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Summary 38 

 Regrowing natural forests is a prominent natural climate solution, but accurate assessments 39 

of its potential are limited by uncertainty and variability around carbon accumulation rates. To 40 

assess why and where rates differ, we compiled 13,112 georeferenced measurements of carbon 41 



 

 

accumulation. Climate explained variation in rates better than land use history, so we combined 42 

field data with 66 environmental covariate layers to create a global, 1-km resolution map of 43 

potential aboveground carbon accumulation rates for the first 30 years of forest regrowth. Our 44 

results indicate that on average default forest regrowth rates from the Intergovernmental Panel on 45 

Climate Change are underestimated by 32% and miss 8-fold variation within ecozones. 46 

Conversely, we conclude that previously reported maximum climate mitigation potential from 47 

natural forest regrowth is overestimated by 11% due to the use of overly high rates. Our results 48 

therefore provide a much needed and globally consistent method for assessing natural forest 49 

regrowth as a climate mitigation strategy. 50 

 51 

Background  52 

To constrain global warming, we must reduce emissions and capture excess carbon dioxide 53 

(CO2) in the atmosphere1,2. Restoring forest cover, defined here as the transition from < 25% tree 54 

cover to > 25% tree cover where forests historically occurred, is a promising option for additional 55 

carbon capture3 and has been prioritized in many national and international goals4,5. It is 56 

deployable, scalable, and provides important biodiversity and ecosystem services6. Yet the 57 

magnitude and distribution of climate mitigation opportunity from restoring forest cover is poorly 58 

described, with large confidence intervals around estimates2,3. To evaluate the appropriateness of 59 

forest cover restoration for climate mitigation, compared to the multitude of other potential climate 60 

mitigation actions, countries, corporations, and multilateral entities need more accurate 61 

assessments of its potential7. 62 

Mitigation potential from restoring forest cover (reported here in terms of MgCO2 yr -1) is 63 

determined by the potential extent and location of new forest (“area of opportunity”) and the rate 64 

at which those forests remove atmospheric CO2 (reported here in terms of MgC ha-1 yr-1). While 65 



 

 

there are now multiple estimates of area of opportunity based on diverse and often heavily debated 66 

criteria (e.g., references 3,8–11), we lack spatially explicit and globally comprehensive estimates of 67 

accumulation rates. This is especially true for natural forest regrowth, defined here as the recovery 68 

of forest cover on deforested lands through spontaneous regrowth after cessation of prior 69 

disturbance or land use. Many countries do not have nationally specific forest carbon accumulation 70 

rates and instead rely on default rates from the Intergovernmental Panel on Climate Change 71 

(IPCC)12,13. Although these rates were recently updated8,12, they nonetheless represent coarse 72 

estimates based on continent and ecological zone, and do not account for finer scale variation in 73 

rates due to more local land use history or environmental conditions.  74 

We focus here on natural forest regrowth for several reasons, but there are many ways to 75 

restore forest or tree cover (Table S1) and all have value in specific contexts. Natural forest 76 

regrowth can cost less than intensive tree planting and also promote re-establishment of local 77 

biodiversity14,15. Reliance on natural forest regrowth, coupled with maintenance of natural 78 

disturbance regimes, also avoids perverse tree establishment in native grasslands16. Some reviews 79 

further suggest that naturally regrowing forests can recover as well as or better than actively 80 

restored forests17–20. However these reviews are likely biased towards more amenable sites for 81 

forest establishment and natural forest regrowth can be limited due to severe land degradation 82 

and/or distant seed sources21. Our comprehensive analysis across a range of starting conditions 83 

therefore provides a robust baseline for natural forest regrowth, elucidating fundamental 84 

constraints and drivers of carbon accumulation rates, and serving as a benchmark for alternative 85 

approaches to restoring forest cover. 86 

 87 



 

 

Methods 88 

To reduce uncertainty and better predict variation in carbon accumulation rates, we 89 

assembled a global dataset of carbon in naturally regrowing forests. We reviewed 11,360 primarily 90 

peer-reviewed studies to find those that described carbon or biomass accumulation due to any 91 

approach for returning forest cover to the landscape (Table S1). From those that described natural 92 

forest regrowth (N = 256 studies), we compiled 13,033 empirical measurements of carbon storage 93 

in above and belowground biomass, soil, litter, and coarse woody debris. We further filtered this 94 

dataset with more stringent criteria (see supplementary methods) to assess potential drivers of 95 

carbon accumulation rates (N = 5762 carbon measurements; 554 sites; 227 studies; Fig. 1). These 96 

potential drivers included climate, soil characteristics, and land use history. We next improved the 97 

geographic and environmental representativeness of our aboveground dataset by including 98 

available national forest inventory data from three continents (Fig. 1). We combined the 99 

aboveground point data with 66 global covariate layers that mapped variation in temperature, 100 

precipitation, seasonality, soil, topographical, and nitrogen deposition variables to develop a 101 

spatially explicit model of potential carbon accumulation rates across the globe. Throughout, we 102 

focus on the first thirty years of natural forest regrowth, because 2020 to 2050 represents a 103 

biophysically critical and policy-relevant window for both reaching net zero emissions and 104 

limiting the most negative effects of global warming2,22.  105 

 106 

Results 107 

Potential drivers of carbon accumulation rates  108 

Biome type, as a proxy for climatic and environmental variation, significantly influenced 109 

carbon accumulation in total plant pools (e.g., above and belowground biomass combined), but 110 



 

 

not soil, litter or coarse woody debris pools. Total plant carbon accumulated more rapidly in 111 

warmer and wetter biomes than in cooler and drier ones (F5,2652.2 = 11.8, p < 0.0001; Fig. 2; Table 112 

S2). In contrast, soil carbon accumulation rates did not vary significantly across biomes (F6,126 = 113 

1.0, p = 0.393; Fig. S1) or with soil texture (F9,128 = 0.2, p = 0.997), underscoring the known 114 

challenges of generating default soil carbon accumulation rates12. In litter and coarse woody debris 115 

pools we did not observe measurable accumulation during the first 30 years of forest regrowth, 116 

despite differences among biomes in the absolute magnitude of these pools (Fig. S2; Fig. S3). 117 

Indeed, carbon stocks in these pools often declined with time, presumably due to decomposition 118 

of residual biomass from prior disturbance. We therefore did not further account for litter or coarse 119 

woody debris since natural forest regrowth did not directly drive near-term carbon dynamics in 120 

these pools.  121 

The type of prior land use/disturbance significantly, but inconsistently, influenced carbon 122 

accumulation rates in both total plant and soil pools. The literature described seven land 123 

use/disturbance categories: pasture, long-term cropping, shifting cultivation, clear cut harvest, 124 

mining, fire, and other natural disturbances (e.g., hurricane windthrow, landslide). In all biomes 125 

except the Boreal, land use/disturbance type significantly influenced total plant carbon 126 

accumulation (Boreal: F1,21.1 < 0.1, p = 0.910; Temperate Conifer: F4,32.1 = 31.3, p < 0.0001; 127 

Temperate Broadleaf: F5,314.7 = 23.6 p < 0.0001; Tropical/Subtropical Dry: F1,539.8 = 13.7, p = 128 

0.0002; Tropical/Subtropical Moist: F5,539.8 =7.7, p < 0.0001; Tropical/Subtropical Savanna: F2,48.0 129 

= 3.2, p = 0.0495). However, within a biome, rates were often similar across land use/disturbance 130 

types (inset panels in Fig. 2). Moreover, across biomes, the specific effect of a given land 131 

use/disturbance type often differed. For example, former cropland showed the highest rates of total 132 

plant carbon accumulation in the Temperate Broadleaf biome, but only intermediate rates of 133 



 

