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Mapping between Morita equivalent string-net states
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We construct a constant depth quantum circuit that maps between Morita equivalent string-net
models. Due to its constant depth and unitarity, the circuit cannot alter the topological order,
which demonstrates that Morita equivalent string-nets are in the same phase. The circuit is con-
structed from an invertible bimodule category connecting the two input fusion categories of the
relevant string-net models, acting as a generalized Fourier transform for fusion categories. The
circuit does not only act on the ground state subspace, but acts unitarily on the full Hilbert space
when supplemented with ancillas.

I. INTRODUCTION

Ever since their conception, the string-net models as
originally proposed by Levin and Wen [1] and their
subsequent generalizations [2–7] have provided a rich
playground for studying microscopic realisations of
non-chiral topologically ordered phases of matter in 2+1
dimensions. Taking a unitary fusion category (UFC) D
[8] as input, these exactly solvable models allow for the
explicit realization of several key features of topologi-
cally ordered systems, such as ground state degeneracies
that depend on the topology of the space and anyonic
quasi-particle excitations that satisfy non-trivial braid-
ing statistics. From the category-theoretical side, the
different ground states and excitations are described by
the monoidal center Z(D) of the input UFC D [2], which
is itself a unitary modular fusion category (UMFC) and
describes the topological order. The fact that the UMFC
describing the topological order is always the center of
some other UFC is the reason why string-net models are
only able to describe non-chiral topological order with
gappable boundaries; exactly solvable lattice models for
chiral topological order have proven more challenging to
obtain [9].

An important observation is that the process of going
to the center Z(D) of a UFC D is not an injective
operation, or put differently that distinct UFCs D1

and D2 can have the same center Z(D1) ≃ Z(D2)
[2]. This has lead to the conjecture that two such
string-net models based on different D1 and D2 belong
to the same topological phase, despite the fact that
microscopically they can look very different. UFCs
with the same center are said to be Morita equivalent
[10], and the collection of UFCs Morita equivalent to
D is called its Morita class. A direct consequence of
Morita equivalence is that the topological excitations
or anyons of two Morita equivalent string-net models
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are in one-to-one correspondence to each other. Kitaev
and Kong demonstrated the existence of an invertible
domain wall between two Morita equivalent string-net
models through which anyons can move freely without
condensing on the domain wall [2]. Mathematically, the
existence of such an invertible domain wall is guaranteed
by the fact that for any two Morita equivalent UFCs
D1 and D2 there exists an invertible (D1,D2)-bimodule
category M [8]. The central goal of this paper is to
show that this implies the existence of a constant depth
quantum circuit which maps the different string-net
states into each other.

From a quantum information point of view, it has been
understood that two states are in the same phase if there
exists a constant depth quantum circuit that is able to
map between the two [11–13]. In this work, we provide
such a constant depth circuit for the case of Morita
equivalent string-nets D1 and D2 that maps the ground
states as well as the excitations of one model to those
of the other. For the ground state, the quantum circuit
can be understood as a generalized version of the Hamil-
tonian, using the invertible (D1,D2)-bimodule category
M to intertwine the Hamiltonian of the string-net D1 to
the Hamiltonian of the string-net D2. Our construction
generalizes a previous mapping, that was obtained from
Kitaev’s quantum double models [14] for a group G to
string-net models Rep(G) [15, 16], to the general case of
two Morita equivalent string-nets.

Outline: we begin by providing a brief review of string-
nets, focusing mainly on a generalization known as the
extended string-net models [17]. The reason for this is
that these generalizations allow for a more unified treat-
ment of the vertex and plaquette excitations, the two
types of excitations in a string-net model. They are un-
derstood in the diagrammatic language as idempotents
of the tube algebra associated to the string-net UFC D
[3], which is well known to provide a characterization
of the center Z(D). Next, we discuss how an invertible
(D1,D2)-bimodule category can be used to provide a
map between the tube algebras of the UFCs D1 and
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D2, and thereby show how excitations from one model
are mapped to excitations of the other. Taking all this
together, we are able to explicitly construct a constant
depth unitary quantum circuit which we explain in detail.

For the case of a hexagonal lattice, this circuit is depth
three, which follows from the fact that our circuit se-
quentially acts on three sublattices. This is depicted in
Figure 1 below. The action of the circuit on the three
sublattices is worked out in the main text. Each of these
local unitaries acts on 18 degrees of freedom associated
to a plaquette. We show that the unitary map on the
three sublattices is respectively constructed from the dif-
ferent associators of the (D1,D2)-bimodule category M,
which are the solutions to a set of coupled pentagon equa-
tions [8, 18]. In this way our construction gives a very
concrete quantum information perspective on the cate-
gorical notion of Morita equivalence. We also show how
the quantum circuit can be generalized to act on the full
(extended) string-net Hilbert space and obtain a very
similar circuit as in the absence of excitations, the de-
tails of which are relegated to Appendix A.

FIG. 1. An illustration of how our circuit acts on the three
sublattices of the hexagonal lattice.

II. STRING-NETS

In this section we give a brief review of Levin and Wen’s
string-net models on the hexagonal lattice. First, we re-
view the ordinary string-net model, hereby closely fol-
lowing the original work of Levin and Wen [1], and then
we turn to the extended string-nets [17]. These can be
regarded as a generalization of the ordinary string-nets
that provide a more natural and convenient setting in
which to study and classify excited states.

A. Levin and Wen’s string-nets

A string-net model is defined by the data of some
given input unitary fusion category D. This input
data contains a set of simple objects (string types)
that we will denote by a, b, c, ... with corresponding
fusion rules a ⊗ b ≃ ⊕

cN
c
abc, corresponding quan-

tum dimensions da, db, dc, ... and an isomorphism
F : (a ⊗ b) ⊗ c → a ⊗ (b ⊗ c). Given some oriented
trivalent lattice, such as the hexagonal lattice in this
work, the Hilbert space of the string-net is defined by
configurations of the string types living on the edges
of the lattice. Furthermore, for every string type a
there exists a corresponding conjugate string type a
such that a ≡ a and a can be interpreted as a living
on the same edge with the opposite orientation. The
quantum dimensions obey da = da. There is a unique
self-conjugate vacuum string 1, 1 ≡ 1.

