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Abstract

Constructing a system o f intelligent robotic mapping agents that can function in an unstructured 

and unknown environment is a challenging task. With the exploration o f our solar system as well as our 

own planet requiring more robust mapping agents, and with the drastic drop in the price o f technology 

versus the gains in performance, robotic mapping is becoming a focus o f  research like never before. 

Efforts are underway to send mobile robots to map bodies within our solar system. While much o f the 

research in robotic map construction has been focused on building maps used by the robotic agents 

themselves, very little has been done in building maps usable by humans. And yet it is the human that 

drives the need for mapping solutions.

We propose a computational framework for building mobile robotic mapping systems to be 

deployed in unknown environments. This is the first work known to address the general problem o f 

mapping in unknown terrain under the effect o f error in readings, operations and systems that employs 

more than a single robot. The system draws upon the strengths from research in various robotic related 

areas by selecting those components and ideas that show promise when applied to mapping for human 

reading via a distributed network o f heterogeneous mobile robots. This application o f multiple mobile 

robots and the application to human end-users is a new direction in robotics research. We also propose and 

develop a new paradigm for storing mapping-agent generated data in a way that allows rapid map 

construction and correction to compensate for detected errors. We experimentally test the paradigm on a 

simulated robotic environment and analyze the results and show that there is a definite gain from 

correction, particularly in error rich environments. We also develop methods by which to apply corrections 

to the map and test their effectiveness. Finally we propose some extensions to this work and suggest 

research in areas not completely covered by our discussion.
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1. Introduction

1.1 The Application of Mobile Robots to Mapmaking

Constructing a system o f intelligent robotic mapping agents that can function in an unstructured 

and unknown environment is a challenging task. With the exploration o f our solar system as well as our 

own planet requiring more robust mapping agents, and with the drastic drop in the price o f technology 

versus the gains in performance, robotic mapping is becoming an focus o f  research like never before. 

Efforts are underway to send mobile robots to map bodies within our solar system [Krotkov-95], While 

much o f the research in robotic map construction has been focused on building maps used by the robotic 

agents themselves, very little has been done in building maps usable by humans. And yet it is the human 

that drives the need for mapping solutions.

Our goal is to construct precise maps for human usage by improving the software that performs 

the mapping task. To approach this problem, we must first detail the foundation o f mobile robotic agent 

mapping. A mobile robot, or mapping agent, is a connected collection o f sensors and actuators designed to 

support the agent’s ability to detect and measure features o f  its environment and to allow the agent to move 

about and interact with its environment. The sensors a mobile robot can carry vary widely. Contact 

sensors on the robot indicate collision and protect the agent from serious damage by indicating the path is 

blocked. Simple sonar sensors produce range data that indicates at what distance within a cone protruding 

from the sensor an object was detected. Sonar sensors are inexpensive and can cover a large area, but are 

also very susceptible to interference and reflections. Laser range sensors provide for a much more precise 

distance reading to an object, but their coverage area is limited to a point and they are more costly. Video 

cameras provide very rich information and cover a wide area, but there is a significant amount of 

processing that must be done on the data they produce to extract usable information. Additionally, they too 

are rather costly. Actuator systems on an agent allow it to interact and move about the environment. For 

movement, we find wheeled and tracked robots. Robots can move forward and backward and they can 

rotate. To perform the task o f  mapping, mobility is o f  the essence, as a stationary robot would only be able 

to view the world from one position and not detect objects hidden behind other objects. With the benefit

1
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o f mobility comes the burden o f  self-location, the need for the agent to know precisely where it is in the 

world relative to where it was previously. The more the agent moves, the more important this ability is.

As a mobile robotic mapping agent moves about its environment, it attempts to complete a map of 

the environment. To determine completion, it needs to have bounds on which space is to be mapped and it 

needs to recognize which spaces within the bounded region have been mapped and which are still 

unexplored. In addition, the sensor information collected along the journey about the unknown 

environment needs to be stored in some form and finally presented to the user once the mapping process 

has completed. We will call the end product the map. The map is the fusion o f  all o f the sensor data the 

robotic mapping agent has collected on its mission. Additional data structures can be utilized to also store 

the information collected by the sensors, but it is the map, the final product, in which we are most 

interested. Over the past few decades, many researchers have addressed the problem o f mobile robotic 

map construction, as will be outlined shortly. However, most o f these efforts have been restricted to single 

robot agents or imposed restrictions on the environment in which they could operate. These classical 

approaches fail primarily because o f  the limitations on the ground truth approach for wide-area navigation 

in a single or multiple robot system, as will be discussed shortly. We propose a method o f map 

construction by mobile robot mapping agents which has great flexibility. The method can be applied to as 

complex an environment as is necessary based on the mission parameters or can be implemented in a 

simple environment without any loss o f functionality. It can be applied in a heterogeneous environment 

where more than one mapping agent is present and each agent can vary in the sensor packages it carries 

and the physical configuration it has. The method does not rely on the limitations of classical approaches 

such as [Sing-93], which inspired this work. We accomplish this by converting our gathered data into 

elements o f what we call a Map Description Language (MDL), which is utilized to construct the map. 

MDL is not a language in the traditional sense o f computer science or linguistics in that it does not have 

semantics and does not require parsing to understand its meaning, as will be described in a later chapter. 

We want to construct a map o f  unknown terrain with an unknown set o f heterogeneous mapping agents. 

We want this map to have two features: 1) it is human readable and 2) it is accurate. Let us first examine 

the key parameters that will affect our ability to achieve these two goals.

2
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1.2 Modeling the Environment

In constructing a map o f  the environment, we are modeling the space occupied by the bounds of 

the environment We must decide how to represent the information contained in our environment, and 

how to express the spatial relationships between objects in this environment. A mapping agent will 

encounter two basic entities: occupied space and free, or unoccupied, space. The true nature o f the 

environment surrounding a robot is much more complex than this and the space may not be quite so 

simplistically represented. As is discussed in [Brooks-85], obstacles can be below a robot’s sensors and yet 

block its motion, or they can overhang free space but allow the robot to pass unhindered. We will treat our 

objects conceptually as always being detectable by the sensors and always blocking the robot from passing. 

If  a mapping agent can make a transition into a region, this region is classified as free space. If the agent is 

physically prevented from entering a region by another object, then this region is classified as occupied 

space. We must decide on how we will represent this free and occupied space in the environment o f our 

robotic mapping agents.

To construct a map from the sensor data we can consider one o f two classifications o f approaches: 

grid-based and graph-based. The primary difference between the two approaches is in how the data 

structures integrate new sensor information and in the type o f information that can be extracted directly 

from the map. Both types o f  map are data structure representations o f the real environment within which 

the robotic mapping agent operates. These two classes are not specific implementations o f environment 

models, but broad umbrellas describing a basic nature o f  how the data about the environment maps to the 

physical world. The two classes utilize the same sensors and actuators to collect data about the 

environment and organize that data into maps which can be utilized for higher level functions such as 

navigation and path planning. The classes differ in the way the data about the environment is stored and in 

how the map data is analyzed to perform higher level robotic functions. Grid-based approaches come with 

names like ‘occupancy grid’ [Elfes-90][Singh-93], ‘certainty grid’ [Moravec-85][Elfes-87] or ‘probability 

grid’ [Borenstein-91][Oriolo-95], and graph-based approaches have names such as ‘localization map’ 

[Leonard-90], ‘geometric representation’ [Ayache-89], however all o f  the techniques fall into one o f  these 

two basic classes [Tsubouchi-96].

3
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The grid-based approach utilizes a multi-dimensional array o f cells, a grid, to divide the world 

into discrete units. Each o f the cells, or elements, o f  the grid describes the state o f  a particular location in 

free space. Figure 1 depicts a grid representation o f  an environment. Given the environment on the left of 

the figure, which contains three objects, we can subdivide this environment into an array o f  cells, seen on 

the right. We overlay this grid onto the environment and set the values o f  the grid elements based upon the 

state of the environment that each element represents. For example, free space can be represented by a 

value o f 0, and occupied space can be represented by a value o f I . If we indicate the free space with white 

elements and the occupied cells with grey elements, we arrive at the grid representation o f the environment 

seen at the right o f  Figure 1. The outlines o f  the objects from the environment depicted in the left image 

are only provided on the right image for reference. Those objects and their related curves do not appear in 

our grid representation o f  the environment.

Figure 1. Grid Based Mapping 

If we arbitrarily set an origin in the bottom left comer and call that location (0,0) then we can 

mathematically describe the occupancy o f  any space covered by our map as follows:

where MAP(x,y) is the value o f  the map grid at index x.y and x increases left to right and y increases 

bottom to top across the environment.

In our example, we represented the world via a 2-dimensional grid. More complex 

representations can be accomplished with a 3-dimensional grid, where changes in altitude, mountains,

Occupied', MAP(x,y) = 1 
Empty", MAP(x, v) = 0

Occupancy(x,y)
l.

4
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tunnels and other geographic features not recognizable from view from above, can be depicted. Much 

work has been done in robotic mapping both for human consumption and for internal robotic consumption. 

Even if a mobile robot does not want to produce a map as an end product, it frequently must construct one 

to allow it to move about its environment in an efficient and safe manner. 2-dimensional representations 

are the most common type encountered due to the lower storage requirements and the simplicity o f the 

analysis o f the data in a 2-dimensional grid.

Graph-based approaches take the same spatial information about the environment as grid-based 

approaches, but store that information differently. Rather than dividing the environment into a set o f 

elementary spaces, the graph-based approach describes the world as a set o f  nodes and edges. The nodes 

represent areas o f  the environment that have a common occupancy characteristic. The edges indicate 

connectivity between such regions. There is no fixed formula for defining the regions contained within a 

single node o f a graph-based representation. A node describing a region o f unoccupied space can be split 

into two nodes where each new node describes a separate part o f the region previously defined by the 

single node. Figure 2 depicts the same environment utilized from the grid-based scenario, but as a 

collection o f spaces. The left portion o f the figure contains the same three objects but shows the free space 

as being subdivided into nine numbered regions. The demarcation o f the regions is arbitrary in this 

example. The edges o f the regions may coincide with faces o f  obstacles or they may indicate a change in 

altitude or surface material or the location o f  reference points in the floor. This subdivided version o f the 

environment can then be translated into the graphical representation seen in the right half o f  Figure 2. The 

edges in the graph depict the connectivity between the numbered free spaces in the environment. One can 

see that from region 3, for example, one can move into regions 1 ,2 ,4 , or 7 but one cannot move directly to 

region 6 unless one passes through some other regions first.

With the graph based representation, we work with connectivity rather than space occupancy. We 

can describe the ability to move directly from region S  into region D  by the following:

Move from S  to D  =  YES; if  there exists an edge from S  to D 2.

NO; otherwise

5
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Figure 2. Graph Based Mapping

The conversion o f the sensor data into regions is a more complex task than that o f dividing the 

sensor data into a grid o f  cells. More processing needs to be done at a very early stage to convert sensor 

information into the type o f data that can be stored in the graph-based representation depicted on the right 

o f  Figure 2. For example, edge detection is needed to find edges that are then linked to create region 

outlines. From these regions we then define connected areas o f  similar properties such as connected free 

space. With a grid representation, we must only determine occupancy of a grid element and store the value 

in an array. However, there are significant benefits to utilizing a graph-based map. As graph theory has 

been a field o f  research and application for some time, there is a wide array o f  solutions to problems related 

to graphs. Navigation is simplified greatly if  one can utilize a graph-based representation o f  the 

environment where one only needs to find a path along the graph to get from the current location to the 

desired destination. In a grid-based approach, more significant computational power would be needed to 

locate and implement a route to a desired destination. However, a graph-based map, while convenient for 

robot navigation and path planning, is inherently difficult for humans to read and comprehend whereas a 

grid-based map more directly relates to the way spatial data is normally presented to humans.

Our goal is to provide for a method o f constructing a more precise map utilizing mobile robots in 

unknown terrain. It is therefore important to discuss what affects the precision o f the maps produced. As 

already stated, a mobile robot mapping agent is a collection o f sensors, actuators and other physical parts. 

The sensors gather data about the environment and the mapping agents translate that information into a 

map. In the case o f  a stationary robot, all data is referenced to the center o f  the robot, for example, and as
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more sensor data is gathered, it is easy to reference the various data on the map because the geometric 

relationship o f  the robot and the sensors is known. With a mobile robot, we also know the geometric 

relationship between the various sensors and actuators; however, once the mapping agent moves, there is a 

new relationship between the sensors now and where they were before. Data collected with the sensors 

after the robot has moved must be treated differently from the data collected before the move. Figure 3 

illustrates this very well. As the robot moves a distance D from a starting location, the angle between the 

center o f the sensor and the far-left comer o f  the obstacle has changed.

Robot
after a move

Move distance, D

Robot

Figure 3. Effect o f  Robot Movement 

When the obstacle appears in the sensor o f the mapping agent the second time, there is a change 

in the location o f  the entire object as seen from the point o f view o f the sensor, the angle to the comer has 

changed from a  to p. Likewise, the distance from the object to the sensor has been reduced as the agent 

moved closer to the object. However the object has not moved, the mapping agent has. The sensor data 

collected by the robot must be integrated into the map, taking this into account. The mapping agent’s 

position in the environment is utilized for this purpose. The position o f  the robotic mapping agent 

provides a frame o f reference as the agent moves about the environment. If the position information 

maintained by the mapping agent were perfectly accurate, then the accuracy of the map would only be 

affected by the precision o f  the sensors and the mapping algorithm. The many mechanical and electrical 

parts interacting to move the mapping agent around its environment combine to cause a drift between the 

perceived position o f  the agent in the environment and its actual position. This drift comes from the 

tolerances in the electrical and mechanical components that make up the robot’s drive train, for example, as 

well as wheel slippage and other traction related problems as the robot moves around its environment. The
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mapping algorithm may have instmcted the drive train to move the robot forward 10.S cm, however the 

robot actually moved 10.4 cm forward. This would result in the robot’s perceived position information 

being incorrect after the move and as a result, any sensor data that is collected at that point would be 

referenced incorrectly relative to the previously collected data. The approach o f keeping track o f  one’s 

position based on knowledge about how far one has moved is called dead reckoning. The use o f dead- 

reckoning as the primary method for determining the mapping agent’s position is dictated by the fact that 

the mapping agent’s environment is unknown and as such there are no reference points or registration 

markers pre-installed to assist in determining position. The utilization o f  markers and aides may be useful 

in a laboratory environment, however they cannot be present when mapping in unknown terrain. As the 

robot moves around the environment, error creeps into the agent’s position information. As this error 

accumulates, the precision o f the map deteriorates. We will introduce a method o f storing the sensor data 

that is collected as the agent moves around that will allow us to easily correct for this error in position once 

it has been detected and measured. This will allow us to make corrections to the map data collected in the 

past, so called historical data, in such a way that the new map more accurately represents the true 

environment.

Before we go further into the details o f  error, let us examine some implementations of the two 

classes o f environment models as they apply to mobile robotic mapping. Table 1 briefly lists some o f the 

recent research in the area o f  robotic mapping along with key characteristics o f  the approaches utilized by 

the respective authors. Details about the way the works relate to our research will be provided in a later 

chapter.

1.2.1 Grid-Based Mapping

Using methods in the grid-based class, the environment space surrounding the robot is tessellated 

into a multi-dimensional grid o f  cells o f  regular size and shape. This spatial lattice o f elements represents 

the occupancy state o f  the small parts o f  the environment that each cell represents. The size o f  the cells is 

determined, in part, by the requirements o f  the completed map, such as detail level and feature size, but 

should be at least no larger than the smallest mapping agent The gathered sensor information is used to 

collect knowledge about occupied space and free space in the environment (Figure 1). The entire area to

8
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Table 1. Brief Overview o f Mapping Research

Authors Year Model Self Location Data Correction Key Attributes

Brooks 1985 graph dead-reckoning,
landmarks

Fading +good groundwork

Moravec,
Elfes

1985 grid Dead-reckoning,
Inertial

Only proposed Representation model, 
allude to concurrent 
programming

Elfes 1987 grid Dead-reckoning,
Inertial

• more advanced world 
representation

Ayache,
Faugras

1989 graph landmark
recognition

PDF models 
errors

-lines, planes, points

Elfes 1990 grid dead-reckoning,
inertial

error controlled 
by blurring

good framework

Borenstein 1991 grid • • Solely for obstacle 
avoidance

Leonard,
etal.

1992 graph Landmark
recognition

• -no self-location

Weigl et 
al.

1993 grid error controlled 
by fading

grid: sensors 

geometric: planning

Singh,
Fujimura

1993 grid • • cooperative multi-robotic 
system

Oriolo,
Vendittelli

1995 grid Dead-reckoning,
odometry

“ • dependent on a priori 
sensor parameters

Santos, et 
al.

1996 grid “ sensor specific 
neural net

fast and robust

Shatkay,
Kaebling

1997 graph “ probabilistic model for 
efficient path planning

Thrun, et 
al.

1998 grid&
graph

Dead-reckoning,
Landmark
recognition

probabilistic 
matching o f 
position and 
map estimates

probabilistic model for 
planning paths

excellent navigation results

-loaded a priori data

Arleo, et al 1999 graph Dead-reckoning,
Landmarks

combined local grid and 
global graph maps

-lacks detail o f features

-•-variable resolution grids

Davison,
Kita

2001 graph Landmark
tracking

probabilistic 
matching o f 
features

-complexity grows with 
number o f features tracked

no treatment o f  details of 
features, only their location
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be mapped is initially considered unknown but frequently assumed as unoccupied or free  and as the 

mapping agent, in our case a robot, travels through the environment, sensors detect obstacles that block the 

mapping agent These obstacles are considered solid, occupied space and this knowledge about the 

occupied and free space is transferred onto the multi-dimensional, tessellated data structure, converting 

some o f the free or unknown space to occupied space and verifying the free or unoccupied status o f  other 

cells close by. The grid-based approach attempts to fill the spatial lattice that is the map and model o f the 

environment by attaining complete coverage o f the environment such that each cell o f the space has been 

verified as being either empty or occupied through the use o f  a sensor.

Grid-based solutions to map storage are utilized in work by [Elfes-90] and [Weigl-93]. [Elfes-90] 

defines an Occupancy Grid where each element in the spatial lattice contains an occupancy probability, the 

probability that the cell is occupied. That work is based on the Certainty Grid system o f [Moravec-85], A 

stochastic sensor model is used; the density for a cell is defined as:

P(r|z) 3-
where p  is the probability that the sensor will report a range measurement o f r given that the actual distance 

to the obstacle is z. Elfes extends this to describe the state o f each o f  the elements in his map grid by:

P[s(Ci) = OCC\r] =
0,x<r,xec ,  4-
1,x = r ,r e  c,
1/2 , x > r , x e c j

where sO is a discrete state variable for cells in the grid and can take the values OCC, for occupied, and 

EMP, for empty. We thus express the probability that cell Ci is occupied, given that the distance to the 

obstacle is r. This makes intuitive sense as a range reading o f r indicates that all cells closer than range r 

are unoccupied, or have a occupancy probability o f 0, while the cell at the precise range reading, r, has an 

occupancy probability o f  1. All cells further away, that is behind, the range indicated by the sensor, have 

occupancy probability VS, since their occupancy status is unknown. A graphical representation is given in 

Figure 4 which depicts the probability o f occupancy over distances from the sensor to the range reported 

by the sensor and then beyond the range reported by the sensor.

10
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Distance

Figure 4. Ideal Occupancy Grid Sensor 

A Baysian estimating procedure is utilized to update the probability data for each cell where the 

conditional probability can be expanded as:

i =i

which results in

mm- 5.

JW C > O C C l r ] - * r | f f ) " OC^ ,( C |) " OCC1
6 .

as the formula for a single cell, C„ occupancy probability. These probabilities are then used to fill the 

elements o f the grid and the robot can utilize their values to make decisions on movement and navigation. 

The details can be found in [Elfes-90].

Weigl et al. [Weigl-93] utilize a grid-based approach for a part o f their solution to the path- 

planning problem. A grid is employed for the collection and aggregation o f sensor data but a graph model 

is utilized for path-planning. This association o f  obstacle representation to application is typical in the 

field o f mobile robotics. With [Weigl-93] being concerned with the problem o f navigation, a graph model 

is implemented to assist in the solution o f that problem.

Additionally, Weigl et al. addressed a symbolic-based representation, which represents higher 

level reasoning about the world by identifying objects, which is indicated to be cumbersome for path 

planning. Elfes also discusses an inference-grid model for his solution. There is great value o f such a 

labeled grid  in that it provides the benefits o f the grid-based map while allowing for the attachment o f  

valuable symbolic information that can assist in path planning and mapping.

11
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The grid-based class is a more direct representation o f  the data collected by the robot’s sensors 

than the geometric based class o f  methods, since the data returned from sensors conveys occupancy and 

range data for a section o f the environment visible to the sensor. This will become more apparent when we 

discuss the geometric class. While this class o f  approaches make the sensor data to map conversion 

computationally simple, due to the lack o f  any significant high-level processing o f the raw data at the 

initial acquisition stage, the process o f  navigation is made a bit more complicated by delaying the analysis 

o f the data which is required for navigation until such later time as it is needed. The higher level 

processing o f  the map data, which is needed to assist in navigation and path planning by identifying 

corridors and paths from locations to goals, is a separate computational model that resides at a higher level 

o f data abstraction within the robotic system and as such is addressed separately. As we shall see, 

approaches in the geometric class, by the definition o f the class itself, perform some o f the higher level 

processing on the sensor data immediately, allowing for a more direct application o f path planning and 

navigation algorithms, as we shall see below.

One o f the primary advantages to the grid-based class o f  environment modeling over the graph- 

based class is that it facilitates the use o f a heterogeneous sensors on a robot, all o f whose raw data can 

more easily be integrated into the common environment database. This is due partly to the very basic 

nature o f the data that is stored in this type o f  model. When we divide the environment into a grid of 

zones, each o f  which is computed to be occupied or vacant, we end up recording a very basic physical 

characteristic to which most sensor types can relate. Ranging sensors, some o f the most common and 

inexpensive sensor used in mobile robotics and including varieties such as the ultrasonic sonar ranging 

sensors or laser range finders, obtain distances to the closest object in a given direction. From this we can 

directly see that all o f  the grid cells between the sensor and the distance at which an object is detected are 

empty, whereas the cells at the precise distance measured from the sensor are occupied. Contact and other 

tactile sensors give us similar information about empty and occupied space. The basic data that we need 

can be extracted quickly from sensor readings. In contrast, the information needed in a graph-based 

environment model is not so easily generated from such ranging sensor readings. To incorporate comers.
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edges, nodes, and points into a graph model, we need to first extract those abstractions from the raw sensor 

data, and this requires additional computational work.

1.2.2 Graph-Based Mapping

The second class o f  environment models is the graph-based class o f  approaches. The graph-based 

class can also be described as a geometric approach as the information stored within this type o f 

representation captures geometric relationships in the spatial information o f the environment. The grid- 

based class o f mapping describes the unoccupied space o f  an environment through the collection o f  sensor 

data and exploration by storing geometric representations o f  the edges o f occupied space. An alternate 

format is to geometrically represent the paths or edges o f  unoccupied space, such as was depicted in Figure

2. This is just an inverse representation o f  the same basic knowledge and transformation from one format 

to the other is possible; basing the discussion on one o f the formats does not affect the results or 

applicability o f those results. The environment is first considered occupied or non-navigable in the 

unknown stale. Sensor data is then collected which confirms the presence o f free, or unoccupied space, 

and this free space is then modeled geometrically in the map as polygons through sets o f edges and 

vertices. Obstacles or occupied space are also modeled by polygons constructed from edges and vertices 

and free travel within the map is permined along these edges allowing unhindered movement by mapping 

agents from vertex to vertex.

This method is more directly suited for navigation since heuristic and pre-defined models have 

been employed to convert raw sensor data into geometric models o f  the world at the initial stages o f data 

collection. This more abstract data can frequently be directly used by path planning and other high-level 

algorithms, without the need for significant pre-processing. It is thus clear that the problem o f navigation 

is more easily addressed with this class o f  environment model. The problem o f gening from point A to B 

is simply the problem o f finding a path in a graph from vertex A to vertex B along the connected edges. In 

fact, much o f the navigation and mapping using this method is based upon graph theory and as such has a 

good base o f algorithms and research to draw upon since these areas are well understood [Leonard-92, 

Ayache-89, Brooks-85, Tsubouchi-96].
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Leonard, Durrant-Whyte and Cox [Leonard-92] chose to represent the environment o f their robot 

as a collection o f geometric features, each o f  which has attached to it an uncertainty measure and a 

credibility measure. As the robot moves about its environment, predictions arc generated about the 

geometric features stored in the map and if there is agreement between the predictions and the sensor 

information gathered by the robot, the credibility measure for that feature is increased. If a new feature is 

discovered, a new entry is created. However, if predictions about geometric features are not observed by 

the sensors, the credibility measure o f  those predicted features is reduced. Thus, as the robot moves about 

its environment, it encounters three distinct states: matched predictions, unobserved predictions, and 

unpredicted observations.

One advantage to utilizing the graph-based approach of map storage is the simplicity o f applying 

reasoning to the stored map. By reasoning, we mean the interpretation o f relationships between elements 

in the map to be able to form conclusions that give us new information about the environment we are 

mapping. [Leonard-92] describes a basic system for dealing with dynamic objects in a map by comparing 

predicted objects with expected objects. Dynamic objects are obstacles that are not stationary. They can 

occur as sensor glitches, which are not repeated or by other objects moving through the environment. We 

cannot necessarily determine the difference between a sensor glitch that gives us an erroneous distance 

reading from a distance reading we take off o f an object moving past the sensor. In such cases, we must 

treat all such readings identically. As a result, we see that the algorithm from [Leonard-92], depicted in 

Figure 5, can be beneficial for handling dynamic objects in a mapping environment, regardless o f the type 

o f map representation that is chosen. We see that unexpected objects are entered into the symbolic map but 

subsequent lack o f  observation o f those objects, results in a reduction o f their credibility until the object is 

forgotten.

Ayache and Faugeras [Ayache-89] utilize a 3-dimensional environmental model and capture 

sensory data via passive vision sensors. They utilize vision sensors to convert observed pixel values in the 

camera data into models o f 3D objects such as lines, planes and cylinders. They address a key method that 

can be used to detect an error in the robot’s perceived position and correct that position information by 

recognizing spatial features detected at different times and locations as being the same physical object If
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we can determine that an object found at location A is the same object which is known to be in location B, 

then we can determine the amount o f  error in the robot’s position estimate.

for (all predicted and observed measurements)

{
if observed = predicted

{

then increase credibility of predicted target

)

else if predicted is not observed

f

the decrease credibility of predicted target

}
else if observed is not predicted

{

then insert new target and begin increasing credibility 

}

Figure S. Leonard Map Building Algorithm 

Brooks, o f MIT's famous AI Lab, proposes that the environment o f a mobile robot be represented 

by relational map which is rubbery [Brooks-85]. Brooks proposes some algorithms and also presents only 

computational problems without supporting algorithms, but the concepts are worth noting. The 

environment is represented as a collection o f  freeways, which represent unoccupied space that is a zone 

free o f  obstacles down which a robot can move collision-free. Additionally, Brooks defmes meadows as 

convex regions o f free space which do not fit into the straight-line motion areas which freeways describe. 

Freeways are in fact, merely specific forms o f  meadows that are o f  dimension and shape as to be utilized 

solely for motion between meadows. He describes the notion o f  an uncertainty manifold, a region within 

which an object is located relative to some fixed coordinate system. As a robot moves about the 

environment, the uncertainty about its position, relative to the position it had at the origin, increases and 

this increases the uncertainty manifold surrounding the robot It is this area o f uncertainty surrounding a
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robot which determines its exact location relative to the fixed coordinate system from its origin, which we 

will call an uncertainly sphere. The uncertainty sphere is addressed in a later section in detail.

[Tsubouchi-96] supplies a good survey o f mapping techniques in mobile robotics and also 

classifies mapping approaches into the same two classes, calling them grid  and feature drawing. We direct 

the reader to this work for a solid overview o f  the issues surrounding mobile robotic mapping.