 

recovery in the Tropical/Subtropical Moist biome. For soil, prior land use/disturbance data were 134 

limited to Temperate Broadleaf and Tropical/Subtropical Moist forests. Only the former showed a 135 

significant effect; specifically that disturbance due to cropping or timber harvest led to faster soil 136 

accumulation than disturbance by pasture (F2,46 = 7.5, p = 0.001). Overall, these results suggest 137 

that land use/disturbance type cannot be used to definitively predict carbon accumulation rates in 138 

naturally regrowing forests due to inconsistent effects across biomes for total plant carbon and 139 

limited data for soil. 140 

Finally, disturbance intensity influenced carbon accumulation in plant biomass (F2, 992.3 = 141 

13.7, p < 0.0001), but not soil (F2,78 = 1.4, p = 0.237). The literature-derived data included sites 142 

that experienced a range of disturbance intensities, from relatively mild (e.g., natural disturbance) 143 

to very intense (e.g., long term tillage for agriculture), so we categorized sites by low, medium or 144 

high disturbance intensity (Table S3). In general, total plant carbon accumulation rates were higher 145 

after the highest intensity of disturbance compared to the lowest intensity of disturbance (Figure 146 

S4), but this pattern was not consistent within biomes. Instead, within biomes, the highest carbon 147 

accumulation rates occurred in the category with the lowest starting biomass regardless of 148 

disturbance intensity (Table S4), reflecting standard sigmoidal growth curves.  149 

 150 

Mapping global, near-term carbon accumulation potential  151 

Given the significant biome effects and the limited predictive power of land 152 

use/disturbance history, we used 66 global environmental covariate layers, primarily related to 153 

climate (Table S5 and supplementary data), to develop a wall-to-wall map of potential 154 

aboveground carbon accumulation rates at a 1-km scale. We modeled only aboveground carbon 155 

accumulation, because the aboveground data represented the largest fraction of our literature-156 

derived data (N = 2118), showed strong and well-explained variation across the globe, and avoided 157 



 

 

propagating uncertainty from root:shoot ratios. Focusing on aboveground carbon also allowed us 158 

to improve our geographic and environmental representation with available aboveground carbon 159 

data from national forest inventories in Australia, Sweden, and the United States (N = 10,994). 160 

However, to increase the utility of these maps for conservation and policy planning, we estimated 161 

total plant carbon (i.e., with belowground carbon included) post hoc using IPCC default root:shoot 162 

ratios12 (see data availability). 163 

We used an ensemble machine learning model to develop a predictive map of carbon 164 

accumulation rates in naturally regenerating forests over the next 30 years (Fig. 3a). We found that 165 

the best fit model included all 66 covariate layers (Table S5) Our ensemble model predicted the 166 

test data reasonably well (RMSE = 0.80 MgC ha-1 yr-1, R2 = 0.45). We had limited extrapolation, 167 

with covariate values at the field sites spanning most of the range of covariate values across the 168 

entire prediction area (Fig. S5). Also, the standard deviation across the ensemble model was ± 13% 169 

of the predicted value, on average. However, areas of substantial uncertainty remain. We observed 170 

the highest uncertainty in northern Africa and other savanna biomes, and lowest uncertainty in the 171 

tropics (Fig. 3b).  172 

When we examined average carbon accumulation rates using the same spatial boundaries 173 

underlying the 2019 IPCC defaults (i.e., United Nations Food and Agriculture Organization (FAO) 174 

ecozones crossed by continent)12, we found that our predicted rates were 32% higher on average 175 

than IPCC defaults for young forests (Table S6). However, this differed within and across biomes. 176 

Notably, our predicted rates were consistently higher in the Tropics (53% higher on average) 177 

compared to 2019 IPCC defaults (Fig. 4), even though some of our data were used to update these 178 

rates8. Our predicted rates are also on the high end of the range provided by the IPCC for the 179 



 

 

Boreal, though incorporating albedo will limit the climate mitigation potential of natural forest 180 

regrowth in these locations23.  181 

Our map of potential carbon accumulation rates also demonstrated the value of improved 182 

spatial resolution, with over 8-fold variation within an average FAO ecozone and continent 183 

combination (i.e., the difference between the maximum and minimum predicted value relative to 184 

the minimum). Variation within countries was also substantial with an average of 1.7-fold 185 

difference in rates within a country (Table S7) and notable differences in rates at small spatial 186 

scales (see Colombia as an example, Fig. 5). 187 

 188 

Climate mitigation potential of natural forest regrowth  189 

Our map of potential near-term carbon accumulation rates also allowed us to refine 190 

estimates of global mitigation potential from natural forest regrowth. To do so, we combined our 191 

rate map with two scenarios of forest expansion based on recently published estimates. While there 192 

are multiple and diverse estimates of area of opportunity3,8–11, we chose two that represented a 193 

policy-relevant scenario and a maximum biophysical potential. The first “national commitments” 194 

scenario sums country-level commitments to the Bonn Challenge and nationally determined 195 

contributions (NDCs) to the Paris Agreement (349 Mha)11. The second “maximum” scenario is a 196 

spatially-resolved estimate of maximum biophysical area (678 Mha) that excludes grassland 197 

biomes to avoid negative biodiversity consequences, the Boreal to avoid potentially adverse 198 

warming effect due to changes in albedo, current croplands to safeguard human needs for food, 199 

and rural and urban population centers3 (Fig. 3c). Using our maps of potential aboveground carbon 200 

accumulation, we estimate that natural forest regrowth across 349 and 678 M ha could capture 201 

between 3.98 and 5.86 PgCO2 yr-1 in aboveground biomass and a further 1.36 and 1.99 PgCO2 yr-202 



 

 

1 in belowground biomass over 30 years. Carbon accumulation in soil may be negligible or 203 

negative (Fig. S2). However, if we use the global average from our literature-derived data (0.42 204 

MgC ha-1 yr-1) for the shallower 0-30 cm profile where additional soil accumulation is expected to 205 

occur24, then these estimates rise to a total of 5.87 and 8.89 PgCO2 yr-1. Under the national 206 

commitments scenario11, ten countries held 69% of the global mitigation potential, whereas under 207 

the maximum scenario3, the top ten countries held 61% of the potential (Table S7). However, these 208 

countries differed between scenarios and in general mitigation potential depended heavily on area 209 

of opportunity. These two scenarios are illustrative and alternative scenarios would provide 210 

different results, but regardless the mitigation potential of any scenario can easily be estimated 211 

using the wall-to-wall map presented here. 212 

 213 

Discussion 214 

There is high enthusiasm for natural forest regrowth as a climate mitigation strategy, given 215 

its potential to capture carbon while also providing additional benefits such as habitat for 216 

biodiversity6, which is needed to stem the equally urgent biodiversity crisis25. Here we provide a 217 

consistent method for quantifying potential carbon accumulation in naturally regrowing forests 218 

over the next 30 years, at global and local scales. We find that current IPCC default rates are on 219 

average 32% lower than our predicted rates and most notably 53% lower in the tropics, suggesting 220 

that tropical countries using IPCC default rates may be underestimating the mitigation potential of 221 

natural forest regrowth. Moreover, the default IPCC rates miss 8-fold variation within ecozones. 222 

This improved spatial resolution allows us to better match area of opportunity with 223 

potential carbon accumulation rates and refine prior estimates of climate mitigation potential. We 224 

find that the maximum biophysical potential for natural forest regrowth to mitigate climate change 225 



 

 

is 8.89 PgCO2 yr-1, which is 11% lower than previously reported due to the overestimation of rates 226 