The string-net Hamiltonian consists of two terms:

H = −
∑

v

Av −
∑

p

Bp, (1)

Herein the two sums in the Hamiltonian are over the
vertices and plaquettes of the lattice respectively. The
sum over s is a sum over all string types of the input
UFC. D is the total quantum dimension defined as D =
√
∑

i d
2
i . The vertex operators Av act on the vertices

according to

Av

∣

∣

∣

∣

∣

∣

∣

∣

∣ a

b c

i

〉

= δa,b,c

∣

∣

∣

∣

∣

∣

∣

∣

∣ a

b c

i

〉

(2)

where δa,b,c is 1 whenever the fusion of a ⊗ b contains c
and is 0 else. The plaquette operators Bp are defined as

Bp =
1

D

∑

a

daB
a
p , (3)

where the terms Bs
a acts on a plaquette by inserting a

clockwise oriented string of type a in the plaquette and
fusing it to the lattice. This is done by making repeated
use of the resolution of the identity for UFCs, namely,

a

a

b

b

=
∑

c,n

√

dc

dadb

a

a b

b

c

n

n

, (4)

the F -moves of the given input UFC

a

b c

d

e
j k =

∑

f,mn

(

F abc
d

)f,mn

e,jk

a

b c

d

f

n

m

, (5)
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and the “bubble pop” identity

m

n

c

c′

a b =

√

dadb

dc
δm,nδc,c′

c

c

. (6)

The matrix elements of this operator are worked out in
detail in [1, 6]. Every operator Ba

p is a 18-body oper-
ator in the sense that its action explicitly depends on
the six string types living on the edges of the plaque-
tte p, the six multiplicities and the six edges adjacent to
the plaquette, but acts diagonally on the latter. It can
be shown that both Av and Bp are Hermitian projec-
tion operators, A2

v = Av and B2
p = Bp, that moreover

all commute. Hence, the string-net condensed RG fixed
point ground states are the simultaneous eigenvectors of
all Av and Bp. Quasiparticle excitations on top of these
ground states are obtained by violating at least one of
the projector constraints. These excitations are gapped
and necessarily come in pairs. Vertex - or electric ex-
citations are obtained by violating the Av constraints
whereas plaquette - or magnetic excitations violate the
Bp constraints. These excitations are treated in a uni-
fied way in the language of extended string-nets which
we now revisit.

B. Extended string-nets

The extended string-net models [17] are very similar
to the ordinary string-net models except for a few key
differences which we discuss in this section.

Given a hexagonal lattice we associate with every vertex
an additional open edge that is attached to an edge that is
connected to the vertex under consideration. These open
edges also carry string degrees of freedom. The choice of
which open edge belongs to which vertex is to some ex-
tent arbitrary and the open edges can even be moved
around the plaquette by a series of F -moves but we will
adapt the convention denoted in Figure 2. Furthermore
we demand the fusion rules to be satisfied on every ver-
tex, δa,b,c = 1. Finally, the Hamiltonian of the extended
string-net is of the same form as the Hamiltonian of the
ordinary string-net model:

H = −
∑

v

Av −
∑

p

Bp, (7)

where the Av and the Bp are again mutually commuting

FIG. 2. We adapt the convention that all arrows on the edges
point upward and the open legs are attached to the lattice
as depicted where every open edge corresponds to the clos-
est vertex of the hexagonal lattice. Multiplicity degrees of
freedom are suppressed.

Hermitian projectors. Av acts on vertices according to

Av

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣ a1

a2

d

b c

i

j

〉

= δd,1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣ a1

a2

d

b c

i

j

〉

. (8)

The action of Bp on the plaquette is explained in detail
in [17] and reduces for p1, p2 = 1 to the action of the
plaquette operator Bp of the ordinary model, where
p1, p2 denote the open edges of the plaquette p.

The extended string-net model thus deals with vertex
excitations in the ordinary string-net model by consider-
ing extra degrees of freedom that signal the presence of
vertex projector violations.

C. Tube algebra

In the extended string-net models, vertex and plaque-
tte excitations are both characterized by the tube algebra

[3, 17]. The action of a tube Ti on a plaquette can graphi-
cally be depicted as the insertion of the following diagram
in a plaquette:

(9)
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and fusing it to the boundary; here, i runs over all pos-
sible configurations that give a nonzero tube. The set of
tubes is closed under multiplication,

TiTj =
∑

k

fk
ijTk, (10)

defined by stacking:

ij =
∑

k

fk
ij k , (11)

as well as Hermitian conjugation:

(Ti)† =
∑

j

u
j
iTj (12)

[19, 20]. This turns the tube algebra into a finite C⋆ - al-
gebra, for which the Artin-Wedderburn theorem dictates
that one can find an isomorphism to a direct sum of sim-
ple matrix algebras. Explicitly, this implies the existence
of simple idempotents paii and nilpotents paij , i 6= j that
satisfy

paij =
∑

k

x
a,k
ij Tk, paijp

b
kl = δabδjkp

a
il,

(

paij
)†

= paji.

(13)

The elementary excitations of the extended string-net
model correspond to the simple idempotents paii of the
tube algebra, each of which corresponds to a specific com-
bination of one plaquette excitation and two vertex ex-
citations. These simple idempotents have to be grouped
into central idempotents Pa, satisfying

Pa =

na−1
∑

i=0

paii, [Pa, Ti] = 0,
∑

a

Pa = 1, (14)

where na denotes the dimension of the central idempo-
tent Pa. These central idempotents then correspond to
the irreducible representations of the tube algebra, and
are in one-to-one correspondence with the simple objects
of the monoidal center Z(D).

