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Establishing a reliable communication interface between the brain and electronic devices is

of paramount importance for exploiting the full potential of neural prostheses1–4. Current

microelectrode technologies for recording electrical activity, however, evidence important

shortcomings, e.g. challenging high density integration. Solution-gated field-effect transis-

tors (SGFETs), on the other hand, could overcome these shortcomings if a suitable tran-

sistor material were available. Graphene is particularly attractive due to its biocompati-

bility, chemical stability, flexibility, low intrinsic electronic noise and high charge carrier

mobilities5–9. Here, we report on the use of an array of flexible graphene SGFETs for record-

ing spontaneous slow waves, as well as visually evoked and also pre-epileptic activity in vivo

in rats. The flexible array of graphene SGFETs allows mapping brain electrical activity with

excellent signal-to-noise ratio (SNR), suggesting that this technology could lay the foundation

for a future generation of in vivo recording implants.

Recording brain activity with high fidelity and decoding the enclosed information could

enable the development of a new generation of neuroprosthetic devices for control of artificial

limbs and motor rehabilitation, as well as brain-machine interfaces for communication and speech

prostheses1, 10, 11. A major challenge is still the need of high-density, small recording sites that

provide high spatial resolution with adequate signal-to-noise ratio (SNR) recordings to obtain high

fidelity data for decoding as much information as possible. The most extended technology for in

vivo recordings today uses microelectrode arrays (MEAs), mainly based on metals such as Pt and

PtIr12. However, using MEAs for high-density recordings presents important drawbacks. Since

the electrode impedance and noise are inversely proportional to the electrode size, a trade-off

2



between spatial resolution and SNR has to be made. In addition, the high impedance of small

electrodes creates enormous challenges in terms of on-chip multiplexing and, thus, for recording

large numbers of electrodes in parallel. Further, the very small voltages of the recorded signals

are highly susceptible to noise in the standard electrode configuration. For this reason, preampli-

fication is required directly or very close to the electrode site. To overcome some of these issues,

the electrode can be directly connected to the gate of an underlying transistor that converts the

recorded voltage to current. This method facilitates multiplexing and provides a first amplification

stage, which has been applied to demonstrate recordings from high-density flexible electrodes in

in vivo experiments13. However, the fabrication complexity is significantly increased and the ad-

ditional electrical components required for the voltage-to-current conversion limit the integration

density13. Differently to the electrode recording configuration, Fromherz et al. showed that metal-

oxide-semiconductor field-effect transistors (MOSFETs) where the gate metal is replaced with

an electrolyte and an electrode, referred to as solution-gated field-effect transistors (SGFETs) or

electrolyte-gated field-effect transistors, can be exposed directly to neurons and be used to record

action potentials with high fidelity14. An important benefit of this recording configuration is the

transistor’s intrinsic signal amplification, which reduces the sensitivity to external noise. Further,

the low impedance characteristic of the transistor configuration depends on the transistor geom-

etry relations (width and length) and not the area (as is the case for the electrode configuration).

This facilitates the implementation of multiplexing while allowing for down-scaling of the record-

ing sites and maintaining low fabrication complexity. To use transistors in long-term in vivo or

chronic applications, several requirements have to be fulfilled by the substrate and the recording

3



material: flexibility to avoid scar tissue formation, biocompatibility to avoid inflammation and tox-

icity, and stability in biological environments. In addition, the transistor’s active material should

also provide high transconductance, mainly governed by the charge carrier mobility and the ca-

pacitance of the transistor-electrolyte interface8, and a low electronic noise. These two parameters

determine the minimum signal that can be detected and the SNR that can be achieved with this

device. Besides silicon14, several other materials such as gallium nitride15, diamond16, organic

materials17, silicon nanowires18 and more recently PEDOT:PSS19 and graphene20, 21, have been

tested for interfacing biological systems with transistors. However, gallium nitride, diamond and

