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Abstract

Background: The study of inter-individual interactions (often termed spatial-temporal interactions, or dynamic

interactions) from remote tracking data has focused primarily on identifying the presence of such interactions.

New datasets and methods offer opportunity to answer more nuanced questions, such as where on the landscape

interactions occur. In this paper, we provide a new approach for mapping areas of spatial-temporal overlap in

wildlife from remote tracking data. The method, termed the joint potential path area (jPPA) builds from the

time-geographic movement model, originally proposed for studying human movement patterns.

Results: The jPPA approach can be used to delineate sub-areas of the home range where inter-individual

interaction was possible. Maps of jPPA regions can be integrated with existing geographic data to explore

landscape conditions and habitat associated with spatial temporal-interactions in wildlife. We apply the jPPA

approach to simulated biased correlated random walks to demonstrate the method under known conditions. The

jPPA method is then applied to three dyads, consisting of fine resolution (15 minute sampling interval) GPS tracking

data of white-tailed deer (Odocoileus virginianus) collected in Oklahoma, USA. Our results demonstrate the ability of

the jPPA to identify and map jPPA sub-areas of the home range. We show how jPPA maps can be used to identify

habitat differences (using percent tree canopy cover as a habitat indicator) between areas of spatial-temporal

overlap and the overall home range in each of the three deer dyads.

Conclusions: The value of the jPPA approach within current wildlife habitat analysis workflows is highlighted along

with its simple and straightforward implementation and interpretation. Given the current emphasis on remote

tracking in wildlife movement and habitat research, new approaches capable of leveraging both the spatial and

temporal information content contained within these data are warranted. We make code (in the statistical software R)

for implementing the jPPA approach openly available for other researchers.

Background

Through movement ecology, wildlife researchers con-

tinue to build a more detailed understanding of pro-

cesses that shape wildlife movement patterns. The study

of wildlife movement has been enhanced by advances in

remote tracking (e.g., GPS, VHF, Argos) that continue to

improve data quality, inference, and cost-effectiveness

[1, 2]. Remote tracking offers unique opportunities for

studying wildlife movement over broad spatial and tem-

poral extents and at increasingly fine resolutions; these

features help to address when, where, how, and why

animals move [3]. While defining home ranges, the area

used for normal wildlife activities [4], remains a com-

mon approach to exploring wildlife space-use patterns,

increasingly high resolution tracking data makes analyz-

ing more complex and detailed spatial-temporal patterns

in wildlife movement and behaviour possible.

Inter- and intra-species interactions can play a key role

in the movement patterns of many wildlife species. Be-

haviour arising from inter- and intra-species interactions

can occur from a number of different wildlife movement

processes, such as the development of social networks

[5], mating [6], and territoriality [7]. For example, female

white-tailed deer exhibit social behaviour in which they

form matrilineal groupings for most of the year, except

during parturition when females become solitary in

preparation of, and immediately following, birth [8]. The

aforementioned processes are examples of dependent
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behaviour in wildlife movement, where the movements

of one individual influence another, or inter-individual

interaction (commonly termed dynamic or spatial-

temporal interaction [9, 10]). Observed patterns of social

or interactive behaviour have important implications in

the management of spatially explicit wildlife processes;

one such process is disease spread, which is related to

the spatial and temporal patterns of contacts between

individual animals, either directly or indirectly [11, 12].

Exogenous factors (e.g., environment, landscape) are

also known to shape the movement patterns observed in

wildlife [3]. For example, wildlife movement processes

and interactions are related to changing climatic and en-

vironmental conditions (e.g., range shifts, [13]), and in-

creasing anthropogenic change (e.g., natural resource

extraction, [14]). When the landscape changes, move-

ment is often impacted and wildlife may be forced to

shift their range and interact with other individuals or

new species due to limited habitats and resource avail-

ability (e.g., water, [15]). Other landscape features can

physically shape wildlife interactions by creating move-

ment barriers and corridors [16–18]. In northern Al-

berta, Canada, Latham et al. [19] found that ungulates

were utilizing anthropogenic cut-lines as movement cor-

ridors, which were in turn being used by predators to

track prey, changing interacting patterns. The interplay

between landscapes and wildlife interactions influence

health and survival, and due to the emphasis on wildlife

management through landscapes, have substantial impli-

cations [20, 21].

Studies examining interactions using wildlife track-

ing data typically aim to quantify one of two conceptu-

ally related yet unique joint movement processes: 1)

spatial-only interaction, and 2) inter-individual inter-

action [9, 10]. Methods for exploring spatial-only

interaction (often termed static interaction, [9]) in-

volve quantifying the joint space use between two

individuals, often through calculation of the overlap

zone (OZ) of two home ranges. Extending the home

range OZ is the volume of intersection measure,

which delineates the joint probability of occurrence of

two animals whose movements are characterized by

two different utilization distributions [22]. However,

neither the OZ nor the volume of intersection incor-

porates timing of joint space use, or likelihood of

wildlife encounters. While spatial-only interaction

measures highlight areas utilized by multiple wildlife

[23]; high temporal resolution tracking data enables

the possibility of quantifying the likelihood of wildlife

encounters [24, 25].