III. BIMODULE CATEGORIES

We will consider two string-net models D1 and D2 that
are supposedly in the same phase; this requires that D1

and D2 are Morita equivalent, Z(D1) ≃ Z(D2). From a
categorical perspective, this implies the existence of an
invertible (D1,D2)-bimodule category M. In this sec-
tion, we briefly review some properties of a bimodule

category, mainly to fix notation 1, and show how this bi-
module category provides a map between the excitations
of the two string-net models.

A. Bimodule categories

We start with a spherical UFC D1, with objects
a, b, c, ... ∈ D1 and an associator expressed in a basis of
simple objects as

a

b c

d

f

n

m

=
∑

f,mn

(

D1F abc
d

)f,mn

e,jk

a

b c

d

e
j k , (15)

where in the diagrams we will color lines labeled by
objects in D1 in black for the remainder of this work.
We also have a secondv spherical UFC D2, with objects
α, β, γ, ... ∈ D2 and an associator given by

α

β γ

δ

µ
j k =

∑

ν,mn

(

D2F
αβγ
δ

)ν,mn

µ,jk

α

β γ

δ

ν

n

m

, (16)

with lines labeled by objects in D2 drawn in orange. A
left D1-module category M is a category M with ob-
jects A,B,C, ... ∈ M, a left-action of D1 on M given by
a ⊲A ≃⊕B N

B
aAB and an isomorphism ⊲F : (a⊗b) ⊲A→

a ⊲ (b ⊲A), which can graphically be expressed as

a

b

c

A

B

j k =
∑

C,mn

(

⊲F abA
B

)C,mn

c,jk

a

b

A

B

C

n

m

, (17)

where lines labeled by objects in M are blue. Similarly,
a right D2-module category M has a right-action of D2

on M given by A⊳α ≃⊕B N
B
AαB and an isomorphism

1 The D1F , ⊲
F , ⊲⊳

F , ⊳
F and D2F symbols in this work are denoted

as 0
F , 1

F , 2
F , 3

F and 4
F symbols in [18] respectively.
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⊳F : (A⊳α) ⊳ β → A⊳ (α⊗ β), graphically expressed as

α

β

C

A

B

j

k

=
∑

γ,mn

(

⊳F
Aαβ
B

)γ,mn

C,jk

α

γ

β

A

B

n m . (18)

A (D1,D2)-bimodule category M is then defined as a
left-D1 and right-D2 module category M that addition-
ally is equipped with an isomorphism ⊲⊳F : (a ⊲A) ⊳ α →
a ⊲ (A⊳α), graphically depicted as

α

C

A

B

a j

k

=
∑

D,mn

(

⊲⊳F aAα
B

)D,mn

C,jk

a

D

A

B

αm

n

. (19)

Physically, these bimodule categories arise most evi-
dently in the study of domain walls between different
string-net models [2], where the various associativity
conditions discussed above amount to the generalizations
of the bulk F -moves. For a general domain between
Morita equivalent string-net models, the process of
pushing excitations through such a domain wall is not
reversible, as several excitations can condense on the
domain wall. In the special case where excitations can
freely move through the domain wall, we are dealing
with an invertible bimodule category. For every two
Morita equivalent UFCs D1 and D2 one can always
write down an invertible (D1,D2)-bimodule category,
and we will use this particular bimodule category in the
remainder of this work.

The (D1,D2)-bimodule category M does not have an in-
trinsic duality, but one can define a (D2,D1)-bimodule
category denoted by Mop or M to contain the dual ob-
jects of M. Crucially, this allows us to impose a gener-
alized notion of sphericality [2, 21], which we will need
to perform certain diagrammatical manipulations. Con-
cretely, invertibility of M can be used to generalize the
resolution of the identity (4) of UFCs to a resolution of
the identity which allows for the creation of a D1- or
D2-line from the fusion of an M-line with an Mop-line:

A

A

B

B

=
∑

a,n

√

da

dAdB

A

A B

B

a

n

n

, (20)

A

A

B

B

=
∑

α,n

√

dα

dAdB

A

A B

B

α

n

n

. (21)

B. Tube algebra bimodules

Using the bimodule categories M and M we can write
down bimodule tubes for the tube algebras T D1 and T D2

ofD1 andD2 respectively. These bimodule tube algebras,

denoted by T M and T M, are generated by

T M
i = , T M

i = . (22)

They satisfy

T M
i T D1

j =
∑

k

akijT M
k , T D2

i T M
j =

∑

k

bkijT M
k , (23)

T D1

i T M
j =

∑

k

ckijT M
k , T M

i T D1

j =
∑

k

dkijT M
k , (24)

T M
i T M

j =
∑

k

ekijT D1

k , T M
i T M

j =
∑

k

gkijT D2

k , (25)

where the last line requires the invertibility of the bimod-
ule category, manifested in the identities (20) and (21).
These bimodule tubes are mapped into one another un-
der Hermitian conjugation:































c1

c2

γ1

γ2

A

A1

A2

A3

A

i1

i2

i3

i4































†

=

√

dc1dc2
dγ1

dγ2

c1

c2

γ1

γ2

A

A1

A2

A3

A

i1

i2

i3

i4

. (26)

This Hermitian conjugation is defined such that the op-
erators obtained from inserting T M

i and (T M
i )† in a pla-

quette expressed as matrices acting on the relevant de-
grees of freedom are related via the usual Hermitian con-
jugation. Using these properties, we can define a big

C⋆ - algebra generated by {T D1

i , T M
j , T M

k , T D2

l }, where
we take undefined tube multiplications to be zero. This
big C⋆ - algebra contains the C⋆ - algebras T D1 and T D2

as subalgebras. Using the Artin-Wedderburn theorem for
this big (finite) C⋆ - algebra, there exists an isomorphism
to a direct sum of simple matrix algebras, the number of
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which equals the number of central idempotents of T D1

and T D2 . In addition to the simple idempotents and
nilpotents of T D1 and T D2 , we can define simple bimod-
ules:

p
a,M
ij =

∑

k

y
a,k
ij T M

k , p
a,M
ji =

∑

k

z
a,k
ji T M

k , (27)