silicon introduce enormous challenges with respect to the integration with flexible substrates. Or-

ganic materials, on the contrary, can be integrated without major problems in flexible technologies

but most of them have rather low charge carrier mobilities and are therefore not suitable for record-

ings with a high SNR. Interestingly, PEDOT:PSS electrochemical transistors, which use a sensing

mechanism different from field-effect transistors, have been used to demonstrate in vivo recordings

and are attracting significant interest despite the low matureness of this technology. Graphene, on

the other hand, should be ideally suitable for bioelectronic applications, due to its biocompability

and chemical stability 5–7. As a two dimensional material, the integration on flexible substrates

is also unproblematic9, 22. The semiconductor-compatible fabrication of graphene SGFETs, to-

gether with the advances in the production of large-scale, high-quality chemical vapor deposition

(CVD) graphene, makes the fabrication of large high-density graphene SGFET arrays for neu-

ral recordings possible23. The high charge carrier mobilities in graphene (typically well above

1000 cm/Vs for CVD graphene) and the large interfacial capacitance of the graphene/electrolyte
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interface (>2 µF/cm2) give rise to high transconductances, of more than 7 mS/V8, 24. Together

with a relatively low noise, this enables in vitro recordings with an excellent SNR21. While such

values can also be obtained with PEDOT:PSS electrochemical transistors, graphene additionally

exhibits a high transparency from the ultraviolet to the infrared, a key requirement for combining

electrical measurements with optogenetic experiments25–27. Recent publications also showed that

graphene SGFETs are stable in cell culture environments21. Although the potential of graphene-

based SGFET technology has been suggested in in vitro studies, so far no in vivo confirmation

has been demonstrated. Here we present the fabrication of flexible arrays of graphene SGFETs

and demonstrate in vivo mapping of spontaneous slow waves, as well as visually evoked and pre-

epileptic activity in the rat.

Arrays of 16 SGFETs (transistor active area of W=20 µm, L=15 µm) were fabricated on

polyimide substrate (figure 1(a)). A detailed description of the fabrication process can be found

in the Methods. In vivo local field potential (LFP) measurements were performed in the brain of

anaesthetized rats (figure 1(b)). After performing a craniotomy, the transistor array was placed

on the surface of the rat visual cortex next to a 32-channel Pt MEA device (see figure 1b for an

optical image of the arrangement). The transistors were characterized in vivo by measuring the

drain-source current IDS as a function of the gate voltage UGS with fixed drain-source voltage.

The transistor curves (figure 1c) exhibit the expected ambipolar V-shape of graphene transistors.

From the transistor curve, the transconductance gm can be extracted (figure 1(c)). Defined as the

derivative of IDS with respect to UGS , gm describes the change in IDS induced by a small variation

of UGS . Consequently, the higher gm, the larger the current change caused by a fluctuation of the
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electrical potential in the brain tissue next to the transistor. The detection limit and SNR of such

potential fluctuations are determined by the transconductance and the intrinsic electronic noise of

the transistors. The power spectral density of graphene SGFETs typically exhibits 1/f noise in

the low frequency regime21. In order to estimate the SNR, the root mean square (rms) gate noise

Urms is the most useful parameter. Urms was calculated as the standard deviation (STD) of the

filtered transistor current in the case of no brain activity and then converted to a voltage using the

transconductance. In post mortem recordings, values as low as 16 µV were measured for graphene

micro-transistors.

For the first neuronal recordings, pre-epileptic activity in the rat brain was induced by the

local application of bicuculline28. Figure 2(a) shows an exemplary simultaneous recording of

the pre-epileptic activity using a transistor (red), a 50 µm (blue) and a 10 µm (black) diameter Pt

electrode. All three devices recorded interictal spikes that coincided temporally. The graphene

transistor (active area 300 µm2) and the large Pt electrode (active area 1962 µm2) recorded signifi-

cantly larger peaks than the small Pt electrodes (active area 78 µm2). In figure 2(b) a single spike

recorded by a transistor with a time-frequency analysis in the background is shown depicting the

increased power at low frequencies during bicuculline-induced activity. It is worth noticing that

the graphene SGFETs were operated with zero gate bias, thus no voltage had to be applied between

the transistor and the brain; this is in contrast to transistors based on PEDOT:PSS, in which a gate

voltage is necessary to bias the transistors in the operating conditions29.