Inter-individual interactions can be analyzed using a

suite of indices that test for the presence of interactions

in tracking data (reviewed by [25]). These methods de-

fine inter-individual interaction associated with contacts

measured using spatial (dc) and temporal (tc) thresholds

to identify when location fixes co-occur in space and

time. Contact based measures of inter-individual inter-

action test the observed number of contacts against an

expectation or null model in order to identify attraction

(higher than expected contacts) or avoidance (lower than

expected contacts) behaviour [26, 27]. Other methods

exist to study altogether different aspects of inter-

individual interaction patterns in wildlife tracking data

such as coordinated movement [28, 29], group-dynamics

[30], and flocking or herding [31, 32].

A major limitation of currently available indices of

inter-individual interaction is that they do not facilitate a

spatially explicit measure of where interactive behaviour

occurs on the landscape. Wildlife are known to select

areas within their home ranges unevenly [33] and we ex-

pect interactive behaviour to also exhibit different spatial

patterns. In this paper, we propose a new method for

mapping areas of spatial-temporal overlap from wildlife

tracking data. Mapping areas of spatial-temporal overlap

will provide new avenues for research aimed at studying

the linkages between interactive behaviour and environ-

mental factors. The new approach draws upon previous

work using time geography to estimate wildlife home

ranges [34], and extends methods used to study interac-

tions in human movement studies [35] to the study of

wildlife movement. First, we introduce the theory of

time geography and its current application to wildlife

studies and then describe the potential path area (PPA)

approach to delineating the home range and how we ex-

tend this to compute a new measure of spatial-temporal

overlap. Following this, we demonstrate the new method

with simulated and empirical data. We finish with dis-

cussion of our findings and future opportunities for

studying inter-individual interactions from wildlife track-

ing data.

Methods

Background – time geography

Time geography [36] represents a powerful framework for

exploring how different spatial-temporal processes influ-

ence individual movement. The space-time prism (Fig. 1a)

represents the conceptual building block for time geo-

graphic analysis and delineates the potentially accessible

locations in space and time for an individual, conditioned

on known start and end positions and a measure of mobil-

ity; with wildlife tracking data, n-1 space-time prisms can

be constructed from a dataset comprised of n fixes. The

space-time prism can be projected onto the geographic

plane in order to map the potential path area (PPA), which

is a polygon representing accessible areas to movement.

The mathematical definitions for time geography are

rigorously laid out by [37].
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The space-time prisms of two individuals can be

intersected in order compute the joint accessibility

space – termed the social interaction space [35]. The

social interaction space represents a measure of the

areas, in space and time, where direct inter-individual

interaction is possible (i.e., contact between the two

individuals are only possible within the spatial-

temporal boundaries of the social interaction space).

The social interaction space can be projected onto

geographical space in order to create a map of spatial-

temporal overlap – termed the joint potential path

area (jPPA – Fig. 1b). Note that the jPPA is fundamen-

tally different from a measure of home range, or

spatial overlap, as it explicitly shows only those re-

gions where two individuals have the potential to

‘meet’ in space and time.

Calculating the PPA

Consider tracking data of an individual animal (A) corre-

sponding to a set of n location fixes collected at discrete

times A = {a1, a2, a3, … an}, where ai represents the loca-

tion fix of the individual at time ti. Thus, for any point

in time τ let {ai, ai+1} be two sequential fixes such that ti
< τ < ti+1 (Fig. 2a). Following [37], let Di,τ be a disc cen-

tered on the first point (ai) with radius (ri,τ) defined by:

ri;τ ¼ vmax � τ−tið Þ ð1Þ

Where vmax is a parameter related to animal mobility

(i.e., a maximum travelling velocity), and (τ - ti) is the time

difference between τ and ti. Similarly, let Di+1,τ be a disc

centered on the second point (ai+1), with a radius (ri+1,τ)

defined by:

riþ1;τ ¼ vmax � tiþ1−τð Þ ð2Þ

The intersection of Di,τ and Di+1,τ represents the

accessibility space for individual A at time τ (termed G
τ

– Fig. 2a).

Fig. 1 a Space-time prism, between two known fixes, projected onto the geographical plane and associated potential path area (PPA). b Intersection

of two space-time prisms, and the projection of the joint accessible space onto the geographical plane – the joint potential path area (jPPA). In (b) light

grey represents individual home ranges, medium grey represents home range overlap zone, and dark grey the jPPA; a spatial measure of

inter-individual interaction

Fig. 2 a The accessibility space (G
τ
) of an animal at time τ (i < τ < i + 1), where movement begins at known fix location ai and ends at known fix

location ai+1, is the intersection of the forward disc (Di,τ) and past disc (Di+1,τ). The union of the Gτ, for all τ, is then the PPA; which by definition is

an ellipse. b The joint accessibility space (GAB
τ
) of two animals (A and B) at time τ (i, j < τ < i + 1, j + 1),, where movement begins at known fixes ai,

bj, and ends at known fixes ai+1, bj+1 respectively, is the intersection of GAτ and GBτ
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Gτ ¼ Df ;τ∩Dp;τ ð3Þ

For any pair of sequential fixes (ai, ai+1), the PPA is

defined as the union of all G
τ
, such that τ is on the inter-

val [ti, ti+1] [37].

PPA ¼∪
tiþ1

τ¼ti

Gτ ð4Þ

In application, calculation of the PPA is straightfor-

ward because the PPA is a perfect ellipse, the parameters

of which can be calculated directly from the fixes and

the mobility parameter vmax (see [34]).

Calculating the jPPA

In order to quantify spatial-temporal overlap in wildlife

tracking data, we delineate when and where the space-

time prisms of two individual animals intersect, by cal-

culating overlap in the accessibility spaces (G
τ
) of two

individuals (A, B), which we denote G
τ

A,B (Fig. 2b).