(

p
a,M
ij

)†

= p
a,M
ji , (28)

with 0 ≤ i < nD2

a and 0 ≤ j < nD1

a , such that they satisfy

p
a,D1

ij p
b,D1

kl = δabδjkp
a,D1

il , p
a,D2

ij p
b,D2

kl = δabδjkp
a,D2

il ,

p
a,M
ij p

b,D1

kl = δabδjkp
a,M
il , p

a,D2

ij p
b,M
kl = δabδjkp

a,M
il ,

p
a,D1

ij p
b,M
kl = δabδjkp

a,M
il , p

a,M
ij p

b,D2

kl = δabδjkp
a,M
il ,

p
a,M
ij p

b,M
kl = δabδjkp

a,D1

il , p
a,M
ij p

b,M
kl = δabδjkp

a,D2

il , (29)

where from now on the range of the indices i, j, k, l should
be inferred from the context. The simple bimodules will
be the essential building blocks of the quantum circuit we
aim to construct, providing a map between the ground
states and excitations of the string-net model D1 to the
ground states and excitations of the string-net model D2.

IV. QUANTUM CIRCUIT

Before we construct our quantum circuit, we have to
address the point that the total dimension of the Hilbert
space need not match between the string-net model D1

and D2; the fact that they are Morita equivalent only
ensures that number of ground states on some closed
manifold is the same. The number of distinct excitations
which form a complete basis for the Hilbert space will in
general differ between the two models, which is reflected
in their tube algebras; since we have Z(D1) ≃ Z(D2),
the number of central idempotents PD1

a and PD2

a is the
same, but their dimensions nD1

a and nD2

a can differ.
This discrepancy in the dimensions of the Hilbert spaces
poses an obstacle if we want to construct a unitary
quantum circuit that maps the full Hilbert space of one
model to the other.

To solve this problem, we will place an ancilliary qudit
|i〉 of dimension nD2 = max

a
nD2

a in each plaquette of the

string-net model D1. The original Hilbert space of the
string-net model is obtained by fixing these ancillas to
|0〉; we will denote states in this Hilbert space as

∣

∣ψD1 , 0
〉

.
We can then define the following operator:

V D2

D1
:=





∑

a,ij

p
a,M
ij ⊗ |j〉〈i|





⊗N

(30)

with N the number of plaquettes in the system, where

p
a,M
ij acts on a plaquette as defined before and |j〉〈i| acts

on the corresponding ancilla. The Hermitian conjugate
of this operator is given by

(

V D2

D1

)†

=





∑

a,ij

p
a,M
ij ⊗ |j〉〈i|





⊗N

, (31)

and the product of V D2

D1
with its Hermitian conjugate is

(

V D2

D1

)†

V D2

D1
=





∑

ab,ii′jj′

p
a,M
j′i′ p

a,M
ij ⊗ |i′〉 〈j′|j〉 〈i|





⊗N

=





∑

a,ij

p
a,D1

jj ⊗ |i〉〈i|





⊗N

=

(

∑

a

PD1

a ⊗ 1
n
D2
a

)⊗N

. (32)

In general this is a projector implying V D2

D1
is an isom-

etry, but restricting to the original Hilbert space where
all ancillas are in the |0〉 state we get

(

V D2

D1

)†

V D2

D1

∣

∣ψD1 , 0
〉

=

(

∑

a

PD1

a ⊗ 1
n
D2
a

)⊗N
∣

∣ψD1 , 0
〉

=
∣

∣ψD1 , 0
〉

, (33)

meaning that the isometry V D2

D1
is in fact a unitary on

the original Hilbert space of the string-net model.

A constant depth quantum circuit is obtained by apply-
ing the isometry V D2

D1
in such a way that it is a constant

depth operator. For the hexagonal lattice, this can be
achieved by dividing the lattice into three sublattices as
shown in Figure 3 and acting sequentially on the first,
second and third sublattice. This implementation of the
isometry V D2

D1
turns it into a depth three quantum cir-

cuit. We now discuss this quantum circuit in more detail,
first for the ground states, and then for a generic excited
state in the original string-net Hilbert space spanned by
∣

∣ψD1 , 0
〉

.

A. Ground state

The ground states of the string-net model D1, which we

will denote as
∣

∣

∣ψ
D1

GS, 0
〉

, are defined as the eigenvectors of

the ground-state projector PD1

GS :

PD1

GS

∣

∣

∣
ψD1

GS, 0
〉

=
(

p
0,D1

00 ⊗ |0〉〈0|
)⊗N ∣

∣

∣
ψD1

GS, 0
〉

=
∣

∣

∣ψ
D1

GS, 0
〉

,

(34)

projecting each plaquette onto the simple idempotent

p
0,D1

00 which corresponds to the vacuum; it is equal to
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3
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FIG. 3. Division of the hexagonal lattice into three sublat-
tices. We build the quantum circuit by acting on the plaque-
ttes in the order denoted in the figure.

the plaquette term of the Hamiltonian,

p
0,D1

00 =
1

D

∑

a

daBa,D1

p , (35)

which also projects onto the ground state of the vertex
term by fixing the extended string-net legs to the trivial
string. At first glance, one would expect the simple

idempotent p0,D1

00 corresponding to the vaccuum to be
central; the reason this is not the case is that in the
extended string-net model, the simple idempotents keep
track of one plaquette and two vertex excitations. If
the two vertices are excited with a particle-antiparticle
pair then together they are in the vacuum, and the

corresponding simple idempotent p0,D1

ii , i 6= 0 will also be

contained in the central idempotent PD1

1
corresponding

to the vacuum in Z(D1).