The benefits o f  graph-based approaches are that they are well suited to the application o f  existing 

graph solving algorithms and thus graph-based maps are excellent models o f  the environment for path 

planning applications where a mobile robot must move from point A to point B in an efficient and rapid 

manner. However, the mapping process is a  bit more complicated at the early data collection stage as the 

robot must convert its sensor data into the geometric models which are then combined with the existing 

geometric map to construct a new geometric map containing the data just collected. This requires basic 

processing to extract such geometric features such as points, lines, surfaces, and regions at a very early 

stage, well before a map o f  the environment is constructed. To accomplish this, additional computing 

resources and consequently, more time, are required. If mapping for human use is not a mission priority, 

then the extraction o f high-level features can be accomplished more quickly, for example in hardware or 

parallel software modules and immediately presented to navigation systems and subsequently forgotten. 

Since long term memory, the basis o f mapping, is not needed, and as such, a method for maintaining 

coherency o f  data in a map is thus unnecessary, the higher level geometric representations can be discarded 

once they have served their immediate navigational purposes and recomputed when once again needed. 

Since our goal is to produce maps usable by human beings and as such, require long term memory on our 

robotic mapping agents, the use o f such basic geometric approaches is not an option.

This does not immediately rule out the use o f  all graph-based class representations, however, 

since there are geometric methods that incorporate the higher level geometric features into a global 

geometric environment model and thus maintain a long term memory. These techniques can be used to 

produce human readable maps. [Horst-96] provides a mechanism for converting between a certainty grid 

representation and a object-boundary curve representation o f the spatial occupancy o f the environment. 

We can utilize these techniques to convert our grid-based model into a graph-based model for the purpose
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o f  navigation or any other higher level function that may be desired if the system is expanded. However, 

as our goal is to produce human-readable maps and not to provide for efficient navigation and object 

recognition, we feel that utilizing a grid-based environment model is most effective for the purposes o f this 

work. Now that we have selected a method o f representing our environment and map, let us examine the 

problems we encounter in trying to build an accurate map.

1.2.3 Combined Grid-Graph-Based Mapping

It should be noted that there is research that attempts to utilize both the grid and graph based 

approaches, combining them to draw upon their strengths and minimize some o f their individual 

weaknesses. Work by Sebastian Thrun [Thrun-98] developed a system utilizing neural networks to 

interpret sonar data into occupancy values that were then combined into local and then a global grid-based 

map o f the world. This global grid based map was later interpreted and a graph-based map representation 

was built to use for navigation. Arleo, Millan, and Floreano [Arleo-99] have also done some work in this 

area where they generate local grid-based maps and utilize them to construct global graph-based maps that 

they call topological maps. The purpose is navigation and for this the graph-based approach is ideal, but 

the graph representation is arrived at via the use o f  local grid-based maps and the use o f  variable resolution 

on those maps to reduce the resource demand associated with grid-based approaches. Their work is 

somewhat limited in the constraints that all obstacles be flat-sided and aligned with the x-y coordinate 

axes. The primary motivation for constructing the graph-based maps is the reduced resource requirements 

o f such a world model and the efficient path planning and navigation that can be done with the topological 

representations.

1.3 Imperfections in Mapping

The primary enemy to any attempt at creating a precise map utilizing mobile robotic mapping 

agents is uncertainty in collected data. We will also call this uncertainty error because the uncertainty in 

the collected data produces results that are not in agreement with the reality o f the environment and this 

difference between the real and the perceived is usually described by the term error. [Leonard-92] echoes 

that philosophy by stating that the fundamental problem in robotic map building is that there is error in two 

elements: the origins o f  measurements and the values o f  those measurements. The values o f  those
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measurements are the results returned by sensors and actuators. The origins refer to the registration o f the 

information contained in the measurements to the global map, which must have some agreed upon origin. 

Leonard et al. suggest error associated with sensor values is well understood and can be handled in the 

analysis o f the data via statistical techniques such as covariance matrices or Kalman filters. The error 

associated with registration, that is the robot's ability to determine its own position accurately and thus 

integrate newly collected sensor data correctly into a map, is not so easily treated. [Brooks-85] indicates 

that all sensors and control systems o f a mobile robot have errors associated with them, some o f which can 

be dealt with via calibration o f sensors and actuators, however some significant component o f error always 

remains and must be addressed. Brooks refers to an effort by Chatila and Laumond [Chatila-85] that 

utilized very elaborate techniques to track accumulated error but was still forced to break up detected 

objects into smaller parts and allow those parts to adjust position relative to one another. This underscores 

the significance that error control has in mobile robotics and why it is important in our effort o f precise 

map construction by mobile mapping agents.

Irrespective o f which type o f environment model is used, we will have to deal with error in our 

map. Consider error to be that quantity o f  a recorded object which is the difference between what was 

recorded and what the true condition is that we are attempting to represent. For example, if we use a 

ranging sensor to compute the distance between two points, the error is the difference between the 

measurement we recorded from the sensor and the actual physical distance between those two points. 

Similarly, the error o f a map o f a building is, in a general sense, the difference between the actual shape of 

the building in the real world and the shape that is reported on the map we construct. These errors can be 

expressed using a variety of terms such as imperfections, variances, offsets, deviations, variations or noise. 

By whichever name you call it, it is a departure from the absolute truth for a particular representation, a 

reduction in the preciseness o f our map. We must address error in order to provide the most accurate map 

possible. As a consequence o f living in the real world, we make no attempt to produce the perfect map and 

it is understood that we must always endure some degree o f error in our maps. It is the degree or magnitude 

o f the error contained in our map that we wish to control For mobile robots moving around in an
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unknown environment and taking readings with various sensors o f  various features, obtaining precise 

information about the sensor readings and the robot’s position poses a major problem.

As sensors are used and they interact with their environment, their ability to report consistent 

readings o f identical phenomenon can be compromised. Similarly, as a robot moves over longer distances, 

its ability to determine its position within a global coordinate system, for the purpose o f registration of 

recorded sensor data, also becomes more difficult. This is particularly true if a robot has to proceed 

through several sequences o f  movements to reach its current position. It is precisely this kind o f  error that 

we will be treating in our research. By allowing for the presence o f this type o f error and trying to correct 

for and limit its influence on our final map, we will strive to make our mapping product more accurate and 

more consistent and reliable in any type o f  environment, not just restricted to the man made world of 

laboratory rooms and hallways.

1 J . l  Two Forms of Error

As we try to recognize and limit the effect o f  error that naturally occurs in both the initial sensor 

readings and the final map constructed by mobile agents moving in a natural terrain, it is necessary to 

understand the form and origin o f  this error. We group sources o f  error into two categories: systematic and 

stochastic. [Brooks-85] refers to them as systematic and random. We are treating only error in the 

readings and data reported back by the systems o f a mobile robot and not dealing with the mishandling of 

any data that may be reported, such as echoes from sonar sensors. Some research has been done to handle 

that form o f error [Leonard-92] uses credibility measures to eliminate incorrectly interpreted readings. 

Stochastic error is the ever-present error that we encounter. It is accepted that it cannot be eliminated 

[Brooks-85]. It is present because we are using real rather than ideal sensors in a real rather than ideal 

world. In any real environment with which we interact, there is the presence o f  this stochastic error, a 

basic noise in any measurements we take and in any interaction we make. We know that there is no way of 

e liminating it from our sensors, motivators and other components. It is, however, the very nature o f the 

stochastic error that helps us in controlling it. By its very definition, it is random and its effect upon the 

mapping process can be ignored so long as it does not increase in magnitude to such an extent such that the 

sensor readings we obtain no longer provide us with data that can be extracted from the stochastic error. If
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we have a sensor with a stochastic error o f  ±5 units, and the sensor is attempting to read quantities on the 

order o f  1,000 to 1,000,000 units, then the stochastic error is not a serious problem initially. If we are 

instead trying to measure quantities o f  2 to 10 units, then our sensor design is obviously ineffective and the 

stochastic error renders our readings meaningless. The random nature o f this error guarantees that it has 

no bias (zero mean) and it should thus remain within some bound. If it is discovered that there is a non

zero mean, calibration can be done on the sensor to bring its error to a zero mean.

To illustrate the concept o f  stochastic error, consider a wheel encoder on a robot's propulsion 

system that is used to feed back to the navigational system information about how far the robot has moved. 

The navigational system executes a movement along a path and the encoder returns a distance that the 

robot has moved. Now, assume that to the value returned by this encoder, we always add a number, K. K is 

defined by the flip o f a fair coin and is equal to -5 if the flip produces a head and a +5 if  the coin flip 

produces a tail. The coin’s influence is our stochastic error, though simplified. Given that we have a fair 

coin, the encoder will return a distance traveled that is S units too short or 5 units too long for each 

reading. Over a significant number o f  readings, these stochastic components will cancel each other out as 

each o f the two variations occurs with identical likelihood. On a statistically long enough journey, the 

error in distance traveled should be within ±5 units o f the desired distance. The only concern we have is 

whether the magnitude o f K, S in this case, is too large with respect to the values we expect to receive as 

readings from our wheel encoder. If, for expected traveling distances, the wheel encoder returns values in 

the range o f  5,000 to 50,000, then the stochastic error is o f  little concern to us - its influence on sensor 

readings is on the order o f 0.1%. If the encoder is expected to return values o f 3 to 50, however, then we 

have an obvious problem because we cannot extract any useful information from our sensor readings in the 

short ranges and only very inaccurate readings at best (10% error). O f course, the significance o f  any 

stochastic error that can be treated as acceptable varies from system to system, sensor to sensor and across 

applications. The requirements o f our mapping job, through such parameters as desired minimal feature 

size o f  the final map and speed o f  map construction, for example, will guide us in selecting not only sensor 

and actuator components for our mobile robots but also what methods are used to utilize them. If very 

precise mapping o f a small location is desired, we can install very accurate sensor and motivator systems
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which have a very low inherent stochastic error and also use computational techniques such as measuring 

features repeatedly and averaging readings, to keep the stochastic error content in our map to an acceptable 

level. If we cannot afford the time required to take multiple readings and can allow for a greater degree of 

stochastic error, then we can forgo the multiple readings and still get results in faster time with slightly 

degraded precision. The Global Positioning System (GPS) is a good practical example o f these principles. 

With a single receiver, a user can drive along a road and get his location information to within some error 

factor. If that same user stops the vehicle and remains stationary for an amount o f time, the readings 

obtained from the receiver can be averaged and we obtain a more precise position with a reduced error 

factor. Finally, if  differential correction is used, even better results are obtained. In differential correction, 

a fixed base station o f known location to a high precision is utilized in conjunction with the mobile 

receiver. Since the base station knows its position precisely, it can compute an error component in the 

signal the GPS receivers are receiving. As this same error is present in the mobile receiver, this correction 

information can be sent from the base station to the mobile receiver, which can immediately apply it to 

reduce its position uncertainty on the move.

Systematic error is that error component which causes the most trouble to a mobile robotic 

mapping system and it is this error we will address. Systematic error finds its source in the very nature of 

the tools and methods we are using to perform our mapping operation. Range sensors, for example, can 

suffer from temperature coefficient effects that cause a drift in their readings as they heat up with 

prolonged deployment. Drive systems on a mobile robot traversing unknown terrain will encounter wheel 

slippage and other traction related issues which result in the robot physically moving a different distance 

than that which it was instructed to do and also a different distance than which its feedback sensors tell it

Figure 6. Error Accumulation: Growth o f the Uncertainty Sphere
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that it has moved. The magnitude o f  such systematic errors can be partially controlled by manufacturing 

and design tolerances o f  the components and systems on the robot and the computational algorithms 

employed to activate the sensors and motivators, record the data, and evaluate its meaning. Unlike 

stochastic error, systematic error can be biased and is not bound in the same way. The impact such 

systematic error has on the map a mobile robot builds can increase as the mission progresses until its effect 

grows to such an extent that the resultant map’s usability is severely reduced. As stated earlier, the ability 

o f  a robot to know its own location in a global coordinate system is serious problem, particularly if the 

robot is relying solely on dead-reckoning via wheel encoders to locate its position. With each movement 

and with greater distance traveled, the precision o f the positioning data for such a robot is reduced. The 

systematic error component o f  the position data is increasing because o f  not only the built in tolerances of 

the propulsion system and encoder feedback but also because such systematic error is incorporated into the 

position data with each position update. This cumulative effect o f  a biased systematic error can be 

devastating to the mapping proficiency o f a mobile robotic agent if  it is not addressed.

Figure 7 shows the drift that can occur as a result o f the accumulation o f  error in the agent’s 

position information. Indicated is the difference in the y dimension between the map the agent constructed 

and the world model to which it is compared. The mapping agent is indicating the bottom of

Figure 7. Mapping Drift

the object is much further up on the map than it actually is. The customary representation o f error and 

uncertainty is via a Gaussian error model [Elfes-90, Leonard-90], whereby an error component o f mean 0 is 

added to an ideal sensor reading. The basis for this assumption is the fact that the error that is affecting the 

data that is being recorded on the map is in fact the combination o f  a wide range o f  errors from the

I
T Drift in y dimension.
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physical tolerances o f the mechanical and electrical components and the traction and environmental 

conditions of the mobile robot. The Central Limit Theorem tells us that a collection o f such random 

elements converges to a Gaussian.

1.4 Cooperation in Mapping

Cooperation among robots has become an increasingly interesting research topic in recent time. 

With most of the research in robotic mapping concentrating on singular mobile robots performing the 

mapping operations [Borenstein-91][Weigle-93][Elfes-86][Santos-96], it is a worthwhile effort to explore 

the implications o f using a multiple mobile robot system working cooperatively to solve our mapping 

problem. In fact, a multiple robot system has some inherent features, which lend themselves well to 

solving some o f the very problems faced in mobile robotic mapping. Some basic research has been done in 

the use o f multiple mobile robots to map unknown environments [Singh-93]. Details about the methods 

used in the above mentioned works will be given in the next chapter.

By the very nature o f  a collaborative effort o f many mobile robot mapping agents, we can address 

some o f the core problems o f mobile robotic mapping with new tools. Speed and reliability are key 

concerns with any autonomous robotic system and as they are for the task o f mapping. With many robotic 

agents working in concert to attack the problem at hand, the terrain can be covered more quickly than 

would otherwise be possible with a single robot Reliability is also greatly improved through the redundant 

nature o f a multiple robot system. The failure o f any single sensor or mapping agent will not doom the 

entire mapping mission to failure. The faulty component can simply be removed from the computational 

system and mapping can continue. Beyond this basic reliability improvement due to the number o f robots 

applied to the task, we have the added advantage o f taking into account the heterogeneous nature o f  the 

cooperative, multi-robot system. It is by no means required that each robot in the mission be identical. It 

can be quite advantageous to vary the configuration o f the robot agents used as the mapping mission crew. 

With such a heterogeneous system, not every robot needs the same set o f sensors, so a wider array o f 

sensor types can be deployed without expanding the size o f  the mission. Application or target specific 

configurations o f  mobile robots, such as small, low-light sensing robots or larger and faster robots, are o f 

great value in providing for a  mission that will result in a more complete map without the danger o f  terrain
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that could not be mapped due to robot configuration conflicts with the environment in which it was 

operating. If a standard robot encounters an area that is too narrow for it to enter, then it may not be able 

to explore the region beyond, but a smaller robot can be called in and assigned this exploratory task. Such 

a heterogeneous multi-robot system could continue on the mission where a single robot or even a 

homogeneous robot system would fail to acquire mapping information from the region beyond the 

restrictive opening.

The benefits o f a heterogeneous, cooperative, multi-robot system for mapping are clear, however, 

the complexity o f such a system introduces new problems that a mapping technique should address. 

Typical distributed system problems such as communications, data integrity and data sharing, task 

allocation and management, and resource management, as they apply to a mobile robotic mapping system, 

must be considered. This work will not explicitly address these issues in our development or 

experimentation but the issues should be kept in mind in designing and deploying a real world system.

1.5 Scope of this Dissertation

The goal o f  this work is to develop a robust, reliable and accurate autonomous robotic mapping 

system suited to perform in unknown terrain. We want a mapping architecture that will function outside of 

the laboratory environment while still providing us with a very accurate map o f  the explored terrain. The 

mapping product is targeted at human readers and not for robot consumption. We will develop a system 

which can utilize the inherent advantages o f a distributed and heterogeneous set o f  mobile agents to 

address some o f  the major concerns o f  robotic mapping and make that mapping system robust and produce 

a more precise result. To accomplish this goal we will need to develop several tools to both simulate the 

robotic environment for testing and evaluation purposes as well as develop a  new method o f storing and 

constructing the robot maps. We also develop a technique for applying correction to our maps through the 

new storage method. Although we describe a mapping architecture, which will contain many parts, our 

development and simulation will not utilize every feature described in the system.
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1.6 Organization of this Dissertation

In the next chapter, we will review major research that has been done in the area o f robotic 

mapping by others in the recent past and comment on the strengths and weaknesses o f  those projects in 

terms o f solving the problem we are addressing here: generating accurate, human-readable maps 

effectively. In the subsequent chapters we will thoroughly define and describe the robot mapping 

architecture we are proposing and explain how that architecture can take advantage o f data storage, 

distributed systems o f robots, and heterogeneous robot groups to construct maps. We will then go into 

detail on the data-storage method we are utilizing. We will develop an approach for applying correction to 

the map stored with our new method. Subsequently we will describe a simulator based experimental 

system used to test the effectiveness o f the new data-storage system and also to discuss and analyze the 

results obtained from that experimentation. We will test a simple and more complex and cooperative 

mapping mission utilizing the theories developed. We will also discuss the aspects o f the robot mapping 

architecture we are proposing which we have not tested experimentally. Finally we will address the 

contributions o f  this work and future research directions which might be taken, based upon this work.
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2. Existing Methods of Robotic Mapping

2.1 Methods o f Robot Map Construction

As advances in technology have allowed the application and construction o f robotic systems that 

were previously prohibitively large or expensive, the field o f  robotic mapping has grown significantly. In 

the recent past many researchers have developed results which have furthered the scope o f knowledge in 

this area significantly [Brooks-85] [Elfes-86] [Elfes-90] [Leonard-92] [Oriolo-95] [Singh-93]. The 

challenge we face requires the investigation o f several problems that have been addressed in various 

research efforts. Before we present our proposed methodology, let us examine the works o f  other 

researchers as they relate to our effort.

In the field o f robotic environment modeling, there has been much work, however the aim of 

acquiring a model o f the robot’s surrounding environment is not always for the purpose o f  mapping. Some 

systems have been developed with the expressed purpose o f being able to navigate the surroundings 

without any interest in producing a map at all. Similarly, mapping methods developed have frequently 

been designed around a specific type o f sensor, or at least been tested with a limited set o f sensor types 

available and tended to focus on solving problems inherent to that sensor technology. In the following 

section, we will classify each o f these methods based upon some criteria which we feel are important. A 

brief overview is provided in Table 2 and Table 3 later in this chapter, and for the sake o f  readability, we 

have divided the set into two groups based upon the environmental model the various approaches 

employed.

A significant contribution was made by the work o f Alberto Elfes and Hans Vloravec at Camegie- 

Mellon University (CMU) [Moravec-85][Elfes-87][Elfes-86]. They developed the certainty grid  method 

o f representing an environment based upon the probability that it was occupied and how certain they were 

o f  that statement. This approach was later refined into the occupancy grid  representation by [Elfes-90]. 

Utilizing the occupancy grid  model, the environment in which a mobile robot operates is divided into a 

multi-dimensional field and statistical estimates representing the probability o f occupancy and the certainty 

o f  that information fill each cell in that spatial lattice. The model was described in Chapter 1 and depicted
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in Figure 4. A probability is computed for each cell based on the sensor reading obtained from the robot. 

Unexplored regions are depicted with an occupancy probability o f  O.S, being equally likely occupied and 

vacant. Correction o f  error was only proposed in the early work but in [Elfes-90], error was addressed via 

a blurring technique, which decreases the certainty o f  mapping from readings based upon deteriorating 

position information. As the position becomes more and more uncertain, readings are integrated into the 

map with more uncertainty resulting in any effect they have on the map being less significant than readings 

taken when the robot’s position was known with higher certainty.

Borenstein and Koren [Borenstein-91], at the University o f  Michigan (UM), did some excellent 

work in extending an idea developed at Camegie-Mellon (CMU) by Moravec and Elfes to describe the area 

that a robot can sense. The sensed environment is described as a certainty grid  (CG), an array filled with 

certainty values (CV). which represented the probabilistic indication that the area o f  the real world 

corresponding to that CV was occupied or not occupied. While the CMU work updated the values o f  the 

CG that lie along the arc defined by the reading o f a sonar sensor’s range result, the UM effort focused on 

only updating that part o f  the CG which lies on a line segment immediately in front o f the sensor. The 

certainty grid maps that were generated were utilized directly by obstacle avoidance procedures to assist 

the robot in navigating around its environment. This approach works well for obstacle avoidance and 

allows the robot to adjust the level o f steering to the probability that an obstacle will be avoided, however 

the map constructed would not have the high definition o f features we would like to produce for human 

interpretation.

Kenneth Basye wrote a dissertation in 1993 on a map construction framework [Basye-93]. In it, 

he described three basic aspects o f the map construction problem: 1. The Environment, 2. The Agents, and 

3. The Tasks. Each o f  these components require their own investigation and handling to properly solve the 

mapping problem. In analyzing these three components we come across two trade-offs: timely work and 

uncertainty. We want to complete the task as quickly as possible, but in increasing the work rate, we 

inevitably increase the uncertainty in the accuracy o f the work we do. Basye approached the mapping 

problem utilizing a grid-based approach. A polyhedral-based (graph-based) world model was considered, 

but the problem o f implementing uncertainty in a geometric representation as well as the overhead in
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integrating new sensor information into such a model made that approach unattractive. With the grid- 

based mapping technique, one could cheaply acquire data for the map by directly mapping sensor readings 

without significant data processing. One could also easily implement uncertainty representation and new 

information could quickly be integrated and old information updated. We agree with Basye’s assessment 

o f the strengths provided by the grid-based approach.

M. Weigl [Weigl-93] addressed grid-based mapping utilizing ultra-sonic sensors specifically. 

They employed grid values as being either occupied or empty but maintained an uncertainty factor related 

to each cell’s validity. The approach is similar to the certainty-grid and occupancy-grid techniques. Each 

cell’s value is governed by the rule

h f + h 0 + h u = m  i-

where the factors represent the probability o f  being free  or occupied (hr or ho) and the uncertainty (hu) in 

that interpretation. An uncertainty value o f 100 implies that no information is known about the state o f the 

cell; the area has not been explored. As the mapping agent explores the environment and sonar readings 

are incorporated into the map, a lower uncertainty is given to readings on the axis o f the sonar beam and a 

higher uncertainty to those cells on the edges o f the space covered by the sonar beam. This research 

underscores the strength o f the grid-based representation’s utilization in mapping. Additionally, Weigl 

also acknowledges the partitioning o f environment representations, though into three groups: symbolic, 

vector-based, and grid-based. Vector-based corresponds to what we call graph-based. Symbolic is 

described as referring to objects by their names, their attributes or their topological relations. While it is 

possible to extract feature knowledge from maps to be able to draw conclusions about attributes and 

topological relations and then assign those features names, we do not feel that a symbolic representation 

can exist on its own without either a grid- or graph-based representation underneath. This supports our 

interpretation o f  two types o f  environment representation: graph- and grid-based.

Singh and Fujimura did interesting work at Ohio State University in 1993 [Singh-93] that 

addressed the issue o f  cooperative solutions to mapping using a set o f more than one robot. They outlined 

an algorithm for exploring that allowed the assigning o f tasks to those mapping agents that would be able 

to accomplish the task where others would fail. This was based on the idea that all o f the robots in the
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team were not o f the same size and as adjacent obstacles were encountered, it would be possible that larger 

robots could not fit between these obstacles to explore the regions beyond. The limitations o f this work 

were that it made assumptions on the simplicity o f  the environment and the total lack o f error in collected 

data or communications between agents. As a result, there are concerns about their algorithm with regard 

to its ability to operate quickly due to communications requirements. This concern will be addressed in the 

next chapter when we discuss our approach to cooperative mapping. They also utilized a grid-based 

representation o f  the environment.

Oriolo, Vendittelli and Ulivi developed a method similar to occupancy grids in [Oriolo-9S]. They 

also focused on ultra-sonic sensors identifying three primary sources o f  error from using these sensors. 

First was error in the measured distance due to the tolerance o f  the components o f the sensor itself. This is 

the type o f error that most frequently comes to mind when imagining error resulting from the use o f a 

sensor. The second form o f  error was related to the angle o f reflection o f the sonar beam as the beam will 

not reflect as well further out from the centerline o f the sensor. This leads us to the third form o f error -  

that resulting from false reflections where a sonar echo returns to a sensor after having bounced off of 

several objects and would lead to an incorrect range conclusion. While we are not dealing with the details 

o f actual sonar sensors and their related problems and solutions in our work, as we are using a simulator 

for our experimentation, it is still important to recognize the additional work that needs to be done to 

interpret sensor information before it can be translated into data that is placed on a map. The approach 

used for computing the probabilities o f  occupancy and vacancy varied slightly from [Moravec-8S]. Oriolo 

et al. computed probabilities that would slowly ramp up close to the range reading obtained from a sensor 

and then maintained that high occupancy probability past the range reading, ramping it back down. This 

gives a wider pallet o f probability values rather than the discrete 0, Vi and 1 values generated by the 

certainty-grid approach [Moravec-85]. Oriolo et al defined their occupancy probability as follows:

0 0 < / > < r - A r  8-
/

/ 0(P.r) = 1*0 ~~T~ r - A r £ p < r

p > r  + Ar
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1 -
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where f a is the probability that a cell is occupied and r is the sensor range reading, p  is the distance from 

the sensor, k„ is a constant corresponding to the maximum value attained by the function and dr  is half the 

width o f the area considered proximal to the arc o f  radius r. When compared with the implementation 

from [Moravec-85] (discussed in Chapter 1):

/J[5(C,) = OCC|r] =
0, x < r ,xe  c,
1,x = r ,re  c, 
1/2,x >r,xe  c,

we can see the subtle difference in how probabilities are assigned, especially past the range indicated by 

the sensor. While [Moravec-85] treats these regions as unknown, or 50/50 chance o f  being occupied, 

Oriolo, et al treat spaces past the sensors reading as probably not being occupied. Both interpretations 

have merit depending upon how large objects are considered to be.

Santos et al [Santos-96] develop a method o f constructing maps local to the mobile robot that are 

utilized exclusively for navigation within the space and not for constructing maps of the environment. The 

local maps are computed quickly and as needed and provide a view immediately surrounding the robot that 

is then used to perform safe local navigation. The idea is to integrate this system into a larger navigation 

architecture and to have the robot safely move from location to location based on some global scheme. 

The benefit o f the mapping system is it is very fast in acquiring data and constructing a local map but as its 

sole purpose is navigation, there is no application o f the technique to our goal of constructing a global 

environment map.

Sebastian Thrun developed a combined grid-graph solution that constructed local grid-based maps 

and built a global grid map o f the world from those local maps [Thrun-98], The global grid map was then 

used to construct a graph-based version for navigation. Thrun et al [Thrun-98b] developed and later 

deployed a navigational system that constructed grid-based maps after a human operator escorted the robot 

by hand through its environment and indicated the location o f  significant landmarks. The system was 

deployed in a museum to act as an interactive guide to physical visitors and as a tele-operated guide to 

internet visitors and performed navigation successfully over 18 km o f  travel. The a priori knowledge 

requirement and navigational focus does not help our exploring o f  truly unknown terrain for map
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construction, but the successful deployment o f the system demonstrates the usability o f  a grid-based 

approach in robotic map construction, even for navigation.

With respect to the graph-based representations o f  the environment, we discovered that the 

research focused almost exclusively on navigation as the problem being solved. This is understandable as 

we have already stated that the graph-based model is well suited for solving path related problems and not 

particularly well suited for integrating sensor data into a maintained long-term map. Leonard, Durrant- 

Whyte and Cox [Leonard-92] addressed the mapping problem to the extent that it pertains to navigation. 