GA;B
τ

¼ GA
τ∩GB

τ
ð5Þ

The joint potential path area (jPPA) is then defined as

the spatial union of the G
τ

A,B for each τ that is within the

interval of [ti, ti+1] (Fig. 2b).

jPPA ¼∪
tiþ1

τ¼ti

GA;B
τ

ð6Þ

By definition, the jPPA will always be a sub-region of

the intersection of the two PPA ellipses (see Fig. 1b) be-

cause the intersection of two ellipses generated by the

PPA is the measure of the spatial-only overlap, while the

jPPA represents spatial-temporal overlap. In order to

compute the jPPA for a larger tracking dataset, we must

recursively compute G
τ

A,B for all overlapping τ within the

temporal period when animals A and B were simultan-

eously tracked.

Simulation study

A simulation study was used to examine the jPPA

method and contrast it with the commonly employed

spatial overlap measure in order to evaluate the ability

of each for identifying and mapping interactive movement

behaviour. Correlated random walks (CRW – [38, 39])

and biased correlated random walks (BCRW – [40, 41])

were used to generate simulated tracking data where

inter-individual interactions would be expected and un-

expected (null case). Four scenarios were implemented

representing different types of inter-individual interac-

tions commonly encountered in wildlife systems: i) no

interaction, ii) grouping, iii) leading/following, and iv)

joint resource use. In the first scenario, no interaction

is simulated via two independent CRW, the second

originating within the minimum convex polygon of the

first. In the second scenario, grouping, a CRW is used

to simulate the dynamic location of a group centroid,

and the two individuals movements are biased towards

this location [30]. In the third scenario, leading, the

movements of the second individual are biased towards

the current position of the first [25]. In the fourth sce-

nario, joint resource use, the movements of the two

individuals are biased towards a patch collocated be-

tween two home ranges [40]. We allowed the simulated

animals to switch between CRW and BCRW with some

fixed probability at each step, to emulate a behavioural

switching between interactive and non-interactive phases

[42]. Simulations where the spatial overlap in home ranges

was < 10 % of the combined home range area were dis-

carded corresponding to the idea that spatial overlap is a

pre-cursor for spatial-temporal interaction [25]. Similarly,

in the scenarios 2, 3, and 4 we discarded all simulations

where < 10 % of the time was spent in the interactive

phase to ensure these scenarios demonstrated the expect-

ation of interaction. We ran the simulation process for

each scenario until 1000 simulations were achieved. More

details on the simulation procedure, and accompanying R

code, can be obtained from the Additional file 1.

For each simulated animal, we first computed the

PPA estimate of home range [34]. We then computed a

measure of spatial-only interaction, the overlap zone

defined as OZ = A∩B, where A and B are the PPA home

ranges of the two simulated individuals. Then we com-

puted the jPPA. To facilitate straightforward compari-

sons, the areas of the OZ and jPPA were normalized by

the total joint home range area (A⋃B), such that each

measure ranged from 0 to 1; 0 indicating no spatial

overlap, and 1 complete spatial agreement. Evaluating

the simulations was done by considering the 1000 runs

from the first scenario (no interaction) as a test distri-

bution representing where interaction is unexpected.

Then we would expect that the values of the OZ and

jPPA in the three scenarios where interaction was

expected to lie in the outer tails of this distribution. In

such a randomization test, the one-sided test statistic is

computed as the probability p = (ne + 1)/n of getting a

value equal to or more extreme in the null distribution

in comparison to the observed value, where ne is the

count of these extreme values. Using a critical value of

α = 0.05, we examine the ability of the jPPA against the

naive OZ statistic for identifying expected interaction

behaviour. We contrast the performance jPPA against

the OZ statistic in comparison to the OZ. Further, for

the three simulated scenarios where BCRW were used

to simulate known interactive behavior, we further

contrast the jPPA with the proportion of time where

the two animals were in the BCRW interactive phase

(termed pInt). The value for pInt can be considered an

Long et al. Movement Ecology  (2015) 3:38 Page 4 of 14



indicator of the known or true level of interaction in

BCRW simulations.

Empirical data: GPS tracking of white-tailed deer

We captured 38 white-tailed deer (Odocoileus virginianus)

from a study area in south-central Oklahoma, USA from

1998 to 2004. The study site was 1,214 ha, and was

surrounded by a 15-strand, high-tensile electric fence

(2.5 m tall), thus partially restricting movement across

property boundaries [43]. Vegetation was consistent with

that of the Cross Timbers and Prairies ecoregion [44].

Deer were captured during the winter months using

modified drop-net systems [45] and fitted with GPS

collars (ATS G2000 remote-release collars; Advanced

Telemetry Systems, Inc., Isanti, MN) programmed to

collect fixes at a 15 min sampling interval. Data were

successfully retrieved from 32 of 38 GPS collars. All

capture, handling, and marking procedures were con-

sistent with the guidelines of the American Society of

Mammalogists [46] and were approved by permit from

the Oklahoma Department of Wildlife Conservation.

We performed jPPA analysis on six deer representing

three unique deer dyads (Table 1) in order to demon-

strate the jPPA approach with empirical GPS tracking

data. For dyad 1, two males during and after mating sea-

son, we predict little inter-individual interaction between

the two individuals. With dyad 2, one male and female

during rut, we predict a much different pattern where a

period of sustained inter-individual interaction may be

an indication of courtship and mating behaviour. Last,

for dyad 3, two males during late winter, we predict

greater inter-individual interaction as a result of the

formation of bachelor groups. With empirical data, we

generally do not have a known level of interaction, thus

we use a simple statistic, the proportion of simultaneous

fixes that are spatially proximal (within a distance thresh-

old of 50 m) to estimate the level of interaction between

individuals.