Acting with our quantum circuit on the ground state, we
obtain

V D2

D1

∣

∣

∣ψ
D1

GS, 0
〉

=
(

p
0,M
00 ⊗ |0〉〈0|

)⊗N ∣
∣

∣ψ
D1

GS, 0
〉

. (36)

One can readily verify that

PD2

GSV
D2

D1

∣

∣

∣ψ
D1

GS, 0
〉

=
(

p
0,M
00 ⊗ |0〉〈0|

)⊗N ∣
∣

∣ψ
D1

GS, 0
〉

,

=
∣

∣

∣
ψD2

GS, 0
〉

. (37)

showing that V D2

D1
does indeed provide a unitary map be-

tween the ground states of the string-net model D1 and

D2. The operator p0,M00 can be interpreted as a general-
ized plaquette term, in the sense that

p
0,M
00 =

1

D

∑

A

dABA,M
p , (38)

i.e. it is the result of fusing a weighted sum of all loops
labeled by A ∈ M with the plaquette. When applied to

the string-net configuration where all edges are fixed to

the trivial label (a product state),
(

p
0,M
00

)⊗N

projects

onto the ground state of the string-net model D2. This
operator can be used to derive a projected entangled pair
state (PEPS) representation of the string-net ground
state, generalizing the constructions in [22, 23] to the
tensor network representations obtained in [18].

More explicitly, the application of BA,M
p , BD,M

p and

BG,M
p to the three sublattices in the order depicted in

Figure 3 can be worked out by a series of recouplings in-
volving the bimodule F -symbols. For a plaquette of the
first kind, we get

b1 b2

b3

b4b5

b6

a1

a2

a3

a4

a5

a6

i1

i2

i3

i4

i5

i6

A
=
∑

{Bi,ki}

M1

B1 B2

B3

B4B5

B6

a1

a2

a3

a4

a5

a6

k1

k2

k3

k4

k5

k6

,

where the matrix M1 depends on {ai, A}, which we sup-
press for convenience, and its components read

(

M1
){Bi,ki}

{bi,ii}
≡
∑

{ji}

√

db1db2db4db5dB3
dB6

da2
da5

db3db6d
2
A

(

⊲F a1b1A
B6

)B1,j1k1

b6,i1j6

(

⊲F
b1b2B2

B1

)A,j1j2

a2,i2k2

(

⊲F b2a3B3

A

)B2,k3j2

b3,i3j3
(

⊲F
b4a4B3

A

)B4,k4j4

b3,i4j3

(

⊲F b5b4B4

B5

)A,j4j5

a5,i5k5

(

⊲F
a6b5A
B6

)B5,j5k6

b6,i6j6
.

(39)

For a plaquette of the second kind, we get

B1 a2

B2

a3B3

a1

C1

C2

C3

C4

C5

C6

k1

k2

k3

k4

k5

k6

D
=
∑

{Ei,αi,hi}

M2

α1 E2

α2

E3
α3

E1

C1

C2

C3

C4

C5

C6

h1

h2

h3

h4

h5

h6

,

where the matrix M2 depends on {Ci, D} and its com-
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ponents read

(

M2
){Ei,αi,hi}

{ai,Bi,ki}
≡
∑

{li}

√

da1
da2

da3
dB2

dE1
dα1

dα2
dα3

dC1
dC3

dC4
dC6

d4D

(

⊲⊳F
a1B1α1

E1

)D,l2l1

C1,k1h1

(

⊲⊳F
a2C2α1

D

)E2,h2l3

B1,k2l2

(

⊲⊳F
a2E2α2

B2

)C3,h3k3

D,l3l4
(

⊲⊳F a3E3α2

B2

)C4,h4k4

D,l5l4

(

⊲⊳F a3C5α3

D

)E3,h5l5

B3,k5l6

(

⊲⊳F a1B3α3

E1

)D,l6l1

C6,k6h6

.

(40)

Finally, for the third kind of plaquette we get

E1 E2

E3

E4E5

E6

α1

α2

α3

α4

α5

α6

h1

h2

h3

h4

h5

h6

G
=
∑

{βi,oi}

M3

β1 β2

β3

β4β5

β6

α1

α2

α3

α4

α5

α6

o1

o2

o3

o4

o5

o6

,

where the matrix M3 depends on {αi, G} and its com-
ponents read

(

M3
){βi,oi}

{Ei,hi}
≡
∑

{ni}

√

dβ1
dβ2

dβ4
dβ5

dE3
dE6

dα2
dα5

dβ3
dβ6

d2G

(

⊳F
E6α1β1

G

)β6,o1n6

E1,h1n1

(

⊳F
E1β1β2

E2

)α2,o2h2

G,n1n2

(

⊳F
Gβ2α3

E3

)β3,o3n3

E2,n2h3

(

⊳F
Gβ4α4

E3

)β3,o4n3

E4,n4h4

(

⊳F
E5β5β4

E4

)α5,o5h5

G,n5n4

(

⊳F
E6α6β5

G

)β6,o6n6

E5,h6n5

.

(41)

The explicit expression for the operator
(

p
0,M
00

)⊗N

is

then obtained by taking the appropriate linear combina-
tions of the matrices M i, and acting on their respective
sublattices in the order described above. While the local
Hilbert space of the two string-net models looks differ-
ent, they have the same number of ground states, and

therefore
(

p
0,M
00

)⊗N

is represented as a square matrix.

To show that it is also unitary, we note that

(

p
0,M
00

)†

p
0,M
00 = p

0,D1

00 , (42)

implying that the Hermitian conjugate of the matrix rep-

resentation of p0,M00 should correspond to the matrix rep-

resentation of
(

p
0,M
00

)†

. By virtue of eq. (26),

(

p
0,M
00

)†

=
1

D

∑

A

dABA,M
p , (43)

which implies that the matrix representation of
(

p
0,M
00

)†

is obtained as a linear combination of matrices M
i
, ob-

tained in similar fashion as the matrices M i. Using the
fact that the different F -symbols themselves are unitary
matrices since we are dealing with unitary bimodule cat-

egories, one can indeed show that
(

M i
)†

= M
i
through

a cumbersome but straightforward computation. Tak-

ing everything together, this implies that
(

p
0,M
00

)⊗N

is

represented as a unitary matrix on the ground state.