To compare the ability of the different devices to detect such pre-epileptic activity against
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the background brain activity, the SNR was calculated for every transistor and electrode as de-

scribed in the Methods. SNR values of up to 72 with an average of 62±5.8 were estimated for five

graphene SGFETs. A maximum SNR of 34 with an average of 26 ± 5.5 for 8 small Pt electrodes

and a maximum value of 75 with an average 53± 11 for 13 large Pt electrodes were obtained. The

obtained SNR values for the bicuculline-induced activity show that the graphene SGFETs can com-

pete with-state-of-the-art Pt electrodes of both sizes. The small voltages recorded by the electrodes

are very susceptible to noise. Therefore, they have to be pre-amplified as close to the recording site

as possible, typically this is done at the connector of the electrode. In contrast, the transistors were

connected to the amplification setup by a 30 cm long unshielded wire without showing problems

from externally coupled noise, evidencing the advantage of the intrinsic signal amplification of the

transistor concept. The SNR of the graphene FETs is similar to that of graphene electrodes used in

vivo; however, these graphene electrodes were significantly larger and thus their SNR performance

will decrease when downscaled to the graphene transistor size27. Pt-based high density electrode

arrays with on-chip multiplexing achieve similar noise values, however with an area that is two

orders of magnitude larger than our graphene FETs13.

The current STD background of the graphene transistor was similar (around 5 nA) to PE-

DOT:PSS transistors, though the recorded potentials in the GAERS rat model used to test the

PEDOT:PSS transistors were significantly larger resulting in a higher SNR19.

To demonstrate the mapping capability of the SGFET array, figure 2(c) shows a map of

the averaged interictal spikes (see Methods for averaging procedure) of electrodes (50 µm blue,
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10 µm black) and graphene transistors (red). The transistors mainly show homogeneous peaks,

with an amplitude similar to the 50 µm electrodes and a slightly higher SNR ratio. The bicuculline-

spikes recorded by the 10 µm electrodes are significantly smaller and also have a significantly

lower SNR. To explore the ambipolar behavior of the graphene transistors, the graphene SGFETs

were biased in different regimes. figure 2(d) shows a typical transistor curve superimposed to the

averaged recorded current of bicuculline-induced interictal spikes in the different bias regimes. In

the hole conduction regime of the graphene transistor (UGS =150 mV), the transconductance is

negative and the negative voltage during the epileptiform discharges results in a positive signal

in the transistor current (IDS = UG · gm). In contrast, gm is positive in the regime of electron

conduction (UGS =600 mV) and the negative voltage peak results in a negative current peak. In

the vicinity of the Dirac point, where the transconductance is close to zero, the recorded activity is

almost zero. This ambipolar behavior can be very useful to distinguish between biological signals

and external noise that is coupled into the measurement system. In addition, the possibility to bias

the transistor offers a way to tune the device response in order to maximize the recorded signal,

which is not available in the case of electrodes.

In order to probe our recording system with more physiological and smaller amplitude sig-

nals, we recorded two types of neural activity from the primary visual cortex: spontaneous slow

oscillations typical from slow-wave sleep and deep anesthesia and visually evoked responses. Un-

der these conditions, the spontaneous cortical activity is characterized by a slow (<1Hz) alternation

between active and silent states30–32. Figure 3(a) shows traces of LFP simultaneously recorded dur-

ing spontaneous activity for each device type. In this case, the SNR was defined as the amplitude of
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the slow-wave divided by the standard deviation in the silent periods between waves. The graphene

transistors and the 50 µm Pt electrodes show average SNR values of 9.85± 0.67 and 8.33± 1.05,

respectively, whereas the smaller Pt electrodes only exhibit a SNR of a 6.02± 0.68.

