Vol. 522: 79-95, 2015
doi: 10.3354/meps11133

MARINE ECOLOGY PROGRESS SERIES
Mar Ecol Prog Ser

Published March 2

Mapping and modeling eelgrass Zostera marina
distribution in the western Baltic Sea

Philipp R. Schubert!*, Woligang Hukriede!, Roli Karez?, Thorsten B. H. Reusch!

1Evoluti0nary Ecology of Marine Fishes, GEOMAR Helmholtz Center for Ocean Research Kiel, Diisternbrooker Weg 20,

24105 Kiel, Germany

State Agency for Agriculture, Environment and Rural Areas Schleswig-Holstein (LLUR), Hamburger Chaussee 25,
24220 Flintbek, Germany

ABSTRACT: In the northern hemisphere, eelgrass Zostera marina L. is the most important and
widespread seagrass species. Despite its ecological importance, baseline data on eelgrass distri-
bution and abundance are mostly absent, particularly in subtidal areas with relatively turbid
waters. Here, we report a combined approach of vegetation mapping in the Baltic Sea coupled to
a species distribution model (SDM). Eelgrass cover was mapped continuously in the summers of
2010 and 2011 with an underwater towed camera along ~400 km of seafloor. Eelgrass populated
80 % of the study region and occurred at water depths between 0.6 and 7.6 m at sheltered to mod-
erately exposed coasts. Mean patch length was 128.6 m but was higher at sheltered locations, with
a maximum of >2000 m. The video observations (n = 7824) were used as empiric input to the
SDMs. Using generalized additive models, 3 predictor variables (depth, wave exposure, and
slope), which were selected based on Akaike's information criterion, were sufficient to predict eel-
grass presence/absence. Along with a very good overall discriminative ability (area under the
receiver-operating characteristic curve ROC/AUC = 0.82), depth (as a proxy for light), wave expo-
sure, and slope contributed 66, 29, and 5 %, respectively, to the final model. The estimated total
areal extent of eelgrass in the study region amounts to 140.5 km? and comprises about 11.5% of
all known Baltic seagrass beds. The present work is, to the best of our knowledge, the largest
study undertaken to date on vegetation mapping and the first to assess distribution of eelgrass
quantitatively in the western Baltic Sea.
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INTRODUCTION

Seagrass meadows are among the most productive
and valuable ecosystems on Earth (Costanza et al.
1997). They act as ecological engineers (sensu
Wright & Jones 2006) and provide a multitude of
important ecological services (Hemminga & Duarte
2000, Larkum et al. 2006). At the same time, seagrass
meadows are threatened worldwide by eutrophica-
tion, overfishing, coastal development, diseases,
invasive species, and climate change (Reusch et al.
2005, Orth et al. 2006, Williams 2007, Moksnes et al.
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2008, Waycott et al. 2009, Bockelmann et al. 2013).
The areal extent of seagrass populations around the
globe was recently estimated to decline at a rate of
about 1.5% yr~!, summing up to a total loss of sea-
grass area of at least 3370 km? between 1879 and
2006, representing 29 % of the maximum area meas-
ured ever (Waycott et al. 2009). This loss rate is
higher than for most other threatened ecosystems.
Additionally, the rate of decline in seagrass meadows
has accelerated over the past 8 decades from
<1% yr ! before 1940 to 5% yr~! after 1980 (Waycott
et al. 2009). Locally, the observed global loss of sea-
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grass could be masked by the great variability of sea-
grass distribution (Frederiksen et al. 2004, van Tus-
senbroek et al. 2014) or even recovery of seagrass
populations in some areas following release from
stressors (e.g. Vaudrey et al. 2010).

In the Baltic Sea, the largest brackish water body of
the world's oceans, sublittoral eelgrass Zostera mari-
na L. meadows are one of the most important and ex-
tensive coastal ecosystems, covering at least 1227 km?
from the Kattegat through to the northeastern Baltic
Sea (Bostrom et al. 2014). Eelgrass beds play an im-
portant role in coastal protection, help to remove ex-
cess nutrients, and provide food and nursery grounds
for economically important fish species like cod, her-
ring, eel, and plaice (e.g. Touchette & Burkholder
2000, Beck et al. 2001, Christianen et al. 2013). Local
studies indicate that eelgrass may cover large areas
in shallow waters (<10 m) along the German coast
(HELCOM 1998, Schubert et al. 2013, Bostrom et al.
2014). Yet, despite its presumed ecological impor-
tance for the coastal ecosystem in German waters,
baseline data on eelgrass distribution, abundance,
and spatial structure are virtually absent.

To assess the importance and function of eelgrass
beds in the western Baltic Sea, baseline data on
abundance, distribution, and spatial structure are
urgently needed (Bostrom et al. 2002). Abundance
and areal extent data of eelgrass are the foundation
for any sensible calculations on production, nutrient
cycling, carbon sequestration, importance for fish
stocks, sediment transports, and other ecosystem
services. Structure or spatial patterns of seagrass
meadows can affect benthic community composition
and ecosystem responses on varying scales from
meters to hundreds of kilometers (Robbins & Bell
1994, Turner et al. 1999). And while concepts of land-
scape ecology become more widely used in seagrass
research (Bostrom et al. 2006 and references therein),
baseline data of seagrass landscapes like patchiness
or fragmentation are still missing.

Distribution maps on the basis of georeferenced
presence/absence data are needed for managing as
well as monitoring purposes, as eelgrass areal
extent, health status, and depth limits are important
indicators to assess the environmental status for
several international directives or conventions, viz.
HELCOM, the European Union (EU) Water Frame-
work Directive (WFD), and the EU Marine Strategy
Framework Directive (MSFD 2008, HELCOM 2009,
Backer et al. 2010). Data on eelgrass distribution
are also needed to assess the monetary value of
ecosystem services provided by eelgrass habitats
(Baden et al. 2003, Ronnbaéack et al. 2007, Mangi et

al. 2011). In addition, these data are prerequisites
for managers and local communities for the preser-
vation and protection of local ecosystem functioning
in the course of planning and maintaining coastal
infrastructure (e.g. harbors, piers, coastal protection,
dredging of waterways).