(derived from Bonner et al.26). Nevertheless, regrowth of natural forest remains the single largest 227 

natural climate solution even with our more conservative estimate3.  228 

Achieving 8.89 Pg CO2 yr-1 under our maximum biophysical scenario is challenging and 229 

would require dietary shifts towards a plant-based diet, which could release large areas of current 230 

grazing lands back to forest, as well as croplands that are used to produce fodder for livestock27,28. 231 

Even 5.87 PgCO2 yr-1 under the more policy-relevant national commitments scenario will be 232 

difficult to achieve, with some countries committing to restore more forest area than is available10 233 

and/or relying on approaches other than natural forest regrowth to restore forests11. These 234 

challenges do not undermine the utility of our map, however, which can be used to estimate 235 

mitigation potential for any available area of opportunity. 236 

The urgency of the growing climate crisis means that the global community needs to 237 

simultaneously deploy multiple climate mitigation strategies to constrain global warming1,2. This 238 

includes strong reductions in emissions, since natural climate solutions, including the regrowth of 239 

natural forests, are not a substitute for reducing fossil fuel emissions29, but rather an essential 240 

complement, especially while carbon capture technologies remain expensive and under 241 

development30. Regrowing natural forest is also not a substitute for protecting existing forests, 242 

which store enormous pools of carbon31. In general, there is no “panacea” approach to climate 243 

mitigation and most, if not all, options (e.g., transformations in our energy sector, carbon taxes) 244 

will require enormous political will and financial resources to realize. Natural forest regrowth has 245 

high mitigation potential, but may impose land use trade-offs3,9. Our results can help local 246 

decisionmakers optimize areas of opportunity for natural forest regrowth by pinpointing areas of 247 

high potential carbon accumulation to consider alongside other important feasibility criteria, such 248 



 

 

as costs, livelihoods, and social suitability. Our analyses of potential carbon accumulation rates 249 

over the next 30 years also provide an important complement to other global biomass mapping 250 

efforts which focus on longer term carbon storage. Recent analyses estimate potential carbon 251 

storage in mature forests10,32,33 or to 210011, but the next thirty years represent an important and 252 

policy-relevant window for limiting the climate crisis2,22. Our analyses estimate how much carbon 253 

can be captured during this critical window, enabling comparison of natural forest regrowth to 254 

other near-term climate mitigation actions.    255 

There are several sources of uncertainty in our analysis. The first results from limited field 256 

site coverage, and variation in data quality and methodology. Although our data compilation far 257 

exceeds prior efforts with an initial consideration of 11360 publications, confidence in our results 258 

necessarily depend on data availability, which vary considerably across studies and geographies 259 

(Fig. 1). The dataset employed here spanned 43 countries, but 96% of the data derived from only 260 

ten countries (United States, Sweden, Mexico, Brazil, Costa Rica, Colombia, China, Indonesia, 261 

Bolivia and Panama, in descending order). Data may be limited because researchers have not 262 

collected the data, the data are not publicly available (e.g., many national forest inventories), or 263 

because some forest types are still fairly intact with limited opportunity to quantify regrowth. 264 

Despite the patchy plot data, we found that plots covered most of the environmental conditions 265 

across the prediction area, with the main exceptions being the Sahel and northeast Asia (Fig. S5).  266 

Increased data collection, ideally in a coordinated fashion to increase comparability across 267 

sites and using repeated plot measurements to improve robustness, would ameliorate some of these 268 

issues. To facilitate coordination and enable updates to our analyses as new data becomes 269 

available, we deliberately merged our efforts with the global Forest Carbon Database (ForC) to 270 

support the further development of a single, robust, and transparent repository for forest carbon 271 



 

 

data34. Future data collection should not only prioritize aboveground carbon data in northern Africa 272 

and northeast Asia, but also soil carbon data. Although our review encompasses and expands upon 273 

all existing reviews of soil carbon accumulation (see supplementary methods), data did not 274 

substantially elucidate how soil carbon changes with natural forest regrowth. Our global default of 275 

0.42 MgC ha-1 yr-1 for soil carbon accumulation is similar to that observed by others (e.g.,24,35), but 276 

further research is clearly merited.  277 

Another source of uncertainty stems from using historical forest growth to predict future 278 

carbon accumulation rates. As global warming ramps up, rates in a given location may increase or 279 

decrease depending on factors such disturbance frequency, CO2 fertilization, or increased 280 

respiration due to higher temperatures10,36. Moreover, there are other known factors that influence 281 

natural forest regrowth that we did not capture in our analysis. For example, residual vegetation 282 

can also accelerate forest regrowth by providing roosting sites for seed-dispersers37 or shade for 283 

late-successional species38. Others have observed an increased likelihood of regrowth near rivers 284 

or existing forest fragments, far from roads or on steep (less-accessible) slopes, and in areas 285 

protected from browsing39–42. Our global map provides a good starting point, but project-level 286 

planning will require detailed site assessments, as well as additional research to refine how local 287 

factors and future climate will impact carbon accumulation rates in a given location.  288 

Further work is also needed to characterize how other approaches to restoring forest cover 289 

impact carbon accumulation rates and storage. We focused on natural forest regrowth, where 290 

natural processes rather than management actions predominantly drive carbon accumulation. 291 

However, the permanence of natural forest regrowth (and the carbon stored therein) cannot be 292 

assumed43, especially if secondary forests are less valued than plantation forests. Rates from 293 

naturally regrowing forests also do not capture how silvicultural practices can enhance tree 294 



 

 

establishment and carbon accumulation44 or how harvested wood products from sustainably 295 

managed forests can provide life cycle benefits through substitution effects and carbon storage in 296 

long-lived wood products45. While additional work is needed to characterize climate mitigation 297 

potential of alternative management schemes, we now provide a robust baseline by which to 298 

characterize any additional benefit of assisted regeneration and/or active planting and 299 

management17–21.  300 

As countries, corporations, and multilateral entities develop plans to deploy natural forest 301 

regrowth as a climate mitigation strategy, our global, 1-km resolution map of potential 302 

aboveground carbon accumulation rates provides essential information for targeting activities 303 

towards areas with the highest potential carbon accumulation, for estimating the potential carbon 304 

return on investment, and for further refining how forests influence terrestrial carbon cycles at 305 

local, national, and global scales. It will allow governments that have NDCs related to natural 306 

forest regrowth to quickly estimate potential carbon accumulation and prioritize more detailed 307 

assessments in regions with higher carbon accumulation rates. We reduce the uncertainty and 308 

variability around carbon accumulation rates to facilitate comparisons of natural forest regrowth 309 

with other climate mitigation options and confirm that regrowing natural forests has the potential 310 

to greatly contribute to stabilizing global warming. 311 
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Figures  343 

Fig. 1 Distribution of sites after final filtering of the literature-based dataset (blue) and inclusion 344 

of the field inventory data (green). We compiled data from forest (dark gray) and savanna 345 

biomes (light gray). We restricted savanna data to portions of these grassland-forest matrices 346 

with forest cover > 25%.  347 

 348 

 349 
  350 



 

 

Figure 2. Total plant carbon (MgC ha-1) through time (scatterplots) and average carbon 351 

accumulation rates as a function of prior land use/disturbance (inset: mean MgC ha-1 yr-1 ± 95% 352 

C.I.). Lines represent overall modeled fit (± 95% C.I., Table S2) regardless of disturbance. 353 

Studies commonly provided information on seven disturbance/land use types: fire (“F”, closed 354 

squares), other natural disturbance (“D”, open squares, e.g., hurricane windthrow), clear cut 355 

harvest of land in forest use (“H”, open circles), shifting cultivation (“SC”, open diamonds), 356 

pasture (“PA”, open triangles), permanent cropland (“C”, closed triangles), and mining (“M”, 357 

closed circles). Small gray points indicate no known disturbance type. Savanna results only 358 

apply to portions of these grassland-forest matrices with forest cover > 25%. 359 