In a following experiment, the recording of a visually evoked response was studied by in-

ducing light stimulation using a light-emitting diode (LED), as described in the Methods. Since

the recording arrays were placed on the visual cortex, the light stimulation induced a visually

evoked response that can be detected by the recording devices. Figure 3(b) shows the averaged

response (red), calculated as described in the Methods, and a single response (light red) recorded

by a graphene SGFET and the single response of a Pt electrode (light blue) and the averaged re-

sponse (blue). Approximately 30 ms after the light onset, a steep increase is observed followed by

a slower decay, as reported previously33. While the averaged signals provide an excellent SNR,

even the single recordings can be used to clearly identify the evoked response. The map in figure

3(c) shows the averaged response of several electrodes and transistors. The significant variation in

the amplitudes is caused by the local nature of the evoked brain activity. Therefore, the data does

not allow a proper comparison in terms of SNR.

To investigate the biocompatibility of graphene implants we performed an immunohistology

study using samples with graphene on polyimide and only polyimide that were implanted sub-

durrally in rats (see Methods). The upper panel of figure 3(d( shows a typical microscope image

of subdural brain tissues immunostained for microglial and astroglial markers (Iba-1, GFAP) 28

days after implantation of a graphene implant. The immunohistology study evaluated microglial
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activation as a sign of inflammatory processes by quantifying morphological changes of microglia

based on two indices: solidity and circularity (see Methods). For comparison, sham-operated an-

imals were sacrificed 4 days after surgery to show acute surgical trauma effects. When compared

to naive rats without surgical trauma both circularity and solidity showed statistically significant

inflammatory reactions in these animals, which however were minor. E.g. circularity increased

from 0.039 to 0.063 (when considering the possible maximum close to 1.0) as shown in figure

3(d). Graphene implants did not show any significant changes of circularity or solidity at any of

the time points tested as compared to naive rats or polyimide samples without graphene confirming

the biocompatibility of the graphene devices.

In summary, we demonstrated the successful recording of in vivo brain activity using flex-

ible arrays of graphene-based SGFETs. Recording LFP during spontaneous slow oscillations,

visually evoked activity, and pharmacologically-induced pre-epileptic spikes, our results show

that graphene transistors can compete with existing state-of-the-art microelectrode-based record-

ing technologies, while additionally offering advantages such as intrinsic signal amplification and

the possibility for down-scaling and high-density integration. High-density recordings of brain

activity over large areas is an important challenge that has to be overcome in order to enable the

development of a new generation of neuroprosthetic devices. The results in this work demon-

strate that technologies based on flexible graphene field-effect transistors are uniquely positioned

to offer such high-density recordings when combined with already demonstrated wafer-scale very-

large-scale integration (VLSI) compatible fabrication of graphene transistors and advanced on

chip multiplexing13, 34. Together with functionalized graphene transistors for the detection of
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neurotransmitters35 or optogenetics, these technologies could provide deeper insights into biologi-

cal processes. The combination of graphene with other 2D materials, e.g. boron nitride substrates,

is expected to further enhance the mobility and decrease the noise of flexible SGFETs resulting in

an improved SNR performance36, 37 possibly enabling the detection of single unit activity from the

brain surface. Future experiments should aim at the combination of graphene SGFET recording

sites with on chip multiplexing based on other 2D materials or CMOS technology. Based on the

biocompatibility of graphene implants and taking into account the large room for improving the

performance of graphene-based flexible field-effect transistors, for instance by improving process-

ing technology and material quality, we foresee a very rapid advance of graphene technologies in

neural functional interfaces.