One possible reason for the lack of studies concern-
ing the distribution and abundance of eelgrass in the
Baltic Sea could be that large-scale mapping of sub-
littoral vegetation in visually deep waters (deeper
than vertical visibility, prohibiting remote sensing
from aerial photography or satellite imagery) is costly
and time-consuming and, in contrast to remote sens-
ing, does not yield the areal extent of submerged
vegetation directly. Thus, depending on mapping
design and method (e.g. SCUBA, drop camera, tow-
ed camera), in turbid waters, only transect or point
data are generated, which leave out large non-sur-
veyed areas. To minimize costs of laborious mapping
methodologies and to extrapolate statistical relation-
ships from sampled to non-surveyed areas, species
distribution modeling (SDM) of seagrass occurrence
in relation to geophysical factors has recently been
applied as a complementary approach (Bekkby et al.
2008, Grech & Coles 2010, Downie et al. 2013, March
et al. 2013a). Particularly at larger scales (>50 km),
distribution modeling has contributed to a better
understanding of the geophysical factors and pro-
cesses structuring the distribution of seagrasses. Ad-
ditionally, SDM allows scientists (1) to identify the
potential distribution range of eelgrass under possi-
bly changing conditions (e.g. light limitation due to
eutrophication) and (2) to estimate past changes in
eelgrass distribution via falsely predicted absences
or presences. SDM is particularly useful in species
that are common and widely distributed, have a rela-
tively stable distribution, and are not extending their
range (Guisan & Thuiller 2005). These criteria apply
to eelgrass in the western Baltic Sea.

The present work combines the largest and most
thorough study undertaken to date on vegetation
mapping in the Baltic Sea —accomplished by towing
an underwater camera system along transects of
about 400 km length—with a subsequent SDM and
GIS analysis, which identifies geophysical factors
that influence eelgrass occurrence and allows extra-
polation into non-surveyed areas. More specifically,
the main objectives of our study were to explore eel-
grass distribution along the northern German Baltic
Sea coast and to locate present depth limits (shallow
and deep) of the meadows. Additionally, the map-
ping should help to reveal the population's spatial
structure concerning cover and patchiness. With the
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model, we tried to estimate the areal extent of eel-
grass populations in the study region and the influ-
ence of a range of geophysical factors on eelgrass
distribution. Finally, for possible restoration projects,
we tried to locate sites where eelgrass is missing
despite suitable conditions for growth.

METHODS
Study region

The study region is situated in the Baltic Sea, the
largest brackish water basin in the world, which is
characterized by steep physical and chemical gradi-
ents, limited water exchange, low biodiversity, and
strong anthropogenic impacts (Elmgren 2001). Eel-
grass was mapped and modeled along the coastline of
Schleswig-Holstein, between Denmark in the north
and the German federal state of Mecklenburg-West-
ern Pomerania in the southeast (total sea area ca.
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3680 km?, Fig. 1). The outer coastline of Schleswig-
Holstein has a length of 397 km (including the island
of Fehmarn, not including the Schlei Fjord). Water
depths in the shallow western Baltic Sea range from 0
to 40 m, but we restricted our field study to the extent
of the potentially habitable depth zone for eelgrass to-
day (0 to 10 m depth). The total area of this depth zone
in the study area is ca. 588 km? (not including the
Schlei Fjord), according to bathymetry data (see ‘Geo-
physical predictor variables'). The reason for not in-
cluding the river-like Schlei Fjord (Fig. 1) was its
strongly reduced water clarity along with high agri-
cultural nutrient input, which prevent the growth of
eelgrass in most of the fjord (Furhaupter et al. 2003).
However, model predictions were calculated for the
Schlei area to find out whether additional factors
might affect eelgrass distribution in the fjord.

Surface salinity in the region varies between ~8
and ~26 psu (continuous logging of the German Fed-
eral Maritime and Hydrographic Agency [BSH] be-
tween 2004 and 2012), depending on the inflow of
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Fig. 1. Study area showing the potentially habitable depth zone for eelgrass in green (0 to 10 m). Wind stations: 1. Flensburg;
2. Schleswig; 3. Schénhagen; 4. Kiel Lighthouse; 5. Putlos; 6. Fehmarn; 7. Travemiinde
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fully saline North Sea water, location, and depth.
Tides are negligible, but wind-driven water level
changes are common. Currents and wave exposure
are generally weak in the study region, as it is well
protected from prevailing westerly winds and is rela-
tively enclosed. Maximum significant wave height
rarely exceeds 3 m (Petterson et al. 2012). The cli-
mate regime is cold temperate, with water tempera-
tures in the study region ranging from 1°C in Fe-
bruary to 20°C in August (Siegel & Gerth 2011).
Occasionally, severe winters can lead to the forma-
tion of sea ice in the region. Geologically, the study
region is a 'fjord coast’, with fjords (Eckernférder Bay
and Kiel, Schlei, and Flensburg), bays, sandy coasts,
some cliffs, and only 1 large island (Fehmarn). The
study area is dominated by sandy and muddy sedi-
ments, with infrequent small to large boulders in
some locations. No bedrock exists along the Baltic
coast of Schleswig-Holstein. Eelgrass is common on
sandy bottoms along the entire German Baltic coast
(Bostrom et al. 2014), but precise data about its distri-
bution, abundance, depth limits, areal extent, or
meadow structure have not been published so far.