For each individual deer, we computed the PPA esti-

mate of individual home range [34]. From the PPA home

range estimates, we computed the spatial overlap zone

(OZ), similar to previous home range overlap analysis

[23, 47] as a measure of spatial-only interaction. Finally,

we computed the jPPA for each dyad. Calculating the

PPA and jPPA home range areas requires estimating the

vmax parameter, which represents an upper bound on

mobility. We expect deer to show higher levels of mobil-

ity at dawn and dusk than during the night and day;

therefore, we estimated the vmax parameter for the PPA

and jPPA dynamically [48] for four time periods through-

out the day: dawn (05:00 – 09:00), day (09:00 – 17:00),

dusk (17:00 – 19:00), and night (19:00 – 05:00) following

temporal intervals from [49]. In all cases, we used the van

der Watt [50] method (with k = 5) for estimating vmax

from the tracking data following [34, 48].

We investigated differences in vegetation within each

of the individual home ranges, the OZ, and the jPPA

for each of the three deer dyads. We chose a single

metric – percent canopy cover – as a representative in-

dicator of habitat. Vegetative cover is an important

habitat component for white-tailed deer because it

helps regulate the local thermal environment and pro-

vides concealment against predators [51, 52]. Percent

canopy cover data were obtained from the US National

Land Cover Database (NLCD, [53]). The NLCD percent

canopy cover data are derived from Landsat satellite

imagery and are represented at a spatial resolution of

30 m. For each of the three deer dyads, we calculated

the mean and standard deviation of percent canopy

cover (i.e., the mean of all pixels) for the pixels associ-

ated with the original telemetry points, the area within

each individual’s PPA home range, the OZ, and the

jPPA. Further, we examined the distribution of the per-

cent canopy cover values associated with the individual

points and within each of the home range and joint

areas using overlaid density plots (with a bandwidth of

10) to explore variability in use of canopy cover across

the range of potential values (0 – 100 %).

Results

Simulation study

It is not practical to view the map of spatial-temporal

overlap associated with each of the 1000 simulations for

each of the four scenarios, but we provide an example of

each scenario for illustrative purposes (Fig. 3). In sce-

nario 1, where no interaction is expected, some spatial-

temporal overlap is still possible, due to random or

chance encounters (Fig. 3a). Scenario 1 serves as the basis

for the null distribution, which we use to test against the

other three distributions. In the second scenario, grouping

behaviour may occur during different phases resulting in

different locations of spatial-temporal overlap. Similarly,

in scenario 3, individuals may exhibit consistent periods of

spatial-temporal overlap resulting in disjoint jPPA patches

(Fig. 3c). Finally, in scenario 4, a jointly utilized resource

Table 1 Sex, age, and the tracking period of six white-tailed

deer that were part of the empirical analysis of jPPA; the 6 deer

represented 3 unique dyads

Dyad Deer ID Sex Age Tracking Period

1 24 M 3.4 21-Nov - 08-Feb

25 M 4.4 21-Nov - 06-Dec

2 34 M 6.4 23-Nov - 17-Jan

35 F 4.5 14-Dec - 17-Feb

3 13 M 2.7 15-Feb - 28-Mar

14 M 2.7 15-Feb - 21-Mar
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patch serves as the focal location for a single area of

spatial-temporal overlap (Fig. 3d).

It is first useful to examine the distribution of results

associated with each of the scenarios (Fig. 4). From the

boxplot in Fig. 4, we can see two general differences

between the areas of the OZ and the jPPA. The first

difference is that on average, the OZ is much larger than

the jPPA in all scenarios. For example, for scenario 2:

grouping behavior, the median value of the proportional

area of the OZ is 0.47 while the median of the propor-

tional area of the jPPA is 0.16 (Fig. 4). The second, and

perhaps most important, distinction is the ability of the

Fig. 3 Simulated dyads from each of the four scenarios, to exemplify the different types of interaction simulated using correlated and biased

correlated random walks: a no interaction, b grouping, and c leading/following, d joint resource use. Figures show the potential path area (PPA)

estimate of home range, the spatial overlap zone (OZ), and joint potential path area (jPPA)

Fig. 4 Boxplots showing the distribution of the proportional area of the overlap zone (OZ) and joint potential path area (jPPA), normalized

by the area of the union of the two deer potential path area (PPA) home ranges for each simulation scenario (1000 simulations were run for

each scenario)
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jPPA to correctly identify the absence of interaction in the

first scenario containing independent CRW, which we use

as a null distribution for significance testing. Here, the

median value of the proportional area of the OZ is 0.17

with an interquartile range of 0.09, while the median value

of the proportional area of the jPPA is 0.002 with an inter-

quartile range of 0.007.

With scenario 2, grouping, the jPPA identified 996 of

1000 simulations as having interaction when compared

to the null distribution (p < 0.05), while the OZ identified

846, only 3 cases were deemed as having no interaction

by both measures (Table 2). In scenario 3, leading, the

jPPA identified 997 of 1000 simulations as having inter-

action, while the OZ identified only 860, and only 2

cases were deemed as having no interaction by both

measures (Table 2). Finally, in scenario 4, joint resource

use, the jPPA identified 997 of 1000 simulations as having

interaction, while the OZ identified only 871 (Table 2).