Methods

Transistor fabrication and electrode design A sacrificial 500 nm aluminum layer was sputtered

on a 4-inch silicon wafer. Afterwards, a 7 to 10 µm thick biocompatible38–40 polyimide 2611 layer

(HD MicroSystems) was spin-coated and cured under nitrogen atmosphere at 350 ◦C. Titanium

tungsten (20 nm) and gold (100 nm) was deposited by sputtering and then structured by optical

lithography and etching to form drain and source contacts. CVD graphene was transferred to

the wafer using a PMMA wet etching process as reported previously21. After photolithography,

the graphene was structured using an oxygen plasma in a reactive ion etching system. A second

metal layer of 900 nm gold was sputtered on the sample and structured by photolithography and

etching. A less than 2 µm thick SU8 resist was spin-coated on the sample and structured by optical
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lithography to create openings defining the active transistor area. To ensure complete insulation, a

part of the graphene next to the contacts is also covered with 2 µm SU8, giving rise to an access

resistance caused by the underlying ungated graphene. In order to define the shape of the implants,

a 500 nm-thick aluminium layer was sputtered on the wafer and structured by photolithography and

reactive ion etching (Cl2, BCl3 and N2). After defining the shape of the implants by another reactive

ion etching step using O2 and N2, the aluminum was etched away. The samples were released by

electro-erosion of the sacrificial aluminum layer. The samples were bonded with a two component

conductive epoxy glue to a custom-designed PCB and connected with wires to the measurement

setup. For in vivo recordings 32-channel arrays of platinum electrodes (fabricated by CNR-IMM,

Rome, Italy) were used. The diameter of the recording site of the platinum electrodes was either

10 µm (8 channels) or 50 µm (24 channels). The microelectrodes were fabricated by embedding a

tri-layer Cr/Au/Pt (200 nm thick) into polyimide HD2611 (HD MicroSystems) layers, reaching a

final thickness of 8 µmm. See Castagnola et al. for details 41.

Experimental procedures for in vivo measurements For the in vivo experiments, adult male

Wistar rats were placed in an anesthesia induction chamber for 5 minutes at 100% of O2. Next,

anesthesia was induced by raising the isoflurane concentration to 5% (0.6 L/min, 1 bar) for 5 more

minutes always watching out respiration. We next set the concentration of isoflurane to 3% for

one more minute before the rat was placed in the stereotaxic apparatus with a mask delivering

a mixture of isoflurane and oxygen. For the rest of the surgery, 3% of isoflurane was used to

maintain deep anesthesia. A subcutaneous injection of atropine (0.05 mg/kg) was given to prevent

respiratory secretions. Methylprednisolone (10 mg/kg) was injected (i.p.) to prevent inflammation.
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Rectal temperature was maintained at 37◦C. A craniotomy was performed to access the primary

visual (V1) cortex (7.3 mm AP, 3.5 mm ML) of the left hemisphere42. The graphene transistor array

and the 32-channel Pt MEA were placed on the cortex. To evoke visual responses in the cortex,

a light-emitting diode (LED) was placed in front of the right eye (contralateral to the recording

site) of the rat and a flash of 100 ms was automatically delivered every 4 to 5 seconds. In some

recordings, 200 µM bicuculline methiodide (Sigma), a GABAa receptor blocker that is broadly

used to pharmacologically reduce inhibition in the brain and thus generate epileptiform activity,

was directly applied to the surface of the cortex. For more detailed methodology of the in vivo

experiments see43–45. Experiments on four animals were performed, the presented data are all from

the same animal. All experiments were supervised and approved by the University Committee and

were carried out in accordance with the present laws of animal care, EU guidelines on protection

of vertebrates used for experimentation (Strasbourg 3/18/1986) and the local law of animal care

established by the Generalitat of Catalonia (Decree 214/97, 20 July).