They track the location o f  features o f the environment and compare the perceived location o f these features 

with their predicted location based on past observations. If a feature is sensed at its predicted location, 

then the credibility measure associated with that feature is increased. On the other hand, if  a predicted 

feature is not sensed, its credibility measure is reduced. This technique was described in Chapter 1 and 

Figure S. While the environment representation is not suited for sensor data integration or human reading, 

the results o f  [Leonard-92] do provide a solution for the problem o f addressing dynamic objects in the 

environment. As objects pass through the environment, they are detected by mapping agents, but should 

not be registered as static obstacles. Utilizing the credibility updating methods o f  Leonard et al, we can 

allow dynamic changes in the environment to take place as the credibility o f any moving obstacle will be 

very low at each location where it is encountered, compared with static obstacles, which will have much 

higher credibility factors based upon repeated detection at the same location. The solving o f the dynamic 

object problem is critical to any mapping architecture intent on being employed in unknown terrain.

Rodney Brooks o f the MIT Artificial Intelligence Lab has done some fundamental work in 

robotics research and describes issues related to mapping in [Brooks-85]. While Brooks indicates that 

grid-based approaches are not usable for robots intent on performing many useful tasks in an environment, 

do to the 2d projection o f the 3d world into a plane, he does provide some valuable insight into other facets 

o f  robotic mapping. Brooks echoes the notion that robotic mapping is faced with two forms o f error 

systematic and stochastic and that while some techniques exist to deal with these errors, there are limits to 

what can be accomplished with calibration for compensating for a detected systematic error, for example. 

Even with elaborate error tracking systems, mapping approaches o f the time resulted in detected objects
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being distorted as the mobile robot drifted in its understanding o f  its own true location. This was related, 

in part, to the use o f  an absolute coordinate system. However, in constructing a map utilizing multiple 

mapping agents cooperatively, it is necessary to have some common frame o f reference with which to 

register the results o f  each individual mapping agent. An absolute coordinate system is thus unavoidable in 

the mapping task we are addressing.

Brooks approached the problem o f error by providing some formulations to handle the uncertainty 

o f  a robot’s location in a coordinate system. The idea o f a growing sphere o f  uncertainty as a robot moves 

through the environment was introduced. A map is constructed out o f  meadows o f  unoccupied space and 

freeways o f unoccupied space that can be used to safely transition between meadows. By growing an 

uncertainty sphere around a robot’s perceived location, it allowed the use o f  forward reasoning to predict 

an area in which the robot would end up if  known uncertainties accumulated over the path the robot took. 

Reversing that logic, Brooks reasoned that one could use backward reasoning to correct the location the 

robot is currently at based upon recognizing regions in a constructed map. Working back from that 

corrected location, it is possible to adjust the previous locations based upon the actions the robot took. 

This approach o f  utilizing newly learned information about a mapping agent’s location and then adjusting 

information obtained previously is a core element to our approach to constructing accurate maps.

In addition, several other researchers have utilized the graph-based representation o f the 

environment with mobile robots, but the authors were solving problems other than mapping. Mark 

Turchan and Andrew Wong did work with acquiring geometric models o f  objects in the environment for 

use in solving navigation problems [Turchan-85]. Nicholas Ayache and Olivier Faugeras employed a 

graph-based model to extract geometric features from sensor data such as points, lines and planes and then 

utilized these features for landmark recognition, to correct dead-reckoning error, and to navigate an indoor 

environment [Ayache-89]. Hanna Bulata and Michel Devy also did work on mobile robot navigation 

utilizing the graph-based representation model. They employed landmark recognition techniques to 

determine their location in the world [Bulata-96], Betge-Brezetz et al utilized landmarks detected in their 

graph-based model o f the environment for self-location [Begte-Brezetz-96]. This method provides for the 

ability to conect the position information in the field and demonstrates the utility o f using objects in the
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map to detect and correct errors in self-locations. However, the graph-based representation may be ideal 

for navigation, as it represents all obstacles by ellipsoids, but is not well suited to produce the type of 

detail-rich map readable by humans that we want to create. Hagit Shatkay and Leslie Kaelbling did work 

at Brown University [Shatkay-97] on building graph-based maps by tracking the statistical relationships 

between important points or landmarks. The utilized a probabilistic model relating the robot position and 

the location o f  other objects o f interest, similar to the work o f previous researchers. Specifically they 

focused on a specialized case o f  map construction which leads to a very efficient navigational map. 

Andrew Davison and Nobuyuki Kita did work along similar lines, also utilizing feature correlation and 

first-order statistics to estimate a robots position and the position o f significant landmarks [Davison-01]. 

As more features are detected and included, the robot is able to obtain a more accurate estimate of the 

world state, but more features requires more computation as all features are always included in 

computation even when they are not visible. The details o f the map and the details about the features are 

not treated, as the landmark features and robot are treated as points in space.

Sebastian Thrun approached the map construction problem in a new way by combining both the 

grid and graph-based approaches depending on which problems are being addressed [Thrun-98]. Thrun 

utilized a neural network that is trained to interpret sonar data into occupancy grid values and then places 

those values into a grid-based local map. A grid-based world map is constructed in this fashion. Self

location is addressed by dead-reckoning and correlation with local sensor grid-maps to the current global 

grid-based map as well as utilizing some a priori knowledge about the nature o f  the environment (indoor 

world with perpendicular, flat walls or walls that differed by more than 15 degrees at comers). Once a grid 

map was built- the map was converted into a graph-based map o f the world topology which was used for 

navigation; the ultimate goal. This combined approach proved quite effective at constructing a 

navigational map from a grid-based global map in a known environment type.

An extension to this is in the work by Angelo Arleo et al., who extended the combined grid and 

graph based representations o f  the world to solve the navigation problem [Arleo-99]. Grid based maps are 

utilized at the local level and generated from sensor information by use o f  neural networks. These local 

grid maps are then used to build and update a global graph-based map directly and this map is used for
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navigation in an indoor environment. No global grid-based map was constructed. A novel solution is the 

use o f  variable resolution in the grid-based maps being constructed to only provide the level o f  detail 

needed to describe the obstacles encountered. With navigation as the goal, details about the objects in the 

world are lost, insofar as they are not needed for navigation. This does not produce the detailed maps we 

would like to generate, but it does provide a mechanism for reducing the amount o f resources needed to 

store the grid-based maps. This variable-resohition approach can be considered a form o f map 

compression in effect, where otherwise redundant or unneeded information is not stored. The application 

o f  the variable resolution principle in practical robots appears to be a good way o f reducing the drain on 

memory resources that can accompany a grid-based model o f  a large world. Applying high-resolution 

around obstacles and low resolution in unexplored or open spaces is something to be considered for future 

use in grid-based solutions in general.

Table 2 and Table 3 summarize the approaches discussed. Key attributes o f each effon are 

described and are indicated as being particularly good (+) or particularly limiting (-). Fields with just a 

indicate no application o f  that work to the category.

What can be seen from the tables, in addition to the obvious partitioning o f  the environment 

models into two classes, is that the realm of application o f the developed methods also falls into some basic 

groups. The graph-based environment models are rarely used for mapping purposes and best suited for 

application in navigation and higher symbolic reasoning. This makes sense as we have previously 

discussed the fact that navigation was a natural companion to a graph based representation o f the robot 

environment The grid-based approaches find application in the field o f  mapping. We also see that the 

most common sensor type used in grid-based approaches was the ultrasonic sonar system. This can 

partially be attributed to the relatively low cost o f  that type o f  sensor along with its well understood 

characteristics arising from its frequent use. However, graph-based approaches used a wider array o f 

sensors and were the only to employ vision systems. This reinforces the intuitive notion that certain types 

o f  sensors are more suited for use with particular environmental models. Sonar and other ranging sensors 

do well when combined with grid-type approaches due to the nature o f  the data they return. 3-dimensional
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Table 2. Summary of Grid-based Approaches

Authors Year Sensor
Types

Self Location Data
Correction

Key Attributes Application

Borenstein,
Koran

1991 sonar • • fast, real-time Obstacle
avoidance

Weigl et al. 1993 sonar error controlled 
by fading

grid: sensors 

geometric: planning

Mapping

Moravec,
Elfes

Elfes

Elfes

1985

1987

1986

sonar Dead-
Reckoning,
Inertial

proposed only representation model, 
allude to concurrent 
programming

Mapping

Oriolo,
Vendittelli

1995 sonar Dead-
reckoning,
odometry

-dependent on a priori 
sensor parameters

Mapping

Singh,
Fujimura

1993 sonar * • cooperative multi- 
robotic system

Mapping

Elfes 1990 sonar,
laser
ranging

dead-
reckoning,
inertial

error controlled 
by blurring

good framework Mapping,
Navigation

Santos et 
al.

1996 sonar • sensor specific 
neural net

fast and robust Navigation

Thrun 1998 sonar,
laser

dead-
reckoning,

apriori
environmental
information

hybrid grid-graph 
approach

+grid based sensor 
data integration into 
local maps

Navigation

Thrun et al. 1998 sonar dead-
reckoning,
landmark
recognition

probabilistic 
matching of 
position 
estimate and 
map

■♦•very effective for 
navigation maps

-requires human 
operation to load a- 
prioridata

Navigation
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Table 3. Summary o f Graph-based Approaches

Authors Year Sensor
Types

Self Location Data
Correction

Key Attributes Application

Leonard,
etal.

1992 sonar Landmark
recognition

• -no self-location Navigation,
Mapping

Turchan,
Wong

1985 laser
ranging

-assumes geometric 
models, no dynamics

Navigation

Ayache,
Faugras

1989 vision,
odometry

landmark
recognition

PDF models 
errors

-lines, planes, points Indoor
Navigation

Brooks 1985 encoders dead-
reckoning,
landmarks

fading ♦good groundwork

Basye 1993 - - fast navigation - Navigation

Bulata,
Devy

1996 Laser
ranging

landmarks Kalman filters -sensor / environment 
restrictions

Navigation

Betge-
Brezetzet
al.

1996 3D laser 
ranging

landmarks Kalman filters ♦Landmark use Self Location

Shatkay,
Kaelbling

1997 IR.
ultrasonic

* “ constructs good 
navigation maps

Navigation

Thrun 1998 IR, laser dead-
reckoning,

a priori world 
information

hybrid grid-graph 
solution

♦grid root for map 
construction

♦translation into graph 
based for navigation

Navigation

Arleo et al. 1999 IR.
utrasonic,
tactile

landmarks ♦combines some grid 
features and variable 
resolution

Navigation

Davison,
Kita

2001 landmarks Kalman filters ♦allows for cooperative 
mapping

-feature tracking adds 
complexity

Navigation
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ranging and vision systems do better with graph-based models as these systems rely heavily on early 

feature extraction o f edges, lines, etc. and such spatial knowledge is more readily gained from those types 

o f  sensors.

We do not mean to imply that all mobile robotics research in this area will map in this fashion. 

We merely state that the segment o f published research we sampled displayed this characteristic. In fact, it 

is likely that concerning oneself with the very environment model used with respect to navigation, mapping 

or sensor type used will become less and less significant. It is possible to convert environmental models 

from one type to the other and back again, as needed. Some work in this field has already been done by 

[Horst-96] and it should be expected that we see further research in this area in the future.

What was discovered was that only some o f the techniques in the literature did any work with the 

problem o f self-location and the control o f error accumulation in location data and its affect on map 

construction. Approaches that did not address this concern [Singh-93][Borenstein-9l][Santos- 

96][Turchan-85] assumed perfect location in their approach or did not address the issue. This was usually 

not a problem as the goal o f these methods o f  robotic mapping was frequently navigation and obstacle 

avoidance and so no long term memory about occupied and empty space was needed. To achieve the 

required accuracy in position and sensor readings needed for the short-term memory model for obstacle 

avoidance and simple navigation filters and other mathematical constructs were frequently applied directly 

to sensor data or the data fusion stages o f  the mapping algorithms.

What did strike us was that o f those approaches aimed at robotic map construction for long term 

use (beyond simple navigation), several o f  the works had little to no provision for correcting errors that 

accumulated in data collected. While some systems did address the systematic and stochastic error 

problem superficially, most ignored it altogether. Only two approaches, [Weigl-93] and [Elfes-90], 

addressed the problem and provided some means to treat i t  [Elfes-90] mapped the accumulated uncertainty 

in position and sensor information to the method used to incorporate new sensor data into the global map. 

By enlarging, in a fuzzy, probabilistic way, the area in which the sensors detected an obstacle, objects 

placed into the global map were larger and more vague in their shape (with respect to their occupancy 

probabilities) than the original sensor data indicated. This was a way o f interpreting the uncertainty on
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how to reference or register this new sensor data into the global map. [Weigl-93] used a temporal 

technique called fading  [Chatila-85][Brooks-85] which reduces the significance o f data that had been 

collected in the distant past relative to newly collected data, unless such readings are re-verified by 

additional sensor readings. As a result, older readings in the global map begin to fade and blur, and newer 

sensor readings appear better defined. This approach also provides a good way o f addressing dynamic 

objects in the mapping environment which should not appear as entities on the final map. With the fading 

approach, such objects, as they are only observed in a particular position once or very infrequently, will 

begin to slowly fade into a probabilistic mist over time.

We plan to attack the problem o f error in a whole new way. First we ignore it until we can verify 

its effect upon our map. Then we attempt to correct for its presence to counter the effect. However, we 

never lose sight o f the original map data and as such will be able to revise our corrections at a later time if 

we discover, for example, that the assumed error source was not present or the error was incorrectly 

attributed. To accomplish this task, we will introduce a new meta-language, which we will use to store the 

data collected by the various sensors on the mapping robots. This meta-language will then be used to 

construct the local maps for each individual robot in the distributed robotic system. Through the use o f  the 

meta-language, we will be able to reconstruct the local map o f a robot as it was at any given moment in that 

mapping agent’s journey. This will allow us more flexibility with respect to detecting and correcting for 

error in both the sensor and position information the robot uses.

With these newly constructed local maps, each robot in our mapping architecture can share what 

it knows and this shared knowledge base will be used to generate a global map. These global maps will be 

made available to the individual robots to assist, not only in navigation but also in process control and error 

detection and control. In the next chapter, we will describe our mapping architecture in detail.

2.2 Error Detection in Agent Self-Location

A primary component o f a mapping solution that performs error correction is error detection, 

specifically in the drifting position data. The first branch o f our solution to the precision mapping problem 

is to detect the presence o f  the combined systematic and stochastic error in our sensor data and constructed 

map. We categorize the methods that can be used to accomplish this task ranging from very specific in
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application to general in application. The more specific approaches will be able to make more precise 

corrections to the data than the more general methods by taking advantage o f known information. 

However, the availability o f this known information is not guaranteed so that the more general approaches 

are more likely to find application in unknown terrain. Table 4 summarizes the three classes o f 

methodologies for detecting error in self-location. Why do we focus on self-location? With a mobile robot 

moving in unknown terrain, dead reckoning is the most likely system o f maintaining self-location 

infoimation. Errors in self-location, and thus in how new sensor data is referenced and placed into the 

map, is the major contributor to an erroneous map. Having the ability to detect error in a robot’s perceived 

location is thus crucial to constructing a precise map.

Each o f these methods relies on the robot to make a determination at some point, based either on 

map data it has collected in the past or at the present, or on some outside tool, that there is an error in the 

map data or in its perceived position information. The reasons why the robot is not where it thinks it 

should be relate to the error introduced from three major sources: positioning error, sensor error, and 

communications error. As a robot moves around its environment, it takes sensor readings and these 

readings are communicated to the central processor on the robot. Physical tolerance and wheel traction 

problems contribute to positioning error. Surface reflectivity and environmental conditions contribute to 

sensor reading errors as well as communications errors between systems on a single robot as well as 

communications between separate robots. As already stated, positioning error is o f primary significance 

when it comes to registration o f  new sensor data into the map being constructed, and it is this type o f  error 

we will concentrate on here. Once this error is detected, the degree to which it is present in the map that 

the robot is building can be reduced. We will assume that the growth o f  such error or variance is linear 

over time although this assumption can be relaxed to allow more complex analysis o f  historical data if 

more is known about events that may have happened in the past. For example: assume that it is known that 

the robot crossed a very small patch o f gravel where wheel slippage and the translation o f motion 

commands into true physical movement could have been more compromised. A greater degree o f 

correction to mapping data can be performed on the data collected during that time frame than the rest o f 

the past segment when the robot was moving along on pavement The reason being that it is assumed that
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Table 4. Classes of Error Detection

M ethod A pplication Example
Return to Feature:
This method utilizes the robot’s 
ability to recognize that it has 
returned to a feature it has 
recently mapped but the position 
o f  this feature is not the same as 
it was the previous time it was 
here.

General;
the robot need not completely 
describe the objects it has 
encountered. If a variation in the 
position o f  a point visited before 
is found, this variation can be 
used to correct all data on the 
path the robot took since last 
visiting the feature.

If a robot travels along a 
large object then cuts across 
some free space, maps part o f 
it and then returns to a 
feature o f the object seen 
previously, we can correct all 
mapping data collected on 
that mapping/oumey by the 
robot.

Geometric Correction:
This method takes advantage of 
basic geometric knowledge that 
the robot can determine from the 
environment and use that 
knowledge to reconcile and 
correct the collected data.

Specific;
the robot must be able to 
completely circumnavigate the 
object in order to determine that it 
is a closed object. Similar to 
Return to Feature with additional 
information available.

If a robot circumnavigates a 
square, it should end up 
where it started. If  this is not 
the case, corrections o f the 
mapping data as the robot 
navigated the perimeter of 
the square is possible.

Precise Location:
If the robot has the ability to 
precisely find out its absolute 
position on the map, mapping 
information in the past can be 
corrected until the variance 
between past mapping data and 
assumed true data is within some 
predefined tolerance.

General;
this can always be applied, but to 
get a precise fix, if  such a 
positioning system (GPS for 
example) is available, it may be 
costly to access. This system can 
be invoked at any time as it uses 
real position and assumed local 
position and does not rely on map 
data.

If a variation in position from 
true position is determined, 
all data can be adjusted in the 
recent history in a linear 
fashion to a lesser and lesser 
extent as you go back in 
time, until the variance is 
within some predetermined 
tolerance.

more error would be introduced into the robot’s position relative to perceived position while traveling over 

terrain with poor traction. This is discussed in more detail in the section on Time Dependent Transforms.

To determine where a mobile robot is currently in the world it is mapping, it must have some way 

to relate its position to objects in the environment. A robot moves along and keeps track o f its position 

based on a known starting point, via dead reckoning or inertial navigation. As the robot moves around, 

these estimates o f position will begin to drift from the true location o f  the robot as error accumulates in the 

position estimate. If  a mobile mapping agent can detect some indicator that allows it to compute or verify 

its position, then it would be able to adjust any accumulated error in self-location.

There has been some interesting research done in methods available for robots to determine their 

position or recognize their location. Some o f  these approaches are applied to guidance or navigation only, 

while others are suited for self-location. The common approach is to utilize a visual system to locate a
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feature usable in position determination. Kokichi Sugihara utilized a single camera to compute a mobile 

robot’s position [Sugihara-88]. Eric Krotkov extends this work in [Krotkov-89]. The technique employs a 

camera that is at a fixed and known position on the robot and the robot is supplied with a correct and 

known map o f the environment. By extracting vertical edges from the image and matching those against 

the known map, the robot can deduce its location within the map by matching the pattern o f edges against 

what would be seen in the map. Such a technique has little use in an unknown environment, but it 

demonstrates the use o f  detecting objects within the map to compute one’s location. Mansur Kabuka and 

Alvaro Arenas utilize, not edges in the scene, but a known, standard pattern to determine the robot’s 

position [Kabuka-87]. A predetermined pattern o f interesting features, consisting o f black vertical lines 

and a divided black and white circle, is positioned in a known location within a controlled environment. If 

the robot can view the pattern from its current location, it can extract visual features from that pattern and 

knowing the relationship o f the camera to the floor and the image to the floor, it can compute the position 

o f the robot relative to the pattern. This approach demonstrates the ability o f a mobile robot to determine 

its position by locating known objects but it is unlikely that we would be able to place visually rich objects 

into an unknown environment with such precision as to allow their use for computing a relative position.

The approaches above indicate that there is great utility in being able to reference oneself to a 

known marker and compute one’s position relative to that marker. The unknown terrain assumption, 

however, does not allow the use o f precisely located markers such as those employed in those methods. 

What would be o f greater utility is to reference oneself relative to markers that a robot can place in the 

environment after it arrives. Ideally, these markers would be temporary so that there is no lasting effect to 

the environment by having the robots map the terrain. In this direction, some interesting research has been 

done. R. Andrew Russell did some interesting work investigating robot guidance along thermal trails 

placed by other robots [Russell-93]. Mobile robots were used to lay a thermal trail along a floor and then 

subsequent mobile robots were able to follow along that trail. A problem that arose related to the decaying 

o f the heat signature which caused varying degrees o f  oscillation in a robot’s trajectory as it attempted to 

follow that trail. The applicability o f  such a thermal marker to unknown terrain would not be as simple 

since the thermal properties o f the surface or objects is not necessarily known, or may not be effective. For
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example, attempting to lay a thermal marker and utilize it in an environment o f high ambient temperature 

may result in the signature being unable to be distinguished from the natural terrain. Another novel 

approach along the lines o f  thermal location was the use o f  olfactory sensing for robot navigation. 

Reimundo Deveza et al utilized the application o f smell to guide a mobile robot [Deveza-94], The 

application was similar to the work done in [Russell-93], with mobile robots laying a trail and then having 

other robots follow along the path, but additional application directions were explored. In addition to 

having a pathfinder lay a trail that worker robots could follow along, retracing ones path and repelling 

markers were explored. The concept o f  repelling markers is interesting as it can be utilized to track 

completion o f  mapping whereby robots lay an odor trail during their joumey and thus prevent additional 

robots from repeating the same mapping. Such an approach could also be used if a robot detects a serious 

danger and marks the location as a last-effort similar to a skunk’s spray, thus warding off other mobile 

agents from a similar fate. What these methods o f marking give us is a guideline for markers used in 

unknown terrain. We can enumerate the following set of rules for makers we place in an unknown 

environment.

1. The marker must decay over time if it is not removed. We take out what we bring in, in essence. 

The unknown terrain must be treated like a national park. The rate o f decay o f  markers must be 

guided by the time needed to complete the task at hand.

2. The marker must be invisible and non-toxic to the environment and its inhabitants. The mapping 

operation should not disrupt or harm the environment.

3. The marker must be inexpensive. This is especially true if  many markers are to be placed or the 

markers are to be abandoned to decay.

4. The markers must be easy to apply and remove. If a marker takes a significant amount o f  time 

and resources to apply relative to the task it is designed to assist, its utility may be questioned. 

Utilizing markers for mapping purposes is o f  interest Mobile agents can use those detected

markers to reference their position to the last time they encountered that same marker and thus detect error 

in self-location, for example. The markers themselves may be coded with more information such as a
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universal coordinate or other identifying information, which would assist mobile agents further in self

location.

Other efforts at determining a robot’s position in the world depended on having known 

information about the environment, such as a digital elevation map in work by Talluri and Aggarwal 

[Talluri-92]. Their solution was applicable to an outdoor environment, but does require a map be given 

beforehand. The robot’s position was determined by searching the elevation map for possible robot 

locations matching information the robot obtained with a camera, altimeter and compass. Margrit Betke 

and Leonid Gurvits utilized a known map containing landmarks and then had a mobile robot anempt to 

identify landmarks in its view and locate them on the map to compute its position [Betke-97]. David 

Braunegg has done some different work, focusing on building a graph-based model o f  the world and then 

using stereo vision to locate the robot, but only so far as to identify a region o f  the world the robot is in, on 

that graph-based representation, and not a precise location in a global coordinate frame [Braunegg-93]. 

Sami Atiya and Gregory Hager utilized a pre-built map to allow very rapid position determination by 

detecting and locating landmarks in real-time with vision based sensors [Atiya-93].

Current systems proposed for true unknown terrain mapping and navigation are still utilizing 

dead-reckoning as a means o f maintaining position information [Krotkov-95]. Our mapping architecture 

will utilize dead-reckoning as welL, since it is well suited for unknown terrain where no other information 

is available before exploration begins. The solution implemented for experimentation utilizes waypoints or 

markers for reference points which combine some o f the Return to Feature and Precise Location 

characteristics. Our waypoints are active beacons that perform a self-location operation after deployment 

has begun but before mapping has begun.

The technology available dictates the nature o f the waypoints that we may use. For spanning 

wide-open spaces where the mapping agents and waypoints can see, that is transmit and receive, over the 

top o f  objects, one can utilize bistatic RADAR systems technology. In bistatic RADAR, the transmitter 

and receiver are separate. One waypoint has the transmitter (the origin waypoint, pre-designated as 

coordinate 0,0,0) and other waypoints have receivers and receive the ranging signal transmined by the 

origin. The receiving waypoints can determine the direction o f  the origin waypoint by measuring signal
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strength and obtain distance measurement from the transmitted signal from the origin in conjunction with 

the synchronized clocks the waypoints carry and that were synchronized just before deployment. Modem 

RADAR systems are capable o f  measuring distances down to several meters between transmitter and 

receiver and can have accuracy o f sub-centimeter and would be very useful in detection o f position drift. 

In environments where it is impossible to deploy RADAR type RF ranging systems at will due to obstacle 

or environmental obstruction, waypoints would need to be line o f  sight to ensure that there is a line o f 

connectivity from any one waypoint to all other waypoints. By this we mean that if  we constructed a graph 

where each waypoint is a node and an edge is inserted between two nodes if  the two waypoints can 

communicate and range each other directly, then we obtain a graph that has no disconnected components. 

Starting at any node and traveling along the edges, we must be able to visit every node in the graph. 

Bistatic RADAR technology, laser ranging technology, or other surveying type o f  techniques can be 

employed in the waypoints to enable waypoints to determine the distance between them.

The reasoning for building the surveying technology into the waypoints rather than putting this 

technology into the mapping agents, is that we can thus allow the ranging operation to take significantly 

more time that would be reasonable if  the robots themselves had to do the ranging. As the mapping agents 

are deployed, they proceed to perform a quick preliminary surveying mission o f the terrain, avoiding 

obstacles and deploying their waypoints at some appropriate and hopefully, strategic locations. As these 

waypoints are deployed, they can begin to obtain bearings on each other and thus compute their position 

relative to the origin waypoint, which is deployed first. Once this initial deployment is completed, the 

robots can begin to perform their mapping tasks. If a RADAR type o f  ranging system could employ x-ray 

or gamma-ray technology cheaply and in a compact size, then the issue o f line-of-sight would likely be 

eliminated and waypoints could be deployed at will without regard to their location to other waypoints.
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3. The Problem and the New Method

3.1 The Problem of Cooperative Mapping Using Agents

Our goal is to develop a computational architecture that will allow the generation o f  more 

accurate robot generated maps for human use. To allow for this we will develop this architecture that can 

take advantage o f a heterogeneous set o f mobile robots working in a distributed manner. This dissertation 

will focus specifically on the method used to store sensor and map data within the individual robot, but we 

will also discuss how that component fits into a larger conceptual architecture o f a heterogeneous, 

distributed system o f many robot mapping agents. For the larger, conceptual architecture, we must address 

two issues. The first issue is designing the cooperative architecture in which the individual robots operate. 

Some very good work has been done by [Singh-93] on the subject and we will use their system as a basic 

framework upon which we will build our architecture. We will enhance this system to try and overcome 

some o f  the shortcomings that we have found. The second issue is that o f obtaining a precise map. We 

must first detect error in our map and then compensate for the error and limit its effect on our final map. 

For this we propose a new method for storing and utilizing the map and sensor data along with a method 

for incorporating this map data into our cooperative and distributed robotic environment.

Figure 8 illustrates the basic breakdown o f our problem and the branches that must be addressed 

and how they relate. We divide our proposed architecture into halves, each solving one o f two issues o f 

cooperative map construction. One branch addresses the construction o f  a precise map. This half deals 

with obtaining accurate information and maintaining the integrity o f that data once it has been collected. 