B. Excited states

When applied to a state with excitations, the mapping
provided by our circuit is less obvious since, as stressed
before, the dimension of the Hilbert spaces does not
match between the string-net model D1 and D2. We
compensated for this by introducing an ancilliary qudit
in each plaquette, that we initialize to be in the |0〉 state.
Looking at the action of V D2

D1
on the space spanned by

∣

∣ψD1 , 0
〉

, we find

V D2

D1

∣

∣ψD1 , 0
〉

=





∑

a,j

p
a,M
0j ⊗ |j〉〈0|





⊗N

∣

∣ψD1 , 0
〉

. (44)

Acting on any plaquette of the resulting state with a

simple idempotent p
a,D2

ii only gives a nonzero result
if i = 0, meaning that for every central idempotent
Pa we only get the excitation corresponding to pa00.
Additionally, this state is no longer part of the original
Hilbert space spanned by

∣

∣ψD2

〉

, as the ancilla |j〉 is
now entangled with the other degrees of freedom of the
string-net model D2.

There are a number of ways to disentangle these ancillas,
but due to the mismatch in Hilbert space it is impossible
to do so in a unique or unitary way. One option is to act
with the operator V D2

D2
, which gives

V D2

D2
V D2

D1

∣

∣ψD1 , 0
〉

=

(

∑

a

ma−1
∑

i=0

p
a,M
ii ⊗ |0〉〈0|

)⊗N
∣

∣ψD1 , 0
〉

=
∣

∣ψD2 , 0
〉

, (45)

where ma = min(nD1

a , nD2

a ). This state is again part
of the original Hilbert space, and the ancilla can be
discarded. If ma = nD1

a , not all excitations of type
a ∈ Z(D2) in the string-net model D2 are in the image
of this map, while if ma = nD2

a some excitations of the
string-net model D1 are projected out, all depending on
the choice of enumeration of the simple idempotents. A
different approach might be to make sure the energy of
the state is conserved when mapping back to the original
Hilbert space; we leave the exploration of the different
possibilities to future work.
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An explicit expression generalizing the matrices M i to
the case of excitations is given in Appendix A. Unitarity
of the full circuit can again be shown from unitarity of
the F -symbols and the fact that the Hermitian conjugate
of the bimodule tubes defined in eq. (26) coincides with
the Hermitian conjugate of the matrix representation of
the corresponding operator, by definition.

V. EXAMPLES

To illustrate the simple idempotents and simple bimod-
ules that build up our circuit, we write them down for
the case of a constant depth circuit that maps the toric
code to itself. While this example is almost trivial, it
provides enough insight to understand the more general
case. We also present the required categorical data for
the generic case of a quantum double.

A. Toric code to toric code

The toric code [14] is built from the fusion category
D1 = VecZ2

, the category of Z2 graded vector spaces
with two simple objects {0, 1} that fuse according to Z2.
It only hase one non-trivial module category M = Vec,
the category of finite dimensional vector spaces with a
single simple object C, from which one can construct an
invertible bimodule category to D2 = Rep(Z2) ≃ VecZ2

.
We can use this bimodule category to construct a con-
stant depth quantum circuit that maps the toric code to
itself, but is not completely trivial. The relevant tubes
of this bimodule category can be written as

T e,D1

cd,ab =
a

b
c

d

e

, T M
αβ,ab =

a

b
α

β

,

T M
ab,αβ = α

β

a

b
, T ν,D2

γδ,αβ =
α

β
γ

δ

ν

.

The central idempotents with their corresponding simple
idempotents and nilpotents of the tube algebra of D1 are
labeled by the four excitations in the toric code. These
are the vaccuum 1:

p
1,D1

00 =
1

2

(

T 0,D1

00,00 + T 1,D1

00,00

)

, p
1,D1

01 =
1

2

(

T 0,D1

00,11 + T 1,D1

00,11

)

,

p
1,D1

10 =
1

2

(

T 0,D1

11,00 + T 1,D1

11,00

)

, p
1,D1

11 =
1

2

(

T 0,D1

11,11 + T 1,D1

11,11

)

,

the electric excitation e:

p
e,D1

00 =
1

2

(

T 0,D1

01,01 + T 1,D1

01,01

)

, p
e,D1

01 =
1

2

(

T 0,D1

01,10 + T 1,D1

01,10

)

,

p
e,D1

10 =
1

2

(

T 0,D1

10,01 + T 1,D1

10,01

)

, p
e,D1

11 =
1

2

(

T 0,D1

10,10 + T 1,D1

10,10

)

,

the magnetic excitation m:

p
m,D1

00 =
1

2

(

T 0,D1

00,00 − T 1,D1

00,00

)

, p
m,D1

01 =
1

2

(

T 0,D1

00,11 − T 1,D1

00,11

)

p
m,D1

10 =
1

2

(

T 0,D1

11,00 − T 1,D1

11,00

)

, p
m,D1

11 =
1

2

(

T 0,D1

11,11 − T 1,D1

11,11

)

,

and the fermion f :

p
f,D1

00 =
1

2

(

T 0,D1

01,01 − T 1,D1

01,01

)

, p
f,D1

01 =
1

2

(

T 0,D1

01,10 − T 1,D1

01,10

)

p
f,D1

10 =
1

2

(

T 0,D1

10,01 − T 1,D1

10,01

)

, p
f,D1

11 =
1

2

(

T 0,D1

10,10 − T 1,D1

10,10

)

.

These central idempotents are all built from two simple
idempotents, reflecting the fact that these tube algebras
describe the excitations of two vertices and one plaquette.

For instance, the simple idempotent p1,D1

00 corresponds to
the true vacuum, where neither the vertices nor the pla-

quette is excited. The other simple idempotent p1,D1

11

represents the case where both vertices are excited; to-
gether, they are in the vacuum, and therefore they also
contribute to the vacuum central idempotent. The other
central idempotents follow a similar pattern. The simple
idempotents and nilpotents of the tube algebra of D2 are
related to those of the tube algebra of D1 as follows:

p
1,D2

ij = p
1,D1

ij , p
e,D2

ij = p
m,D1

ij

p
m,D2

ij = p
e,D1

ij , p
f,D2

ij = p
f,D1

ij .