Data acquisition A custom-built setup was used for transistor characterization and neural record-

ings with the transistor array. In a first step, the transistor current is transformed to a voltage and

low-pass filtered at 15 kHz using an operational amplifier feedback loop. For the neural recordings

an additional amplification by a factor of 100 and high-pass filtering at 2.4 Hz is performed. The

signal is then recorded by a National Instruments LabVIEW DAQ Card and a LabVIEW program.

For the device characterization the drain-source and gate voltage were applied by the DAQCard,

and for the in vitro and in vivo recordings batteries were used to reduce the electronic noise. All

measurements were performed in a Faraday cage. The gate voltage was applied to a Ag/AgCl
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reference electrode. In case of simultaneous electrode and transistor recordings, the gate voltage

was set to zero. For non-zero gate voltages the MEA was disconnected. In the in vivo electrode

recordings the signal from the 32 electrodes were amplified with a multichannel system using a

MPA8 miniature preamplifier (Multi Channel Systems, input impedance 10
12
Ω) and digitized at

10 KHz with a CED 1401 POWER3 (Cambridge Electronic Design) acquisition board and Spike

2 software.

Data treatment Data filtering and analysis were performed with MATLAB. All data were low-

pass filtered at 200 Hz using a first-order Butterworth filter. In addition, digital notch filters were

used to remove 50 Hz noise and its overtones. For the spontaneous slow oscillation recording,

the electrode data were additionally high-pass filtered using a first-order Butterworth filter with a

cut-off frequency of 2.4 Hz to allow comparison with the transistor signals.

For the estimation of the SNR ratio, the bicuculline-induced peaks were automatically de-

tected, and the peak-to-peak amplitude was extracted. The standard deviation USTD was calculated

during the non-spike periods (averaged across non-spike periods after windowing each non-spike

period in small non-overlapping windows of 50 ms). Slow-wave activity occurring during the

inter-spike periods was discarded for the STD computation. For each peak, the SNR given by

SNR = Apeak−to−peak/USTD was calculated and the SNRs were averaged afterwards. For the

SNR estimation of the spontaneous slow oscillations, the peak-to-peak amplitude of the slow-

wave was extracted and divided by the standard deviation of the signal during the silent periods

between waves. Time-frequency analysis was performed by continuous wavelet transform with a

Paul wavelet using MATLAB’s wavelet toolbox.

14



Procedures for the histology study Samples were fabricated on 4-inch silicon wafers. Polyimide

deposition followed by graphene transfer was performed as for the graphene transistors. Two cir-

cular sheets of graphene (1 mm diameter, separated by 200 µm) were defined by optical lithography

and oxygen plasma. The definition of the implant shape and release were done as for the transistor

devices. Presence of graphene on the samples was verified by conductance measurements using a

tip probe station and fluorescence microscopy. Samples were implanted subdurally in Wistar rats

using standard microsurgical techniques. Implantations were performed as described by Henle et

al. 2011 under general anesthesia (Medetomidin, Ketamine, and Tramadol for intra- and post-

operatively analgesia)46. The surgical technique was slightly modified with the dura-mater only

incised with microscissors to slide in the electrodes beneath the dura. The bone flap was reinserted

and fixed with tissue glue (Histoacryl). Rats were sacrificed after 14, 28 or 84 days. Biocompatibil-

ity was tested by immunohistology of subdural brain tissues for microglial and astroglial markers

(Iba-1, GFAP). To do so, cryo-sections were allowed to defrost for 30 minutes at room temperature

and rinsed with Triton-PBST. Fluorescence-staining for IBA-1 was performed with a microglia-

specific antibody ’anti Iba1’ (rabbit anti ionized Calcium binding Adapter Molecule 1, 1:100,

Wako, USA) and Alexa Fluor 568® donkey anti-rabbit (1:100, Life Technologies, Carlsbad, USA)

as secondary antibody. Primary and secondary antibodies for specific glial-fibrillary acidic protein

were mouse anti-glial-fibrillary acidic protein (GFAP, 1:100, BD Pharmingen, Becton Dickinson