 360 

361 



 

 

Fig. 3 (a) Predicted aboveground carbon accumulation rates (MgC ha-1 yr-1) in naturally 362 

regrowing forests in forest (solid colors) and savanna biomes (hatched colors). We denote 363 

savanna biomes differently to note that many of these areas are not appropriate for forest and that 364 

restoration of forest cover should proceed with particular caution in these biomes. Note that the 365 

map only predicts accumulation rates if natural forest <30 years were growing there; it does not 366 

exclude currently forested areas or non-forestable parts of these biomes. b) The ratio of model 367 

uncertainty relative to best-fit model value per 1-km pixel. Higher ratios denote greater variation 368 

across random forest decision trees. c) Modeled accumulation rates filtered to the area of 369 

opportunity in Griscom et al.3 to demonstrate where these rates might apply. 370 

 371 



 

 

Fig. 4. Average predicted rate of carbon accumulation per ecozone (open circles) compared to 2019 IPCC defaults, which are given as 372 

a single number (closed circle) or a range (thick black bars). Colored bars indicate the range between the minimum and maximum 373 

modeled rate per ecozone and continent (Boreal = dark purple, Temperate = light purple, Subtropical = light green, Tropical = dark 374 

green). Ecozone and continental forest types are listed below the x-axis (NA = North America, NZ = New Zealand, SA = South 375 

America) 376 

 377 



 

 

Fig. 5. (a) Map of predicted carbon accumulation rates in Colombia, as an example of country-378 

level variation in rates. (b) Map of predicted rates filtered to the area of opportunity in Griscom 379 

et al.3 to demonstrate where these rates might apply. 380 
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Methods and Supplementary Results 382 

 383 

Assembling a global carbon database  384 

 We systematically reviewed the literature (19 April 2017) with a Web of Science keyword 385 

search of studies published since 1975: TOPIC: (biomass OR carbon OR agb OR recover* OR 386 

accumulat*) AND (forest) AND (restorat* OR reforest* OR afforest* OR plantation* OR 387 

agroforest* OR secondary*). We included “agb” for aboveground biomass. We included 388 

“afforest*” because afforestation sometimes describes establishing forest cover in places where 389 

forests historically occurred, but we eliminated studies that described tree planting in grasslands 390 

(also called “afforestation”), as these efforts are often not successful46, and reduce biodiversity and 391 

ecosystem integrity47,48.  392 

The initial search yield 10,937 peer-reviewed studies, which we augmented to 11,360 with 393 

additional peer-reviewed studies referenced therein or datasets from distinguished institutions 394 

(Oak Ridge National Laboratory, International Centre for Research in Agroforestry, and Chinese 395 

Academy of Forestry). We reviewed all abstracts to identify accessible studies that quantified 396 

forest regrowth after clearing historically forested land (N = 5,464) and fully reviewed these to 397 

find any that quantified carbon or biomass stocks (N ~1400). We categorized the latter by approach 398 

for restoration of forest or tree cover (Table S1) and focused initially on natural forest regrowth 399 

given the need for improved natural forest regrowth data and the immense time required to build 400 

this dataset. However, other approaches are currently being reviewed.   401 

To be included, studies had to provide (a) empirical measures of carbon (or biomass) in 402 

above- or belowground plant, litter, coarse woody debris and/or soil pools, (b) stand age with at 403 

least one stand between 5 and 30 years, and (c) a latitude and longitude, or a discernible 404 



 

 

geolocation (e.g., an identifiable place name). Papers focusing on soils did not need to include 405 

other carbon pools but had to include mineral soils deeper than 10 cm, as well as a reference 406 

measurement (e.g., a younger stand or an adjacent non-forest plot) to assess changes in soil carbon. 407 

We included measurements in shallower soils if present in papers with 30 cm or deeper data. 408 

deeper data. Similarly, we extracted all available data from stands between 0 and 100 years for 409 

studies when included in studies with the correct age range (5 to 30 years), excluding studies with 410 

only very young forests because of the stochastic nature of early forest establishment, as well as 411 

papers with only forests greater than 30 years given our 2020 to 2050 focus.  412 

To avoid duplicated measurements, we gave priority to primary studies and included the 413 

earliest instance of repeatedly published data. Our dataset fully encompasses all relevant primary 414 

studies from many other reviews (e.g.,17,35,49–56) and the Forest Carbon Database (ForC)34. For 415 

these, we obtained the original studies to confirm numbers, correct errors, and acquire additional 416 

variables. However, we preferentially extracted data from three reviews rather than the primary 417 

source when authors acquired and reanalyzed original datasets, some of which were previously 418 

unpublished (Poorter et al.57) or were published in Russian or Chinese58,59. Guo and Ren58 notably 419 

provided 5730 measurements across China that we included in the larger dataset, but ultimately 420 

excluded by our more stringent filtering (details below).  421 

 Beyond geolocation, stand age (years), type of carbon pool, and carbon or biomass estimate 422 

(Mg ha-1), we also extracted any available data on type and intensity of prior land use or 423 

disturbance. We used geolocation to extract biome designations from Dinerstein et al.60,61. While 424 

we acquired data from presumably forested portions of Tropical and Temperate savannas (e.g., 425 

Miombo forests in Africa, Cerrado forests in Brazil, Pinyon-Juniper forests in the United States), 426 

we note that it is not ecological appropriate to increase forest cover in many areas of savannas and 427 



 

 

that we do not advocate expansion of trees on natural low tree cover savannas47,48. We did not 428 

include mangroves since they are highly dynamic systems that require complex accounting for in 429 

situ versus exported soil carbon accumulation62.  430 

The resulting dataset includes 13033 carbon or biomass data points. We aggregated data 431 

by site (N = 2330) and plot (N = 6674), where sites have unique geolocations and plots are spatial 432 

units within sites that have unique attributes (e.g., age, prior land use; see metadata for additional 433 

details). We then further winnowed these data along stricter criteria to exclude (a) locations with 434 

inappropriate geolocations, such as in the ocean or a non-forest biome according to the biome 435 

spatial layer60,61, (b) stands less than one year old because they are not (yet) undergoing natural 436 

forest regrowth, (c) Mediterranean forests and temperate savanna because sample size was too low 437 

(N < 10 for any single pool), (d) studies with only shallow soil measurements (30 cm or less) 438 

because carbon in top soil is highly dynamic and can dramatically underestimate overall soil 439 

carbon63, and (e) Guo and Ren58 data because it contained many old stands with little to no plant 440 

biomass which we could not explain (Fig. S6). The final dataset used in these analyses spanned 441 

3058 unique forest plots, 554 sites, 121 ecoregions, and most forest and savanna biomes (Fig. 1).  442 

  443 

Standardizing data across publications 444 

For studies that reported biomass only, we converted to carbon (MgC ha-1) using 0.47 as a 445 

default conversion factor for above- and belowground pools (combined and described as the “total 446 

plant carbon” pool)64, 0.37 for litter biomass65, and 0.50 for coarse woody debris biomass66. If a 447 

study used different default conversion factors, we adjusted their carbon numbers to match the 448 

above defaults for consistency.  449 



 

 

Most soil organic carbon (SOC) data (72%; N = 1065 of 1485) were already in units of 450 

MgC ha-1 depth-1 and the remainder we converted from SOC concentration (g 100g-1) or soil 451 

organic matter (SOM). For SOM concentration data (N = 38), we estimated SOC concentration as 452 

SOM/2 based on Pribyl67, which found that the median ratio between SOM and SOC across 481 453 

data points from 24 empirical studies was 1.97, with a mean of 2.20. We converted SOC 454 

concentration to MgC ha-1 depth-1 with empirical bulk density data where given (N = 355) or depth-455 

specific bulk density data from SoilGrids68 (N = 65). SoilGrids provides bulk density modeled at 456 