Mapping

Mapping was conducted in the summer season
(between June and August) in 2010 and 2011. Eel-
grass was recorded continuously along transects with
an underwater towed camera (1/3 inch color charge-
coupled device sensor in a waterproof housing,
resolution: 512 x 582 pixels, sensitivity: 0.5 Ix, image
angle: 92°, lens: 3.6 mm) deployed from a small boat
(<6 m) travelling at idle speed (ca. 2 to 4 km h™'). The
field of view depended on height of the camera
above the seafloor (0.8 to 1.5 m) and varied between
2 and 7 m2. The video signal was digitally overlaid in
an onboard unit with additional data (depth, position,
date, time, and transect identifier) and recorded on
hard disk for further analyses. Depth, position, and
time were provided by an echo sounder and a GPS
receiver included in the onboard unit and recorded
in a standard format (NMEA 0183 file, National Mar-
ine Electronics Association).

Video transects ran parallel and perpendicular to
the shore. Parallel transects (PTs) were conducted to
detect eelgrass presence or absence at a certain
coastal stretch in a depth of 3 to 4.5 m (depth of dens-
est eelgrass cover along German Baltic Coast, P.
Schubert pers. obs.) and included virtually the entire
study area. Perpendicular transects (VTs) provided
information about shallow and deep depth limits (an

important indicator for the WFD) and depth-depen-
dent changes of eelgrass distribution. VTs were dis-
tributed over the length of the entire coast and
ranged from about 0.5 to 10 m depth with lengths be-
tween 70 and 3270 m (n = 110), depending on slope of
the coast. The distance between single VTs was ap-
proximately 2 km. The videos of both transect types
covered approximately 400 km of seafloor (PTs:
315 km, VTs: 84 km).

Eelgrass coverage and additional observations (se-
diment type, algae and blue mussel occurrence) were
assessed continuously by examination of the video on
a computer screen. These observations were then au-
tomatically combined with the NMEA data using a
specifically designed computer program (unpubl.
program: GAZER, by W. Hukriede & P. R. Schubert),
which produced a protocol file for further analyses.
Spatiotemporal resolution for single observations was
thus dependent on velocity of the boat and frequency
of GPS measurements, which was between 0.25 and
1 Hz, resulting in variable distances between single
observations along transects of 1 to 5 m. Eelgrass
cover along the transects was estimated semi-quanti-
tatively by applying an extended Braun-Blanquet
(1964) 6-class scale of 0, <10, 10 to 25, 25 to 50, 50 to
75, and 75 to 100 %. Because of the large amount of
video data, 4 different observers were assigned to this
task. Intercalibration showed that results for individ-
ual observers did not differ significantly when cover
classes were used (data not shown). Presence/ab-
sence observations used for modeling were indis-
cernible between observers.

Eelgrass patchiness on a meter scale was calcu-
lated using Montefalcone's patchiness index (PI)
(Montefalcone et al. 2010), referred to as ‘grain’ by
Pielou (1977). To calculate the index, presence/
absence data from PTs were used. We defined the PI
to be the number of 0 to 1 or 1 to 0 transitions per
500 m of straight-line transect length. Additionally,
the mean length of patches and median cover class of
eelgrass were computed for every 500 m section
along the coast. Differences between mean patch
lengths of exposed versus sheltered sections were
assessed with a 2-sample t-test.

Modeling

The species distribution model (SDM) for eelgrass
was fitted using generalized additive models (GAMs,
Hastie & Tibshirani 1990) and a set of 3 predictor
variables (depth, slope, and wave exposure, see
‘Geophysical predictor variables'). GAMs are a semi-
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parametric extension of generalized linear models
(Hastie & Tibshirani 1990), and their ability to fit
complex non-linear responses has made GAMs one
of the most used SDM methods in the recent past
(Downie et al. 2013). The model's parameters were
calculated applying the generalized regression ana-
lysis and spatial prediction (GRASP) software pack-
age (Lehmann et al. 2002) within R (R Development
Core Team 2008). To avoid a bias from the variable
distance between observations during the 2 yr survey
(see 'Mapping’), distances were standardized to 5 m
for the model input. Where needed, GPS position and
predictor variables were interpolated between 2
neighboring readings (max. interpolated distance =
5 m). Data about eelgrass occurrence (presence/
absence) were taken directly from the protocol file
and were not interpolated.

To obtain a sound database for the modeling pro-
cess, observations with erroneous or missing depth
data were removed. We then applied 2 filters on the
database (all observations: n = 70 704). (1) To achieve
a balanced depth distribution, we reduced the skew
of depth data originating from the predominance of
PTs in the depth range of 3 to 4.5 m (Table 1). To this
end, the number of all surplus observations in the 9
depth classes from 0 to 9 m was randomly reduced to
match the number of observations in the 1 to 2 m
depth class (n = 1924). For the 2 edge depth classes of
0 to 1 and 8 to 9 m that had fewer observations (n =
267 and n = 593, respectively), all observations were
used for our model, resulting in a total of n = 14 328
observations after applying the first filter. (2) We ran-
domly excluded 6504 absences from the observation
data to avoid the adverse consequences of a large
number of absences (Lehmann et al. 2002) and to
obtain the recommended balanced prevalence with
similar numbers of absences and presences (Liu et al.
2005). The ensuing prevalence equality enabled us
to translate eelgrass prediction values directly into

Table 1. Number of all observations of eelgrass presence/
absence per depth class

Depth class (m) n
0-1 267
1-2 1924
2-3 9759
3-4 25653
4-5 20594
5-6 5667
6-7 3623
7-8 2565
8-9 593

probabilities of encounter without further modifica-
tion (Liu et al. 2005). After applying the second filter,
7824 observations were left for the modeling process.

Finally, correlations between the 3 chosen predic-
tors (see ‘Geophysical predictor variables') were cal-
culated to ascertain the avoidance of functional
dependencies between predictors, which would be
misleading when estimating the model (Lehmann et
al. 2002). However, correlations between any pairs of
predictor variables were weak and non-significant
(all R? < 0.08); thus, no predictor had to be removed
from the modeling process.