The second branch addresses the issues o f  cooperation among the multiple agents o f  our mapping 

architecture. To produce precise maps, our solution needs to detect errors that affect the quality o f  the 

map. This will be accomplished by verification o f the robot’s position and reconciling that with the 

perceived location the robot maintains. Secondly, our solution must provide a way to correct for the error 

once it has been detected. Our proposed technique for storing the mapping data collected by the robot will 

allow us to make these corrections easily and to tweak those corrections if  needed. Thirdly, we must be 

able to control the error that is introduced into our map. In a system o f multiple robots, cooperating to
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construct an accurate map, there is no doubt that we will not be able to detect or correct all o f the error. If 

we can limit the effect error has on the overall map, we can, for example, prevent the degradation o f quality 

that can result if  a system or robot fails non-gracefully.

Robotic Mapping Sy»t«m

Z \
P ry lw  Mapping Cooporatlv Archltocturo

Figure 8. System Overview

The second branch o f our system deals with the cooperative aspects o f our mapping solution. We 

are attempting to construct a map through the cooperation o f a set o f  mobile robotic mapping agents, 

which may vary in their capabilities. To accomplish our goal we must address two major points. First, we 

must provide for some form o f  mission control, that is, a global algorithm that guarantees that the mapping 

task will be completed in its entirety and that the task is divided up among the individual mapping agents 

effectively. Secondly, each mapping agent must provide for a way to share its information with its 

colleagues and receive similar information from them.

The dotted line between the Control Error and the Cooperative Architecture segments represents 

the relationship and contribution o f the distributed environment to the task o f  controlling the error 

component o f  the mapping system. This was one o f  the key reasons for considering a multi-robot system 

for the mapping task. Beyond the speed and reliability issues, some very important contributions are made 

via a multi-robot mapping solution. By dividing the mapping task among many mapping agents, we can 

quarantine error to those parts o f the overall architecture where they occurred. This prevents error from 

one source from poisoning the integrity o f  the entire map as it is being constructed, something that we 

could not do if  the entire map were constructed with a single mapping agent. This is accomplished by 

mistrusting the map data that we receive from other mapping agents. We will discuss this topic in greater 

detail in later sections o f this work.
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This dissertation treats the branch labeled “Precise Mapping” and the “Detect” and “Correct” 

leaves with great detail. We explore the “Control” leaf to some extent, however the remainder o f the tree 

is described in the conceptual architecture only, as implementation would go beyond the bounds set for this 

work. We do implement a form o f  “Agent Control” and “Mission Control” for the experimental runs but 

do not investigate the performance o f  solutions to those problems in this work.

Before we proceed with these tasks, we must lay the groundwork that will be used throughout the 

subsequent discussions. We will begin by defining some basic concepts and then focus on how we address 

our two issues: precise mapping and cooperative mapping.

3.1.1 A Cooperative Agent

Our mapping agents are mobile computing platforms that contain sensors as well as manipulators. 

The amount and description o f  the sensor and/or manipulator elements can vary from one robot to the next, 

as we would like to keep the application o f this work as general as is possible. As already discussed, the 

various systems in a robot contain errors resultant from the physical nature o f  the components and from the 

fact that we are operating in an imperfect and complex world. The position information our mapping 

agents store internally are actually a combination o f  the true location o f the robot agent and the cumulative 

error up to a given point in time. For example, we express the x-coordinate o f the mapping agents 

perceived location as

Posx = x + 10.

where Pos, would be the perceived x-coordinate position o f the robot in question and it would be 

comprised o f  the true x-coordinate location o f  the robot in the environment, x , and added to it would be the 

error component, e^ . This error component is the summation o f  the systematic and stochastic errors in 

the value o f the x-coordinate position. This error has resulted from all o f the movement and rotation 

operations o f  the robot. Thus, when we use a value such as Posx, we are discussing the value that an 

individual robot has for a  variable and not the true physical value that this variable represents. Our 

experimental results are run on a  simulator and this software simulation introduces the error component 

from predefined distributions. The algorithm implementation portion o f the simulator is oblivious to the 

introduced error in the readings it obtains and the actions it takes and only works with the perceived
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values, Posx. The error in the perceived position o f the robot is o f critical importance to us. Since we are 

mapping unknown terrain with our agents, we have no set o f  fixed reference points or external sources for 

position information. As a mapping agent moves around its environment, the error in position begins to 

accumulate and the perceived position begins to drift away from the ground-truth. Figure 9 shows how the 

location o f  an agent is affected by error accumulating in the position information. The agent is the 

smaller circle with its position indicated by the X at its center. The agent has a radius R  and its true 

position can be anywhere inside o f the larger circle such that its extent remains inside that larger circle. 

For robots that utilize the same propulsion and systems for moving in the x  and ,v coordinate directions, the 

error components, Epos, and e ,^ ,  are identical.

Epos* + /?

Epos* = Eposv

EpOSy +  / ?

Figure 9. Position and Error Produce an Uncertainty Sphere 

The true extent o f the robot, physically, is the interior circle. However, due to the accumulated 

error in position resulting from the utilization o f dead-reckoning, the location o f  the extent o f the robot can 

be anywhere within the larger outside circle. The radius o f  the robot, as viewed from a fixed and known 

point in the world, is effectively increased with respect to its possible location on a coordinate system. 

Similarly, commands such as movement can also be modeled v ia :

MoVj = d + emay 11.

In this case the command for movement o f a distance d  actually results in a true movement o f distance 

Movd. Contributing systematic and stochastic errors such as gearing, wheel ratios and signal delays, as 

well as wheel slippage from traction problems are all lumped into the constant £„», ■ The distance reported 

back by wheel encoders, for example, may not agree with the distance requested in the movement
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command. However, neither o f those two values may agree with the actual distance moved in the real 

environment. The robot would register a movement o f distance d  even though the actual movement in the 

real environment is Movj. The effect is that the mapping agent will degrade its position on the global 

coordinate system by utilizing this information. The result is that the mapping agent is not where it 

believes it is and sensor information gathered by it is incorrectly referenced as it is added to the map the 

agent is constructing.

The combined error component is a combination o f systematic and stochastic error, and the net 

effect will be simulated in our operating environment. The source o f the error itself is not o f  importance to 

us; we are concerned with treating the result o f error entering our map once we have detected its presence. 

3.1.2 Modeling Error in Simulations

As already indicated, the values a robot receives and stores from sensor and actuator usage 

contain the actual value corresponding to the action or environmental reading taken plus an error 

component. We have divided this generic term, error, into two classes: stochastic and systematic. We feel 

the nature o f the stochastic error makes it difficult to try and counter at the operational, mapping level in a 

robotic system. It also has a tendency to bound itself to limits o f influence. Likewise, systematic error can 

be controlled to some extent by techniques, but some effects may not be known prior to deployment such 

as what effect a particular surface material has to related to traction problems in movement, given that the 

terrain is unknown. We are concentrating our efforts on detecting and correcting for the combined error in 

our map making efforts.

The first step to controlling the growth o f  the error content in our mobile robotic mapping system 

is to find a way to represent it within the system itself. In order to design a mapping algorithm to handle a 

realistic journey through unknown terrain, it is critical that the simulation system used to test the algorithm 

models the real environment as best possible. It should reflect all o f the shortcomings and problems o f the 

real environment that the mapping robots might encounter. For this purpose, we model the data collected 

from sensors, communication systems and positioning systems as containing error information that is 

superimposed on the actual quantities being measured through sensors. We design these systems to be
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parameter driven such that the level and form o f the induced error can be controlled by the simulation

operator to simulate a specific type o f  environment. The basic error model will be as follows:

e  = Magnitude * RANDOM(S) 12.

where the error component is e and the maximum magnitude o f  the error is given by Magnitude. This 

magnitude will be controlled via operator parameters as well as predefined relative scales for various 

components o f the simulated robot. RANDOM is a random distribution generating function driven by a 

seed parameter which returns a pseudo-random number sequence between 0 and 1 matching our 

distribution envelope. This sequence can be uniform, gaussian, or exponential in nature. In our 

experimentation, we will utilize a gaussian distribution for RANDOM and user definable parameters for 

the Magnitude, which will vary from component to component o f  the robot. The use o f  a gaussian 

distribution to model error is an accepted method in the literature [Elfes-90][Weigl-93].

The electrical and mechanical systems o f a robot would naturally produce a gaussian error 

component. The stochastic error component can be treated as uniform. The total error component that 

affects a particular reading or operation which is the combined effort o f many electrical and mechanical 

components and their usage, with the respective systematic and stochastic error from each o f those 

components included, this an error can best be modeled with a gaussian distribution. This is supported by 

the Central Limit Theorem. The error models in our simulation will be independently configurable for 

mean, standard deviation, and magnitude so that the error that affects a rotational operation is independent 

o f  the error that affects a movement operation or a sensor reading operation.

3.2 Precision Mapping

The goal is to construct precise maps using mobile robot mapping agents. We improve upon the 

precision o f  the map by providing a mechanism to correct mapping data when an error in self-location or 

sensor performance is detected. We will accomplish this through a new map storage paradigm described in 

the next chapter. As part o f  the mapping architecture we are proposing, we must also be able to detect the

13.

f ( y )  =
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presence o f  error. As already mentioned, there will be an unavoidable error component in the data we use 

to construct our map. Error in self-location will cause problems in how we integrate new sensor data into 

the map. Data containing error will be generated despite our attempts to correct for it. This will occur 

through normal operation or can be exaggerated by unexpected events such as sensor failure. The goal is 

to limit the effect that the data containing large error components has on the total map. Large is a relative 

term here. The goal is to correct for detected error and to limit this error’s effect on the final map that is 

being constructed. This task will be accomplished via three separate mechanisms. First we must be able to 

detect the presence o f error in the sensor readings and the map we are constructing. Second we must 

attempt to correct for the error or eliminate as much o f  it as is practical. Finally we must control the effects 

o f the remaining error in the map that is constructed.

3.2.1 Error Detection in Self-Location Data

As discussed in the previous chapter, the current systems proposed for true unknown terrain 

mapping and navigation are still utilizing dead-reckoning as a means o f maintaining position information. 

This solution does not rely on any prior knowledge o f the environment to be mapped or about the location 

o f any objects within that environment. We will utilize this method o f maintaining our mobile robot 

positions as well. It will be necessary, therefore, to detect error in our position so that we may compensate 

for it. O f the three classes o f error detection described in Table 4 o f the previous chapter, the method 

employed by us will be a Return to Feature method with some use o f  Precise Location. We will employ 

beacon markers that we call ‘waypoints’, which are deposited by the robots and are active devices and 

preprogrammed with a location. These waypoints will stay fixed once deployed but can be detected by 

robots if they come within a fixed range and line o f sight o f them. This is a form o f Return to Feature 

error detection. Since these are our own waypoints, we can make these features as helpful as possible. 

They are thus active waypoints that can be programmed with a fixed location at which they are dropped 

and have the ability to send out that information if queried. This additional information borrows from the 

Precise Location method o f  error detection but is limited as the location information cannot be queried 

from anywhere on the map and is only practically useful when the robot is very near the waypoint
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As the robot mapping agents are deployed, they fan out into the environment in a pre-mapping 

mode to deposit these waypoints. A designated waypoint becomes the origin and other waypoints are 

dropped within line-of-sight o f  this origin, at which point they can compute their positions relative to the 

origin and lock their own position, or they are dropped within line-of-sight o f  a locked waypoint. The 

number o f waypoints carried by any single mapping agent is practically limited by physical constraints and 

so more mapping agents clearly implies more waypoints may be deployed. We will go into more detail on 

how the waypoints work in the experimental section o f this dissertation.

3.2.2 A Hybrid Environment Model

Since our task is map construction and not navigation, and the collection process via sensors 

lends itself easily to the grid method for data storage, it is the grid based method o f map storage that we 

will use to represent the environment o f  our mobile mapping agents. However, to assist in the mapping 

process, we are proposing using a hybrid approach o f the grid-based representation, which amends the map 

with symbolic information, similar to the inference grid  proposed by [Elfes-89][Elfes-90]. We had 

developed the notion o f  a labeled grid-based map independently o f Elfes and later discovered that his work 

also proposed such a solution. This strengthens the notion that such a labeling is indeed of importance. 

While we do not experimentally test the use of labeled grid-based maps in this work, the utility o f such a 

system is apparent and is part o f  our proposed general architecture suited for exploring unknown terrain 

with multiple agents. A mobile robot architecture should utilize a grid-based approach but supplement this 

grid map with symbolic information, which will be useful to mapping agents in their mapping task.

As discussed previously, it can be of importance to know about the nature o f the surface across 

which one is traveling for the purposes o f  data correction. Likewise, it can be important to the integrity of 

a distributed system o f robots to know if  there are areas o f  mortal danger to the robots. For example, if the 

previously unknown terrain does cause a robot failure, the mistake o f entering that region should not be 

repeated by subsequent robots until all have failed.

For this purpose, we propose that the map that is constructed not only be a grid-based model, 

where areas o f  occupied space are filled in, but that this map actually be a hybrid between the grid-based 

approach and a feature labeling system. With this hybrid model, higher level data structures can be
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attached to the grid-based map. These labels can contain descriptive information about the feature to 

which they are attached. We will be using a multi-dimensional grid to store mapping information. While 

RGB data (red, green, blue color) might be stored in this grid for a straight grid-based representation, it is 

just as feasible to store the occupancy information in one channel and store links to higher-level tags in one 

o f  the other channels. This supplemental information will be in the form o f tags, which are linked to areas 

o f the grid based map. These tags will contain data on features o f the area, which may be useful to 

mapping agents in determining their position, recognizing features, or navigating (Figure 10). We will 

attempt to get the functionality o f some o f the geometric approach through the use o f these tags in the 

hybrid mapping technique. For example, by identifying specific objects such as door or windows, a rapid 

solution to the problem o f "Exit the nearest door" can be found without having to maintain a geometric 

map o f the environment and without the delay o f  searching the entire grid-map for objects which are then 

recognized as doors.

Figure 10. Hybrid Map Representation 

Although the grid values in the hybrid-model can be probabilistic such as in the approaches from 

[Elfes-90] and [Weigl-93], we will utilize binary data in our cells as was done by [Singh-93]. As we will 

be utilizing a simulator for the robots and sensors, we can control the environment and performance o f the 

components and thus do not need to deal with the complications involved with the characteristics o f actual 

sonar sensors. We can be more confident in the readings obtained from our sensors coming from actual 

obstacles and not reflections and interference. Using binary cell values will also simplify the analysis o f
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the performance. These restrictions do not affect the ability to implement and analyze the performance o f  

our map storage and correction solution, nor the architecture outlined.

3.2.3 Error Correction

Once it has been made possible to detect that there is an error in a sensor’s readings or the robot's 

stored position information such that these errors have compromised the accuracy o f  the map being drawn, 

it will be necessary to take steps to correct for this error. There are various ways one can make the 

corrections. Some existing approaches do not bother to correct the data directly at all, but instead evaluate 

the significance o f the collected data differently at various times. The fading  approach used by [Weigl-93] 

and the certainty grid  approach o f  [Moravec-85] are examples o f  this sort o f treatment. They utilize a 

confidence o f occupancy value in each grid element and reduce the confidence o f  occupancy information 

filled in where position is known to be suspect, either far from the sensor’s focus or sensor readings from a 

different time frame. We will value all sensor readings as equally significant. It is certainly true that at the 

time the sensor readings were taken, they were believed to be correct. It may later be discovered that there 

is a problem with the data delivered, but that should not discount the value o f  the data as a whole. As such, 

we will try to correct the data-stream in the past (via historical data) when we detect that there is a problem 

with the map data that indicates error may be affecting our map. The correction o f  mapping data collected 

in the past requires the individual robot to have a historical database o f the mapping information it has 

gathered and used to construct its local map. To facilitate this, we propose a map description language 

(MDL), which is a higher-level data structure than the basic sensor data or grid-based map. This map 

description language will allow us to convert sensor and positioning information into mapping data 

statements, which describe how the sensor data is to be placed into the grid map. The map description 

language (MDL) is not a language as traditionally understood in the field o f  linguistics or computer 

science. MDL does not have a complex syntax, but a rigid structure utilized for all statements. The term 

language is utilized only because o f  the sequence o f  statements that, when read together, paints a map on a 

blank canvas. This language can be thought o f  as analogous to a page description language in computer 

printers, such as PostScript™. In PostScript, that which comes out on the printer is actually generated 

from a document o f  commands that describe objects that appear on the page and how to position those
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objects on that page. We think o f the data that a robot collects as a stream o f  statements, where each 

statement describes a mapping event. Such events arc frequently sensor events where a sensor reading is 

taken and this data is incorporated into the local map. Along with the sensor reading taken and the time 

and position at which the reading was taken, a correction parameter is stored. This parameter is initially 

zero but as an error is detected and correction o f the map is performed, these correction factors are set to 

compensate for the error discovered in the mapping data. Let us examine a conceptual illustration o f the 

concept involved with a map description language statement.

A simple statement might take the following form:

SENSOR, Sonar, Tune: 12847, Position: x*1 y=5 z=8 , Data-198, Cor=0 ] 4 .

Here we know the event is a sensor reading taken from the sonar sensor at a fixed global time o f 12847 and 

position (1,5,8) and the data that was generated by the physical sensors is 198 and there is no correction. 

The correction is set to zero with the assumption that everything is accurate and functioning with respect to 

the data we are collecting at this moment. If it were known that this particular sensor had a bias or offset 

in its result, then we would include that offset at this time in the statement and the correction would not be 

zero. If this data is later corrected as the result o f a discovered discrepancy in positioning o f  the robot, then 

the correction parameter would be adjusted accordingly. The correction value is a single numeric value in 

this illustration, but should be considered to be a more complex object which contains correction entries 

for all o f  the recorded values o f this map description language statement. The robot uses the complete 

history o f all such map description statements (MDS) to construct or paint its local map, whenever called 

for. It is possible that by picking out specific sections o f past statements, only a certain area o f the map can 

be repainted, leaving the remaining map unchanged. This is possible because sensor readings describe not 

only occupied space but also free space completely and as such both the occupied and empty grid pixels 

can be regenerated, covering up whatever might have been painted in the map, by that sensor, at that 

location previously. The example is only designed to give a flavor o f the map description language. The 

map description language itself, along with details about the construction o f  the statements and their 

components will be handled in detail in the next chapter.
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3.2.4 Error Containment

While we attempt to identify and compensate for errors that occur in our map, we do not expect to 

be able to detect or correct all such errors. To produce a reliably robust system for map construction by 

mobile agents, we need to address the treatment o f error that does remain in the maps constructed by the 

agents. The cooperative multi-agent solution to map construction provides a useful environment for 

containing the effect o f  residual error in our map.

Each robot will store two maps o f the environment, a local map, MAP/, and a global map, MAPg. 

The local map will consist solely o f  the data that a robot has collected itself. This is the map painted from 

the map description language statements the individual robot has compiled. Periodically, the set o f all such 

local maps will be fused  to form a global map. Local maps are broadcast from mapping agents and 

received by all other mapping agents. The collection o f  such received local maps from the other agents in 

the field is fused to form the global map, which will be identically stored at each robot. This fusing o f the 

local maps can be defined as follows:

Mapcioiai= T Mapiado) and I~ is the fusion operator 15.

The fuse operation is a pixel by pixel operation to generate the global map from the local maps. 

We express the fusion in this way to express that the global map stored on each agent is a combination o f 

all o f the local maps. Each local map is composed o f 3 bands o f information. The first and second bands 

store the occupancy value and known or observed flag values about the environment. The third band stores 

label pointers to symbolic information, however we did not experimentally investigate mapping utilizing 

symbolic labels. We label them b l, b2, and b3. Band bl contains the occupancy value for the 

corresponding location with 0 indicating unoccupied space and 2SS indicating occupied space. Values 

between 0 and 255 convey the relative belief in the occupancy o f the location; 10 would indicate the space 

is very likely not occupied and 210 would indicate it is very likely occupied. The local maps contain only 

values o f  0 or 2SS, based on the sensor results obtained; we have complete confidence in the sensor 

readings initially. When we combine the local maps, however, areas o f  disagreement between the local 

maps can result in cells in the global map containing occupancy values in the range between 0 and 2SS. 

Band b2 contains the ‘known band’, which stores the local map information about whether the region o f
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the terrain has been sensed by the mapping agent. If  the b2 band value for a location is 1, that region has 

been sensed and the corresponding region in the bl band has value. If the b2 band contains a 0 for that 

location, then the region has not been sensed and the value in the corresponding b l band is meaningless. 

The computation o f  the elements o f the global map proceeds as follows:

M P Chbal(x,y) = -a------------------------------------------------
'O'MapLocal it) (b2,x,y)
;=i

where bl is the ‘occupancy band’ o f  the local map and b2 is the ‘known band’ o f the local map.

The effect o f  the fusion described above is to average those regions which were sensed and 

explored by more than one agent. This operation was chosen for fusion, as it is the most useful method we 

could find. In an unknown environment with no other information available other than the sensor data 

collected by mobile agents, we have no reason to believe any particular agents map contribution is more or 

less significant or accurate than any other agents. If we only have 2 observations o f  a region, and they 

disagree in areas, what basis would there be for giving one agent the benefit o f  the doubt? Weighing each 

agent’s local maps equally, exempt o f other knowledge about the agents, gives each local map an equal 

vote in constructing the global map. If a sophisticated mapping control scheme were developed to detect 

consistent problems with a particular agents observations, then it would be possible to weight the local 

maps based on a global believability factor for each agent However, the MDL storage paradigm is 

designed to allow agents to correct their own data based on detected errors with their sensor readings and 

so such believability factors would simply be contained in the correction factors o f the effected agents 

local map.

A robot continues to collect data and store such data exclusively in its local map, using the global 

map only for navigational assistance. The global map is used to guide the exploratory algorithm o f  the 

mapping agent to find unexplored regions or to reach them. None o f the global map data is ever permitted 

to be transferred into a  local map. By quarantining the global map data from the local map data in this 

fashion, the data collected by a  single robot cannot pollute the data set o f any other agents. This is because 

the only time the global map is consulted by an agent is to assist in path planning and navigation or for
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searching for unexplored regions and never for positioning or amending local map data. The only place 

such erroneous data can end up is in the local map o f the robot that generated it, and the common global 

map. This limits the overall effect that error from a single robot can have on the final map. In essence, 

each agent does not fully trust the mapping data from any other mapping agent. The fuse  operation can be 

thought o f  as the combining method for the local maps, which is analogous to overlapping and merging all 

o f the local maps. Figure 11 illustrates the flow o f map information from individual agents into a local 

fusing algorithm on each agent which combines these local maps into a global map. This same operation 

would take place on each mapping agent in the mapping team.

Partition

Figure 11. Map Data Merging 

The benefits o f  a multi-agent system can be realized in the merging process. Rather than having 

the entire map being under the control o f  a single agent, where any error may well pollute the entire map, 

we, in essence, split the map into subsets, which are assigned to agents in the team. Each mapping agent is 

responsible for much smaller segment o f the entire mapping task. As local maps are received, agreement 

in overlapping areas o f  local maps can improve confidence in the correctness o f the data and disagreement 

can alert to potential faults in a mapping agent. Both conditions can be tagged via the hybrid map 

representation and thus provide a richer global map to all mapping agents. Most importantly, the merged 

result is held quarantined from the local map on every mapping agent This partitioning maintains the 

integrity o f  each agent’s local map. Erroneous information remains within a single agent and the portion 

o f the global map that agent contributes. Further iterations o f global map construction do not cause 

recycling o f  the erroneous information via a loop; it can only be resubmitted from the original faulty agent,
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which may have detected the error and corrected for it. I f  not, the erroneous map data is treated as before 

and only affect that part o f  the global map visited by the faulty agent.

3.3 Distributed and Cooperative Solutions

As mentioned, there are benefits to dividing a mapping mission among several mapping agents. It 

allows us to construct a global map on each agent independently. As this global map is the final product o f  

the mapping mission, we are improving the probability that the deliverable can be produced in the light o f 

agent failures. To realize the benefits, we must also address the requirements to maintain and operate a 

distributed and cooperative system o f mapping agents. Good treatments o f  the communications issues in a 

distributed robotic environment are given in [Gauthier-87] and [Freedman-85]. We agree with their 

conclusions and employ a message-passing mechanism for communication among mapping agents, 

especially considering the very loosely coupled architecture we are proposing. Communications primitives 

were implemented in the simulation environment, as will be discussed in detail in the chapter on 

experimental results, and would allow the integration o f  sensors and processes o f  any type and from any 

location, if they complied with the communications protocols defined in those primitives. Henry Fok and 

Mansur Kabuka have done work on the design o f  an overall system to coordinate a set o f mobile robots in 

a controlled factory setting [Fok-92]. The principles, that mobile robots need to be capable o f  performing 

their own path planning and collision avoidance, which equates to planning their own mapping missions in 

a mapping problem, hold true. [Fok-92] indicates that the problem o f  planning motion in an environment 

o f  multiple moving robots is NP-hard. Kikuo Fujimura discusses the issues relating to motion planning in 

an environment with transient objects [Fujimura-94]. Application o f  similar results to task creation and 

assignment finds application in our mapping problem. As task assignment and execution need to be 

completed in real time, only a distributed control system where each mapping agent makes its own task 

decisions is likely to succeed.

Important work in cooperative, distributed map making was done by Singh and Fujimura [Singh- 

93]. They have developed a simple architecture to allow multiple robots to cooperate on a mapping task 

using a grid-based environment model. Their approach will provide us with a framework upon which to
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improve. Let us first examine this method. Below is the basic algorithm used for the map making task

written in pseudo-code. Each agent in the set is identified by a label, in this case: robot.

0 Begin
1 MAP(robot)
2 robot.mode=lnitialize;
3 While (map not complete) do
4 {
5 IntendedMove(robot);
6 RECEIVE intended-move from other robots;
7 If (VaiidMove(robot, intended-move))
8 {
9 Move robot;
10 Update partial map;
11 tlist= CheckForT unnels(robot);
12 UpdateMode(robot);
13 For every tunnel on tlist
14 {
15 if (lOnQueue(tunnel))
16 EnQueue(tunnel);
17 }
18 SEND map update to other robots;
19 }
20 }
21 End

Let us examine the basic logic o f this algorithm. Each robot runs through a loop so long as the 

condition for detecting completion o f  the map has not been met. The definition of this condition and its 

implementation are not important to the discussion o f this algorithm. Initially, a robot chooses an intended 

move based on an exploratory algorithm, which each robot has. A simple left to right, top to bonom 

coverage algorithm could be used, for example. Additionally, the method chosen does not affect the 

validity o f the discussions related to the above algorithm’s design. The intended move is where the robot 

wants to go next. Each robot informs every other robot, by means o f a broadcast message, about its 

intended move. As a consequence, after line 6, a robot knows about the intended moves o f all o f the other 

robots in the cooperative system. Line 7 performs the conflict resolution for moves that would have two or 

more robots occupying the same space. If the intended moves and current positions o f  any two robots 

conflict, a priority based decision is executed to stall on one or more o f the robots to allow the other robot 

to proceed first. The net effect is that the subsequent movement o f the robot in line 9 is potentially
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staggered as the conflicts are resolved. After the move has been completed, sensor readings o f  the robot 

are integrated into the partial map o f the terrain being explored.

Line 11 performs a key component, the check for tunnels. This is important with respect to the 

heterogeneous nature o f  our proposed architecture. [Singh-93] define a tunnel as free space between two 

obstacles where the back end o f  the free space is undetermined or unexplored. More precisely, it is defined 

as a 4-connected free space path, with one end proximal to the robot’s current location and the other end at 

the boundary o f  the robot’s sensor-range [Singh-93]. Additionally, the size o f the robot prohibits it from 

exploring the region beyond its sensor range because o f  the constrictive distance between the two 

obstacles. The significance and reasoning behind keeping track o f these events is that we are using a 

heterogeneous system o f robots, each carrying a potentially different array o f  instruments and each being 

potentially different in size, weight, etc. A robot may notice that it cannot continue exploring a particular 

region due to physical limitations, but it can pass on this information to other robots that may be able to 

perform the mapping o f  this region at a later time. The check for tunnels is performed by a robot after it 

has integrated its new sensor data into its local map. All tunnels found are collected in a list. 