Further inspection of the null distribution (Fig. 5a) dem-

onstrates the issue with using the OZ as a measure of dir-

ect interaction and inter-individual movement behaviour,

as relatively high OZ values (e.g., OZ > 0.4) can easily

occur when no interaction is present. We also see similar

results in each of the three scenarios where interaction

was simulated via BCRW. If we use the proportion of fixes

in each simulation spent in a biased phase (pInt) (bottom

row, Fig. 5) as a measure of the true level of interaction,

we can see that the OZ measure often fails to correctly

identify cases (blue points) with substantial levels of inter-

action (e.g., pInt > 0.3). The few cases where the jPPA fails

to identify interaction in these simulations, are cases

where pInt was relatively low. Our results suggest that at

the very least the jPPA is much more suitable than the OZ

for characterizing different types of inter-individual

movement. Thus, maps of jPPA polygons represent a suit-

able starting point for exploring landscape covariates asso-

ciated with inter-individual movement behavior measured

as spatial-temporal overlap.

Empirical data: GPS tracking of white-tailed deer

The three deer dyads reveal different patterns of space

use and inter-individual interaction as evident by the

maps in Fig. 6. In the first dyad, there is a relatively large

area where the two home ranges overlap (OZ), and

within the OZ there are dispersed, but small, spatial re-

gions that jPPA identified as potential inter-individual

interaction between the two deer (Fig. 6a). Further ana-

lysis corroborates the finding of little inter-individual

interaction, which could be described as random inter-

active encounters as evidenced by a low proportion of

proximal simultaneous fixes (1.9 % of simultaneous fixes

within a critical distance of 50 m). In the second dyad,

there is a greater area of overlap between the two deer’s

home ranges (OZ), with the jPPA representing only a

small proportion (21.8 %) of the OZ area. However, the

jPPA is spatially more contiguous (Fig. 6b). Again with

the second dyad, we find that only a small proportion of

simultaneous fixes within the critical distance of 50 m

(2.6 %). The third dyad shows a more substantive level

of the jPPA observed throughout the PPA ranges and

overlap zone of the two individuals (Fig. 6c). The jPPA

comprised 54.8 % of the OZ stemming from the fact that

18.7 % of simultaneous fixes were within the critical

distance of 50 m.

To show broader application of the jPPA method, we

analyzed percent canopy cover by white-tailed deer asso-

ciated with the original telemetry points, and across the

three spatial areas (PPA home range, OZ, and jPPA).

The two male deer in dyad 1 showed slightly different

use of canopy cover associated with their telemetry

points (51.4 vs. 67.3 %) and within their respective home

ranges (50.4 vs. 58.4 %; Fig. 7a). Canopy cover within the

OZ fell between the two estimates for the individual

home ranges, with canopy cover lower in the jPPA

(48.7 %) compared with the other areas. The density

plots for each of these regions suggests selection for use

of both forested and open areas, with deer 25 showing

stronger preference for forested areas. Areas where

interaction occurs (as defined by the jPPA) appear with

higher probability in open regions (Fig. 7a). In the

second dyad, one adult male and one adult female, we

observed that canopy cover was similar across the indivi-

dualhome range areas and the OZ (~61 % Fig. 7b); but

higher as defined by the raw telemetry points (68-71 %).

Canopy cover in the jPPA (74.4 %) was found to be

greater than defined by home ranges, OZ, and telemetry

points. The density plots reaffirm the preference for

forested areas during interactive stages, with the density

plot for the jPPA lying well above those for the home

ranges and OZ at higher percent canopy cover levels,

and somewhat higher than those for the raw telemetry

points. In the third dyad of two male deer, the jPPA,

overlap zone, and PPA home ranges had similar levels of

Table 2 Performance of the OZ and jPPA method at correctly

identifying the presence of interaction from the three

simulation scenarios: group behavior, leading/following, and

joint resource use (1000 simulations were run for each scenario)

Sig.a

interaction
Sig.a interaction
identified by only
one method

No sig.a

interaction
identified

Scenario 2: OZ 846 1 3

Group behaviour jPPA 996 151

Scenario 3: OZ 860 1 2

Leading/following jPPA 997 138

Scenario 4: OZ 869 1 2

Joint resource use jPPA 997 129

aSignificant interaction defined using null distribution of 1000 independent

correlated random walk (CRW) pairs and a critical value of α = 0.05
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canopy cover as indicated by both the mean values, and

the density plot curves, which were very similar in shape

(Fig. 7c). The curves associated with the raw points sug-

gest a stronger selection for forested area over open

areas, but a similar pattern to that of the home ranges,

OZ, and jPPA.

Discussion

The time geography movement model

The time geographic approach to animal space-use

analysis is aided by its simple implementation and in-

terpretation. Unlike current methods for studying

inter-individual interaction, the jPPA method focuses

on mapping inter-individual interactions, defined as the

area of spatial-temporal overlap. Output polygons from

the jPPA are easily interpreted and can be readily inte-

grated into existing workflows common to many wildlife

movement studies (e.g., home range and habitat analysis).

The jPPA method does not facilitate a statistical test for

the presence of significant inter-individual interaction,

thus, the jPPA compliments the existing suite of methods

for studying spatial and inter-individual interactions cur-

rently available to wildlife researchers.