To estimate the total area of eelgrass in the study
region, the modeled probability to find eelgrass at a
certain location (0 to 0.95) was multiplied with the
area for the prediction. Resolution of the model was
100 m, resulting in an area of prediction of 10000 m?
for each point within the prediction grid.

Geophysical predictor variables

In our SDM,, the variables depth, slope, and wave
exposure determined the response variable (prob-
ability of eelgrass occurrence). Additional predictors
(salinity, temperature, and sediment class) did not
have significant influence on the response variable
and were not incorporated in the model (data not
shown).

Water depths along the surveyed transects were
measured in the field with an echosounder (EchoPilot
Bronze Depth+, frequency: 150 kHz, accuracy:
0.1 m). Depths for non-surveyed locations were de-
rived from a digital elevation model (DEM) of the
southwestern Baltic Sea with a horizontal resolution
of 50 m. The DEM was provided by the State Agency
for Agriculture, Environment and Rural Areas
Schleswig-Holstein (LLUR; 2004) and is based on a
depth survey of the BSH in 2002 and a digital topog-
raphy of the Leibniz Institute for Baltic Sea Research
Warnemiinde (IOW). The coast's slope was calcu-
lated from the DEM using the ArcGIS Spatial Analyst
slope tool, with a horizontal resolution of 50 m. Wave
exposure was modeled following the procedure
described by Ekebom et al. (2003), which quantifies
wave exposure as apparent wave power in watts. For
these calculations, we used fetch (capped at 30 km)
and wind speed, both for 36 directions of the compass
rose, in the period from 1998 to 2011 (14 yr). Wind
data for every grid point (resolution: 100 m) were
obtained from the nearest of 7 weather stations from
the German Weather Service (DWD) and GEOMAR
(only data from the Kiel lighthouse). Wind speed was
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Table 2. Model selection based on Akaike's information criterion (AIC).
Results sorted with ascending AIC values (i.e. descending model perform-
ance). The response variable is Zostera marina occurrence (presence/
absence), and the predictor variables are depth, slope, and wave exposure
(WE) comparing average and threshold wind speeds with selected thresh-
old velocities. A is the difference from the best model. Receiver-operator
characteristic curve/associated area under the curve (ROC/AUC) denotes
the results of the area under the ROC curve for each model (AUC < 0.7:
poor; 0.7 to 0.8: satisfactory; 0.8 to 0.9: very good; >0.9: excellent discrimi-

native ability). avg.: average

made with 5 subsets (folds) of the entire
dataset (5-fold cross-validated ROC,
cvROC). To estimate the precision of the
AUC and to obtain confidence intervals,
bootstrap resampling of the entire data-
set (4000 iterations) was applied (Efron
1979). The AUC value of ROC plots can
take values between 0.5 and 1.0. Follow-

ing the classification of Hosmer &

Rank Predictor variable AIC A ROC/AUC Lemeshow (2000), values <0.7 are re-
garded as having a poor discriminative
1 Depth + Slope + WE (26 ms™!) 8074.7 0.0  0.8207 ability; 0.7 to 0.8, a satisfactory discrimi-
2 Depth + Slope + WE (27 m S’i) 8089.9 152 0.8199 native ability; 0.8 to 0.9, a very good dis-
3 Depth + Slope + WE (25ms™) 8095.9 21.2 0.8192 B . it _
4 Depth + Slope + WE (8 ms™!)  8125.1 50.4  0.8177 Crlmmatl‘,’e ,abﬂ_ltY' ar,lc,l >0.9, an excel
5 Depth + Slope + WE (>4ms™') 81298 551  0.8166 lent discriminative ability.
6 Depth + Slope + WE (<10 m s™')  8147.0 72.3  0.8159 Besides correctly predicted presences
7 Depth + Slope + WE (1an.] 8215.8 1411 0.8115 and absences, even the best SDM will
8 Depth + WE (26 m s™) 83059 2312  0.8052 make false predictions for both types of
9 Depth + WE (avg.) 8454.5  379.8  0.7961 b " These fal dicti
10 Depth + Slope 8779.8 7051  0.7728 observations. Lhese lalse predictions are
11 Depth 8982.8 908.1  0.7559 normally summarized in a confusion
12 Slope + WE (=6 m s7}) 9957.4 1882.7  0.6884 matrix (Table 3) and can hold interesting
13 WE(6ms™) 10032.0 1957.3  0.6733 information. In the case of abundant eel-
14 Slope + WE (avg.) 10116.0 ~ 2041.3 = 0.6637 rass, falsely predicted presences merit
15 WE (avg.) 10189.0 21143  0.6574 grass, Y P - P :
16 Slope 10727.0 2652.3 0.5725 attention, as they could indicate locations
well suited for potential restoration of

time averaged from 1 h (DWD) or 8 min (GEOMAR)
values and measured in meters per second. In addi-
tion to the average wind speed, wave exposure was
calculated for different wind speeds below and
above iterated thresholds, with steps of 1 m sl To
find the best model, all wind speeds were tested and
validated. Wave exposure values calculated with
wind speeds above 6 m s™! scored highest in Akaike's
information criterion (AIC) values (Table 2) and were
incorporated into the final model.

Model fitting and validation

As a tool for model selection, we used AIC (see
Burnham & Anderson 2001) within the GRASP pack-
age. The AIC procedure allows the ranking of candi-
date models relative to each other according to parsi-
mony and goodness of fit. Of all candidate models,
the resulting final model (Model 1, Table 2) was used
to predict spatial distribution of eelgrass.

To protect against over-parameterization, the final
SDM was verified applying a cross-validation
method, with the threshold-independent receiver-
operating characteristic (ROC) curve (Fielding & Bell
1997) and its associated area under the curve (AUC)
as the statistic of interest. The cross-validation was

eelgrass meadows. Following the pre-
cautionary principle, a threshold of 5 % probability of
error in predicting the presence of eelgrass was
employed to define falsely predicted presences and
locate potential restoration sites. For the confusion
matrix, a threshold of 0.48 (= highest kappa, k) was
chosen, assuming that both error types (falsely pre-
dicted absences and falsely predicted presences) are
equivalent (Fielding & Bell 1997).