Subsequently, the robot updates its mode, where it may transition from an initialization mode to a simple 

exploratory mode (at the start o f  the mapping process) or from the exploratory mode into a tunnel 

exploration mode, if, for example, this robot is capable o f  exploring a tunnel discovered by another robot. 

This mode affects the move that a robot decides on with the IntendedMove statement in line 5.

In lines 13-17, the robot examines the list o f  tunnels it has collected and checks if this tunnel has 

already been registered in the global tunnel queue. This tunnel queue is shared by all robots and the 

contents are distributed by a broadcast to all other robots. If a robot finds that a tunnel it has found is not 

in the queue, it adds the tunnel to the queue by broadcasting the tunnel information.

Finally, in line 18, the robot broadcasts the updated map information to the other robots so that 

each robot can update its local map accordingly. All robots thus maintain a map o f the environment which 

is updated not only by their own sensor readings but also by the updated information that they receive from 

other robots.
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3 J . l  Concerns About the Singh-Fujimura Algorithm

The details o f  how each o f  the elements in the Singh-Fujimura algorithm are implemented are not 

important to the discussion o f  the algorithm unless, for example, one is interested in the complexity o f the 

algorithm. Even so, some important points are worth noting. First, the SEND and RECEIVE operations in 

lines 6 and 18 obviously come in pairs and are not explicitly listed in the algorithm. Indeed, line 6 should 

read: SEND intended-move to other robots; RECEIVE intended-move from other robots; and line 18 

would read SEND map update to other robots; RECEIVE map update from other robots;. Since all robots 

are running the same algorithm and not trying to keep secrets from each other, this must indeed be the 

case. This also exposes one shortcoming o f this algorithm: there are two SEND-RECE1VE broadcasts 

done within each iteration o f  the basic algorithm. These broadcasts will, in effect, synchronize all o f the 

robots to one another as the appropriate communications sections o f  the algorithms must be performed at 

the same time since no robot proceeds further until it has received the intended moves or the updated map 

information from all o f  its colleagues. A method o f  skipping updates from non-responsive colleagues is o f 

importance since a dead or out o f  contact robot would effectively bring the entire system to a standstill. A 

time-out or some other mechanism could be used for this purpose however any such system could cause 

robots to have differing partial maps and this would subsequently affect the ability to determine when the 

map is completed (line 3 o f the algorithm as well as the intended move conflict resolution o f line 7). More 

importantly, [Singh-93] make no mention o f how the broadcasts are achieved. In fact, perfect and 

instantaneous communications conditions are presumed and thus simplify things significantly. We 

contend that this simplification is not practical and that such broadcast stages must be carefully analyzed 

for both robustness and speed. Let us assume that the robots were exploring a somewhat large area and a 

basic collision-detection system o f broadcasting the information was used. Such broadcasting works 

whereby a robot attempts to transmit its information if the airways are clear, but i f  it detects a collision 

with another transmission, it stops, waits for some undetermined amount o f time and re-attempts 

transmission. Some communication standards work by this system such as in computer buses and in radio 

communication. It is conceivable that such an exchange from one robot alone transmitting its information, 

could take on the order o f a second or more (depending upon the number o f  robots) and that the time for
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the entire pool o f  robots to complete their broadcast will certainly take time on the order o f seconds. With 

such broadcasts happening twice within each single robot move iteration, it is apparent that such 

broadcasts can substantially slow down the rate at which the mapping operation proceeds. It is thus of 

great importance to try and limit or make more efficient these broadcast steps in a mapping algorithm, and 

this is one o f the major improvements our proposed architecture contains.

We can eliminate the communications related to the transmission o f intended moves and their 

conflict resolution contained in lines 6 and 7. It is not necessary to check each movement against every 

other movement if  basic collision avoidance is implemented within a mapping agent. Instead, each agent

needs to ability to detect a dynamic obstacle, such as a moving robot, or a more intelligent implementation

o f the movement primitive. If a mapping agent detects an obstacle in front o f  it while trying to complete a 

movement operation it can either detect it as a dynamic obstacle, in which case it can slow and wait for the 

obstacle to clear (give right o f  way), or if the agent does not have the ability to detect dynamic obstacles, 

then its movement function can halt for a short random amount o f  time and then try to complete the 

requested move. This form o f collision avoidance is similar to that used in signaling applications as 

employed in computer system bus communications standards, networking standards and some radio 

communications standards. This simple change would result in the following algorithm:

0 Begin
1 MAP(robot)
2 Robot.mode=lnitialize;
3 While (map not complete) do
4 {
5 IntendedMove(robot);
6 Move robot;
7 (if obstacle is detected in path)
8 {
9 Delay for random time;
10 }
11 Update partial map;
12 tlist= CheckForTunnels(robot);
13 UpdateMode(robot);
14 For every tunnel on tlist
15 {
16 if (!OnQueue(tunnel))
17 EnQueue(tunnel);
18 }
20 SEND map update to other robots;
21 }
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Additionally, it is clear that the ideal communications conditions assumed in [Singh-93] are not 

going to be the reality in a natural environment and unknown terrain. It is therefore necessary to expand 

the algorithm to take into consideration such things as not receiving a transmission from a robot, for any 

number o f reasons, and not accounting for this would bring the system to a halt. The dual-map 

implementation proposed, utilizing a local and global map which are maintained independently would 

allow such flexibility. As the agent only utilizes the global map for assistance in navigation and 

completion detection, there will be no problem if  a mapping agent fails to submit its local map to any or 

every other agent via transmission. This missing information will not be in the merged global map 

retained on some agents but can be duplicated by the other agents. If this missing information is absent for 

long enough, the missing area would likely be classified as unexplored and re-assigned to agents for 

exploration.

3.4 A Proposed Mapping Architecture

We are proposing a system architecture that will facilitate the construction o f human-readable 

maps o f an unknown environment by a network o f distributed, heterogeneous mobile robots. To this point, 

we have evaluated several important aspects o f  such an overall architecture.

We have explored the methods o f  representing the environment: grid-based and graph-based. It is 

clear that a grid-based approach offers greater flexibility in the integration o f  various sensor systems as 

well as the ability to be more directly understood by human operators. We see that a hybrid representation, 

which attaches symbolic labels to the grid-based representation, allows us to specify additional information 

useful not only during the mapping operation but also to the final human client. Data such as terrain 

characteristics, dangers or environmental conditions or object properties are just some o f the symbolic data 

that may be attached to the grid-based map to provide a more rich result.

We have explored the source and effect o f  error in a mobile robot on mapping results and how 

they affect map construction. We focus on self-location via dead-reckoning as a practical and common 

method o f positioning and the drawbacks to i t  We see the effect error in a robot’s perceived position has 

on the construction o f maps. We have explored the methods o f self-location and how they can be utilized 

to detect errors in position and thus allow for correction o f position information. Beacon and landmark
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detection was perceived to be the most non-intmsive and practically available aid to self-location in an 

unknown environment.

We discussed the need to com et the position information in a mobile robot to allow the accurate 

collection and registration o f  sensor data to construct a map and mentioned a new method for storing the 

data generated by a mobile robot which will allow easy correction once errors have been detected. We will 

focus on the details o f this method in the next chapter. We have also developed a technique for containing 

any residual error generated by individual mapping agents to prevent the contamination o f  the larger global 

map. Finally, we discussed a cooperative algorithm for implementing a distributed mobile robot, mapping 

mission. Let us now present what we believe is a solid framework for a  mapping architecture which takes 

into consideration many more factors not addressed in the approaches presented by past researchers. This 

system is flexible in its ability to accept new parameters, and it is practical as it reduces the amount o f 

communications between agents in the mapping mission, as compared to the system presented by Singh- 

Fujimura.

Figure 12 illustrates the framework o f our proposed mapping architecture as seen from the point 

o f view o f a single agent. The agent receives transmitted local maps from other mapping agents as they 

arrive and incorporates them into the global map. The global map is used only for obstacle avoidance, 

navigation and for a completion o f mission te s t The global map utilizes a hybrid grid map representation 

to not only store the fused sensor data from the local maps but also the symbolic information pertaining to 

hazards, environmental conditions and object recognition. No global map information is permitted into the 

local map. The local map is constructed utilizing the Map Description Language described in the next 

chapter. This MDL system provides for the correction o f any historical sensor and mapping data. The 

local map also makes use o f the hybrid representation and attaches symbolic information to the basic grid 

based map similar to what is found in the global map.

The mapping algorithm contains several modules. A module to handle the distributed task 

management is required to divide the mapping task among the mapping agents as well as assign subtasks 

to other agents in the case o f  a heterogeneous agent set. We propose utilizing a system built upon the 

modified Singh-Fujimura algorithm presented in the previous section.
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A positioning subsystem keeps track o f the agent’s location. We are using dead reckoning, as it 

requires no outside interaction and thus does not impede the performance o f the mapping operation.

 Transmitted 
Local Maps

A
Mapping Algorithm
Positioning

Dynamic Objects

Distributed System 
Management

Obstacle avoidance 
Navigation 
Completion test

Hazzard detection 
Terrain data 
Object recognition

Figure 12. Proposed Mapping Architecture within a Single Mapping Agent.

Occasional correction to the dead reckoning position data via beacons, decaying markers or landmark 

recognition also allows for adjustment o f the position correction factor in the MDL. In our 

implementation, the beacons are active and intelligent and can communicate their position to the agents 

that encounter them. The mapping agents do not fix the position information that is encoded in the 

beacons. Correction o f  historical map data via the MDL at a later point would adjust the correction factors 

in the MDL even further. Details on this are found in the MDL discussion in the next chapter.

Finally, a module handles the detection and treatment o f  dynamic obstacles. Dynamic obstacles 

are defined as any object in the mapping world that is not a permanent fixture and includes such things as 

other mapping agents as well as local mobile objects such as animals, mobile machinery, decomposing 

objects, etc. Handling dynamic objects is significant in the performance o f the mapping algorithm already 

described as it allows for the elimination o f the conflict resolution phase o f proposed moves in the original 

Singh-Fujimura algorithm, in that any conflicts in moves can be resolved at the time the conflict occurs. 

This local conflict resolution takes place between only those agents involved in the conflict and does not 

hold up the operation o f  any other mapping agents. We suggest the application o f  a believability index 

similar to methods proposed by [Elfes-90] and [Weigl-93], which utilize logic outlined by Leonard (Figure
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S). Sensors detect objects as present or space as vacant. However if  we detect objects as present in 

locations previously recorded as vacant, we can paint them with a brush in MDL, which uses a reduced 

believability to paint in the objects. This reduced believability painting results in an increasing o f  the 

existing believability for the vacant space. Subsequent confirmations o f  the object would thus repeatedly 

increase the index o f  the region until a maximum equivalent o f  occupied. Similarly, the lack o f  an object 

where there was a previous detection would reduce the believability index o f the space and could reduce it 

down to a lower limit o f  vacant. The local map combining methodology defined in Equation 14 supports 

this type o f  treatment o f  dynamic objects in the environment. The occupancy value o f  a grid location in 

the local map is always 0 for unoccupied or 2S5 for occupied. When all such local maps are combined to 

form a global map, contradictions between local maps over the occupancy o f a grid location result in the 

averaging o f  the occupancy. If a single agent observed an obstacle at a fixed location which all other 

agents mapped as an empty region, then the resulting occupancy value within the global map would be 

much closer to 0, or empty.

If dynamic objects are not explicitly recorded and tracked outside o f their effect on the local maps, 

then the believability index mechanism is essentially the same as the already utilized occupancy value 

system for storing the state o f  each cell. The utility o f  a believability index becomes apparent when 

dynamic objects are explicitly recognized and possibly tracked and their positions predicted by the 

mapping agents. This level o f  dynamic object handling was not implemented in our experimentation.

The mapping architecture outlined above was constructed from the combined knowledge o f 

previous research in the areas in question. We believe that the choices made, which define the 

architecture, provide for a robust and usable framework on which to construct mapping implementations. 

We will now focus the remainder o f  this work on the implementation and testing o f  a subset o f  the total 

architecture. This subset describes the paradigm for storing and utilizing the sensor and actuator 

information generated by a mobile robot mapping agent and the features associated with its use in a 

distributed, heterogeneous mapping mission. Figure 13 highlights the subset o f the architecture proposed 

in Figure 12 on which we will now focus.
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We will not go into detail the applications o f hybrid representation to store additional data with 

map regions such as danger conditions, surface composition, etc. We will concentrate on the storage of
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Figure 13. Focus Subset o f Architecture

sensor data and robot actions in the MDL format and the use of MDL to paint the local map, as well as 

position determination and correction and the application o f that correction to error correction via MDL. 

We will then address the multiple mapping agent and cooperative application o f  MDL.

To implement the MDL paradigm, we devised a simple mapping algorithm to explore the extent 

o f various objects placed in a simulated terrain. Table S shows the pseudo-code algorithm used to 

implement the MDL map storage and correction technique in our simple testing experiments, which 

implement local map construction and correction with a single robot exploring a simple environment. The 

map construction component is found in lines 21 through 27, which comprises only a small part o f the 

entire algorithm. Lines 3 through 19 handle the finding o f the waypoints for computing the error in the 

mapping agent’s internal dead-reckoning position information, and the use o f  that error information to set 

the correction factors o f the MDL elements. Lines 28 through 78 deal exclusively with the following o f  an 

object’s contours in a counter-clockwise fashion by handling convex and concave comers that may be 

encountered and maintaining a constant distance to the object’s side.
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Table 5. Single Agent Object Trace Algorithm

0 Start
1 While (Not Halt)
2 {
3 if (First Iteration)
4 {
5 Find Registry Point
6 Remember Origin
7 }
8 if (Loop Complete)
9 {
10 Move To Origin
11 Find Registry Point
12 Adjust Correction Factors
13 Halt
14 }
15 if (Found 2nd Waypoint)
16 {
17 Find Registry Point
18 Adjust Correction Factors
19 }
20
21 Sensor(Sonar, Result)
22 PaintSensor(Sonar, Result)
23 Add MDL Entry;
24
25 Sensor(Contact, Result)
26 PaintSensor(Contact, Result)
27 Add MDL Entry;
28
29 if (find object)
30 {/*  get parallel to object */
31 Rotate(90);
32 Add MDL Entry;
33
34 Move to Object;
35 Add MDL Entry;
36
37 Rotate Parallel to Object Edge;
38 Add MDL Entry;
39 }
40 else
41 {
42 Move Some Distance;
43 Add MDL Entry;
44
45 Sensor(Sonar);
46 if (Object Ahead)
47 {/*  Concave Comer */
48 Back Off Some;
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(table continued)
49 Make MDL Entry;
50
51 Rotate(-90);
52 Make MDL Entry;
53
54 Move Some Distance;
55 Make MDL Entry;
56
57 Find object again on next iteration;
58 }
59 else
60 {
61 if (distance to object < some limit)
62 {
63 Find object again on next iteration;
64 }
65 else
66 {/* Convex Comer */
67 Move Some Distance;
68 Make MDL Entry;
69
70 Rotate(90);
71 Make MDL Entry;
72
73 Move (Distance toward object);
74 Make MDL Entry;
75 Find object again on next iteration;
76 }
77 }
78 }
79 }
80 End

The PaintSensor instructions o f lines 22 and 26 o f the algorithm transfer the current sensor 

readings onto the grid-based map by painting the sensor results with the brush appropriate to the sensor 

type. Each sensor reading or action generates an additional MDL entry, which is added to the total Map 

Description List maintained. This list describes the entire contents o f  the map. As a result, the entire map 

can be repainted from scratch by issuing the paint instructions for each MDL entry in the list in order from 

beginning to end. The correction factors adjusted in lines 12 and 18 allow for the correction o f the 

mapping data to compensate for error in the accuracy o f  the mapping agent’s perceived position, which is 

maintained solely by dead-reckoning otherwise.
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To expand this basic system to encompass multiple robots and construct maps o f environments 

with more than one object in them, a different algorithm is utilized. This algorithm utilizes a basic space

filling technique to cover an area o f  the environment until the agent has reached a dead end or comer and 

cannot make any more progress with the space-filling routine. At this point, the algorithm searches for 

some visible but unexplored region within the global map and moves to that location from where the agent 

begins another space-filling sequence to map this new region. The algorithm is outlined in Table 6. The 

concept o f Time Dependent Transforms (TDT’s) is explained in the next chapter in detail. A TDT is a 

mechanism by which detected error is converted into a correction factor and applied to the elements o f the 

map description, also described in the next chapter. This map description is an form o f storing the local 

map being constructed by each mapping agent.

Table 6. Multi-agent Space-fill Algorithm

1 Start;
2 FindRegistryPoint ANGLE and DISTANCE
3 if (RegistryPoint found)
4 {/* found a point */
5 Compute offset of perceived location of RegistryPoint and actual

location
6 For (each MDL entry in the block we are correcting)
7 { /*  adjust each statement’s Correction Factor */
8 Compute CorFac based on selected TDT mechanism
9 Set CorFac for MDS
10 }
11 Move block pointer to the end of the MDL description
12 }
13 Sensor(Sonar, Result);
14 PaintSensor(Sonar, Result);
15 Add MDL Entry;
16
17 Result=RobotMove( 4* Size(Robot));
18 PaintSensor(Move, Result);
19 Add MDL Entry;
20
21 if (Result < 4*Size(Robot))
22 {/* we could not move required distance */
23 Result=RobotRotate( -90 + (180* DirectionToggle));
24 PaintSensor(Rotate, Result);
25 Add MDL Entry;
26
27 Result=RobotMove( 3* Size(Robot));
28 if ( Result == 0) Stuck++;
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(table continued)
29 else Stuck=0;
30 PaintSensor(Move, Result);
31 Add MDL Entry;
32
33 Result=RobotRotate( -90 + (180*DirectionToggle));
34 PaintSensor(Rotate, Result);
35 Add MDL Entry;
36
37 Toggle DirectionToggle between 0 and 1;
38 }
39
40 if ( Stuck>1)
41 { I* deadlock detected - find new region to map 7
42 NewRegion = FindRegion(Current Location);
43
44 Result=MoveTo( NewRegion);
45 PaintSensor( MoveTo, Result);
46 AddMdl(&mds, fp);
47
48 Stuck=0; /* reset deadlock checking counter 7
49 ) /* end if 7
50
51 Broadcast(Local Map);
52 Build GlobalMap from received LocalMaps;
53 End;

Each mapping agent executes the algorithm independently but is synchronized by the reception of 

the various local maps in lines 52 from which the global map is built. Line 2 looks for any available 

reference point and if none is found proceeds to take a sonar reading, record the result o f  the reading and 

move an additional step in the space-fill sequence. If a registry point is found, the robot communicates 

with the waypoint and obtains its position from it and the relative position to it. This information is 

compared with the locally stored global position and any discrepancy is noted and applied via the 

correction factors to all sensory and action data recorded since the last time a position correction was 

performed. Details on the correction are given in the next chapter. Lines 21 through 38 handle the 

reversing operation o f the space-fill as the robot snakes its way across the space it is exploring. Lines 40 

through 49 are used to detect a dead-end or comer deadlock and then locate a new unexplored region in the 

global map and move the robot to it.
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The algorithms given in Table 5 and Table 6 are not meant to be standard frameworks for 

implementing a mapping system. They are merely implementations to demonstrate the application o f the 

Map Description Language (MDL) to map construction and how the correction features o f  MDL are used 

as well as how multiple mapping agents can cooperate on a mapping mission. For example, the use o f  

specific sensor packages such as sonar sensors, was purely our choice and a variety o f  sensors could be 

utilized instead if  they perform the same basic operation. Similarly, the choice o f  moving a specified 

distance, such as the movement o f  four times the robots size in line 17 o f  the algorithm in Table 6, is an 

arbitrary choice to solve the problem. Other choices would work as well. We will now develop the Map 

Description Language in detail.
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4. Map Description Language -  A New Paradigm for Robot Mapping

4.1 Introduction

The Map Description Language, MDL, is the basis for combining data from heterogeneous and 

distributed sensor and actuator systems in a mobile robotics environment. The goal was to design a 

method o f storing the information gathered from the sensors and actuators on a robot and to allow any 

robot agent in a distributed and heterogeneous system to be able to utilize that data. Any robot should be 

able to generate the same map from this data as the robot that gathered the data. Such a system will be 

inherently more robust as any functioning robot in the system can pick up and continue the work o f  any 

other robot in case o f a failure; there are no critical systems. A flexible and adaptive system, MDL 

constantly allows for opportunity and new paradigm inclusion for robot mapping operations. The data 

sharing among all MDL elements on a platform allows for the exploitation o f new approaches to detection 

and correction problems o f previously static data sets through the ability to browse historical information 

and, in effect, travel back in time.

The basic structure o f the MDL is that o f  a tree. There are a set o f syntax definitions that expand 

the tree from a single node, however, the actual MDL sentences can range for simple to complex 

depending upon which elements o f  the MDL syntax are actually utilized to describe the data o f a specific 

event. Each and every element o f the MDL sentence can be NULL or empty. This pruning o f  unneeded 

parts o f  the MDL sentence syntax can simplify the MDL forms o f some data. Conversely, the tree nature 

allows complex data representations to be built, which can encompass every imaginable aspect related to a 

robot operation. Statements in MDL can range from simple to complex (Figure 14).

M D S 1 M D S 2
npe Pofî iQn  ̂ A|R Brû h CorFac 

tl {x,y,z}{e,Y,o}cl {range.2.3} {b l, e 1}{taa /r,b }

rpe Position A|R Brush^CorFqc 

tl {x,y,z} {£> {range,2.3} bl 0
{ a tc y i a }  {<x x t .I<J} c c

Figure 14. Simple and Complex MDL
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An entire tree is required to model a sentence in the MDL, which we will call a Map Description 

Statement (MDS). All o f  the data collected by a robot is represented by a sequence o f  MDS constructs and 

the map can be painted by parsing through the MDS elements. The maps constructed by each robot in a 

distributed environment can then be combined to represent a total map. This description o f the map a 

robot is building through exploration can be described as

M ap_Global = Y 'M ap_LocalR where j e { l  ... J}, J = #ofrobots. *?•
vy

Map _  Local R =  4 /  MDSt where i: 0 ...#  o f  MDS. leT im e={T A, TB, ...>
'  Vi

where T represents a logical combining operations that is defined dependent on the type o f elements it is 

combining. For the construction o f the global map from local maps shown in Equation 17, the meaning is 

as defined in Equation 16. The 4* operator represents the combining o f the sequence o f MDS elements 

into a local map, as expressed in Equation 18, and the meaning is the algorithm which interprets the values 

in each MDS and paints those meanings into the local map.

In our distributed and heterogeneous mobile robot mapping system, each robot agent builds an 

independent local map using the MDL statements representing its own sensor and actuator data These 

statements are time dependent and this is why the collection o f the individual MDS elements is not just a 

set but rather a sequence. The significance o f  the ordering o f the statements will be discussed later. The 

local maps can then be transmitted to other robots where any and all robots then fuse these local maps into 

a global map o f the entire environment. Each robot agent keeps these global maps separately from the 

local maps, for reasons that will also be discussed later. The structure o f  each MDS is a simple 5-tuple:

MDS = (Time, Position, A/R, Brush, CorFac) 19.

A/R: Action-Reaction Pair, CorFac: Correction Factor

Each MDS is designed to store the information that is represented by a single event in the robot's 

operation. The most easily recognized event is that o f firing a sensor and recording the reading. The MDS 

will store this reading o f  the sensor for future use. Other types o f  MDS include commands to move, which 

by themselves do not seem to generate any mapping data directly but are important as we will see shortly.
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Figure 15. Overview o f the MDL Mapping Technique 

Before we proceed with a detailed definition o f each o f the elements o f  the MDL, let’s look at an 

overview o f how the various elements we will be defining fit together. Figure 15 outlines how the various 

MDL elements and their sub-parts relate to create the local maps on each robot independently. These local 

maps are then independently combined to form global maps.

4.2 Time Element

Let’s examine each o f the five elements o f  the MDS statement syntax sequentially. The time 

element is significant because it serves to sort the MDL statements chronologically. The reasons for 

keeping the MDL statements in chronological sequence will be discussed later. The time element itself is 

nothing more significant than a time-stamp. The nature and format o f the time-stamp is unimportant and 

each o f  the robots in the heterogeneous system need not use the same format or clock; there is no global 

clock. The contents o f the time element are important only to the local robot, which is gathering the MDL
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statements to build a local map. The only requirement is that the time elements form a monotone non

decreasing sequence for each robot. The reason for this is to maintain the order in which the events 

occurred as we will have the ability to apply time varying transforms to the MDS sequence at a later point 

to perform corrections for anomalies that are discovered. We can define the time element simply as:

Time = Tt is the time the event or action occurs. 20.

4.3 Position Element

The position element o f the MDS is used to store the location o f the robot. It represents the 

location o f the robot when the data encoded in the MDS was recorded. The nature o f  the position element 

is customized to the application. The position element itself is a 3-tuple:

Position = (PL, PRt Pc). 21.

where PL describes the location o f the robot and is itself a 3-tuple in a coordinate system, PR describes the 

robot's rotation in space and Pc describes the robot’s configuration from a finite set o f predetermined 

configurations the robot can take. PL, the location element, encodes the location in three-dimensional 

space o f the robot. If we are using the Cartesian coordinate system, then the 3-tuple contains the x. y, and 

z coordinates o f  the robot based upon some universal origin, which must be common among all o f the 

robots in the system. We thus have PL=(Pu, Pl>. Pl<) >n our Cartesian coordinate system, each element 

representing the x-, y-, and z-coordinates respectively. We are free to simplify this representation (or 

expand it, if  more dimensions are needed) as the situation requires. For simple laboratory experiments, it 

is frequently sufficient to use a two-dimensional coordinate system. In this case, P ^  is always constant and 

can be treated as null (0 ) . In our tree representation, the location part o f the position element only has two 

children in such a system rather than three. This illustrates the way the MDL can be configured to suit the 

requirements o f  the system.

PR describes the rotation o f the robot about its own axis and affects the interpretation o f sensor 

data as it determines in which direction from the current robot location the sensor is taking its readings. In 

three dimensional space, a 3-tuple representation o f PR makes sense for storing the rotation o f the robot 

about each o f  the three major axes, however, for simplicity we will assume only one axis o f rotation, about 

the z-axis, and thus simplify the rotation element to a  single value. It is clear that the size o f  the rotation
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element, as with most elements, can be enlarged to capture the greater complexity o f a more complex 

robotic system.

Pc describes the configuration o f the robot mapping agent and the value o f this element is taken 

from a set o f allowable configuration settings. The necessity to track configurations comes from the 

possibility o f  a robot mapper to reconfigure itself and thus alter the relative relationships between the 

various sensors and actuators on the robot. Such a reconfiguration would obviously change the meaning of 

any sensor data collected as is illustrated in Figure 16.

The configurations in Figure 16 show the sensor on the top o f  the robot in two different locations, 

the right one at a much greater elevation than the left one. If the sensor is aimed parallel to the plane on 

which the robot rests, then the objects the sensor sees can obviously vary and as such the data returned by 

the sensor in both configurations must be evaluated with this in mind. Both are the same distance, D, from 

the object, but one robot sees the range from the sensor as R (angle A) and the other as range R’ (angle B). 

Clearly R#R* and A#B. It is possible that both configurations see a specific object but at different 

altitudes and we may thus obtain contradictory sensor data which may mislead us if we ignore this 

configuration change. With the term configuration, we mean to describe the specific physical settings o f  

the robot at a given time. Changes in configuration may be required for a robot to fit through a physical 

opening, for example. Readings taken while contracted may not maximize the sensor’s capabilities but 

still return useful information and this may be the only data collected on a region due to its physical 

characteristics. We must capture the ability o f  the robot to move its sensors relative to one another so that 

the information gathered by these sensors is interpreted correctly rather than leading us to assume we are 

receiving contradictory data from an earlier reading. I f  all o f  the robot’s sensor and actuator systems are

Figure 16. Robot Configurations
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physically mounted so they cannot move relative to each other, then the robot effectively has a single 

configuration only and this parameter becomes trivial. The set o f  configurations a robot can take can be 

known a priori by the robot’s construction or can be determined in the field dynamically, thus 

necessitating storage for only those configurations used. We describe the configuration as coming from a 

set o f specific configurations and we can thus reference the configuration from the set rather than having to 

include the exact details o f the entire configuration as it pertains to all o f the robot’s systems. This can be 

described as follows: Pc € { Pcl, P ^ , ...} where each element o f  the set is a different configuration and the 

specifics o f the configuration needed to properly interpret the data collected can be called up based on the 

configuration numbers 1 ,2 ,3  and so on.

