature mortality. As recognized in the U.S.,8

Canada,58 and the United Kingdom,59–61 the premature mortality rate is a highly
informative, easily calculated, and easily understood single measure that captures
social disparities in community health. When considered in the geographical
context, it also has enormous potential for identifying acute, small area clusters
especially burdened by premature death and encouraging exploration of the specific
correlates of area deprivation (including environmental conditions, housing,
education, material resources, behavioral factors, access to care, etc.) that contribute
to social disparities in health.
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