Conceptually, the jPPA extends the time-geographic

approach for quantifying space use in wildlife tracking

data [34, 54], which explicitly considers the temporal or-

dering of fixes and a parameter of mobility in order to

quantify what is termed the accessibility space of an in-

dividual. The jPPA is then defined as the joint accessibil-

ity space of two individuals, and has been successfully

applied to numerous studies of human mobility and

transportation patterns [35, 55]. The jPPA should there-

fore be interpreted as the spatial region delineating the

areas that are jointly accessible, in space and time, by

two animals. Herein, we introduced the jPPA with k = 2

Fig. 5 Results from the simulation study where pairs of animals were simulated using two independent correlated random walks (a) no

interaction expected, and biased correlated random walks defined as (b) group behaviour, (c) leading behaviour, (d) joint resource use, where

interaction is expected. The scatter plots show the number of simulations where p < 0.05 for each of the three interaction scenarios using the

case of no interaction as the null distribution. In the top row, the area of the jPPA divided by the total area of the union of the two home ranges

is plotted on the x-axis against the area of the OZ divided by the union of the two home ranges on the y-axis. In the bottom row, the area of

the jPPA divided by the total area of the union of the two home ranges is plotted on the x-axis against the proportion of time each simulation

spent in the interative phase (pInt) on the y-axis. The pInt value is always zero for the Null scenario, and thus this plot is not included. Black points

indicate where both the jPPA and naïve OZ measure correctly identify interaction, while blue indicates where the OZ measure did not identify

interaction. Red points indicate where jPPA did not identify interaction, but the OZ measure did, while green points indicate where both methods

did not identify interaction
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individuals (termed dyads), but the same calculation can

be extended to k > 2 individuals to delineate the joint ac-

cessibility space of a larger group of animals. For ex-

ample, local resources may be simultaneously utilized

between multiple species or wildlife assemblages. Where

tracking data of multiple individuals are recorded simul-

taneously, the jPPA method can be used to locate these

areas across the landscape.

Space-time prisms (which are the basis for the jPPA)

are straightforward to construct from tracking data (e.g.,

fix locations and times), along with a parameter describ-

ing the mobility of the animal (termed vmax), which is

interpreted as maximum travelling velocity. It is best to

consider vmax as a function of the sampling interval; for

example, vmax will change depending on whether track-

ing data were collected with a 10 min or 2 h sampling

interval. The estimation of vmax can be based on expert

knowledge of animal biology or using statistical proce-

dures based on the tracking data [34]. When estimating

vmax from the tracking data it is useful to consider the

distribution of the observed segment velocities (vi) given

by vi = di / ti, where di is the distance and ti the time be-

tween consecutive fixes. Based on the full distribution of

the vi, statistical estimation procedures used for estimat-

ing the upper-bound of a distribution [50, 56] can be ap-

plied to estimate vmax. Mobility levels change over space

and time, thus the vmax parameter can be modeled dy-

namically to better reflect changes in individual behav-

iour or travel mode [48].

The jPPA is most appropriately applied where track-

ing data are collected with a moderately high resolution

and regular fix interval (i.e., such as the white-tailed

deer data here using a 15 min interval). This is because

the jPPA method explicitly considers the sequential or-

dering and the time duration between fixes in its deriv-

ation (i.e., equations (1), (2)). When the sampling

interval is extremely high (e.g., some species are now

being tracked at ≤ 1 min intervals, [57]) the potential

for movement between known fixes is limited, and thus

the PPA will be small. Similarly, when the sampling

interval is extremely coarse, the potential for move-

ment between known fixes is substantial, and thus the

PPA will be large. In the first case, the jPPA is likely to

underestimate potential interaction because of a mis-

match between the data resolution and the functional

scale of interaction (e.g., defined by sight, smell, sound

etc.). In the second case, the jPPA will over-estimate

interaction because of the immense possibility of po-

tential movement when fixes are taken infrequently

(e.g., daily or less). Much like the PPA estimate of home

range [34, 48], jPPA should be used with caution with

much coarser sampling resolutions because of the un-

certainty associated with the delineation of the poten-

tial path area when the time duration between fixes is

long. However, with high-resolution tracking data, the

jPPA may be computed at multiple resolutions via re-

sampling of the original tracking data. Plotting jPPA

results against different tracking resolutions may pro-

vide insights into the functional scale of movement

interaction, considering both the mobility of the animal

and the potential spatial range associated with interac-

tions. For example, questions may begin by discovering

at what sampling interval the jPPA becomes significant,

and then begin to consider what movement processes

Fig. 6 Three white-tailed deer dyads in Oklahoma, USA, a dyad 1, two adult males; b dyad 2, an adult male and female; and c dyad 3, two adult

males. PPA estimates of individual home ranges, along with the overlap zone (OZ), and the joint potential path area (jPPA) are shown. The areas

(in ha) of each spatial unit are provided alongside the legend
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might correspond to this interval (e.g., fine vs. coarse

scale movement).

Studying inter-individual interactions from wildlife tracking

data

The jPPA provides an alternative approach to studying

inter-individual interactions from wildlife tracking data,

one that focuses specifically on spatially explicit mapping

of inter-individual interaction. Unlike previously devel-

oped indices of inter-individual interaction, the jPPA

does not facilitate a formal statistical test of the presence

(or absence) of inter-individual interaction. Statistical

tests for inter-individual interaction from wildlife track-

ing data can be problematic, owing to the issue of gener-

ating appropriate null distributions from which to test

against [26, 27, 58]. Rather, the jPPA is able to detect,

and more importantly map, infrequent and/or random

inter-individual interaction areas (e.g., chance encoun-

ters) across the landscape. Such infrequent or random

interactions typically go undetected when using formal

statistical tests because they do not constitute a statisti-

cally significant interaction [25]. Because of their import-

ance in shaping biological processes, such as the spread

of disease and predator–prey dynamics, methods capable

of identifying and mapping random or unexpected en-

counters, such as jPPA, offer new potential for studying

infrequent or random interactions by wildlife using track-

ing data.