The configuration aspect o f robot status at the time o f any sensor reading is significant as there is 

work going on at research centers at this time which utilize reconfigurable robotic systems. NASA and the 

Jet Propulsion Laboratory are working with robots in the field that can reconfigure to assist their traversing 

o f rugged terrain (Figure 17) and reconfigurable applications are envisioned for planetary exploration 

purposes as well (Figure 18).

Figure 17. Reconfigurable Robot Developed by JPL, CalTech [Schenker-OO] [Schenker-01 ]
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Figure 18. Another Small Reconfigurable Robot Developed by JPL, CalTech [Wilcox-96]

This completely describes the position element o f  the MDL statement. In simple laboratory 

exploration with simple robots, the complexity o f the position element can be much reduced. If we are 

traveling on a single plane such as a building floor, we can simplify our location factor to just x  and y  

coordinates. Similarly, a single rotation around the vertical axis o f the robot reduces the rotation element 

to a single term. Finally, if  the robot has no movable sensors or actuators, then it has only a single 

configuration and the configuration element is a constant and can be ignored. This would all result in a 

position element o f  the form Pr={PR|}, PL={Pu. PLy> and thus Position = { {Pu.Pi.yK {PriK 0>-

4.4 Action/Reaction Element

The action-reaction pair or A/R element is the core o f  the sensory and operation data record stored 

for each event through the use o f  the MDL. This is where the actual information returned by sensors or 

operations by wheels is stored As the name implies, the A/R element is a 2-tuple consisting o f an action 

and a corresponding reaction based upon that action. The action is that part which the robot mapping 

agent initiates such as a request to fire a sensor, move a wheel or run an internal diagnostic. The reaction 

is the resultant response from the action and can take the form o f a status or pass/fail indication or a stream 

o f data from a sonar array, for example. If the action was a command to move forward 3 meters, then the 

reaction can be the data read from the wheel encoders indicating distance traveled To express this more 

formally we can say that:
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A/R = { Action, Reaction}, 22.

Action e  { robot commands},

Reaction e  { feedback or results from robot commands}.

The following example illustrates this concept. The robot issues the action “fire sonar sensor #4”, 

the reaction to which is “ 1.2 meters”. The action “reboot CPU b” receives the reaction “System Ready” . 

Finally, the action “move +3.5 meters” generates the reaction “moved 3.48 meters”. It is important that we 

have access to the intended as well as the accomplished action because we will be able to use this data to 

not only detect errors in the map being constructed, we will also be able to compensate for these errors 

through a sequence o f time-dependent transforms on MDS entries for the map.

4.S Brush Element

The brush is tightly related to the A/R element in that it determines how the information stored in 

the A/R element is transformed into data that is integrated into the local maps. The brush defines how to 

paint the reaction data from the A/R element onto the local map. The brush interprets the method of 

painting the data into the map based on two critical elements: 1) the action and 2) the environment. The 

action determines the type o f  sensor and consequently the meaning o f  the data.

BrUSh = (Bactlcn. environ) 23.

action: from A/R

environ: environmental registers at time Ta

A sonar sensor returns a specific distance reading which corresponds to an area that is cone- 

shaped and has an object at the far end o f the cone, specified by the distance. A laser range sensor gives a 

more precise range reading and corresponds to a  line segment o f a given length. A system command, such 

as a reboot or self-test would paint nothing onto the map and is indicated with a NULL ( 0 )  brush element. 

Each robot system that can generate an event, and thus an MDS can be partitioned into one o f  two classes. 

The first class is those events whose actions and reactions are contained entirely within the robot The 

second class is those events whose action and reaction require interaction with the environment outside of 

the robot such as a sonar sensor emitting sound waves that travel through the atmosphere surrounding the 

robot. The meanings o f these types events are affected by the environment surrounding the robot. The 

sonar sensor is affected by the humidity o f  the atmosphere, most certainly the density o f the medium
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through which the sound wave must travel. It is thus important to be able to sense and record 

environmental conditions to make them available to the painting system when it constructs the map.

Paint OCCUPIED Space 
Paint FREE Space

Figure 19. Brush Shapes

In Figure 19 we see graphical representations o f the brush shapes used in our experimentation. 

The brushes depict the area to be painted with occupied space on the map after a sensor reading. All space 

between that brush face and the sensor are painted with free space. Left to right we have the laser ranging 

sensor, the sonar sensor and the contact sensor. The laser ranging sensor generates a single distance, and 

that results in the painting o f a very small dot on the map. The sonar sensor generates an array o f range 

readings, and each reading represents the distance to an object within a cone emitting from the sensor. 

Thus the sonar brush is an arc, representing the furthest extent o f that cone at which point the first obstacle 

is encountered. The final sensor is the contact sensor, which detects a collision with an object. The space 

immediately in front o f the motion, which is covered by the contact sensor, is painted occupied.

The amount and type o f  environmental sensors are dependent on mission requirements. Simple 

and wide tolerance missions would likely not require any such environmental surveying, however, 

specialized or critical missions may need such data. It is the goal that the MDL technology be as flexible 

and complete as possible to allow for the most complex mission imaginable even if  the average mission 

would result in many o f the features not being used. This flexibility is what gives MDL the ability to 

operate in the widely heterogeneous environments.

4.6 Correction Factor Element

The correction factor, or CorFac, element o f  the MDS is the part o f  the system that allows for 

correction o f detected errors towards generating the most accurate map possible. The CorFac also allows 

for the corrections to be done via time dependent transforms dynamically during the mapping process
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rather than a post-processing step. The correction factors are adjusted by the robot agent during mapping 

to cancel out as much o f the discovered error as possible. Once the correction factors are adjusted, the 

entire MDS sequence can be parsed to repaint the map. This recomputed map reflects the corrective 

changes immediately. Additionally, the corrections can be quickly removed to return the map to its raw 

state if  necessary. In a system with perfect sensors and actuators and without failure, all correction factors 

would be null (0 ) . A robot agent performing a mapping task starts out with null correction factors as all 

data is assumed to be perfect unless errors are discovered via contradictory sensor data and only at that 

point would a correction factor be adjusted. The CorFac itself is a 4-tuple consisting o f correction factors 

for all o f the elements o f  the MDS except for itself.

CorFac = ( CFt, CFp, CF/ur, CFg) 24.

CFf. correction for time 

CFp. correction for position 

CF/vr: correction for reaction 

CFa: correction for brush

The correction factor for time is to allow for the synchronization o f the clocks among a 

distributed system o f robot mapping agents if such a need were to arise. As clocks can drift, 

resynchronization would be indicated by an adjustment in the time correction factor within the MDL map. 

For most applications, it is anticipated that the time correction factor would remain 0 .  The position 

correction factor is crucial to generating an accurate map. Error in the ability o f the robot to know where it 

is to correctly register itself and thus place the gathered data into the map correctly is the most significant 

source o f  error in mobile robot generated mapping. Methods have been devised to assist a robot in 

locating itself but these methods tend to be impractical in unknown terrain [Talluri-92][Kabuka-87]. It is 

therefore very likely that a robot will lose track o f its precise location in the coordinate system given a 

precise starting point and this will introduce error into the map as it is being constructed. Such error in 

self-location can be detected. Correcting for this through the position correction factor is key to the MDL 

method o f  error control. With the application o f  time dependent transforms to the MDS sequence over that 

part affected by a detected error in position, we can adjust for this error and produce a more precise map. 

The reaction correction factor addresses detected errors in the sensors and actuators themselves. This is
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specifically designed to compensate for the systematic error that can be detected in the sensor and actuator 

systems. Stochastic error by its very nature is not predictable and will limit the effect it has on the 

mapping system over time. Finally, the brush correction factor allows for compensation in the brush due to 

deterioration from age, environment or other factors. If  analysis were to show that a particular sensor was 

becoming very unreliable for a certain range o f its design specifications, compensating via the brush 

correction factor would allow the data collected within dubious range to be filtered out. Perfectly working 

sensors requiring no correction factors would have a correction factor o f  0 .

The flexibility o f  the MDL system is that it allows for heterogeneous robotic mapping systems to 

operate under very simple conditions where correction factors are likely to be o f the form {0 , CFp, CFMp, 

0 } while still allowing the full capabilities if  needed.

4.7 Error Detection and Correction in Historical Data

The primary motivation for the development o f  this technique was the necessity to construct more 

accurate and robust maps, and to accomplish this task, it was necessary to understand the reasons why 

maps constructed by mobile robots become inaccurate; we had to examine the sources o f error. Error 

creeps into the maps we are constructing from several sources. Error is introduced via the physical 

sensors, via the tolerances o f  the gears in the drive system, from slippage of tracks or wheels on the 

ground, computational rounding off, and a wide variety o f  other sources. Some o f these sources o f  error 

can be controlled or at least contained and some sources o f error cannot. We define error, in the context of 

robotic map construction, as that additional component o f  the map, a sensor reading, etc., that deviates 

from the true value. For example, if  we got a range reading from a sensor, r, we can express this value as 

follows:

r = Ru + error, 2 5 .

where Rtfue is the physically accurate reading and r  is the reading returned by the sensor. What are the 

sources o f the error component? We can partition the error component into two sections:

error = E stochastic +  E systematic. 2 6 .

Stochastic emir is that part o f the equation beyond our control. It is the random variation in 

signals, return, and actuator function inherent to everything robotic component and system. Because o f its
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random nature, it is essentially noise on the signal we are trying to record and as such it limits itself. Since 

the effect o f any error in mapping is potentially cumulative, the control and limitation o f error is very 

important. Consider obtaining a robot’s position by dead reckoning based on distance traveled. As one 

leg o f  trip is completed, error in position is incorporated into the position value. As further legs o f the trip 

are completed, additional error is added on top o f the previously incorporated error and the estimated 

position begins to drift more and more from the true position o f  the robot. In the case o f stochastic error, 

the effect is limited due to the random nature o f the error signal, which behaves as uniform distribution 

with mean o f zero. This is not to say that there is zero effect from stochastic error through the mapping 

operation, but that the effect o f  this type o f error is much less significant than the possible effect o f 

systematic error.

The portion o f  the error equation that we must concern ourselves with is the systematic error; that 

error which is produced by some characteristic of the device producing the error. This systematic error can 

be caused by a component defect during operation, a manufacturing problem, environmental influences, 

and a host o f  other sources. Systematic error will accumulate in effect on the map data since, by its nature, 

it has a non-zero mean. Sequential readings and incorporation o f such readings compounds the systematic 

error component o f the total error. The non-random nature o f this error causes a drift as the systematic 

error component becomes a larger and larger percentage o f the perceived value, say position o f the robot. 

The following figure illustrates this point (Figure 20). Assume that the systematic error o f the wheel 

encoder and drive system is such that distance traveled is reported back as 10% short o f the actual distance 

traveled. The robot actually travels 10% farther than it intended on each leg. As the robot makes a series 

o f movements, the systematic error in the position will lead to an interesting result.

The effect o f  the systematic error in this simple illustration does allow our robot to return to the 

starting point as it intended since we assumed that there was no error in the turning operation, however it is 

clear that the path traversed is significantly different Any sensor data collected along the journey would 

have been located in the incorrect places on the map being constructed and thus the map would see 

significant error in that data collected at the bottom o f the journey (leg d).
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Table 7. Effect of Error on Distance Traveled

Segment Intended/Assumed 
Distance Traveled

Actual Distance 
Traveled

a 10m 11m

b 5m 5.5m

c 5m 5.5m

d 5m 5.5m

e 15m 16.5m

f 10m 11m

Start/End f+ 10m

10m Intended Mapping Route
15m

Actual Mapping Route
5m

5m
5m

Figure 20. The Effect o f  Systematic Error 

The effect o f  systematic error in a distributed and heterogeneous network of mobile robots is 

complicated by the fact that the mapping agents share mapping information and we can end up with 

systematic error components which result from readings taken by sensors other than those on the robot. 

Realizing that systematic error is a significant problem in mobile robotic mapping and that we may be able 

to control the effect it has on the map being constructed, we must first find a way to detect the presence o f  

the error. Only if  we can detect the error, can we isolate it and try to correct for its effect. Techniques 

which can be used to detect error are comparing theoretical locations with the actual maps constructed, 

using known reference points, triangulation from beacons and other methods. For the purposes o f  this 

work, let us assume that we have detected that there is an error our mapping data, such as the current robot 

position, and we would like to now treat the map such as to correct for the detected error. The mechanism 

by which this is accomplished in MDL is through the Correction Factor (CorFac) o f  the statements in the 

map description.
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In an ideal tnap, there would be no error and we would produce a perfect replica o f  the real world 

on our map. The CorFac would be NULL (or zero) in this case, as no correction to the data is needed. In 

the real world, we would see error accumulating in the map as the robot mapping agent roams the unknown 

terrain taking sensor readings and incorporating those readings into the map via an MDS. Once an error in 

the map is detected, we can treat the MDS sequence to correct for the detected error. The correction is 

accomplished through the use o f time dependent transforms which are applied to a subsection o f the total 

MDS sequence. This time dependent transform (TDT) computes the CorFac components o f  each o f the 

statements in the sequence based on assumptions we can make about the nature and effect o f the error 

source. The goal is to create a map which has an acceptable level o f  error in it. This map is not going to 

be free o f error but if  we can eliminate any detectable error in the map, we have effectively constructed the 

best map possible within the technological limitations o f our robotic system. MDL allows for the 

application o f a TDT to the mapping data contained in the sequence o f  MDS which can correct for the 

detected error. When the MDL is again parsed to paint the map, a more precise map is constructed.

The form o f the time dependent transform (TDT) is significant to the effectiveness o f the 

correction factors in canceling the error in each MDS. Figure 21 illustrates two possible forms a TDT 

could take over the length o f  the segment o f the map being corrected. The linear TDT indicates that the 

full correction factor, which compensates for the entire detected error, is applied to the last MDS entry and 

a correction factor o f 0 is applied to the very first MDL entry (where we assume the data such as position is 

accurate). Along the way from the beginning to the last entry, we proportionally scale up the amount o f 

correction over the entire sequence o f MDL entries in the block we are correcting. This is one o f the 

simplest types o f correction we can make as we only need to count the number of MDL entries in the block 

we are correcting and then step through, adjusting the correction factor at each MDS. If we know 

something about the nature o f  the terrain over which we moved, then a non-linear TDT may be more 

appropriate. Knowing we transitioned from grass to gravel, for example, could indicate that much more 

wheel slippage and thus position error, was added in the gravel portion o f  the journey than on the grass 

portion o f the journey. We could thus weight the correction amount more towards a particular segment o f 

the MDL block, such as with a nonlinear TDT.
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L i n e a r  T D T N o n l i n e a r  T D T
Figure 21. Linear and Nonlinear TDT 

The linear TDT method does have some drawbacks. In particular, we are applying incrementally 

different correction factors to adjacent MDL entries when it may be the case that the adjacent MDS’ 

should have the exact same correction factor. For example, if  the two adjacent MDL entries are both used 

to fire a sensor and record the result and no movement or change in the robots configuration has taken 

place between them, then the correction for position in those two MDS should be identical.

The TDT we propose is to apply incremental correction only after events in the MDL that would 

cause changes in the correctness o f  the values. If we are correcting the position o f the robot, we will only 

change the amount o f  correction applied from one MDS to another MDS if we transition over an MDS that 

involves movement o f  the robot. A sequence o f  sensor operations would not move the robot and result in 

the correction factors for that segment o f the MDL block being all identical. The result is a staircase TDT 

keyed to the movement operations. We can compute the increment size, the step o f correction applied to 

throughout the MDL block by:

Ax 27.
Stepx =

Stepy =

NM
_ Ay

NM
where NM  is the number o f  movement operations in the block o f MDS from MDSf,nt to MDStM„ and A t is 

the detected error’s x component and Ay is the detected error’s y component. Utilizing this computed step 

size we can formulate the computation of the correction factors to be applied at each statement in the block 

o f  the map description being corrected. The computation o f  the actual correction factor (CorFac) is then 

accomplished by:
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CorFaCfr = Ax*
28.

CorFacSv =  A y*

If ( MDS&i is movement) then 5 = 5+1

where 5  is set to 0 at the beginning o f  the block. We increase the correction factor after each movement o f 

the robot and as a result have the same CorFac applied to MDS which should have no difference in terms 

o f error o f position. The resulting TDT would resemble Figure 22. This TDT improves the intuitive 

matching o f  sources o f  error, movement in this case, to the amount o f correction factor applied to the 

various parts o f  the MDL sequence describing the map area in question. This TDT would work well if  the 

majority o f  the error came from drift or wheel slippage at the starting or stopping point o f a movement 

such as acceleration or braking only.

If we assume we are getting significant drift in position resulting from wheel slippage and wheel 

encoder tolerances and other in-motion related sources, then we would be better served to associate the 

degree o f correction applied with the distance moved in the motion operation. The TDT described in 

Figure 22 treats each robot motion identically, be it a  move o f 1 unit or a move o f 500 units. We can 

define a new TDT that scales the correction factors applied to each o f the movement segments to the 

distance moved within those motion operations. As we assume the motion itself introduces significant 

drift in position estimate, the segments o f longer motion would contribute more error and thus be subject 

to a  larger share o f the correction. These correction factors are defined by the following equation.

Movement MDS
MDS

Correction
Applied

y b i o  *
A < MDS sequence---------- ► A

Figure 22. Staircase TDT Applies Correction More Intelligently.

89

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



CorFac, =  A x*CorFac^ =  A x*
29.

CorFacSy =  Ay * z z ±

If ( MDSsx is movement) then SD, = distance moved in MDSsx

D is the total distance moved over MDSflrl, to MDSua,. SD, is the distance moved in MDSt where / goes 

from 0 to NM. If we take the same 4 movements depicted in the simplified staircase TDT and assign the 

movements a distance moved o f 1,1,4, and 2 in sequence, then the TDT would be as shown in Figure 23.

4.8 Cooperative and Distributed Map Building

In the following section, we will illustrate by example the map construction, error detection, 

correction via a TDT and global map construction. Before we do so, we must treat the final phase o f  our 

distributed robotic mapping system. The system consists o f  a heterogeneous network o f mobile robots, 

each independently building a global map from the sensor data it collects. As was shown in Figure IS, 

these local maps are periodically broadcast and thus shared with the other robot agents. These collected 

local maps are then combined to produce a global map. Since the robots are heterogeneous, sensors and 

their characteristics are not known across the distributed system. While it would be possible to inform 

each robot about the necessary parameters needed to implement the brush functions and transmit the brush 

functions along with the MDL sequence as a copy o f the local map, we will transmit the painted local maps 

with reference information so that they can be combined with simple data fusion techniques. In our case, 

we will use bitmap representations o f  the map to simplify the data interchange process by requiring no

Movement MDS
MDS

Correction
Applied

-.I..-. .......

A *  MDS sequence---------- ► A*

Figure 23. Distance Scaled Staircase TDT.
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parsing at the receiving end and making the data stream more robust. With a segment o f  the MDL 

corrupted during transmission, the meaning o f  all following MDS elements is meaningless because their 

meaning relative to the coordinate system would be in question as a position determining MDS such as a 

movement command may have been lost. With a bitmap representation, the corrupt section o f  the map is 

the only part affected and subsequent data in the transmission can still be reliably used. Once the local 

maps from all robots in the system have been received, each robot assembles its global map from these sub

maps. It is important to note that the information contained in the received local maps and the global map 

is never incorporated into any robot’s local map. This prevents the spreading o f  erroneous data beyond the 

affected robot and only influences that portion o f the global map visited by the affected robot. In a 

heterogeneous system such as this is, such data isolation is critical and allows for badly distorted or 

inaccurate data to be removed from the global map if need be. Robot mapping agents may use the global 

maps to guide them in exploring new regions but they do not reference the data in any way in constructing 

their local maps. Figure 24 illustrates this isolation o f data, the flow o f mapping information and the tasks 

associated with each map.

Navigation,
Task Assignment and 
Map Completion.

Self Location and 
Map Correction

Figure 24. Map Data Isolation
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The maps from robots 1 and 3 are combined with the local map from robot 2 to form the current 

local map on robot 2. The same process takes place in parallel on robots 1 and 3 to generate their global 

maps. If the map data from robot 3 was corrupted from a failed sensor or other undetected error or during 

transmission, this data would have no effect on what robot 1 sends to robot 2 and would only affect that 

part o f  the global map on robot 2 that was explored by robot 3. If the problem with the transmission or 

data from robot 3 is corrected in the future then at that time, the global maps would immediately reflect the 

correction without any memory o f  the erroneous data used in the past. Likewise, if  robot 3 is decided to be 

defective, it can be eliminated from consideration by ignoring its data and the global map would reflect that 

change at the next global map update. We will now go through an complete example o f  the MDL based 

mapping methodology to illustrate how the system works and the benefits it contains.

4.9 An Example Illustration o f the MDL Paradigm

To demonstrate both the problem and an application o f the solution provided through the use of 

MDL as a map storage methodology, let us run through a simple example of the theories and methods 

developed so far. We will have a single robot traversing an area and navigating around a rectangle, 

returning to a location near its starting point. We will see how error in both position and rotation data can 

affect the constructed map and how such error conditions can be detected. Finally, we will see an example 

o f  one type o f  time dependent transform (TDT) that can be used to correct the mapping information by 

adjusting the correction factors (CorFac) for the MDS sequence. The corrections we compute are for the 

location portion o f  the position element o f  an MDS only; it allows us to simplify the example. Below is a 

sequence o f steps the robot navigated to complete the journey and the collected data at each point. Some 

intermediate steps to complete a total map were omitted but could easily be filled in without affecting the 

outcome.

The following figures (Figure 25, Figure 26) show the mapping operation through seven steps 

numbered 0 through 6. Each diagram contains a view o f the environment below which we see the local 

map the robot has constructed. In a heterogeneous, distributed robot system, this example would be played 

out multiple times in parallel, each robot independently building such local maps and performing 

corrections. Those local maps would then be shared and combined as indicated in Figure 15 to generate
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the global maps. Examining a single robot allows us the illustrate the MDL methodology more clearly. 

Below the local maps we see a summary o f  the action/reaction (A/R) pair elements o f  each o f the MDL 

statements produced as the robot navigates the scene. It is the A/R elements that are o f  interest as they 

contain the significant data that indicates the effect o f  the systematic error introduced. Additionally, the

robot’s position is shown relative to the intended position the robot assumes it has reached; systematic and

stochastic error are responsible for this deviation between intended and actual positions.

As we follow the robot though its moves, we see that it generates an error in position in step 2 

which carries over to step 3 as well as another in step 4. An error in rotation occurs in step 3 as well. As 

stated, there were some intermediate steps left out, which result in the gaps in the sides, these steps could 

be included without affecting the outcome o f this example but were omitted to reduce the number o f  steps 

to those o f particular interest.

We can see from the final map that the robot has completed its navigation around the exterior and 

arrived near the starting location. Notice that the points corresponding to the upper left corner. A* and A, 

are not in the same location on the map. Using simple geometrical knowledge o f closed shapes and the 

planned and executed path, the robot can reason that these two points indeed represent the same point in 

the real world. The robot can thus detect that there is an error in the map it has generated. As we know 

that the two points are one and the same in the real world, we can compute the error in the position o f  point 

A’ relative to the starting point A. It is assumed that the starting point is accurate. If dealing with simple x 

and y Cartesian coordinates, we can compute the error component as follows:

4i = A *  A'* 30.

Ay 3  Ay -  A ’y 3 1 .

This allows us to define the error as

Error = (A„ Ay) 32.

We want to have Error be 0 (A, = Ay = 0). It should be noted that Error contains both a

systematic and a stochastic component but we are treating the stochastic component as limited in effect and 

negligible in comparison to the effect o f  the systematic error. If this assumption does not hold for a 

particular situation, then any attempt to correct error is futile as the uncontrollable stochastic error will
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overwhelm any attempted correction and having no correction effort at all would likely result in a final map 

that was no better than one where correction was attempted.

We will now utilize a time dependent transform (TDT) on the MDS sequence to adjust the 

correction factors (CorFac) o f  the various statements resulting in an aligning o f  the two points A and A'. 

In our case, we will use a linear TDT that applies an equal distribution o f  correction to each o f  the MDL 

statements. An alternative TDT could be a logarithmic version (Figure 21) or a staircase version (Figure 

22). The reason for choosing the linear TDT is for simplifying the example.

For the purposes o f  this example, depicted in Figure 25 and Figure 26, we will perform a 

correction only on the position element o f the MDS sequences and only on the location part o f that 

position. It is clear that rotation was also affected by error but the computation o f  the CorFac for position: 

location is sufficient to illustrate the methodology. The MDS sequence that we have for this mapping 

journey can be divided into sections for which position information stays fixed. The position information 

could have been corrupted as we transition from one section to the next. As we were not able to detect an 

error until reaching point A', we have no way o f knowing where any error may have been introduced into 

the system and thus we must treat the entire MDS sequence from the last assumed accurate point; the 

beginning in this case. After correction via the TDT, point A’ is assumed accurate and subsequent 

corrections affect the MDS sequence beginning from A’ until the next point an error is detected. Table 8 

lists the correction factors applied to each o f the elements in the MDS sequence over the locations that the 

robot visited during he mapping journey.

We can see that there were a total o f  6 sections o f  position information. The introduction o f  error 

could have occurred at each o f the 5 transitions. Using our linear TDT, we will correct for an equal 

amount o f  the error in each transition, thus setting the CorFac for all MDS elements in each o f  the six 

position sections to the same value. The amount o f  correction applied to the location part o f the position 

element per transition is (A,/5 , Ay/5). This is how we arrive at the CorFac values specified.

CorFac.Position.Location ( Position Pi) = {(M) AJS, (F1) V 5 1 33.

where i is the sequential position number from 1 to 6 as listed in Table 8.

94

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



<s>

Constructed Map: Constructed Map:

Starting Configuration {scan, datal}

• :  M ended  location 2  
wtihout introduced enot

• :  Intended location ^

Constructed Map: Constructed Map:

{nxive, +d1) 

{scan, data2}

{move, +d2} 

{rotate, +r1} 

{scan, data3>

Figure 25. A Detailed Example, Part 1
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Constructed Map:

{move, +d3} 

{rotate, +r2} 

{scan, data4}

Constructed Map:

{move, +d4} 

{rotate, +r3} 

{scan, data5}

• :  in tended location

Constructed Map:

{move, +d5} 

{rotate +r4} 

{scan, data6}

Constructed Map: Constructed Map:

A'

Final Map: Notice that points A and A’ Final map overlay on the reference
are the same location. object

Figure 26. A Detailed Example, Part 2
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The CorFac element illustrated is only the location portion o f the position part o f  the overall 

correction factor o f  a single MDS. A full CorFac might look like

{At, {{SMS . SMS). {SMS), 0}, {reaction}, {brush}} 34.

where A, is a possible correction to the clock, the rotation correction is also included, no configuration

correction is set and a possible correction for the reaction (sensor data, maybe a fixed detected systematic

bias) and brush (environmental influences) is included. Thus, a complete MDS element in the sequence,

utilizing such a more complex correction factor, would take the form

{Timea, {{Xa. ya}.{ra}}. {-move +da". “+da'l. {“sonar 1"}, { a*, {{5A./5, SMS), {SMS), 0}. 35.
{reaction}, {brush}}}

Table 8. Application o f Time Dependent Transform

Position MDS Sequence A/R par CorFac (Position: Location)

P1 scan (OMIS. OAy/5)

move +d1 (QMS, OAy/5)

P2 scan (1AJ5, 1Ay/5)

move +02 (1A./5,1 Ay/5)

P3 rotate +r1 (2Ai/5 . 2Ay/5)

scan (2AV5 , 2Ay/5)

move +d3 (2AJS. 2Ay/5)

P4 rotate +r2 OMS  , 3Ay/5)

scan ( I M S . 3Ay/S)

move +d4 O M S . 3Ay/5)

P5 rotate +r3 (4M 5 , AMS)

scan (4M S , AMS)

move *d5 (AM S , AMS)

P6 rotate +r4 (5 M S , SMS)

scan (5 M S . 5Ay/5)

Applying our linear TDT to generate our 6 correction factors and applying them to the 

constructed map from our simple example, we generate the corrected map shown in Figure 27. Two things 

are recognized from the comparison o f the constructed and the corrected maps. First, we recognize that we
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have indeed moved the point A’ to the location o f  the tnie initial starting point, A. Second, we see that the 

corrected map does not match the reference object from which the map was constructed. This difference 

comes from three sources.