We note that the electric and magnetic excitations are
swapped, which is a manifestation of the e−m duality in
the toric code. From these idempotents and nilpotents,
one can compute the simple bimodules of M. We find

p
1,M
00 =

1√
2
T M
00,00, p

1,M
01 =

1√
2
T M
00,11

p
1,M
10 =

1√
2
T M
11,00, p

1,M
11 =

−1√
2
T M
11,11

for the vacuum,

p
e,M
00 =

1√
2
T M
00,01, p

e,M
01 =

1√
2
T M
00,10

p
e,M
10 =

−1√
2
T M
11,01, p

e,M
11 =

1√
2
T M
11,10

for the electric excitation,

p
m,M
00 =

1√
2
T M
01,00, p

m,M
01 =

1√
2
T M
01,11

p
m,M
10 =

1√
2
T M
10,00, p

m,M
11 =

−1√
2
T M
10,11

for the magnetic excitation and

p
f,M
00 =

1√
2
T M
01,01, p

f,M
01 =

1√
2
T M
01,10

p
f,M
10 =

−1√
2
T M
10,01, p

f,M
11 =

1√
2
T M
10,10
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for the fermion. The simple bimodules ofM are obtained
by Hermitian conjugation of the simple bimodules of M:

p
1,M
ji =

(

p
1,M
ij

)†

, p
e,M
ji =

(

p
e,M
ij

)†

,

p
m,M
ji =

(

p
m,M
ij

)†

, p
f,M
ji =

(

p
f,M
ij

)†

.

B. Ground states of Kitaev’s quantum doubles to

string-nets

The previous example of the toric code can now be gener-
alized to a circuit mapping between quantum doubles and
string-net ground states. In those examples the group
Z2 is replaced by an arbitrary finite group G. This then
amounts to choosing the UFC D1 to be D1 = VecG, the
category of all finite dimensional G-graded vector spaces
which is the input category of Kitaev’s quantum dou-
bles [14]. The simple objects of VecG are in one-to-one
correspondence with the group elements of G such that
the fusion of elements in VecG is then equivalent to the
group multiplication in G. The ground states of these
quantum doubles can then be mapped to string-nets with
input category D2 = Rep(G), the category of all repre-
sentations of G in which the simple objects are the ir-
reducible representations. The invertible bimodule cate-
gory connecting D1 and D2 is M = Vec, as in the case
of the toric code. A crucial difference with the previous
example is that for a generic group, there is no monoidal
equivalence between VecG and Rep(G). The data of this
bimodule category is as follows [18]:

•

(

D1F g1,g2,g3
g123

)g23,11

g12,11
= ω(g1, g2, g3) where ω is a

3-cocycle belonging to the trivial class. One
can choose a gauge of the D1F symbol in which
this cocycle is identically one, ω(g1, g2, g3) ≡
1, ∀g1, g2, g3 ∈ G.

• Writing
(

⊲F
g1g2C

C

)C,11

g12,11
= ψ(g1, g2), it can be

shown that by virtue of the pentagon equation be-
tween D1F and ⊲F , ψ is a 2-cocycle classified by
H2(G,U(1)).

•

(

⊲⊳F
gCα
C

)C,j1

C,1i
= Dα(g)ji where Dα(g) is the matrix

representation of the group element g ∈ G in the
irreducible representation α and where i, j are dα-
dimensional indices in that representation.

•

(

⊳FCα1α2

C

)α3,ki3

C,i1i2
= Cα1α2α3

i1i2i3,k
are the Clebsch-

Gordan coefficients of the group. In this notation
k denotes the possible number of ways in which α1

and α2 can fuse to α3.

• The D2F -symbols can then be recognized as the
Racah W-coefficients which are equal to the 6j
symbols of G. These 6j symbols serve as the in-
put of the Rep(G) string-net.

Substituting these F-symbols in the expressions of the
quantum circuit then results in a circuit that allows one
to map the ground states of all of Kitaev’s quantum dou-
ble models to corresponding string-nets. A similar circuit
was found in [15, 16]. In their map the Rep(G) degrees-
of-freedom where introduced by means of a Fourier trans-
form on G. In our circuit these irreps appear through the
⊲⊳F -symbol of the bimodele category. We also recover
the 6j symbols that appeared in their construction in
the form of the D2F -symbols. We note that the quantum
doubles as defined in [16, 22] are defined on a triangular
lattice and are shown to be equivalent to the string-net
model on the hexagonal lattice; our construction does not
change the lattice, and a direct comparison is therefore
somewhat cumbersome.

VI. CONCLUSION AND OUTLOOK

In this work, we have constructed a constant depth
quantum circuit that is able to map between Morita
equivalent ground states. Crucially, the circuit is
unitary on the full Hilbert space, meaning that it can
be implemented in a truly local way without performing
a measurement as would be required to construct the
string-net state from a product state. We have shown
that the mapping is exact for the ground states, which
implies that they are in the same phase as they can be
adiabatically connected without closing a gap.

One immediate application of our circuit exploits the
recent insight that string-net models can be used to
construct partition functions of classical statistical me-
chanics models [24, 25]. From the tensor network point
of view, this is understood as the strange correlator [26],
which boils down to taking the overlap of the string-net
ground state PEPS with some unentangled product state
to obtain a tensor network representation of a classical
partition function. The existence of a quantum circuit
between Morita equivalent string-nets allows one to con-
struct different lattice models with the same partition
functions. We plan to explore this further in future work.