The jPPA approach can be compared to existing mea-

sures of static interaction; defined as the spatial area used

jointly by two (or more) animals [9, 10]. We compared the

jPPA to the most common measure of static interaction,

the overlap zone, defined as the spatial intersection of two

home ranges. When the PPA home range estimate is

employed, the jPPA will be a spatial sub-region of the OZ

and represents those areas where animals could have

potentially ‘meet’ in both space and time. Recent research

has suggested that the utilization distribution, which rep-

resent space use as an uneven probability surface [59, 60],

may be a more useful spatial measurement as animals

Fig. 7 Density plots showing the relative proportion of percent canopy cover pixel values associated with the original telemetry points (Pts) of

each individual, within each of the individual potential path area (PPA) home ranges, the overlap zone (OZ) and the joint potential path area

(jPPA) measure of spatial-temporal overlap; a deer dyad 1, two adult males after the rut; b deer dyad 2, an adult male and female; and c two adult

males during late winter
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typically use different areas of their home ranges unevenly

in space and time [61]. The volume of intersection [22, 33]

then represents the analogous spatial interaction measure

for utilization distributions; delineating a map showing the

joint space-use probabilities. However, the volume of inter-

section of two (or more) utilization distributions does not

explicitly consider time (i.e., simultaneous joint space use).

Thus, the jPPA can be considered the spatial-temporal

extension of the home range overlap zone and represents a

discrete map (i.e., a polygon) of where inter-individual

interaction was possible. Further extending the jPPA using

some probabilistic models [62, 63] could facilitate probabil-

istic statements similar to those from the volume of inter-

section measure for studying inter-individual interaction

probabilities.

New types of tracking sensors (i.e., proximity loggers)

are capable of directly estimating inter-individual inter-

actions (i.e., contacts) by sensing when, and for how

long, two tagged animals are within a defined distance

threshold [64]. However, proximity loggers are not de-

signed to record where contacts occur, and the actual

distance between two animals is not known exactly,

which has led to development of new devices that will

combine location-aware technology (e.g., GPS) with

proximity loggers [65]. The temporal resolution of prox-

imity logger data (often programmed to record continu-

ously, [12]) will typically far exceed that of location data

(e.g., from GPS), predominantly due to battery limita-

tions. When proximity logger data are combined with

GPS, proximity data can be incorporated into the calcu-

lation of the jPPA by computing the jPPA for only those

times where the proximity logger identifies a contact to

have occurred (i.e., τ in equation (6)). Such an extension

will allow researchers to more precisely delineate regions

where contacts occur when using the jPPA and incorp-

orate spatially aware technology (e.g., GPS) to study the

landscape context (habitat, topography, connectivity) as-

sociated with interactive behavior.

Insights from the white-tailed deer examples

One of the most important outcomes of the development

of new algorithms for studying inter-individual interaction

is the application of these methods to discover previously

undocumented biological insights of animal movement

behavior. The results from the white-tailed deer example

depict only three selected cases, selectively chosen to

demonstrate different scenarios of interaction, and should

not be used to make more general inferences about deer

movement ecology. However, we can make some interest-

ing conclusions about the specific individuals in our study

to provide context for future analysis. Specifically, dyad 1

consisted of two adult males that were monitored concur-

rently over an approximate 2-week period, which fell

within the breeding season of deer in this study area [66].

The results from our jPPA analysis for Dyad 1 suggest that

any interaction may be related to brief and sporadic

encounters. Biologically, this scenario is realistic consider-

ing that male deer do not socialize during the breeding

season, but may combat with each other only temporar-

ily, or may use similar areas when an estrous female is

encountered. Dyad 2 consists of an adult male and

adult female during the winter months suggesting that

the interactive behavior observed in this dyad may be

related to mating behavior (i.e., courting), which typic-

ally occurs on the Oklahoma, USA study area from 4

November to 24 December, with most breeding occur-

ring from 18 November to 2 December [66]. In this

case, jPPA analysis revealed that the potential courting

behavior occurred in a specific wooded region of the

study area (i.e., localized spatial extent), containing

higher levels of percent canopy cover in comparison

with other areas of the PPA ranges and OZ. The pair of

males in dyad 3 are young adults that tend to form

bachelor groups during spring and summer [67]. With

dyad 3, the concurrent tracking period occurred from 15

February to 21 March, and the large jPPA area throughout

their individual movement ranges may be an indication of

the initiation of a bachelor pair (bachelor groups could be

identified when analyzing k > 2 individuals). Habitat ana-

lysis revealed very little difference between the percent

canopy cover within the PPA ranges, the OZ, and the

jPPA, which would be expected considering the strong

level of inter-individual interaction observed, and the gen-

eral habitat needs of male deer following the breeding

season, and during the antler shedding and growing cycle.