15, 30, 60 cm and we used the value nearest in depth to the SOC concentration measure. Modeled 457 

bulk density was higher but within the range of empirical estimates (1.29 ± 0.13 versus 0.98 ± 0.31 458 

Mg m-3, mean ± s.d.). To convert to MgC ha-1 depth-1, we used one bulk density value for each site 459 

and reference pairing, using measured bulk density from the pre-forest site if available, measured 460 

bulk density from the youngest nearby site as the next option, or SoilGrids bulk density from the 461 

pre-forest site in the absence of other data.  462 

After converting biomass data to carbon, we standardized within pools. Aboveground 463 

carbon measures typically included foliage, but we retained two measures that excluded foliage, 464 

since foliage is a small fraction of overall carbon. Studies differed in whether they included 465 

understory (e.g., lianas, shrubs). For those without, we added average understory carbon per biome 466 

based on our dataset (1.2 to 4.0 MgC ha-1). We did not, however, adjust for differences in diameters 467 

at breast height (dbh; nominally 1.3 m above ground level). Although studies used different dbh 468 

thresholds, ranging from 0 to 10 cm, minimum dbh did not explain variation in aboveground 469 

biomass (F1,459.2 = 0.5, p = 0.4608) and we assumed that authors used a dbh threshold that captured 470 

the majority of biomass at their sites. We summed above- and belowground plant carbon using 471 

empirically measured belowground carbon when present (N = 444) or standard root-to-shoot ratios 472 



 

 

(R:S)69 when absent (N = 2346). Where it was possible to compare, we found that estimated 473 

belowground carbon was 1.8 MgC ha-1 higher than measured values, since the field measurements 474 

typically only quantified biomass to a specific depth and/or roots greater than a specific diameter. 475 

This produced 2790 independent plot measurements of total plant carbon. For dead pools (litter 476 

and coarse woody debris), measurements often included additional pools, but we did not attempt 477 

to parse litter and/or coarse woody debris from these combined measurements because these pools 478 

are highly variable and site-specific65. Thus, we only retained single pool measurements (N = 473 479 

litter and 298 coarse woody debris). Finally, for soil, we adjusted data to the nearest of two standard 480 

depths (30 and 60 cm). For plots with multiple depth measures, we used the slope from a fitted 481 

log-log curve for cumulative SOC stocks as a function of depth to estimate SOC at standard depths, 482 

but for plots without multiple depth measures, we used a biome-specific slope coefficient70. If 483 

standardizing depths resulted in duplicate measures – for example, when a study reported SOC at 484 

20 and 40 cm, leading to two predicted values at 30 cm – we calculated the average. Depth-485 

standardized SOC was 1% lower than the empirical measure of SOC and highly correlated (R2 = 486 

0.84).  487 

For plant, litter and coarse woody debris (CWD) pools, we analyzed carbon stocks (MgC 488 

ha-1) as a function of stand age, as these pools can have zero carbon at initiation of regrowth. 489 

However, SOC changes are relative to a non-zero baseline so we first converted SOC stock data 490 

to rates (MgC ha-1 yr-1). For repeated measure designs, we calculated a single rate per plot based 491 

on SOC change from initial conditions. For the remaining studies, we used linear regression to fit 492 

SOC as a function of stand age within each chronosequence, treating any reference plot (e.g., an 493 

adjacent treeless cropland) as age zero (N = 5 data points on average per regression). We only 494 

compared forest and reference plots with the same prior land use35. This produced a single rate 495 



 

 

estimate per chronosequence, and these rates became the foundational data for the soil analyses. 496 

We ultimately derived 138 SOC rates from chronosequences (N = 129) and repeated measures (N 497 

= 9). Most rates quantified changes at 0-30 cm (N = 83) and then 0-60 cm (N = 55). 498 

 499 

Potential drivers of carbon accumulation rates 500 

To assess fundamental drivers of variation in carbon accumulation rates, we examined 501 

differences in rates (a) across biomes as a proxy for major climatic differences, (b) across soil 502 

texture categories (soil only), and as a function of (c) type of prior disturbance or land use, and (d) 503 

intensity of prior disturbance or land use.  504 

First, to examine differences in plant, litter, and coarse woody debris carbon among 505 

biomes, we used mixed effects models (R v. 3.5.1 packages lme4 and lmertest) to examine carbon 506 

stocks as a function of stand age, biome, and stand age × biome with site (or plot nested within 507 

site) as a random intercept. We were primarily interested in the interaction term here and below, 508 

since it describes how the effect of age on carbon stocks (i.e., carbon accumulation rate) is 509 

modified by the predictor variable, which in this case is biome. We compared a linear model to 510 

one with ln-transformed stand age, selecting the model that minimized the Aikake Information 511 

Criterion (AIC). For litter and coarse woody debris, carbon either declined non-linearly from initial 512 

starting conditions and/or remained roughly constant with stand age (Fig. S3). We therefore did 513 

not further examine carbon accumulation in these pools, because residual dead matter from 514 

previous disturbance obscured any signal of additional accumulation. However, we did examine 515 

variation across biomes by removing stand age from the model. We found that litter and CWD 516 

carbon stocks were generally higher in Boreal and Temperate biomes compared to other biomes 517 

(Fig. S2; litter: F5,138.7 = 8.5, p < 0.0001; CWD: F4,125.7 = 5.9, p = 0.0002). For soil, we used linear 518 



 

 

regression to model carbon accumulation rates as a function of biome identity. We also included 519 

depth as a categorical predictor (depth and depth × biome) and found that, although stocks 520 

generally declined with depth of measurement as expected, rates of carbon accumulation did not 521 

(F1,126 < 0.1, p = 0.956).  522 

Second, we examined how soil carbon accumulation might differ by soil texture. We used 523 

SoilGrids data on clay, silt and sand percentages to estimate the soil texture category (e.g., sand, 524 

loam, clay, etc.) at each site where texture data were not provided. We used linear regression to 525 

analyze soil carbon accumulation as a function of texture, and again found that texture was not a 526 

significant predictor of variation (F9,128 = 0.2, p = 0.9997) 527 

Third, we examined how prior land use or disturbance influenced carbon stocks through 528 

time for disturbance types with > 3 data points per biome. When studies listed multiple disturbance 529 

or land use types for a single plot, we noted the most recent type where discernable. Otherwise, 530 

we used the type that was most likely to negatively impact forest regrowth (natural disturbance < 531 

harvest = shifting cultivation < crop < pasture, based on pers. obs.). We conducted separate 532 

analyses per biome, as each biome was associated with different disturbance types. For plant 533 

biomass (N = 2600), we used mixed effects linear regression, modeling carbon as a function of 534 

stand age and prior land use, plus their interaction, with site (or plot nested within site) as a random 535 

intercept. For soil (N = 132), we used an analysis of variance with prior land use and depth as the 536 

predictors of SOC.  537 

 Finally, we examined how the intensity of prior disturbance influences carbon stocks 538 

through time. Unfortunately, studies provided fewer details about the intensity of prior land use 539 

(N = 1567 and 91 for plant biomass and SOC respectively). Three co-authors in this study (HPG, 540 

KDH, CL) independently categorized disturbance intensity into low, medium, and high categories 541 



 

 

using a disturbance rubric (Table S3), assigning the final category based on majority agreement 542 

among scorers. Given data scarcity, we only categorized intensity of prior land use for four 543 

disturbance types: pasture, shifting cultivation, long-term cropland, and clear-cut harvest. We 544 

conducted our statistical analysis across disturbance types, using mixed effects to model total plant 545 

carbon as a function of stand age and disturbance intensity, plus their interaction, with site or plot 546 

nested within site and biome as random intercepts. We used a similar model for soil with only 547 

disturbance intensity as the predictor and biome as a random intercept. We also ran similar models, 548 

though without the biome random effect, for each biome with sufficient data.  549 