A natural generalization would be to no longer restrict to
closed manifolds but also include the case of boundaries
to the vacuum or domain walls between different string-
net models. In general this requires the use of a 4-object
bicategory containing 4 fusion categories and 6 invertible
bimodule categories [18], the recoupling theory of which
has not been written down explicitly in the literature.
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Appendix A: The quantum circuit for the extended string-net

c1

c2

d1

d2

γ1

γ2
b8

b9

b10

b5

b4

b3

b1 b2

b6b7

a1

a2

a3

a4

a5

a6

A

A1

A2

A3

i1

i2

i3

i4

i5

i6

i7

i8

i9

i10

i11

i12

i13

i14

=
∑

{Bi,ki}

[

M1
{ai,di,TA}

]{Bi,ki}

{bi,ii}

γ1

γ2

d1

d2

B8

B9

B10

B5

B4

B3

B1 B2

B6B7

a1

a2

a3

a4

a5

a6

k1

k2

k3

k4

k5

k6

k7

k8

k9

k10

[

M1
{ai,di,TA}

]{Bi,ki}

{bi,ii}
≡
∑

{ji}

(

db1db2db6db7dc1dc2dA1
dA3

dB5
dB8

d3Ada2
da5

db5db8dA2

)1/2
(

⊲F b10c1A3

B10

)A1,i14j12

b9,i10j10

(

⊲⊳F
b9A3γ1

B9

)A2,i13j10

B10,j11k10

×
(

⊲F b9c2A1

B9

)A2,i12j10

b8,i9j9

(

⊲⊳F
b8A1γ2

B8

)A3,i11j8

B9,j9k9

(

⊲F a1b1A
B10

)B1,j1k1

b10,i1j12

(

⊲F
b1b2B2

B1

)A,j1j2

a2,i2k2

(

⊲F b2a3B3

A

)B2,k3j2

b3,i3j3

×
(

⊲F b4d2B5

A

)B4,k5j4

b5,i5j5

(

⊲F b3d1B4

A

)B3,k4j3

b4,i4j4

(

⊲F
b6a4B5

A

)B6,k6j6

b5,i6j5

(

⊲F b7b6B6

B7

)A,j6j7

a5,i7k7

(

⊲F
a6b7A
B8

)B7,j7k8

b8,i8j8

c1

c2

γ1

γ2

β1

β2
a3

a4

a5

B4

B3

B2

B1 a1

a2B5

C1

C2

C3

C4

C5

C6

D

D1

D2

D3

k1

k2

k3

k4

k5

k6

k7

k8

k9

k10

k11

k12

k13

k14

=
∑

{Ei,αi,mi}

[

M2
{Ci,γi,TD}

]{Ei,αi,mi}

{Bi,ai,ki}

β1

β2

γ1

γ2

E3

E4

E5

α4

α3

α2

α1 E1

E2
α5

C1

C2

C3

C4

C5

C6

m1

m2

m3

m4

m5

m6

m7

m8

m9

m10

[

M2
{Ci,γi,TD}

]{Ei,αi,mi}

{Bi,ai,ki}
≡
∑

{li}

(

da1
da2

da5
dc1dc2dD1

dD3
dB4

dE3
dE4

dα1
dα2

dα5

d5DdC1
dC3

dC4
dC6

dD2
dE4

)1/2
(

⊲F a5c1D3

E5

)D,k14l12

a4,k10l11

(

⊲⊳F
a4D3β1

E4

)D2,k13l10

E5,l11m10

×
(

⊲F a4c2D1

E4

)D2,k12l10

a3,k9l9

(

⊲⊳F
a3D1β2

E3

)D,k11l8

E4,l9m9

(

⊲⊳F
a5B1α1

E5

)D,l1l12

C1,k1m1

(

⊲⊳F
a1C2α1

D

)E1,m2l2

B1,k2l1

(

⊲⊳F
a1E1α2

B2

)C3,m3k3

D,l2l3

×
(

⊳F
Dα2γ1

B3

)α3,m4l4

B2,l3k4

(

⊳F
Dα3γ2

B4

)α4,m5l5

B3,l4k5

(

⊲⊳F a2E2α4

B4

)C4,m6k6

D,l6l5

(

⊲⊳F a2C5α5

D

)E2,m7l6

B5,k7l7

(

⊲⊳F a3B5α5

E3

)D,l7l8

C6,k8m8



13

d1

d2

γ1

γ2

β1

β2E8

E9

E10

E5

E4

E3

E1 E2

E6E7

α1

α2

α3

α4

α5

α6

G

G1

G2

G3

m1

m2

m3

m4

m5

m6

m7

m8

m9

m10

m11

m12

m13

m14

=
∑

{δi,oi}

[

M3
{αi,γi,TG}

]{δi,oi}

{Ei,mi}

β1

β2

γ1

γ2

δ8

δ9

δ10

δ5

δ4

δ3

δ1 δ2

δ6δ7

α1

α2

α3

α4

α5

α6

o1

o2

o3

o4

o5

o6

o7

o8

o9

o10

[

M3
{αi,γi,TG}

]{δi,oi}

{Ei,mi}
≡
∑

{ni}

(

dd1
dd2

dE1
dE2

dE3
dE5

dE6
dE7

d2E8
dE10

dG2
dδ1dδ2dδ6dδ7

d2GdG1
dG3

dα2
dα5

dδ8

)1/2
(

⊲⊳F d1E9δ10
G

)G3,n9m14

E10,m10n10

×
(

⊳F
E9δ10β1

G2

)δ9,o10n8

G3,n9m13

(

⊲⊳F d2E8δ9
G2

)G1,n11m12

E9,m9n12

(

⊳F
E8δ9β12

G

)δ8,o9n10

G1,n11m11

(

⊳FE10α1δ1
G

)δ10,o1n12

E1,m1n1

(

⊳F
E1δ1δ2
E2

)α2,o2m2

G,n1n2

×
(

⊳FGδ2α3

E3

)δ3,o3n3

E2,n2m3

(

⊳F
Gδ3γ1

E4

)δ4,o4n4

E3,n3m4

(

⊳F
Gδ4γ2

E5

)δ5,o5n5

E4,n4m5

(

⊳F
Gδ6α4

E5

)δ5,o6n5

E6,n6m6

(

⊳FE7δ7δ6
E6

)α5,o7m7

G,n7n6

(

⊳F
E8α6δ7
G

)δ8,o8n8

E7,m8n7