RESULTS

Mapping results

We found that eelgrass grew along most (80 %) of
the coastline in the study area, with just a few areas

Table 3. Confusion matrix of the final model showing the

observed and predicted presences/absences and respective

percentages at a threshold of 0.48 (kappa, k). Correct classi-
fication rate at this threshold is 73.9 %

Observed
presence

Observed
absence

Predicted presence
Predicted absence

3137 (40.1%)
775 (9.9%)

1267 (16.2%)
2645 (33.8%)
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Fig. 2. Observed eelgrass cover along surveyed camera transects. Eelgrass cover is shown in 6 classes (class 0: 0 %; class 1:
<10%; class 2: 10 to 25 %; class 3: 25 to 50 %; class 4: 50 to 75 %; class 5: 75 to 100 %). Place names given for selected locations.
Transect width is not to scale

as exceptions (Fig. 2). Of the 315 km surveyed tran-
sect length along the shore, 63 km exhibited no eel-
grass (20 %). Dense eelgrass meadows (=50 % cover)
populated about 70 km (22 %) of mostly sheltered
coastline. Eelgrass depth limits of meadows (meadow
definition: eelgrass cover 210 %) were assessed along
110 VTs, 97 of which featured eelgrass meadows.
The deep depth limit ranged between 2.2 and 7.6 m
(mean = 5.3 m, SD = 1.27, n = 97), while the shallow
depth limit was between 0.6 and 5.7 m (mean = 2.3 m,
SD = 1.27, Fig. 3). With only a few exceptions, both
depth limits were shallower in fjords, bays, and other
sheltered locations than in moderately or highly ex-
posed locations on open coastlines and headlands.
The patchiness index (PI) for eelgrass, measured as
transitions between eelgrass and no eelgrass per
500 m of transect length (‘section’), ranged between 0
and 68 (mean = 16.1, SD = 12.7, n = 482). PI = 0,
meaning that 1 patch covered the entire section, was
found at 30 of 482 sections, all situated inside fjords
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Fig. 3. Box plot of depth limit range for deep and shallow
depth limits along perpendicular mapping transects with eel-
grass (n = 97), showing median (centre line), 1st to 3rd quar-
tiles (box limits), range of values (whiskers) and outliers (*)

and bays. Mean calculated wave exposure for these
30 sections was 273.4 W (SD = 200.9 W, n = 30), com-
pared to an overall mean wave exposure for all sec-
tions of 430.4 W (SD = 253.0 W, n = 482). Mean patch
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Table 4. Descriptive statistics of predictor variables depth, wave exposure, and slope separated for eelgrass presences and
absences and their contributions to the final model (Model 1, Table 2)

Predictor Eelgrass presence Eelgrass absence ——— Model

n Mean SD Min. Median Max. n Mean SD Min. Median Max. contrib-

ution (%)
Depth (m) 3912 3.462 1.476 0.000 3.200 8.116 3912 4.989 2.180 0.000 5.191 8.931 66.3
Wave exposure (W) 3912 339.2 2442 93 279.0 1379.7 3912 5154 330.5 18.0 441.1 1509.0 29.2
Slope (°) 3912 0.792 0.687 0.020 0.571 3.545 3912 0.744 0.660 0.011 0.564 3.509 4.6

length for all sections was 128.6 m (SD =286.5m, n =
482), with maximum patch lengths of >2000 m found
off Gelting, Sierksdorf, Burg (Fehmarn), and Gros-
senbrode (Fig. 2). Minimum patch lengths of 1 to 5m
were found mainly at exposed coasts. Mean patch
length of sections from the upper half of the wave
exposure range was significantly smaller than mean
patch length from the lower half (74 versus 294 m,
t-test: n =482, t=5.85, p < 0.0001). The median of all
482 of the 500 m sections was in class 2, equivalent to
a cover of 10 to 25 %.

Modeling results

Mapping results were complemented by our mod-
eling results, which enabled us to appoint driving
factors of eelgrass distribution and estimate the total
eelgrass area. AIC calculations within the GRASP
software confirmed the presumption that incorporat-
ing all 3 geophysical predictor variables (depth,
slope, and wave exposure) led to the best modeling
results (Table 2). Models integrating the predictor
‘wave exposure’ (WE) with wind speeds exceeding
certain thresholds (Models 1 to 5) scored consistently
higher than either those with averaged wind speeds
(Model 7) or those with wind speeds below certain
thresholds (Model 6). Besides producing different
AIC values, the models' visual appearances as maps
revealed substantial and meaningful differences in
eelgrass distribution for models with wind speeds

exceeding certain thresholds compared to those with
winds below certain thresholds (data not shown).
These differences are in good accordance with our
mapping results and confirm that eelgrass distribu-
tion is mainly shaped by stronger winds.

Contributions of the respective predictors to the
final model (Model 1, Table 2), calculated as amount
of explained variation that each predictor variable
contributed to the model, were 66.3% for depth,
29.2% for wave exposure, and 4.6% for slope
(Table 4). This predictor hierarchy was mirrored in
the AIC values for different models (Table 2): drop-
ping only slope from the model (Models 8 and 9)
led to a higher ranking than dropping either WE
(Model 10) or depth (Models 12 and 14). The same
ranking ensued when the model was built with just
1 predictor: integrating depth alone (Model 11) led to
a better model than WE alone (Models 13 and 15);
slope alone (Model 16) scored lowest.