 550 

Mapping global, near-term forest carbon accumulation potential  551 

To develop maps of aboveground carbon accumulation, we extracted the literature-derived 552 

data with a separate measurement for aboveground carbon and stand age of 30 years or less (N = 553 

2118). We supplemented these data with three national forest inventories: Australia, Sweden, and 554 

the United States. The Australia data were collected between 2006 and 2017 from naturally 555 

regenerating stands of known age (N = 54)33. These stands were located across contrasting biomes, 556 

ranging from relatively productive temperate regions to water-stressed semi-arid regions. Biomass 557 

data only include new tree growth and do not include remnant trees. The Swedish National Forest 558 

Inventory plot data were collected between 2007 and 2017 (N = 5458)71. The United States data 559 

are from the United States Department of Agriculture (USDA) Forest Service’s Forest Inventory 560 

and Assessment (FIA) program (N = 5482)33. Due to privacy concerns, FIA data are made 561 

available only after a fraction of plots are randomly swapped with others’ coordinates. Although 562 

these security procedures shifted the geolocation of plot data and predictor variables by ~ 1 km, 563 

including the FIA data improved the predictive power of the model. We used plots that had (a) 564 



 

 

been remeasured at time one (T1) and time two (T2) to estimate a rate of carbon accumulation, (b) 565 

no treatment at T2 or T1 (TRTCD = 0) to restrict data to natural forest regrowth, (c) no trees 566 

recorded as alive in T2 that were recorded as dead in T1 (DEAD_TO_LIVE_COUNT = 0) to 567 

remove erroneous measurements, (d) no recorded disturbance in T2 or T1 (DSTRBCD = 0), (e) 568 

aboveground biomass at T2 (AG_LIVE_BIO_MGHA > 0) to avoid harvested or burned plots, and 569 

(f) a stand age at T2 between 0 and 30 years (30 > STDAGE > 0). We also only included plots 570 

where more than 50% of the area was comprised of the same forest type, owner class, land class, 571 

and other properties at T1 and T2 to ensure consistency within a site (CONDPROP_UNADJ > 0.5). 572 

Combined, all literature-derived and national inventory data represented 13,112 plot 573 

measurements. We then calculated carbon accumulation rate by dividing aboveground carbon by 574 

stand age, providing an average rate over the first 30 years of growth. We removed plots that did 575 

not fall into forest or savanna biomes or had no recorded biomass to avoid plots that had likely 576 

been harvested (N = 685 or 5.2% of data). We also removed any points that had rates greater than 577 

three standard deviations above the mean (N = 153 or 1.2% of data). Finally, when there were 578 

multiple point estimates within each of our ~ 1 km pixels, we calculated the average rate to use in 579 

model development (N = 10,216). Averaging within pixels improved model performance 580 

compared to models with no averaging.   581 

To create a spatially predictive model of carbon accumulation, we first sampled our 582 

prepared stack of 66 environmental covariates at each of the point locations within the literature-583 

derived and national inventory datasets. These layers included climate, soil nutrient, soil chemical, 584 

soil physical, radiation, topographic, and nitrogen deposition variables (Table S5). We did not use 585 

variables that represent current vegetation condition (e.g., leaf area index or percent forest cover) 586 

or satellite-derived indices such as Normalized Difference Vegetation index (NDVI), as these do 587 



 

 

not represent fundamental biophysical controls on carbon accumulation rates for the future 588 

accumulation of plant biomass. We resampled and reprojected these covariate map layers to a 589 

unified pixel grid in EPSG:4326 (WGS84) at 30 arc-seconds resolution (~1km at the equator), 590 

downsampling higher resolution data using mean aggregation method and resampling those with 591 

a lower original resolution using simple upsampling (i.e., without interpolation). We chose this 592 

resolution to balance pixel-level uncertainty, which is proportionately larger in smaller pixels, with 593 

utility for local decision-makers. If multiple resolutions were available for a covariate, we used the 594 

resolution closest to 30 arc-seconds. Covariates represent different time periods but were all 595 

between 1970 and 2017. This time period allows us to capture long-term average conditions under 596 

current and historical climate. 597 

We then split the total number of points into a training set and a test set using an 80/20 598 

random split, stratified by data source (i.e., the literature-derived data and each national inventory) 599 

and by biome. We used the training set to determine the best machine learning algorithm and set 600 

of hyper-parameters, and to train the final model. We used the test set to assess out-of-sample 601 

error, as well as model performance with novel data (details below).  602 

We compared four machine learning algorithms (random forest (RF)72, a gradient 603 

boosting decision tree called XGBoost73, support vector machines74, and multi-layer 604 

perceptron)75, along with four feature selection methods (support vector machine feature 605 

selection, RF-based feature selection, principal component analysis, and no feature selection), 606 

leading to 16 different combinations of feature selection methods and machine learning 607 

algorithms (or “model pipelines"). Each model pipeline first applied feature scaling to the data 608 

(standard scaling for the continuous variables and one-hot encoding of biome as our only 609 

categorical variable), then selected features using the feature selection algorithm, and finally 610 



 

 

trained the machine learning model on the transformed data. For each machine learning 611 

algorithm, we also defined a suite of hyperparameters to test over, often leading to over 1,000 612 

tested hyperparameter combinations. We conducted the machine learning steps in Microsoft 613 

Azure.  614 

We used the Python scikit-learn package and the “gridsearchCV” function to define and 615 

train model pipelines using three-fold cross-validation and choose the best hyperparameter 616 

combination for each model pipeline76. We used the cross-validation root-mean-square error 617 

(RMSE) to choose the best feature selection method and machine learning algorithm with 618 

defined hyperparameters. Cross-validation is an important step in training and comparing 619 

machine learning algorithms, as it creates pseudo-training sets that can be used to estimate the 620 

out-of-sample error and reduce over-fitting to the training set, while still keeping the final test set 621 

completely independent of the model. In three-fold cross-validation, the training set is randomly 622 

split into three equally sized subsets. Two subsets combine to form a new training subset, and the 623 

last subset serves as a validation set to assess the model performance. We trained the model 624 

pipeline on the training subset, stored the RMSE of the model predictions over the validation set, 625 

and then repeated the process twice more with the remaining combinations of training and 626 

validation subsets. The final cross-validation score is the average of the validation RMSEs across 627 

each model pipeline, and we used average cross-validation RMSE to compare model pipelines 628 

and selected the model pipeline with the lowest cross-validation RMSE as our best trained model 629 

pipeline. In our case, the best trained model pipeline was the random forest machine learning 630 

algorithm with no feature selection.  631 

After determining the best performing algorithm and set of hyperparameters, we used a 632 

Monte Carlo approach to create an ensemble model for our final predictions and uncertainty 633 



 

 

analysis. We generated the ensemble model by first drawing 100 independent bootstrapped 634 

samples with replacement of our training data, stratified on the data source and biome. Next, we 635 

trained separate random forest models using the best performing set of hyperparameters on each 636 

of the 100 bootstrapped samples of the training data. Our final model is the ensemble of the 100 637 

random forest models, where the ensemble model prediction is the average of the predictions of 638 

the 100 random forest models. To asses our out-of-sample error, we applied this final ensemble 639 

model to our test set. The ensemble model had an RMSE of 0.798 Mg C ha-1 yr-1 and an R2 of 640 