The first source is amount o f  correction applied to each of the legs. With our linear TDT, we 

applied an equal part o f  the total correction needed to move A’ to A to each segment, without consideration 

to the amount o f  the total error that was contributed by travel on that particular leg o f the mapping mission. 

If we review the information in Table 8, we see that the journey involved moves of various distances, those 

distances not necessarily being equal. If a movement generated a distance traveled that was greater than 

1/5* o f  the total distance traveled and we assume that some o f  the drift in position is a result o f being in 

motion, then it reasons that the amount o f correction applied to the sensor data collected on that leg should 

be greater than 175th o f the total correction for the whole journey.

Constructed Map: Corrected Map:

T A'

H\ B. i
I jL ——

Constructed map before correction with overlay of the Constructed map after correction with overlay of the 
reference object. reference object.

Figure 27. Corrected Map for Example 

The second source for the difference between the corrected map and the reference object is that 

the example also generated rotational errors, as illustrated in step 3 o f Figure 23. However, there was no 

correction for rotation done by the TDT and thus no correction changes in the MDS sequence which 

describes our map. The rotational error is still included in the corrected map as it is painted.

The third source o f  difference between the corrected map and the reference object is error we 

could not detect with our method o f error detection. We detected and computed the amount o f error in
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position by recognizing the shift in the upper left comer o f the reference object which moved that comer in 

our map from position A to A* position. The mapping journey around the rectangle took the robot down 

the left side, but also back up the right side. Likewise it took the robot across the bottom and then across, 

in the opposite direction, the top. Assume that as the robot travels, the perceived distance traveled by the 

robot is less than the actual distance traveled by the robot. This might occur as a result o f skidding by the 

robot when it stops motion. The wheels and wheel rotation encoder may well stop, but the robot itself may 

skid a bit further on the surface. Think o f what happens in a car as you drive down a gravel road and then 

press the brakes suddenly. Although the wheels have stopped moving, the vehicle will continue forward 

for some distance. This is why the bottom edge o f the constructed map sits below the bottom edge o f the 

reference object that was mapped. This same effect would happen on each leg o f  the journey and so it 

would also occur as the robot travels up the other side of the object. When we got to our reference point to 

detect and compute the error in position, some o f the error in the x-dimension and the y-dimension had 

cancelled itself out. We can compute the changes needed to match up position A to A', however this is not 

based on the correction needed to match position B to B’ (Figure 27). One correction o f the x and y 

coordinates o f  the position o f the robot as it proceeds through a complex path in the environment cannot be 

expected to accurately correct the map along all points o f  the path. Better correction results could likely be 

obtained by employing more reference points where error detection and thus correction takes place. 

However, it is not always possible to get correction points where you need them or want them. In our 

simple example, we have a robot mapping around a single object. The only location for reference that the 

robot knows is a single point -  where it started. All mapping data is referenced relative to the location 

where the robot started its mapping journey. Once the journey was completed, we assumed our robot 

could reason that the corner it was seeing at the end o f  its mapping journey was indeed the same one it saw 

at the start o f  its mapping journey. This allowed the robot go compute a drift in position and make a 

correction for that d rift If additional points o f reference were available in the environment from which the 

robot could obtain precise position information, then it would be possible to detect error and correct more 

frequently. We will utilize reference waypoints placed in the environment to obtain position readings from 

in our experiments in the next chapter.
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5. Experimental Simulation of MDL and Map Correction

5.1 Conditions o f the Simulation

5.1.1 World Model

The simulation environment provides a controlled test-bed for running algorithms and testing 

concepts where one can regulate the influences o f the multitude o f  variables that would exist in a real 

world experiment In the case o f the robotic simulator that was written to test the MDL concept, we are 

able to enable just those effects we would like and disable those that we would like to eliminate. This 

allows us to see more clearly what affect each individual variable may have on the resulting performance of 

the system.

The environmental variables that can be simulated include physical error such as mechanical 

tolerances, communications errors such as message loss or corruption, stochastic error for any sensor or 

actuator, and the effect o f wheel slippage during movement, just to name a few. For the sake of 

simplifying the analysis o f the results, and to be able to categorize and organize our experimental results 

for presentation, we have limited the simulation o f errors in our system. We simulate errors in rotation and 

movement o f  the robot, the wheel slippage and traction errors resulting from moving across imperfect 

surfaces, and noise in sensor readings which are dependent on the sensor type. Error induced into the 

mapping system causes the resultant map to be inaccurate with respect to the actual environmental 

condition it is supposed to represent. At the point o f correcting for that error, it is irrelevant from which 

source or sources that error may have come. It matters only to what extent the error can be corrected.

5.1.2 Implementations and Systems 

Robot Core Simulator and Algorithm Shell

In our simulator design, we implemented two major components, a robot simulator and a 

graphical user interface based simulation controller. The robot simulator was written in C and contains 

two major parts. The first part o f the robot simulator is the core systems simulation, which contains the 

simulation code for all o f the components on the robot and the data storage and access as well as 

communications abstraction. This part is responsible for generating the error distributions and injecting
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those error distributions into the sensor readings and actuator movements, which are requested by the 

robot’s algorithm running on the second half o f the robot simulator. This part o f the robot simulator acts 

as an abstraction layer to the algorithm processor for the robot, giving the algorithm access to basic 

functions to send and receive messages, rotate, move, fire sensors and receive their results. The robot 

simulator interacts with the true model o f the environment to determine what data sets to provide back to 

the robot algorithm and adds the appropriate error where needed.

The second half o f  the robot simulator is a shell that runs in conjunction with the abstracted core 

routines in a loop and within which any particular robot algorithm can be executed as long as it can make 

use o f the existing facilities provided by the robot abstraction simulator described above. The facilities 

provided to the robot algorithm include message reception, message broadcasting and addressing, storage 

o f mapping information and reading o f that mapping information from a predetermined grid o f  a 100x100 

matrix that is 24 bits deep, and some utility functions.

In experiment one, a ‘contour following’ algorithm was written to cause the robot to trace the 

outside edge o f a single object in the center o f the 100x100 world and map it by using the simulated 

robotic sensors and wheels. The algorithm then implemented the MDL data storage approach by encoding 

all events into MDL statements and using the list o f MDL statements to paint a local map whenever 

needed. This experiment allowed us to evaluate a limited implementation o f our map storage paradigm 

and also evaluate the effectiveness o f our TDT for applying correction.

The primary set o f experiments ran a set o f 2 and 3 robots over a simulated environment with 3 

objects in them to test the performance o f the system under multiple-agent and cooperative conditions. 

The world was again modeled on a 100x100 grid. A bounding wall surrounded the entire area to act as a 

container for marking the edge o f the region to be mapped. Objects o f  arbitrary shape were placed inside 

the area at various locations and multiple mapping agents were then deployed, all using the same mapping 

algorithm, in fact, the same code, to construct a map o f  the terrain cooperatively. The agents each 

constructed a local map, as did the robot in experiment one. Periodically, those local maps were broadcast 

among the mapping agents and each constructed a global map from the combined data.
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There is some experimental functionality provided by the core robotic simulator to assist in data 

analysis. The simulator provides a goodness measuring function which computes a reference number 

representing the difference between the local map generated by whichever algorithm is running on the

visual evidence o f the map but also some numerical data as well. These coverage values are computed via 

a difference summation between all o f the pixels in the world model stored in the simulation and the map 

generated by the robot algorithm running in the simulator. The coverage is defined as follows:

where values o f  < and j  are in the range 0 to the map width and 0 to the map height respectively. 

Environment(iJ) is the true state o f the world at grid coordinate ( i j)  and has a value o f 2SS for occupied 

space and 0 for free space. M ap(ij) is the corresponding recorded map information which has been 

constructed on the robot as a result o f  the sensor data gathered to this point. The map can be the local or 

the global map, depending on which map is being evaluated. R is a  scaling factor.

Each pixel in the map can have a value from 0 to 2S5 so that that the simulator supports gray scale 

maps and could support algorithms that utilize fading  or occupancy probabilities. In our algorithm, we 

used occupancy values for each pixel o f empty (255) or occupied (0) in constructing our map. However, 

in the environmental model 0 indicates firee space and 255 indicates occupied space. A perfectly drawn 

map would be an image negative o f the environmental model. This is just the result o f how our 

environmental model and our maps are created. We start with a blank grid o f all 0 and fill in the desired 

information as 255 values. In the case o f the environmental model, we paint in objects as collections of 

255 value elements. For our map, we use the sensors to detect empty space up to the objects and paint in 

empty space as 255 values. Our scaling factor, R, was set to 2. Without a scaling factor, we would have a 

normalized coverage result that returns a number in the range o f 0 to 1 for each pixel. We wanted to 

expand this range to 0 to 2 to avoid any issues related to rounding and integers within the computer 

software implementation where any value less than 1 would be rounded to 0. This results in the difference 

between the environmental model and the map model being scaled onto the range o f 0 to 2. With our map

simulator, and the true environment stored inside the core robot simulator. This provides us not only with

|255 -  Environment(/, j )  -  Map(i,j)\ 36.
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and environment fixed at a size o f 100x100, the perfect match between environment and map would result 

in a coverage o f  0, while a perfect mismatch between the environment and the map would generate a 

coverage o f  R*Width*Height, which is 2*100*100 or 20,000. The bounds for the coverage statistic are 

thus 0 to 20,000.

Our analysis will be based on the changes in the Cov (coverage) statistic between the map without 

applying MDL corrections and with MDL corrections. The drawing o f  the map based on the use or non

use o f the corrections is immediate as we only need to signal the map drawing function as to whether it 

needs to apply the corrections stored in the correction factors (CorFac) when it performs the painting. We 

are thus working with the exact same sensor and positioning data whether we use correction or not and can 

turn the correction on or o ff at will.

The verification o f the correctness o f  the distribution generators was also performed 

experimentally by specifying the distribution desired and generating a log o f  the numbers generated and 

then analyzing that log to ensure it conforms to the desired distribution. The distribution used to generate 

the slippage due to traction problems on the wheels is based on a Gaussian distribution with a fixed mean 

and standard deviation. We limited the simulation o f  traction issues to only losing some motion due to 

traction and wheel slippage from acceleration and eliminated any skidding past the stop point from 

braking. Therefore, all o f  our distances moved would be equal to or less than the distance requested and 

reported. Each movement o f  the robot in the world is thus:

Moved Distance = Requested Distance - e 37.

where e is scaled from 0 to 5  and S  is a fraction o f the requested distance.

For example, if  we specified S  be 20% o f the requested distance, then the error component, e, is 

the distribution scaled to be from 0 to 0.2*Distance. If the requested move was to move forward 10 units, 

then e would be a random number from the distribution, scaled into the range from 0 to 2 and so the actual 

Moved Distance could be anything in the range from Requested Distance to Requested Distance-2. To 

achieve such a distribution, we took a basic Gaussian distribution, shown in Figure 28, and folded it over 

on its mean, mapping all o f  the points onto one side o f  the mean. This distribution is very similar to an
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exponential distribution, but not quite the same. Figure 29 shows the density function o f this Gaussian 

based distribution from one o f  the experimental runs.

Value

Figure 28. Gaussian Distribution Function 

The Gaussian density is described by the equation:

Figure 29. Gaussian Based Density Function for Error Simulation

Graphical User Interface -  Simulation Controller

The other major component o f the simulation system is the graphical user interface (GUI) and 

simulation controller. This part o f  the software simulator was written in Tcl/Tk, a language package o f a 

core interpreted language, Tel, and an extension package, Tk. This package is widely used and allows 

rapid, and more importantly, portable code to be written which generates interfaces in a GUI environment 

to allow for user input, output, display o f  graphics, etc. Tcl/Tk is available for a variety o f platforms 

including Windows, Mac and various flavors o f  Unix. Our simulation utilized the Sun Solaris and
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Windows NT 4.0 Tcl/Tk inteipreters, version 8.0. The purpose o f the GUI was to act as a front-end to the 

C code and allow the operator o f the simulator to utilize their favorite seat as a controller and display 

device while being able to run the core robotic simulator on a more powerful or robust system such as a 

Unix server. The GUI interacts with the core robot simulator system described earlier via TCP/IP sockets 

and so is flexible enough to theoretically allow the robotic simulator to ran in any location on the Internet, 

independent o f  where the GUI terminal is. We also wanted to allow robot processes to be run on any 

number o f  machines distributed over a lab, building, campus, city, country or even the world.

The simulation controller, dubbed UROSYS, for Universal Robot System Simulator, is run twice. 

The first instance is configured to be the server, which is the simulation controller. There is one and only 

one simulation controller for a simulation. A second instance o f  the UROSYS program is then configured 

as a robot GUI, which is then linked to a particular robot simulation already running. This allows for a 

robot to graphically display its mapping data and other information. All connections are managed through 

the single UROSYS server set up for the simulation run. Figure 30 shows a complete UROSYS desktop 

with two client robots connected to the server and a single GUI instance running for one o f the connected 

agent processes (indicated in green in the client window). Figure 31 shows the UROSYS window used to 

configure the software to act as a server and then a GUI client.

As seen in Figure 32, UROSYS also configures the error distribution as well as the robot model. 

The robot model is a programmed set o f algorithms that are implemented in the robot simulator as well as 

some variables that may need to be changed. The values set in the robot model are thus tightly coupled to 

the algorithms programmed into the robot simulator.

The robot configuration shown in Figure 32 allows the user to select from 4 algorithms. 

Algorithm 3 was used for experiment one for the experimental testing o f  the MDL mapping technique. 

Algorithm 4 was used for experiment two. Algorithms 1 and 2 were utilized only for UROSYS testing as 

well as robot testing to ensure the sensors and mapping functions operated correctly. Algorithms 1 and 2 

just wander the map space collecting sensor data until the coverage statistic for the created map falls below 

the specified COVERAGE limit, at which point the robot would halt. Algorithm 1 just randomly turns 

when it bumps into an object using a uniform distribution to generate a new direction to try.
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Figure 30. UROSYS Desktop

I130.B3U1

Figure 31. UROSYS Simulator Configuration

Figure 32. UROSYS Error and Robot Model Configuration
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Algorithm 2 would use a more intelligent direction selection system, whereby the new direction was 

chosen by being attracted to the unmapped blank spaces o f the map being constructed. The parameter, 

which did affect the experimentation, was the selection o f  the angle o f  the sonar sensors, which were 

programmed to be in a ring o f 8 sensors, equally spaced around the circumference o f  the round robot. This 

sonar angle was not changed for any o f the experiments run.

From Figure 32 we can also see the selection and configuration o f the random number 

distributions that were utilized. The user could select from uniform or Gaussian, and then specify a mean 

and standard deviation for the Gaussian distribution. For our experimentation, we only utilized the 

Gaussian distribution to generate our error input. Additionally, the application and effect of the error 

distributions is controlled via three parameters. There is a fixed error added to any movement or rotation 

operation by the robot. By fixed  error we mean that the range o f the error is not dependent upon the 

amount o f rotation or the distance moved. The range to which the distribution was scaled, before being 

added to the movement or rotational amount, is specified by the user. This magnitude is used to scale the 

error distribution generated random number, which is then added to the amount o f a rotation or the amount 

o f a move. Finally there is the movement error scale factor which is the percentage o f  the movement 

request which is used to scale the random distribution from zero to one to a more significant range. In 

Figure 32, we see a setting o f  0.2, or 20%, indicating that the error distribution would be scaled to a value 

o f 20% o f the requested movement distance. That value would then be subtracted from the requested move 

distance to determine the actual distance the robot moved in the simulator. The algorithms running within 

the robot simulator o f  course assume that the full requested distance is moved.

5.2 Simulated Mapping of Objects

5.2.1 Experiment One

Our first experiments involved a simple task. A robot, always starting from the same location, 

was to circumnavigate its way around an object in a counter-clockwise fashion and create a map along the 

way. The resulting map would depict the shape o f  the object. We performed several experimental runs on 

each o f  several objects using several parameter configurations. The object shapes utilized were a potato, 

which included a concave as well as convex surface; a triangle, having more acute angles at the comers;
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and a rectangle, representing the more commonly encountered man-made objects. The shapes can be seen 

in Figure 33.

Ellipsoid Rectangle Triangle

Figure 33. Shapes Mapped 

The simulator generates four (4) error components o f different types, one for each o f the 

following simulated agent activities: rotation, movement, sonar sensor reading, and laser ranging reading. 

There are three (3) user defined variables set in the GUI that control these error component computations: 

position error, rotation error and movement error. Position error and rotation error are defined in absolute 

units and generate a Gaussian distribution over the range o f  their definition based on a distribution with a 

mean in the middle and a deviation o f 0.2, ranging from 0 to 1. For example, if  the position error were 2, 

then the error producing function generates a Gaussian distribution o f  random values ranging from -1 to 

+1 with a mean o f 0. The sonar sensors utilize this error function. The laser range finder utilizes this 

function at Vi the magnitude o f  the sonar sensor to signify the laser ranging technology is more precise than 

the sonar technology. The factor o f '/i is an arbitrary choice and not based on any particular hardware 

selection; it is merely designed to reflect the relative precision o f the two sensors to one another. Thus we 

express the laser ranging and sonar sensor errors as follows:

SonarError=PositlonErrorRange * RandomGaussDistribution() -  (PositionErrorRange/2); 39.

LaserError=[PositionErrorRange * RandomGaussDistribution() -  (PositionErrorRange/2)]/2;

The rotation error is defined likewise using the rotation error range as its basis:

RotationError=RotationErrorRange * RandomGaussDistribution() -  (RotationErrorRange / 2); 40.

For our experiments, we set the rotation error range and the position error range to either 0 or 2. For the 

case o f  0, there is no rotation, laser or sonar error added to the signals or actions. For the case o f  2, the
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error added to the signals or actions ranges from -1 to +1 for the rotation or sonar operations and from -A  

to 'A for the laser ranging operation.

The overall movement error, that error added to the x and y coordinates as the robot moves 

through the simulated environment, is a function based on two parameters; position error and movement 

error. The position error portion o f  the overall movement error behaves just as described in the sonar 

sensor error description. Additionally, there is a movement error based component whose magnitude is a 

fraction o f the distance traveled. The movement error defines what fraction that is. The overall movement 

error is defined as follows:

OverallMovementError= -[PositionErrorRange+(MovementErrorRange * DistanceT raveled)]*err 41. 

where err is the Gaussian random distribution from 0 to I with mean 'A and deviation 0.2 which has been 

folded in half and translated to generate half o f a bell curve with a maximum probability at 0 and 0 

probability at O.S. Figure 29 illustrates this transformation.

The result is that the overall movement error is always a negative value. This overall movement 

error represents the loss o f position accuracy due to traction loss or wheel slippage, which is accumulated 

at the start o f movement and across the entire length o f the movement operation. It is assumed in our 

simulations that the terrain is uniform, however the simulation framework does allow for the consideration 

o f terrain changes and the effect that would have on computation o f  the overall movement error. Error 

added to position related to movement distance, resulting from physical tolerances in components and 

overshoot resulting from braking, are not included in our simulation model.

The simulated robot navigates around the object in a counter-clockwise fashion until it gets 

within a predetermined range o f its starting coordinates. Along the way, it attempts to run parallel to the 

edges o f the object, staying a fixed distance away from the object. The computation to rotate the robot 

parallel to the object face assumes that the robot is facing the object so that the front and front-left sonar 

sensors will pick up the object face to return range readings at points A and B, which lie in the center of 

the sonar cone at the respective range values returned by the sensors. If the coordinate o f the points A and 

B are A„ Av and B„ By respectively, then we can compute the angle o f  the orientation vector V  (), depicted 

in Figure 34, as follows:
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vector
Sonar Edge 
Detection

Counter-Clockwise
Travel

Figure 34. Obstacle Perimeter Tracing.

The following code computes the orientation angle, (i, o f  the vector shown in Figure 34:
Ax = Bx - A x 42.

Ay = By -  Ay 

d  =  ^ A x 2 4-A y1

if (Ay > 0) then f)= -f3

After computing the orientation angle, fi, o f the vector, V, we compute the difference between the 

orientation angle and the robot's current orientation angle and rotate the difference to line up the robot 

parallel to the vector, V. Angles are relative to 0 degrees being due east. As the robot moves around the 

object and drifts further away from the object than specified (as read from a side mounted sonar sensor), 

the robot is rotated counter-clockwise, facing the object, backed up a small amount, and the orientation 

angle is recomputed and the robot again set parallel to the side o f the object. If a front mounted sonar 

sensor indicates there is an object in front o f  the robot, then the robot immediately reacquires the vector, 

resulting in the robot rotating clockwise to follow the inside comer. If  a sonar sensor on the left-front 

indicates there is no longer an object to the left, then the robot stops, rotates 90 degrees counter-clockwise, 

moves a small fixed distance, rotates another 90 degrees counter-clockwise and then reacquires the vector 

again. This allows it to turn around outside comers as well.
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The algorithm allowed the robot to follow the outside perimeter o f the object being mapped. It is 

assumed the objects are single closed objects. The algorithm ran successfully on the three objects we 

tested: ellipsoid, rectangle, and triangle. Upon reaching the location from where the robot started, it stops 

and ends the mapping operation.

5.2.2 Experiment Two

For our second set o f  experiments, we employed multiple mapping agents working in parallel on 

completing a global map o f the environment. We utilized 2 and 3 robots, each running the same code to 

perform the mapping operation. We placed 3 arbitrarily shaped objects into the environment at locations to 

distribute them somewhat evenly over the environmental space. The mapping agents then performed a 

preliminary survey o f  their space wherein they placed intelligent waypoints that were required to remain 

within line o f  sight o f  at least one waypoint that had connectivity to the primary waypoint.

The primary waypoint is a single waypoint that was predetermined to be designated the origin o f 

the world coordinate system. As each waypoint is placed, it determines its own coordinates in the world 

space by ranging and locating the primary waypoint, if it can see it, or by ranging and locating a secondary 

waypoint which has already determined its location from the primary waypoint or from some secondary 

waypoint. The waypoints remain fixed for the entire mapping mission and are collected by the mapping 

agents upon completion o f the mission. The mapping agents can carry more than one waypoint for 

deployment in the environment. The waypoint deployment phase consists o f simple object detection and 

avoidance. The robot agents fan out and deposit the waypoints in areas that are far apart or just before 

visibility to an existing waypoint is lost. A study o f how best to place a fixed number o f  waypoints in an 

unknown environment is one area that is worth investigating beyond this dissertation. Figure 35 illustrates 

one world utilized for experiment two. The three objects are distributed around the world. The five light 

dots are the locations where the waypoints have been deposited.

Three mapping agents were utilized to construct a map o f this environment and the results were 

analyzed similar to those obtained from experiment one. Figure 36 depicts the simulator desktop with two 

robot agents mapping the environment and a  GUI interface open to one o f  the mapping agents to display its 

local map. The local map is displayed in the GUI window in the upper left o f the figure and the main

1 1 1

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



server displays the environment model along with the location and orientation o f all mapping agents in the 

window in the lower left comer o f  the figure. The window labeled ‘Robot Clients’ lists all mapping agents 

connected to the server and indicates which clients have an active GUI interface by the lighter (green) dot 

next to the its identifier, ‘R28S91@ready’ in this case.

Figure 35. Multi-object Environment for Cooperative Mapping

Figure 36. Simulator GUI Workspace with Two Agents Mapping
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5.3 Analysis and Interpretation o f the Results

5.3.1 Experiment One

The object-mapping algorithm was run over 160 times with various settings o f error effects and 

the results are compiled into the following tables and charts. The performance o f the algorithm and the 

MDL method o f data storage is as expected The more error that is contained within the map being 

constructed the greater the benefit obtained via the MDL correction factor adjustments. The three objects 

all resulted in similar results: there was a drastic improvement in the gains from utilizing the correction 

factors o f  MDL when a full error set was utilized in the simulation than when only a traction loss error was 

utilized Additionally, performance was at its best when mapping a complex object such as the ellipsoid 

with its varying curves, as compared to the regular geometric shapes which require little robot path 

correction to follow their contour.

The performance o f  the MDL system under the conditions o f very limited error in the local map 

generated without any correction shows very minor gains if correction factors are utilized. The simple 

linear TDT scheme was utilized in experiment one. In fact, for the rectangle object, a very man-made 

object requiring few adjustments o f the robot’s trajectory during the mapping, we see that the application 

o f  MDL with only the traction losses resulted in a degradation o f the quality o f the resulting map. This 

appears to be attributed to a combination o f  very small amounts o f error in the position at any given time 

coupled with the unit o f measure and integer position limitations. The error values are on the scale o f  the 

smallest perceivable and representable distance and even a single unit (pixel) shift in the robot’s position 

resulting from correction causes a degradation o f  the map quality. Once the error present in position from 

dead reckoning becomes larger we see an improvement in the maps after correction.

The interpretation o f  the results is based upon gains in the coverage value generated as a statistic 

within the robot simulation. The coverage is intended to indicate the degree o f match between the true 

world model, which the agent is exploring, and the map that the agent constructs, as defined in Equation 

22. This measure is by no means intended to be the best measure o f  mapping performance but it is a 

convenient one for computation and conveys the information desired. Additionally, the absolute 

percentages o f  gain are not o f  as much importance as is the comparison o f  the percentage gains between
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runs o f  differing parameter settings. The gains are based on the number o f pixels that differ between maps 

and are thus dependent on the size o f the map as well as the number o f  objects in the map.

What can clearly be seen from the following figures and tables is that there is a definite 

improvement in the quality o f  the maps when correction was utilized in the presence o f various sources of 

error in the mapping agents. The tables indicate the shape o f  the object mapped, the Position Changing / 

Rotation Changing error contribution and then list the movement error fractions used with the average gain 

in coverage over the set o f simulated runs at that setting. We set the position and rotation fixed error rates 

to zero for one run, to only capture the effect o f the traction related error due to movement as a fraction o f 

the distance moved. We then set the position and rotation fixed errors to a scaled range o f 0 to 2 pixels 

across which the gaussian distribution is scaled to thus produce a movement or rotation error within the 

range o f ±2 pixels. The results are tabulated in Table 9, Table 10, and Table 11 and charted in Figure 37, 

Figure 38, and Figure 39. In Figure 40, Figure 41, and Figure 42 we have charted the performance on an 

absolute scale where performance gains are shown in the number o f raw pixel differences between the 

uncorrected and corrected maps.

We also analyze a normalized result (Figure 43, Figure 44, and Figure 43). We computed the 

absolute average change in the coverage values and normalized it by the number o f pixels in the image. 

This result is defined by the following equation:

£  CovGain/  43-
Gain„„ = ------------- —

P

where CovGain is the coverage gain for a single run, n is the number o f  runs in the set and p  is the number 

o f  pixels in the image.