Results of the 5-fold cvROC of our final model
showed an AUC of 0.81908 (95 % confidence interval:
0.81894 to 0.81923), indicating a very good discrimi-
native ability (after Hosmer & Lemeshow 2000).
GAM response curves of each of the 3 predictor vari-
ables (Fig. 4) showed how environmental gradients
shape eelgrass distribution in the western Baltic.
Response of eelgrass to depth was bell shaped, with
an optimal depth for eelgrass in the study region
between 2 and 4 m. Response to slope showed a clear
minimum at ca. 1.1°, with more positive responses for
both flatter and steeper inclinations. Wave exposure

1 Iz

-1

-3

Depth (m)

Fig. 4. Response curves of eelgrass presence/absence to the predictor variables depth, slope, and wave exposure in the gen-

eralized additive model analysis for the final model (Model 1). The y-axis represents the additive contribution of each variable

(range differs between panels). Black ticks above x-axis represent observation range. Dashed lines represent 95 % confidence
interval limits
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was clearly negatively correlated with eelgrass oc-
currence; however, no change in the response vari-
able was apparent within a small range at medium
exposures (500 to 1000 W) (Fig. 4).

The resulting prediction map for our final model in
the study region had a horizontal resolution of 100 m
and encompassed areas with a depth of up to 10 m
(Fig. 5). The calculated total area populated with eel-
grass summed up to 140.49 km? or 23.91% of the
entire potentially habitable depth zone for eelgrass
(depth 0 to 10 m, area: 587.58 km?).

Predicted and observed presences/absences at a
threshold of 0.48 are summarized in the confusion
matrix (Table 3). The ensuing correct classification
rate for this threshold is 73.9%. By putting more
importance to falsely predicted presences and apply-
ing a more conservative threshold of 5% probability
of error at 194 surveyed locations, eelgrass was false-
ly predicted as being present. These falsely pre-
dicted presences spread over the entire surveyed

coast (Fig. 6). With just a few exceptions in Libeck
Bay, most of these locations lay in sheltered areas
with large eelgrass meadows, owing to small-scale
variation below the model's (and its predictors’) reso-
lution. Thus, only a relatively few falsely predicted
presences to suggest possible restoration sites were
encountered. Promising areas are situated at the
inner Eckernforde Bay, the east coast of Fehmarn,
and off Brodten Cliff (Fig. 6).

DISCUSSION

To the best of our knowledge, our study is the most
data-rich underwater survey of submersed vegeta-
tion undertaken to date. We found that the area cov-
ered by sublittoral seagrass beds along the northern
German Baltic coast is comparable to the areal extent
of (mostly intertidal) seagrass beds in the Wadden
Sea (Dolch et al. 2013), but because of differences in
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growth form and seagrass species, total biomass of
western Baltic Sea populations is expected to surpass
North Sea populations by far. The areal extent com-
prises about 140/1222 km? = 11.5% of all known
Baltic seagrass beds and 140/1482 km? = 9.4% of
northern European seagrass populations (Bostrom et
al. 2014). The SDM derived from our extensive data-
base has very good predictive power and provides
additional information about eelgrass distribution
and possible restoration sites.

The acquisition of accurate data on eelgrass dis-
tribution in turbid waters is costly and time con-
suming yet indispensable for managing and moni-
toring purposes. Our results show that a combined
approach of georeferenced video transects and
subsequent SDM can overcome the weaknesses of
both methods and lead to distribution maps of sat-
isfying quality covering the entire target area.
Although video mapping covers only narrow line

transects of about 1 to 3 m width, this method pro-
vides additional information on eelgrass patchiness,
exact depth limits, and health status. Moreover,
additional environmental data such as sediment
characteristics or macroalgae cover can be obtain-
ed. Compared to sonar techniques, which recently
became more widely used to survey seagrasses
(e.g. Lathrop et al. 2006, Lefebvre et al. 2009),
video mapping has the advantage of a direct ob-
servation without the risk of misinterpreting results
and needs no minimum cover value below which
eelgrass is not detected. Despite its drawbacks, for
turbid waters, video mapping remains the preferred
method to map abundant and easily identifiable
species like eelgrass down to their maximum colo-
nization depth.

SDM should ideally accompany any data acquisi-
tion to fill in unsurveyed areas and develop maps of
areal coverage. As an extra value, potential restora-
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tion sites can be identified. Additionally, future distri-
bution of eelgrass in the face of predicted environ-
mental change can be modeled and integrated into
coastal managing plans and directives. For example,
for the Baltic Sea region, increases in wave exposure
due to changing wind speeds and directions are pre-
dicted (BACC Author Team 2008) and will likely
have substantial effects on eelgrass distribution. With
the model, these effects can be quantified. Concern-
ing the model input, accurate and abundant distribu-
tional data along with concomitant physical factors
(e.g. depth or wave exposure) of similar resolution in
the modeled area are important prerequisites to
develop useful and reliable SDMs. Our model input
encompassed the entire modeled area and included
all obvious environmental gradients that are present
in the study region. The coastline in northern Ger-
many has a simple geomorphology with just 1 big
island and few peninsulas or inlets, facilitating a
proper prediction of vegetation distribution with rel-
atively few abiotic factors. Moreover, the basis of our
SDM was exceptionally data rich, with about 8000
presence/absence data points on eelgrass, for a pre-
diction area of 588 km?. Table 5 shows a comparison
between the present and past studies concerning
submarine vegetation. Of those studies, our observa-
tional input had the highest resolution. Consequent-
ly, our model’s resulting response curves (Fig. 4) ex-
hibit a high statistical confidence level, and the
model's high AUC values (and narrow confidence
intervals of the AUC values) indicate that it has
higher predictive power than comparable models.
Still, modeling results are always dependent on the
quality and resolution of the predictors used. In our
model, small-scale variations (<100 m) of eelgrass
distribution are below the predictors’ resolution,
explaining most of the falsely predicted presences in
areas with high eelgrass cover. However, the cross-
validation of the model showed that the predictions
for the entire study area forecast the presence (and
absence) of eelgrass with very high certainty.