0.445 on our independent test set. 641 

To create a final global map of aboveground carbon accumulation and associated 642 

uncertainty, we sampled all environmental covariate layers over all pixels in forest and savanna 643 

biomes and applied the best trained model to each pixel’s covariates. Although the trained model 644 

works over any area, we constrained it to forest and savanna biomes. Because our model is an 645 

ensemble of 100 random forest models with each random forest model trained on an independent 646 

bootstrapped sample of the training data, we can use the standard deviation of the 100 random 647 

forest models’ predictions to estimate model uncertainty in each pixel. Therefore, for each pixel 648 

we have the model’s prediction and standard deviation across the 100 models. We also tested the 649 

extent of extrapolation in our models by examining how many of the Earth’s pixels exist outside 650 

the range of our sampled data for each of the 66 global covariate layers. We first extracted the 651 

minimum and maximum values of each covariate layer across our sampling pixels to determine 652 

sample range. We then used the final model to evaluate the number of variables that fell outside 653 

the sample range, across all terrestrial pixels. Next, we created a per-pixel representation of the 654 

relative proportion of interpolation and extrapolation (Fig. S5). This revealed that our samples 655 

covered most environmental conditions on Earth, with 88% of Earth’s pixels values falling 656 



 

 

within the sampled range of at least 90% of all bands. Across all pixels, the average fraction of 657 

the pixel values falling within the sampled range of the covariates was 97%.  658 

We compared our predicted rates with the latest 2019 IPCC default rates for young forest 659 

(<20 years)12 by estimating the average pixel value, as well as the minimum and maximum pixel 660 

value within each ecozone by continent combination. Whenever a range was provided for IPCC 661 

values, we used the average of the lower and upper bound of the range to compare to our 662 

predicted rates.   663 

 664 

Climate mitigation potential of natural forest regrowth 665 

  To estimate the constrained maximum mitigation potential of natural forest regrowth, we 666 

combined the Griscom et al.3 area map with our map of potential aboveground carbon 667 

accumulation and a map of potential belowground plant carbon accumulation. We created the latter 668 

by applying default root:shoot ratios to the aboveground pixels12. This Griscom et al.3 extent raster 669 

identifies more area of opportunity than is available, because there are a series of non-spatial 670 

deductions that they applied later in their analyses. We therefore proportionally scaled mitigation 671 

opportunity within each country so that the final area summed to their reported 678 Mha area of 672 

opportunity. The Griscom et al.3 analysis assumes that a small fraction of their area of opportunity 673 

would have plantations, so we adjusted their mitigation estimate to reflect a scenario of 100% 674 

natural forest regrowth (10.56 PgCO2 yr-1).    675 

Lewis et al.11 compiled national commitments to the Bonn Challenge and from nationally 676 

determined contributions to the Paris Agreement. Although that publication focused on tropical 677 

countries, we acquired the global compilation to use here. Two countries (Niger and Burkina Faso) 678 

included commitments that we did not include, because those countries fall outside of our potential 679 

rates map. To estimate the mitigation potential of these national commitments, we used the same 680 



 

 

average predicted rates per country from the overlay of Griscom et al.3 for above- and belowground 681 

carbon accumulation. Thus, this assumes that the 349 Mha of opportunity under this scenario 682 

represents an average subset of the area identified as biophysically possible in Griscom et al. 3. 683 

  684 



 

 

Supplementary Figures  685 

Figure S1. Observed variation in live plant carbon accumulation rates and soil carbon 686 

accumulation (mean ± 95% confidence intervals) among biomes, from the literature-derived 687 

dataset. We did not have plant biomass data for (sub)-tropical conifer forests. 688 

   689 

  690 



 

 

Figure S2: Carbon pools (mean ± SE) in coarse woody debris (gray) and litter (black).  691 

 692 

 693 
   694 



 

 

Figure S3: Coarse woody debris (gray) and litter (black) carbon pools over time in each biome. 695 

We did not find studies describing litter or coarse woody debris pools in temperate savannas, or 696 

coarse woody debris in tropical savannas. 697 

 698 

 699 
 700 

 701 
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Figure S4: Carbon accumulation in plots with high intensity disturbance (black circles, black 703 

line) versus low intensity disturbance (gray circles, gray line). The most disturbed categories had 704 

lower residual biomass at the initiation of regrowth (e.g., 0 MgC ha-1 versus 28 MgC ha-1 in the 705 

least disturbed category; t-value = 5.9, p < 0.0001), suggesting that the higher rate in the most 706 

disturbed category is due to standard sigmoidal growth rates in forests. 707 

 708 

 709 
 710 

 711 



 

 

Fig. S5: Map of extent of extrapolation per pixel across all covariate layers. A value of 1 indicates that 100% of pixels fall within the 712 

sample range (i.e., there is no extrapolation).  713 
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Fig. S6: Total plant carbon through time from Guo and Ren58 (black circles) compared to other 716 

studies (gray circles).  717 
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Supplementary Tables 724 

Table S1: General approaches for restoring forest or tree cover, based on aggregation of existing 725 

taxonomies and expert consultation at a workshop at Oxford University, UK in February 2017. 726 

These approaches will not necessarily reach > 25% forest cover.   727 

 728 

Land-use Type with Definitions 

Semi-natural 

forest, protected 

or with some 

selective logging 

Natural forest regrowth involves allowing forests to spontaneously regrow 

without any silvicultural interventions, though may involve removing 

disturbance factors (e.g., fire breaks, fencing, control of feral animals such as 

camels and goats, reduced grazing pressure)77. This includes both succession 

after abandonment and forest recovery following logging, fire or 

disturbances. 

Assisted natural regeneration aims to accelerate natural forest regrowth 

and/or guide successional trajectories through activities that enhance tree 

growth, such as removing invasive grasses, liana cutting, and/or other 

practices78. We also include enrichment planting in this category. 

Active restoration includes smaller tree configurations (e.g., applied 

nucleation methods), as well as large scale tree planting endeavors to restore 

native forests. Species may be mixed at the stand scale or in patches at the 

landscape scale. This strategy may also involve extensive natural forest 

regrowth following initial planting.  

Timber 

plantations 

Mixed species plantations include at least two species intermixed on large 

areas in timbers stands and may involve a mix of native and non-native 

species. 

Monoculture plantations include plantation forests where the same species 

is grown on large areas in even-aged stands79. We include estimates for 

individual species that are commonly employed, as well as a more general 

estimate for species that are more infrequent. This includes both native and 

non-native species. 

Agroforestry  Intensive tree monocrops include all non-timber monocultures, such as fruit 

or nut tree monocultures, oil palm plantations, and other commodity crops.  

Multistrata systems are those with a mix of under- and overstory species, 

and include home gardens and shade-grown cropping systems like cacao 

(Theobroma cacao L.) and coffee (Coffea sp.) combined with shade-, timber- 

or commercial tree crops80. 

Tree intercropping includes agricultural systems where woody species are 

grown in crop fields, in scattered or systematic arrangements. These species 

may be used for fruit, fodder, fuelwood or timber80.  

Silvopastoral systems include grazing under scattered or planted trees, as 

well as tree-fodder systems80.  