As we utilize 100x100 maps, the number o f pixels is therefore fixed at 10,000. The larger the 

map would be, the greater resolution or detail could be captured over the same terrain area covered, and the 

more pixels would be contained within any given map. The minimal pixel size is also bound by feature 

size we want to capture and by robot size, however these criteria were not considered in choosing our map 

resolution o f  100x100. The selected size is arbitrary.
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Table 9. Rectangle Results

Rectangle

Pos/Rot=0/0 
MovE Avg Imp

0.150 -65.211
0.175 -71.778
0.200 •64.552
0.225 -28.801
0.250 -19.301

Pos/Rot=2/2 
MovE Avg Imp

0.150 41.396
0.175 40.802
0.200 42.851
0.225 49.101
0.250 31.966

Rectangle

} 4 >  
| -60 
< -80

Fraction of movement for traction 
•rror

Figure 37. Rectangle Results

Full Error Set 
Only Traction Losses
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Table 10. Ellipsoid Results

Ellipsoid

Pos/Rot=0/0 
MovE Avg Imp

0.150 2.881
0.175 4.193
0.200 0.225
0.225 7.069
0.250 9.973

Pos/Rot=2/2 
MovE Avg Imp

0.150 29.928
0.175 18.248
0.200 20.612
0.225 16.828
0.250 18.877

Ellipsoid

30
25
20  Full Error Set

— —Only Traction LossesE
10
5
0

0.150 0.175 0.200 0.225 0.250
Fraction of movement for traction 

error

Figure 38. Ellipsoid Results
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Table 11. Triangle Results

Triangle

Pos/Rot=0/0 
MovE Avg Imp

0.150 -4.274
0.175 1.882
0.200 1.307
0.225 7.979
0.250 12.949

Pos/Rot=2/2 
MovE Avg Imp

0.150 44.135
0.175 44.508
0.200 45.065
0.225 49.888
0.250 50.248

Triangle

*  60 -------------------------------------------------

Full Error Set 
Only Traction Losses

Figure 39. Triangle Results

117

au 

40 
30 
20

I  10

I< -10

i
E

0.150— 0.175— 0^00— CL225— 0^50-

Fractlon of movement for traction 
error

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



Ellipsoid

 Only Traction Losses
lt^ F uII JS ro rS e t___

0.15 0.175 0.2 0.225 0.25
Fraction of movement for traction error

Figure 40. Absolute Gain in Ellipsoid 

Triangle

3000

c  2500| 2000
I  1500

1  1000
S 500 
S< 0

-500

Figure 41. Absolute Gain in Triangle

Ractangla

— Only Traction lo a aes  
 Full Error Sat

Fraction of movement for traction error

1500

1000

500

0.225 0.250.15___0.175<
-500

0.22S Q.2S

-Only Traction Losses 
- Full Error Set

Fraction of movement for traction error

ii
i  1000.0 -
I  800.0 -  

|  600.0 -

400.0

200.0

Figure 42. Absolute Gain in Rectangle
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Rectangle

0.2

0.15

8 0.1 
&
f  0.05 

1 0
0.15___ 0.175 0.225 0.25

-0.05

-0.1
Fraction of movement tor traction error

— Only Traction Lossas 
 Full Error Sat

Figure 43. Normalized Gain in Rectangle 

Ellipsoid

0.12

0.1

0.08

0.06

0.04

0.02
0

JL22S <L2i-0.02

 Only Traction Losses
—  Full Error Set

Fraction of movement tor traction error

Figure 44. Normalized Gain for Ellipsoid 

Triinglt

0.3000

0.2500

0.2000
0.1500

0.1000

0.0500

0.0000
•0.0500

 Only Traction Losses
 Full Error Set

Fraction of movement for traction error

Figure 45. Normalized Gain for Triangle
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The performance losses, particularly with regard to very simple objects with little induced error 

on the data such as is depicted in Figure 37, can be partially related to the implementation o f the robot 

process simulator and how the data is stored internally. Within the core agent process, coordinates are 

recorded as integers. This decision was made early on in the development process to allow for simpler 

comparison between coordinate values. It was assumed that the world maps and constructed maps would 

be o f such a magnitude in size that the direct link between integer coordinates and pixels in the grid based 

map would not be a problem. Once development proceeded far enough to test the simulator, it was 

discovered that the computational resources at our disposal would not allow for efficient simulation of 

maps that were represented by a grids o f  higher resolution such as sizes of 1,000 x 1,000 or larger. The 

area covered by such larger grids would contain information about the same region in space, but with 

greater detail. The memory resources and computational speed on the machines utilized for the simulation 

would have been severely tested. Six megabytes o f memory would have been required for storing a single 

1,000 x 1,000 map. Since each robot would require at least 4 map spaces, for a total o f 24 megabytes of 

memory just for the map, plus memory for the rest o f the code along with the operating system, it quickly 

became apparent that the speed at which such simulations would proceed would seriously affect our ability 

to complete the experiments within a reasonable time frame. It was decided to restrict the maps to 100 x 

100 in size. The size o f the grid used to represent the world is not a limit on the size o f the environment 

explored, but determines the resolution o f  the world and the maps constructed. The use o f  variable 

resolution techniques such as those proposed by [Arleo-99] or other methods o f  compressing the grid 

information in regions o f open spaces could reduce the cost in terms o f  memory if  real robotic resources 

were fixed. Once preliminary results were obtained, it became apparent that size o f the agents, a circle of 

radius S units, with a minimum detectable movement o f 1 unit (pixel), being 20% o f  the size o f the robot 

would be a problem. Movements smaller than a unit (pixel) would be rounded down and lost and this 

created a tendency to shift all data by one unit to the smaller side. A conversion o f  the data type for 

coordinates to floating point numbers was briefly considered. Such a change would allow the recording o f 

much smaller changes in position that would be represented in the maps and their analysis. However, it 

became apparent that changing the coordinate data type from integer to floating point at this late stage
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would require the rewriting o f a significant portion o f the nearly completed simulator and that this would 

delay the experimental runs significantly. As we were going to be testing the effectiveness o f  the MDL 

corrections over a wide range o f error magnitudes, it was determined that the effect o f the scale o f the 

smallest represented quantity, the unit or pixel, versus the size o f the entire world model, being 100 units 

or pixels wide, would not significantly affect our ability to interpret results. While it is clear there is an 

effect as a result o f  this limitation, that effect does not detract from the trends in the data we have analyzed 

that show a definite gain in the application o f the MDL paradigm in situations where error sources are 

plentiful. In a real world deployment o f  such a system, the simulator memory requirements as well as the 

world model representation would not be needed in the memory o f the robot itself. Likewise, the robot 

agents can be designed and built to the specifications needed rather than being limited to the construction 

o f older systems on which the simulator was run.

In examining the normalized gains for the three objects mapped, as depicted in Figure 43, Figure 

44, and Figure 45, we see that the performance o f the correction is less sensitive to changes in traction 

related errors than it appears in the percentage change graphs. This is particularly visible in the ellipsoid 

results depicted in Figure 44 compared with Figure 38. It is still clear that there is significant gain in the 

quality o f the final map under conditions o f more error sources or more error magnitude as compared to 

limited error sources and limited error magnitude.

53 .2  Experiment Two

For our second set o f experiments, we performed mapping operations on an environment o f 

multiple objects with multiple robots acting cooperatively. Multiple mapping agents were placed into the 

environment and proceeded simultaneously to map the space. Local maps were constructed by each robot 

similar to those o f  experiment one with the exception that each robot followed a space-filling algorithm to 

seek out and explore a section o f the map. When a dead end in the space filling operation was reached, an 

agent would locate an unexplored region o f  the global map to determine where to explore next. Once the 

agent has navigated its way there, it would begin a new space filling exploration step into this unexplored 

region. When the global map was completed within a preset tolerance, mapping stopped and all agents 

halted at their locations.
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Significant improvements o f  the maps constructed were observed, particularly when a more 

complex TDT was employed to apply correction. Improvements in the quality o f the map under correction 

are shown in the following figures o f  some o f the experimental runs. Figure 46 shows a completed global 

map after correction from one o f the experimental runs. The image on the left is the completed map and 

the image on the right is the coverage map which depicts the differences between the global map and the 

actual environmental model. Areas o f  agreement are black in the coverage map, while areas o f 

disagreement are light (green). With an exact match o f  the final global map to the environmental model we 

would have a totally black coverage map. Figure 47 depicts an uncorrected and a corrected global map with 

the uncorrected map on the left and the corrected map on the right. It is clear, when one takes into account 

the environment model utilized and depicted in Figure 48, that the corrected map on the right o f Figure 47 

more accurately portrays the locations and the shapes o f  the objects in the environment. The correction to 

the shape o f  the rightmost object is very apparent. From a qualitative viewpoint, the corrected map is the 

output one would like to obtain from a mapping mission. The darker, banana shaped marks on the maps 

are artifacts o f  the method used to locate and differentiate unexplored regions in the global maps.

Further qualitative results are given in the partial maps shown in Figure 49, Figure SO, and Figure 

SI, which depict some o f the improvements obtained in local robot maps as a result o f  using various TDT 

methods to perform corrections on-line. Recall that a linear TDT uses a straight line increment in the 

amount o f  correction applied to each successive MDL element in the block o f  the map description being 

corrected. The stepped TDT applies correction by dividing the total amount o f  correction over the number 

o f  movement operations performed in the block being corrected and keeps the correction amount constant 

between movements. Starting from the assumption that the most significant source of error is from the 

movement o f  the robot and not from sensor actions, all map description elements that are generated at a 

fixed location receive the same correction factor. The scaled stepped TDT improves on the stepped 

version by scaling the amount o f  correction applied to any step by the portion o f  the total distance covered 

in movement within that segment o f  the block. In Figure 49 we see a partial local map, depicted as a 

coverage map, that was constructed and corrected with the basic linear TDT scheme. The uncorrected 

coverage is shown on the left while the corrected coverage is shown on the right The improvement
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Figure 46. Completed Global Map and Global Coverage

Figure 47. Uncorrected and Corrected Global Map

Figure 48. Environment Model
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around the leftmost object is quite dramatic in this case. The coverage shown in Figure SO is from a 

stepped TDT. The uncorrected map is on the left while the corrected map is on the right. It is not 

immediately apparent where the gain in Figure SO is. If one focuses on the peak on the rightmost object in 

the maps in Figure SO and the same object in Figure 49, one sees that the depiction o f  the peak is more 

even with the stepped TDT o f  Figure 50 than with the linear TDT o f Figure 49. Figure 51 depicts the 

improvements in the coverage map when a scaled stepped TDT is used for applying correction factors to 

the map description. The corrected map is on the left here while the uncorrected map is on the right. The 

dramatic improvement in the matching o f the object at the bottom and the one in the upper right is clear.

In addition to this qualitative analysis o f  results, let us now examine some quantitative differences 

between maps that were corrected or not as well as the affect o f  TDT selection.

The performance o f  the system on the simulator was similar to that seen in experiment one. The 

more error that was introduced into the motion and sensor operations, the more significant became the 

gains realized from correction. Since the task o f  mapping the space was shared among various robots, the 

local maps o f  individual mapping agents were only partially completed at the point the global map was 

completed. Analysis was again performed based on the coverage statistic as it pertains to the local maps o f  

each robot, but rather than examining the percentage improvement, we examined the absolute number o f 

pixel difference in the uncorrected coverage versus the corrected coverage. The results can be seen in 

Table 12 and Figure 52.

We can see that there is more significant gain resulting from map correction, as more error is 

present in the system. Even under only the limited error set o f  traction losses we obtained gains from the 

application o f  correction, as compared to the results from experiment one, where very small amounts o f  

error resulted in some degradation in the quality o f the maps constructed. This can be attributed to the 

greater availability o f  reference points in the way o f the intelligent waypoint markers which were pre

positioned in the environment by the mapping agents as they were deployed. The result o f having more 

waypoints is that correction o f  drift from dead reckoning is more frequent. As a result o f the greater 

frequency o f  correction, more error is detectable than was the case in experiment one. In fact, some 

preliminary runs o f  experiment one with only a  single waypoint resulted in rather poor performance from
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Figure 49. Coverage Gains from Linear TDT

Figure SO. Coverage Gains from Stepped TDT

Figure SI. Coverage Gains from Scaled Stepped TDT
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Table 12.2 Robot, 3 Object Results 

Movement Error Traction Losses Full Error Set
0.15
0.175
0.2
0.225
0.25

20.1
76.5
186.3
247.3 
265.7

152.1
154.3 
345.9 
464.5
699.3

3 Object Map 12 Robots

|  800 
§ 700
I  600
|  500

f”  400 
300 | 200

A 100
$  o

0.15 0.175 0.2 0.225 0.25

•Only Traction Losses 
■Full Error S et

Traction Loss Factor

Figure 52. Results with 2 Robots and 3 Objects 

the detectable error being greatly reduced as a result o f the robot making a complete loop around an object. 

It is clear that if  dead reckoning is to be used as a method o f maintaining a global position reference, then 

the availability o f  some form o f known and fixed landmarks, be they a priori or introduced, is essential for 

position location and correction.

Additionally we tested the performance o f the three different time dependent transforms (TDT) 

discussed earlier under similar conditions. The linear demonstrated the most limited improvement. This 

was to be expected as the application o f correction to each piece o f the map description was without regard 

to where the error within any point o f  that segment o f the map could have come from. The stepped TDT 

performed marginally better. The best performance was obtained by the scaled stepped TDT, which went 

further than the stepped TDT. The results o f  these experiments are seen in Table 13 and Figure 53.
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Table 13. TDT Performance Results 

Traction Loss Factor Linear Stepped Scaled Stepped
0.15 152.1 141.4 198.2
0.175 154.3 201.1 253.9
0.2 345.9 358.6 434.7
0.225 464.5 557 679.7
0.25 699.3 731.5 859.5

Linear 
Stepped 
Scaled Stepped

Figure 53. TDT Performance by Type 

In addition, we can examine the normalized version o f  the results obtained based on the definition 

given in Equation 43 to compare with the normalized results given for the single robot mapping the edge 

o f  a single object ( Figure 54 and Figure 43, Figure 44, Figure 45).

The resulting graph is identical to the non-normalized version other than the y-axis units but it 

allows us to compare with the single agent mapping results in Figure 43, Figure 44, and Figure 45. We see 

that the normalized gain for the three object and 2 robot mapping result is below the results from the three 

object types when a full error set is utilized. There appears to be less improvement when multiple robots 

are utilized however this is not the entire picture. The world for experiment two contains 5 reference 

waypoints from which agents can obtain position correction information while the single robot runs o f  

experiment one only contained two such points. The robot in experiment one would spend much more 

time, on average, between corrections and thus accumulate much more error from dead reckoning. As we
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have already seen, maps containing higher levels o f detectable error will show a more 

improvement from the application o f  TDT correction in conjunction with the MDL system.

Normalized 3 Object Map / 2 Robot*

0.06

0.07

0.06

i 0.05 -----

0.04

0.03

0.02 -

0.01

0.175 0.225 0.250.15 0.2

-Traction lo a im  
- Full Error Sat

Traction loaa Factor

Figure 54. Normalized Results with 2 Robots and 3 Objects

Normal bad Gain Over Traction Loaa Factor

0.3

0.25

 Traction Loss
 Full Error Sot

C 0.15

0.05

0.175 0.250.15 0.2 0.225

Traction Loaa Factor

Figure 55. Normalized Gain Over Traction Loss Factor 

Examining the Normalized Gain Over Traction Loss Factor (NGOTLF) defined as:

NGOTLF =

Coverage Improvement/ 
/ ( Map Width * Map Height) 
TLF
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where TLF is the Traction Loss Factor. We see that gains obtained from correction in the presence o f the 

full set o f traction losses, sensor errors, and rotation errors produces an increasing function even as the 

tTaction loss factor increases. The benefit from applying correction is not constant based on the system and 

environment’s inherent design and construction. There is incremental gain as error induced increases, with 

respect to the experimental simulator utilized for this work. This makes intuitive sense, as more error 

being present implies that more error could be detected and hence removed.

We also ran several experimental runs utilizing 3 robots in the environment o f 3 objects. There 

was no detected difference in the correction on the final global map or difference in the performance o f the 

three TDT methods utilized when 3 robots were employed as compared to when only 2 robots were 

employed. This makes intuitive sense as the benefits o f utilizing the MDL paradigm and selecting specific 

TDT mechanisms are not dependent on the number o f mapping agents employed but rather only affects the 

quality o f each agent’s local map. The gain seen is a faster completion time, as each agent had to map a 

smaller portion o f the overall environment. The gain is also seen as higher quality maps are combined to 

form the global map. The quality improvement is obtained as more mapping agents in the field can carry 

or position more waypoints or markers and thus agents more frequently encounter them for correction o f 

position information and correcting the data collected.

There is an intuitive trade off as one increases the number o f mapping agents. Utilizing more 

agents to map a region o f fixed size would naturally result in faster completion time and a more robust 

overall system. Each agent would map a smaller part o f the overall terrain and would thus have to travel 

shorter distances and induce less error into the local map. This lesser error would require less correction. 

However, at a certain point, the space traveled by an agent may be so small that they do not encounter any 

significant number o f waypoints, beacons or other correction assisting tools and would then not be able to 

perform any high quality o f  correction. It is thus theoretically possible to have the quality o f the global 

map get worse as the number o f  agents surpasses a given lim it This would be in spite o f the greater 

overlap o f neighboring local maps obtained by using more agents. It would be another direction o f future 

research to determine how to compute the optimal number of agents utilized for a mapping mission, or to 

compute a limit for which the marginal return for added agents is negligible or negative.
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The global maps obtained in experimentation were all qualitatively identical. The maps are of 

course not exactly the same, but to a human observer, there is no significant noticeable difference and a 

person would likely say the maps are the same. Programming o f  the mapping agents can include a saving 

o f  the last, best global map in addition to the current working global map. Thus, if  there were a case of 

mapping agents dropping out and we were left with only a single agent that was no longer receiving any 

other local map feedback, then this last, best map can be secured, along with the last working global map, 

for reporting at mission end. A last, best map is a stored copy o f  a previously constructed global map 

which may have a more significant coverage or more agents contributing to it. The global maps stored for 

this purpose o f back-up will be limited by the physical memory limits on the agents themselves.

The coverage metric defined and utilized to measure the goodness o f the constructed maps is 

useful in an experimental and particularly simulated environment as we have access to the true world 

model from which all readings and interactions evolve. In a real deployment, the data used to compute the 

coverage would not be available and there would be some other need for determining the quality o f the 

constructed map.

SJ.3 Synopsis of Results

Given the goals set out and the results obtained from the experiments and their listed results 

above, we can make the following statements pertaining to our research.

Proposition 1: The terrain acquisition from mobile robot mapping has been improved by

utilizing the error correction schemes employed in conjunction with the use of 

the MDL map representation paradigm.

Justification: Analysis o f  results o f uncorrected maps as well as corrected maps and the

qualitative analysis o f the maps produced demonstrates that the coverage and 

thus the correlation between the produced maps and the environmental model 

has been improved by the use o f correction.

Proposition 2: The map acquisition by mobile robot is more robust by utilizing a group o f

cooperating agents as opposed to a single agent.
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Justification:

Proposition 3:

Justification:

Proposition 4:

Justification:

The proposed mapping paradigm utilizing a cooperative group o f mobile robots 

that does not utilize any central planning or central data storage but rather uses 

completely distributed agents and a distributed processing scheme, will perform 

in a similar fashion to other systems which utilizes such distributed computing 

methods. These systems do not fail unless every single agent fails and these 

systems can reconfigure themselves to compensate for a defective node in the 

network. The global maps produced on each mapping agent were identical 

experimentally and so any single surviving agent could provide the last, best 

global map from a  mapping mission.

The time-dependent transforms proposed in this research result in improvement 

in the quality o f  correction done to the maps constructed with the MDL 

paradigm.

The analysis o f the experimental results obtained from trying three increasingly 

more complex mechanisms for time-dependent transforms has shown that 

improved quality o f mapping is obtained with the more sophisticated TDTs.

The generated grid-type maps are sufficient to allow conversion to precise 

graph based data representations suited to navigation and path planning.

The experimental results have shown that the qualitative nature o f the maps has 

improved by using the MDL paradigm in conjunction with sophisticated TDTs. 

Global coverage map analysis results in very clear definitions o f object shapes. 

While global coverage results would not be available in a deployed system, as 

the world model would not be known, the resultant maps would still be o f 

similar quality. The maps generated from our algorithms and the MDL 

paradigm can be used to represent a unique graph-based representation o f the 

mapped environment to facilitate path planning and navigation. Using 

available transformations from grid-type to graph-type representation [Horst-

131

R eproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



96][Thrun-98], one can construct graph-type maps o f the environment that 

should be o f  no less quality than the grid-type maps from which they originate.

Proposition 5: The algorithms presented and the MDL paradigm complete in finite time and

practically consume 0 (n 2) resources where n is the maximum o f the width or 

height o f  the map.

Justification: The algorithms designed to perform the mapping operations will terminate once

a map has been completed within a certain threshold o f  coverage o f  a known 

area or when no additional unknown spaces can be located within some 

constant attempt bound. The resources utilized by the algorithms and MDL 

paradigm depend on the area, the product o f  the width by the height, o f the 

terrain to be mapped. The size o f  the unit o f  measure depends on the resolution 

required in the final map but is lower bound by the size o f the smallest mapping 

agent. If we are mapping a 2-d projection o f a surface, the area covered by the 

map, at the resolution required, determines the map size and thus the resources 

required. If we map a 3-d world then the amount o f  resources jumps to 0 (n 3). 

With non-neutrally buoyant mapping agents, the mapping is restricted to 

discrete levels in such a third dimension and this typically results in the size o f 

the third dimension being much smaller in magnitude than the other two 

dimensions. If discrete levels can be detected, the algorithms can be designed 

to stack 2-d maps where a single 2-d map represents each discrete level, rather 

than employing a fully defined 3-d map which would be very sparse in the third 

dimension.
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6. Conclusion and Future Work

6.1 Contribution of this Work

We proposed a general computational framework for mobile robotic mapping that drew from the 

benefits o f  research in related areas and applied those techniques deemed beneficial. We proposed a new 

paradigm for storing the data collected by the robot agent which offers a great degree o f  flexibility in its 

design for on-line correction in the event a systems fault or error in signal data were discovered. We 

subsequently implemented a simulator to test robot mapping algorithms and implemented a subset o f the 

functionality proposed in the Map Description Language (MDL). We developed several mechanisms used 

to apply correction factors to the maps stored in the MDL form that apply correction factors to the map 

more effectively than a uniform correction. Finally, we ran some simulated mapping missions on a variety 

o f simple objects as well as a complex cooperative mapping mission, to test the effect o f applying map 

correction via the historical data recorded in the MDL data stream and to test the performance o f the 

developed TDT mechanisms.

The simulations allowed us to see that correction o f data, once an error in position is discovered, 

does provide a benefit to the accuracy o f  the generated map. Moreover, it was clear that the benefit gained 

from utilizing the MDL paradigm increased as the quantity of error sources and error magnitude increased. 

We also demonstrated that mapping o f  unknown terrain through a cooperative effort o f  multiple mapping 

agents provides benefit in robustness as well as error detection and correction not available in a single 

robot system. It was clear that the availability o f  some mechanism by which to detect error in position, 

either via landmarks or intelligent beacons is needed in unknown environments.

The contributions can be summarized as follows:

1. Most mobile robotic map building work deals with map construction utilizing a single robot 

and solutions are based on the premise o f  a single robot.

2. The limited work in cooperative robot map construction in the literature does not allow for 

the complexities addressed in the single-robot mapping work.
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3. None o f the map construction research investigated, has dealt with explicit correction o f 

detected error. The single robot mapping research addresses it only in the way new sensor 

data is integrated into the maps but cannot change that map data once it has been integrated.

4. Our solution provides for a cooperative, multi-robotic mapping solution that allows for the 

explicit correction of error in maps in an effective way, as experimentally demonstrated.

5. We have introduced a data storage paradigm to assist in map storage, while facilitating 

correction, with an eye for the complexities o f  map construction that will come with the new 

directions mobile robotics is taking. We have developed some schemes for applying map 

correction once error in the map is detected.

6.2 Future Directions of this Research

There are several areas o f interest that were not treated in detail in this work that warrant further 

investigation by researchers.

The investigation o f  completion tests for determining when the generated map is complete or 

complete enough is o f  interest. The completion test utilized for experiment one was the return o f  the robot 

to the starting point o f its mapping journey around the object For experiment two, the map was 

considered complete once the coverage statistic reached a predetermined cut-off level. In relation to this, 

one must address the space that is non-mappable as the result o f some free space in the environment not 

being able to be explored via a mapping agent. This can occur if  there is a donut in the environment as we 

then have an open space with no access to it. It can also occur if the configuration o f all o f the functional 

robots is such that none are able to explore the remaining unknown spaces, for example, by the access or 

space being too small in comparison to the robot sizes. If  any o f the objects we utilized had been hollow or 

had an access way that was impassible by any mapping agent, we would not have been able to map their 

interior. There would thus be a region o f the world we would never have been able to map and this could 

result in a condition where our completion test could never be satisfied. Determining how a set o f 

mapping robots knows when it is finished or at least when the end product is good enough is o f importance 

to deploying these solutions into a real world environment
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It would be worth investigating the distribution o f the waypoints used as beacons for correction o f 

the dead-reckoning position information. In our experiments, we positioned them somewhat arbitrarily, 

however it would be o f  interest to study way o f  placing a fixed number o f  such waypoints in an initially 

unknown terrain. Also o f interest would be the number o f  waypoints that should be deployed over a region 

o f  some fixed size with some assumption about the number o f  obstacles to be encountered. We would 

want to carry just enough waypoints into a mission and not have to load down with an unnecessarily high 

number o f  markers or waypoints that will never be used and take up valuable cargo space or weight. This 

would be critical information to a space deployed mapping mission to another planet. Along the same line, 

investigating the number o f  agents to be used and at which point additional agents provide no benefit or 

may reduce global map quality would also be if  interest.

Another component o f  the mapping architecture, which was not explored in this work, is the 

explicit detection and handling o f  dynamic objects in the environment. We address dynamic objects 

indirectly by mapping them as stationary objects and then resolving their status in the global map. Lacking 

repeated observation, a dynamic object fades in the global map as conflicting local maps are combined to 

form the global map. A way to detect and classify true dynamic features o f  the environment rather than 

paint them on the map as stationary objects, would be useful. Such knowledge can provide symbolic 

information to the end user about the environment not strictly represented on the map itself. Such dynamic 

objects could be labeled on the symbolic level o f  the hybrid map as being regions o f dynamic objects. If 

the dynamic object is encountered significantly often enough, we could indicate it may be constantly 

present in the region, or ignored if  it was a transient object to the mapping area such as a squirrel running 

across a field.

Beyond that, it would be worthwhile to explore the experimental testing into all aspects supported 

by the MDL system to include a true 3 dimensional world model, including robots o f  various 

configurations and including more sensors. NASA, in particular, is working on mobile robotics systems for 

exploration and labor tasks that can configure themselves to best solve the mission problem. As a result, 

experiments with real configurable robots and the benefit o f  the MDL paradigm on maps constructed by 

such robots would be o f interest.

135

Reproduced  with permission of the copyright owner. Further reproduction prohibited without permission.



Finally, the utilization o f  the hybrid grid model for map representation could be tested in 

conjunction with terrain models tied to the hybrid map to indicate terrain types or hazards. If terrain 

information can be obtained, agents could utilize this to make further improvements to the TDT utilized 

for the application o f correction factors by applying more correction in those regions where, for example, 

traction losses are greatest, and less correction where traction is very good. This would improve the 

robustness o f a multi-agent mapping system and also generate a richer map end product.

Extending the hybrid-grid map structure to include feature recognition to facilitate landmark 

location and referencing would be interesting. We utilized intelligent waypoint beacons as our reference 

objects for position correction. Being able to utilize features o f the environment that stay in place would 

be beneficial. The key to accurate mapping is primarily tied to maintaining an accurate position reference 

and the more mechanisms available to an agent during a mapping operation, the more frequently it can 

correct its position and apply correction factors.

6.3 Final Words

These final thoughts pertain not to the research preformed or the results obtained but to the issues 

o f  assembling this document for acceptance by the graduate school. Without a doubt, this process is one of 

the most annoying and painstaking jobs that had to be done. We are almost certain that the poor quality o f 

functions within Microsoft Word 97, in terms of its typesetting capacities and its document handling , are 

to blame. 1 can only recommend that anyone attempting to build a dissertation or thesis document utilize 

LaTex® or some form o f  software based on it as it seems to do a much better job at the typesetting, despite 

its age, than MS Word ever will. Microsoft never did get Word right in this regard and 1 have little hope it 

will in the future unless I get in there and fix it from the inside by joining the company. To any students 

reading this, please heed this warning.
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