Three geophysical factors were sufficient to
achieve a very good predictive ability of the final
model (5-fold cvROC = 0.82). Of the 3 factors, depth
had the greatest influence on model output, followed
by wave exposure and slope. The response curve
shows the expected bell shape, which can be ex-
plained by an irradiance gradient (Krause-Jensen et
al. 2003), depth being a proxy for light attenuation
with increasing depth. Seagrasses and eelgrass in
particular have relatively high light requirements
(Larkum et al. 2006) and can only grow down to a
compensation depth where at least 11% of surface

irradiance remains (Duarte 1991). Based on our find-
ings, this compensation depth ranges between 4 and
7 m in the study area and is positively correlated with
the factor wave exposure. This correlation is plausi-
ble if one considers wave exposure as a proxy for
water transparency (besides its other effects). With
increasing exposure, high nutrient levels from hu-
man settlements or freshwater runoffs become more
diluted and, hence, productivity of plankton and
macroalgae decreases, leading to clearer water and
less epiphyte growth on eelgrass at more exposed
locations. At neighboring Danish coasts, Greve &
Krause-Jensen (2005b) showed that depth limits of
eelgrass largely depend on location along an expo-
sure gradient from inner to outer bays to open coastal
waters, reflecting a corresponding gradient in water
transparency. Thus, though not incorporated into the
model directly, light conditions are indirectly ac-
counted for by the factors depth and wave exposure.
Nevertheless, we think that the model could have
been improved by adding a fourth factor, describing
light conditions, if sufficient data (e.g. from satellites)
had been available. Data on light conditions would
specifically help to explain the lack of eelgrass in
locations that appear ideal for eelgrass according to
the model prediction.

Wave exposure was found to be the second most
important factor. Wave action and strong currents
can lead to sediment movement, which may bury
plants, expose roots and rhizomes, and even uproot
entire plants (Preen et al. 1995). Hence, physical dis-
turbance through wave action is considered one of
the main extrinsic factors controlling the spatial
structure of seagrass meadows (Clarke & Kirkman
1989, Duarte et al. 1997). Wave exposure in our
model is negatively correlated with the probability
to find eelgrass, which corroborates other studies
(Krause-Jensen et al. 2003, Downie et al. 2013,
March et al. 2013a). The most exposed coastlines in
the study area, such as the northwestern coast of
Fehmarn or south of the Schlei Fjord, are lacking eel-
grass altogether, while the most sheltered locations
often feature dense and extensive meadows (Figs. 3
& 6). Results from our patchiness analysis on a meter
scale show a similar pattern, exhibiting significantly
smaller patch lengths at exposed versus sheltered
locations. In contrast to other regions in the world,
even the most exposed stretches of our coast should
facilitate eelgrass growth if only wave exposure was
considered. Other surveys have demonstrated that at
exposed coasts, seagrass populations tend to shift
their distribution towards greater water depth, for
example in the Mediterranean (Infantes et al. 2009).
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In our turbid waters, this exposure evasion is not pos-
sible, and highly exposed coasts throughout the
Baltic are thus devoid of eelgrass (Bostrom et al.
2014).

The question remains whether these exposed areas
were populated historically, before eutrophication
set in in the mid-20" century and water clarity was
much higher. Although quantitative distribution data
are absent, it is likely that eelgrass was historically
more abundant and occurred at greater depth in the
German part of the Baltic Sea. The most detailed and
comparable evidence comes from the adjacent
Danish waters, where time series since 1900 show a
decline in depth limits of eelgrass from an average of
4.3 to 8.5 m to an average of 1 to 5.4 m (Krause-
Jensen et al. 2005), resulting in an area loss of 75 %
(Bostrom et al. 2003). Secchi depth data, which are
closely linked to macrophyte depth limits (Nielsen et
al. 2002, Greve & Krause-Jensen 2005a, Krause-
Jensen et al. 2008, 2011), show a related decrease
from 9.5 to 6.0 m in the shallow Baltic Sea between
an early (1903 to 1940) and a late (1957 to 1999)
period (Dupont & Aksnes 2013) and further streng-
then the hypothesis that loss of deeper meadows
since the 1960s is mainly caused by light limitation
along with eutrophication (Reinke 1889, Schramm
1996, Munkes 2005, Meyer & Nehring 2006, Schories
et al. 2009). Today, maximum depth limits in our
study area are less than 8 m, with eelgrass covering
about 36 % of the depth zone between 0 and 8 m. If
we conservatively assume that about the same per-
centage of the potentially habitable area was popu-
lated historically down to a depth of 12 m, the total
area of historical eelgrass populations amounts to
288 km?, corresponding to an estimated area loss of
about 148 km? or 51 % since before the 1960s. Fortu-
nately, Secchi depths and macroalgae depth limits
have shown a slow increase over the last 2 decades
in the southwestern Baltic Sea/North Sea region
(Pehlke & Bartsch 2008, Wiltshire et al. 2008, Flem-
ing-Lehtinen & Laamanen 2012), indicative of a re-
versal of the eutrophication process. Our observa-
tions confirmed these findings, showing also an
increase of 1 to 1.5 m of the eelgrass depth limit com-
pared to preceding studies or reports (Schories et al.
2005, Meyer & Nehring 2006).

The river-like Schlei Fjord has a length of 42 km
and is surrounded by farmland and pasture. Strongly
reduced visibility along with high agricultural nutri-
ent input prevent growth of eelgrass in most of the
fjord, except for a small area (ca. 2.6 km?) around the
outlet to the open sea (Furhaupter et al. 2003). The
low visibility is caused by extensive plankton pro-

duction and slow exchange with the open Baltic Sea
(Rieper 1976). However, historically, at least two-
thirds of the Schlei was populated with eelgrass
(Meyer et al. 2005), and our model likewise predicts
a high probability to find eelgrass throughout the
Schlei (Fig. 5). The fjord comprises a total area of
about 50 km?, most of which is less than 5 m deep, so
the total eelgrass area lost in the fjord amounts to at
least 30 km?,

The factor slope only had a small effect on the
model output (4.6 %), but the AIC analysis suggests
that this effect is sufficient to justify its inclusion in
the final model (Table 2). Some studies found similar
effects of slope on macrophyte distribution (Duarte &
Kalff 1990, Bekkby et al. 2008), but others did not,
particularly in gently sloping terrains like in our
study area (Krause-Jensen et al. 2003, Downie et al.
2013). The observability of the effects of slope in our
model may be a consequence of the size of the exten-
sive data set, which allows even minor predictors to
yield a significant impact.