& Comp., USA) and donkey-anti-mouse (1:20, Life Technologies, Carlsbad, USA). Primary an-

tibodies were incubated 24 hours at 3◦C in the dark. After rinsing (3 times, 5 min with PBST)

secondary antibodies remained 2h on the slices. Then cell nuclei were stained by 4,6-diamidin-2-
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phenylindol (DAPI, 1:1000, Carl Roth, Germany). Microglial activation as a sign of inflammatory

processes was quantified by evaluating morphological changes of microglia which changed from

resting state with many branches to an activated state charaterized by loss of branches and rounding

of the cell body. This was done by measuring cell perimeters and areas using ImageJ software. Cell

perimeter decreases with activation. From these two parameters the ’circularity’ can be calculated:

4*π*area/perimeter2 47 which increases with activation (1=maximum). Another index is ’solidity’

(cell area/convex area) 48, which also increases with activation to a maximum of 1. All experiments

were performed under animal welfare guidelines, and were approved by the local ethics committee

(Landesuntersuchungsamt Koblenz, Germany, approval code: 23 177-07/G12-1-029).
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Figure 1: a) Upper panel: Representation of the head of a graphene implant showing a 4x4

graphene transistor array and feed lines. Lower panel: Cross section of a graphene transistor

with graphene between the source and drain contact that are covered by an insulating SU8 pho-

toresist. b) Upper panel: Representation of the implant placed on the surface of the rat’s brain.

Lower panel: Microscope image of a MEA with Pt electrodes (a) and the graphene device (b) next

to it. Scale bar is 1.25 mm. c) In vivo characterization of devices. Upper panel: Transistor current

IDS as a function of the gate voltage UGS for a fixed drain-source voltage UDS = 200mV ; different

colors represent different transistors. Lower panel: Resulting transconductances.
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Figure 2: a) Simultaneous recordings of a graphene transistor (red), a 10 µm (black) and a 50 µm

(blue) diameter Pt electrodes showing bicuculline-induced brain activity. The transistors were

biased with UDS = 200mV and the gate voltage was connected to the electrode ground. The

shape and dimension of the recording site is shown for comparison. b) Single bicuculline-spike

recorded by a graphene transistor with the time-frequency analysis in the background. c) Pre-

epileptic discharges in bicuculline mapped onto the locations of electrodes and transistors. Arrows

indicate anterior (A), posterior (P), lateral (L) and medial (M) directions on the cortical surface.

d) A transistor curve together with averaged bicuculline-spike recorded in current by a graphene

SGFET in the electron (orange) and hole (green) regime and in the vicinity of the Dirac point

(purple).
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Figure 3: a) Simultaneous recordings of spontaneous brain activity under deep anesthesia with a

graphene SGFET (red), a 10 µm (black) and a 50 µm (blue) diameter Pt electrode showing slow

oscillations of the LFP. b) Recording of a single event (light red) and averaged response (red) of

66 events recorded by a graphene SGFET induced by visual stimulation. Same below but obtained

with a 50 with a 50 µm Pt electrode. c) Spatial map of the averaged visually evoked responses

recorded by electrodes and transistors during visual stimulation with a light-emitting diode. Ar-

rows indicate anterior (A), posterior (P), lateral (L) and medial (M) directions on the cortical

surface. d) Upper panel: Typical microscope image of immunostained subdural rat brain tissue

2 µm below dura at the site of implantation 28 days after implantation of a graphene on polyimide

sample. Colour code: Blue is DAPI nuclear stain, red is Iba-1 (microglia), and green is GFAP

(astrocyte). Scale bar is 10 µm. Lower panel: Circularity and solidity (indices for inflammatory

processes) for naive rats, 4 days after sham-operation and after 28 and 84 days after implantation

of polyimide (light green) and graphene on polyimide implants (dark green). Results of increased

inflammation after sham-operation are statistically significant (* t-test: p<0.05 vs. naive animal.)
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