In general, it was also found that percent canopy cover

estimates obtained using the telemetry points, differed

from those from polygon-based home ranges. The gen-

eral trend observed was that mean percent canopy cover

was greater when the estimates were obtained from the

telemetry points. One insight from this is that deer may

be preferentially using forest edges [68], which when

PPA home ranges are computed, the home range will

include some open areas nearby as well. Then, it is inter-

esting that the jPPA percent canopy cover values from

dyad 2 were associated with higher percent canopy cover

values than from the telemetry points, suggesting that

this interaction phase occurred within a core forest area,

as opposed to edge habitat. The problem of obtaining

different results from habitat analysis when using telem-

etry points as the spatial unit vs. home range polygons

as the spatial unit is well documented [69] and remains

an ongoing challenge to the study of habitat composition

from wildlife tracking data.

We hypothesize that using the jPPA to examine habitat

use can reveal social behaviour and interactions of animals

that may be driven by underlying landscape features (e.g.,

use of a shared or rare resource such as when animals visit
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watering holes, which could result in greater contact and

interaction) or vice versa (use of landscape features is

driven by social behaviour or interactions; e.g., during

mating, animals may seek certain habitat types). Specific-

ally, in dyad 3 from this study, we identified how the use

of dense canopy cover within the jPPA would indicate

generally important resources to male deer during winter

(i.e., post-rut), which require greater energy and nutrition

to recover from the stresses of the rut and for develop-

ment of antlers in the spring [70, 71]. Knowing where and

when habitat types and resources are used can facilitate

management targeted at social groups (e.g., herds), rare

resources where animals may be in contact (e.g., water

sources), or during important life history phases (e.g., dur-

ing mating).

Further applications of jPPA analysis

We envision that the jPPA approach will be attractive to

many wildlife ecologists because comparing jPPA poly-

gons with ancillary geographic datasets is straightfor-

ward within a geographic information system (GIS) and

accommodates similar spatial analyses as commonly

applied to wildlife home ranges. The jPPA offers a new

approach aimed specifically at mapping areas across the

landscape where inter-individual interaction occurs.

Wildlife researchers can use the jPPA polygons to test

spatial hypotheses related to how interactive movement

behaviour relates to underlying environmental variables.

For example, researchers can estimate habitat compos-

ition associated with interactive behaviour using jPPA

polygons in a similar manner to how composition is an-

alyzed within home ranges, core areas, and utilization

distributions [69]. We demonstrate such a process using

a simple example where a single variable (percent can-

opy cover) is mapped across our study area. However,

there is clear potential to use jPPA alongside multiple

mapped covariates (e.g., landcover, topography, or wea-

ther data) to develop more sophisticated spatial analyses

of resource selection to uncover greater biological

insight into interactive behaviour. When performing

habitat analysis from tracking data, it is important to

consider how the organism perceives the environment,

relating not only to the composition of habitat but also

spatial pattern and scale [72–74]. As an alternative to

pixel-based raster data, landscape features can be repre-

sented as distinct habitat ‘patches’, using a polygon data

format, linear features, like roads, represented as lines,

and other features, such as oil and gas well-sites, repre-

sented as points. In many species it will be interesting to

examine how interactive behaviour is associated with

these other types of features on the landscape (e.g., [19]).

Output from jPPA analysis can be easily integrated with

other geographic datasets within a GIS allowing more

sophisticated spatial analysis of interactive movement

behaviour.

The spatial patterns associated with the jPPA areas

can also be used to understand biological processes

associated with different interactive behaviours. For ex-

ample, the configurational properties of jPPA regions

may provide important information on the type of social

interaction occurring. When jPPA regions are small and

patchy relative to the home range and OZ it may be

evidence of random encounters occurring across the

landscape. Conversely, when the jPPA region is small

but contiguous, the interaction observed may be an indi-

cation spatially localized resources being used simultan-

eously. When the jPPA covers a large proportion of the

overlap zone, it is evidence of a sustained high-level of

interactive behaviour easily corroborated by one of the

many interaction statistics currently available [25, 26]; as

evidenced by deer dyad 3 in our analysis. Further, more

detailed analysis offers the potential to quantify which

properties of the jPPA are associated with different

social behaviour patterns. Polygon-shape indices, widely

applied in the study of landscape patterns [75], offer po-

tentially valuable metrics which could be included into

the analysis of jPPA polygon regions in order to quantify,

for example, compact or patchy shapes.

Conclusion
The study of inter-individual interactions in wildlife is

important to many population-level processes and is

thus of special interest to wildlife managers. Here we

have demonstrated a new approach for mapping areas of

inter-individual interaction from wildlife tracking data.

The new approach extends a previously developed home

range estimator [34] in-order to delineate areas of joint

accessibility (termed the jPPA) between two (or more)

simultaneously tracked animals. Maps of the jPPA pro-

vide researchers with a new spatial unit from which

habitat analysis can be easily conducted and directly re-

lated to inter-individual interactions. We also demon-

strate the application of the jPPA approach in habitat

analysis by exploring the percent canopy cover with

three deer dyads tracked using GPS tracking data.

Spatial patterns of the jPPA, especially in relation to the

OZ and home range areas, can be useful indication of

the type of inter-individual interaction occurring in a

dyad (e.g., random encounters vs. joint spatial use of

local resources). Extending current indices that test for

the presence or absence of interaction behaviour and

new developments capable of mapping inter-individual

interactions in space and time (such as the jPPA) are

essential for studying the complex and infrequent social

encounters of wildlife using remote tracking data. Finally,

in order to assist other researchers wishing to utilize the
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jPPA in their own research, we make openly available code

for computing the jPPA in the statistical software R [76]

(for access to R code and tools please see: http://jedalong.-

github.io/wildlifeTG/).
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