Given the estimated total extent of eelgrass mead-
ows in the study area (ca. 140 km?), their frequent
occurrence along most of the coast, and high produc-
tivity of eelgrass meadows in general (Duarte et al.
2005), eelgrass habitats form the largest and most
productive coastal ecosystem in the German part of
the Baltic Sea. Assumptions on productivity of eel-
grass vary, depending on study region, but are gen-
erally estimated to be between 300 and 900 g C m™2
yr! (McRoy 1974, Penhale 1977, Wium-Andersen &
Borum 1984, Pedersen & Borum 1995), leading to a
rough primary production estimate between 42 and
126 kt C yr' in our study area. Eelgrass meadows in
the Kattegat and western Baltic region are known to
have a relatively high production compared to eel-
grass meadows in other regions (Bostrom et al. 2014).
Thus, the actual primary production of eelgrass in
our study area will likely be closer to the upper end of
this range.

In their function as ecological engineers (sensu
Wright & Jones 2006), eelgrass meadows not only
provide food and nursery ground for locally impor-
tant fish species but also help to remove excess
nutrients. Annual uptake of nitrogen (N) and phos-
phorus (P) by eelgrass in a comparable Danish
meadow was estimated to be 34.5 g N m~2 yr! and
3.2gP m?yr! (Pedersen & Borum 1993, 1995). For
the eelgrass area of our study region, this would
result in an annual incorporation of about 4.83 kt N
yr! and 0.45 kt P yr~!. Regardless of whether this
amount is recycled internally, buried in the sedi-
ment, or exported to terrestrial habitats, it will not
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be available for the production of algae or plankton;
thus, eelgrass nutrient uptake helps to prevent neg-
ative effects of eutrophication such as algae blooms
(Hemminga et al. 1991, Dudley et al. 2001). To pre-
vent the same amount of N or P from entering the
Baltic Sea, an additional wastewater treatment plant
capacity would be needed that equals 3.6 (for N) or
2.3 (for P) times the largest wastewater treatment
plant in Schleswig-Holstein (Klarwerk Kiel; 425000
inhabitant equivalents; location: 54.453°N, 10.185°E;
annual filter capacity: 1.34 kt N yr~!, 0.20 kt P yr™%;
M. Wuttke pers. comm.).

Patchiness of seagrass habitats is ecologically rele-
vant and can have positive and negative effects on
the associated fauna, depending on local ecological
relationships and spatial scale (Bostrom et al. 2006). It
is positively correlated with the diversity and abun-
dance of a wide range of organisms from crustaceans
to fish (McNeill & Fairweather 1993, Eggleston et al.
1998, Salita et al. 2003, Hovel & Fonseca 2005) and
strongly reduces predation success of foraging fishes
(Hovel & Lipcius 2001). Conversely, patchier mead-
ows are reported to exhibit lower seagrass biomass
and shoot density and higher predation rate and sub-
sequent mortality of associated clams (Irlandi 1994).
Patchiness of seagrass habitat is essentially caused
by external factors, mainly wave exposure and sedi-
ment characteristics (Fonseca & Bell 1998). Seagrass
landscapes have been found to be more homogenous
at non-exposed and more heterogeneous and patch-
ier at exposed disturbed sites (Fonseca & Bell 1998,
Bell et al. 1999, Frederiksen et al. 2004). Our results
support these observations, showing significantly
longer patch length and a lower patchiness index at
more sheltered versus exposed sites. For the sur-
veyed region as well as for an area of such size
(588 km?), the present study provides the first esti-
mate of eelgrass habitat patchiness, which enables
further quantitative valuations of this important eco-
logical factor.

The EU WFD aims to achieve a good environmen-
tal status in all surface and ground waters, including
coastal waters up to 1 nautical mile (= 1852 m) off the
coastline (WFD 2000). To this end, actual status and
changes of important indicator species such as eel-
grass have to be monitored regularly, including in
the southwestern Baltic (Furhaupter & Meyer 2009).
With the present work, we added knowledge on eel-
grass cover and depth limit from 110 VTs and 315 km
of PTs along the coast, and for the first time, the areal
extent of eelgrass could be calculated for the whole
outer Baltic coastline of Schleswig-Holstein. We were
able to derive a highly validated model and are now

able to predict the potential of seagrass occurrence
also for the areas outside our surveyed transects. For
coastal management, the model allows more in-
formed decisions and could be used instead of costly
monitoring of actual occurrence.

Using the model, we currently identified 3 poten-
tial sites for eelgrass restoration in the study region.
So far, there have not been any environmentally
based eelgrass restoration projects in German waters
(Meyer & Nehring 2006); and there has been only 1
scientific project, which tested the practical issues of
colonization success like substrate nutrient content,
density, and competition within planted patches
(Worm & Reusch 2000). In the future, the EU could
force member states on the basis of the WFD to
actively promote water quality, e.g. by restoration of
lost eelgrass habitats, a measure not uncommon in
the USA (Orth et al. 2010). Our model proposes
potential sites for restoration on the basis of falsely
predicted presences. The influence of factors other
than the 3 chosen model predictors may be responsi-
ble for the observed errors and therefore prevent a
successful colonization. However, we think that our
model's predictions provide a starting point for a dis-
cussion about possible locations for eelgrass restora-
tion projects in the western Baltic Sea.
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