Transitional land 

use 

The transitional land use strategy involves incorporating a range of 

agroforestry and/or plantation approaches in early stages of reforestation, as 

a transitional phase towards native forest restoration, to overcome 

socioeconomic and ecological obstacles to restoring these lands81. 
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Table S2: Best fit equations per biome for carbon accumulation in total plant pools (MgC ha-1) as 730 

a function of stand age (year) based on the literature-derived data. Parameters are slope ± standard 731 

error (SE) and intercept ± SE. We also provide the number of literature-derived data points per 732 

regression (N). The rate column indicates an average rate for the first 30 years of stand 733 

development based on predicted total plant carbon at age 30.  734 

 735 

 736 

Biome Best fit equation N rate 

Boreal Forest (23.2 ± 3.2) × ln(age) + (-35.7 ± 12.6) 45 1.45 

Temperate Broadleaf & Mixed 

Forests 
(1.7 ± 0.1) × age + (-0.7 ± 6.5) 418 1.63 

Temperate Conifer Forests (1.8 ± 0.1) × age + (-5.5 ± 6.8) 104 1.58 

Tropical & Subtropical Dry 

Broadleaf Forests 
(35.9 ± 1.7) × ln(age) + (-56.6 ± 7.4) 552 2.19 

Tropical & Subtropical Savannas 

(forested portions) 
(1.7 ± 0.2) × age + (1.0 ± 7.0) 57 1.70 

Tropical & Subtropical Moist 

Broadleaf Forests 
(2.2 ± 0.1) × age + (28.4 ± 2.8) 1614 3.15 

737 



 

 

Table S3: Schema for categorizing intensity of land use/disturbance. Other land use/disturbance 738 

types (mining, fire, and other natural disturbance (e.g., hurricane windthrow, landslide) did not 739 

have sufficient data. 740 

 741 

Disturbance/ 

land use 

Low intensity Medium intensity High intensity 

Shifting 

cultivation  

Most shifting cultivation 

with < 3 cycles and < 15 

years of use 

Long-term shifting 

cultivation with ≥ 3 cycles, 

≥ 15 years of use 

NA 

Long term crop NA Minimal input (e.g., 

herbicides, fertilizers) with 

< 10 years of usage 

Most crop 

systems and ≥ 

10 years 

Pasture NA Minimal input (e.g., 

herbicides, fertilizers), < 10 

years of usage 

Most pasture 

systems 

Harvest Single harvest, no fire Multiple harvests or harvest 

and burn 

NA 

 742 

  743 



 

 

Table S4: Biome-level effects of disturbance intensity on carbon accumulation in total plant 744 

biomass (MgC ha-1 yr-1) as a function of stand age. Intensity categories are low (L), medium 745 

(M), and high (H) based on Table S3. For all biomes, the greatest carbon accumulation rate (e.g., 746 

slope parameter) was observed in the intensity category with the lowest starting biomass (e.g., 747 

intercept parameter). 748 

 749 

biome intensity best fit equation (parameters ± SE) Statistic (age × 

intensity) 
N 

Temperate 

Broadleaf 

L 

M 

H 

(1.6 ± 0.2) × (age) + (-8.6 ± 28.8) 

(0.9 ± 0.7) × (age) + (12.7 ± 49.1) 

(1.2 ± 0.2) × (age) + (17.1 ± 14.6) 

F2,62.0 = 1.4,  

p = 0.248 

21 

5 

63 

Temperate 

Conifer  

L 

H 

(-58.5 ± 22.8) × ln(age) + (206.9 ± 63.9) 

(29.9 ± 5.5) × ln(age) + (-36.8 ± 20.8) 

F1,3.3 = 15.0,  

p = 0.024 

3 

6 

(Sub)-tropical 

Dry  

L 

M 

H 

(28.1 ± 4.3) × ln(age) + (-42.6 ± 19.3) 

(17.0 ± 7.0) × ln(age) + (-18.3 ± 24.8) 

(62.8 ± 3.6) × ln(age) + (-124.2 ± 12.4) 

F2,71.1 = 37.7,  

p < 0.0001 

292 

22 

126 

(Sub)-tropical 

Moist  

L 

M 

H 

(2.5 ± 0.2) × (age) + (35.8 ± 6.1) 

(2.6 ± 0.2) × (age) + (19.3 ± 1.9) 

(1.9 ± 0.1) × (age) + (23.3 ± 3.6) 

F2,746.7 = 10.3,  

p < 0.0001 

282 

443 

255 

(Sub)-tropical 

Savanna 

L 

H 

(1.4 ± 0.3) × (age) + (-0.1 ± 9.9) 

(0.4 ± 0.3) × (age) + (3.0 ± 9.2) 

F1,39.2 = 7.1,  

p = 0.010 

36 

12 

 750 
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Table S5: Environmental covariates used in the machine-learning model. Additional metadata 752 

including the date of the data, original resolution, transformations, and links to data sources are 753 

available in the supplementary data section.  754 

Covariate Source 

Aridity Index 82 

Probability of occurrence of R horizon 68 

Absolute depth to bedrock (in cm) 68 

Biome 60 

Bulk density (fine earth) (kg/cubic-meter) 68 

Cation Exchange Capacity of the soil (mmol(c)/kg) 68 

Clay content (mass fraction) 68 

Annual mean radiation (W/square-meter) 83 

Highest weekly radiation (W/square-meter) 83 

Lowest weekly radiation (W/square-meter) 83 

Radiation seasonality (C of V) 83 

Radiation of wettest quarter (W/square-meter) 83 

Radiation of driest quarter (W/square-meter) 83 

Radiation of warmest quarter (W/square-meter) 83 

Radiation of coldest quarter (W/square-meter) 83 

Annual mean moisture index 83 

Highest weekly moisture index 83 

Lowest weekly moisture index 83 

Moisture index seasonality (C of V) 83 

Mean moisture index of wettest quarter 83 

Mean moisture index of driest quarter 83 

Mean moisture index of warmest quarter 83 

Mean moisture index of coldest quarter 83 

Coarse fragments volumetric (%) 68 

Annual Evapotranspiration 82 

Aspect 84 

Elevation 84 

Hillshade 84 

Slope (m) 84 

NHx Deposition 85 

NOy Deposition 85 

Soil organic carbon density (kg/cubic-meter) 68 

Soil organic carbon stock in (tons/ha) 68 

Soil organic carbon content (g/kg) 68 

Soil pH x 10 in H2O 68 

Soil pH x 10 in KCl 68 

Average Monthly Shortwave Radiation 1982 - 2015 86 

Silt content (mass fraction) 68 

Sand content (mass fraction) 68 

Monthly Average Climate water deficit (mm) 87 



 

 

Covariate Source 

Monthly Average Palmer Drought Severity Index 87 

Monthly Average Runoff (mm) 87 

Monthly Average Soil moisture (mm) 87 

Monthly Average Vapor pressure (kPa) 87 

Monthly Average Vapor pressure deficit (kPa) 87 

Monthly Average Wind-speed at 10m (m/s) 87 

Annual mean temperature (°C) 88 

Mean diurnal temperature range (mean(period max-min)) (°C) 88 

Isothermality 88 

Temperature seasonality (C of V) 88 

Max temperature of warmest week (°C) 88 

Min temperature of coldest week (°C) 88 

Temperature annual range (°C) 88 

Mean temperature of wettest quarter (°C) 88 

Mean temperature of driest quarter (°C) 88 

Mean temperature of warmest quarter (°C) 88 

Mean temperature of coldest quarter (°C) 88 

Annual precipitation (mm) 88 

Precipitation of wettest week (mm) 88 

Precipitation of driest week (mm) 88 

Precipitation seasonality (C of V) 88 

Precipitation of wettest quarter (mm) 88 

Precipitation of driest quarter (mm) 88 

Precipitation of warmest quarter (mm) 88 

Precipitation of coldest quarter (mm) 88 

Available soil water capacity until wilting point (volumetric fraction) 68 
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Table S6. 2019 IPCC default rates (MgC ha-1 yr-1) for aboveground biomass accumulation in 756 

young forests12, converted to carbon using 0.4764. We also include predicted average, minimum, 757 

and maximum rates (MgC ha-1 yr-1) from our map across the same area. The final column indicates 758 

the percent difference of the average predicted rate relative to the IPCC rate in each forest ecozone, 759 

where a positive value indicates that the predicted rate is higher than the IPCC rate.  760 

 

Ecozone 

Continent IPCC  

 

Predicted rate  

Average (Min - Max) 

% 

Diff 

Boreal coniferous forest Asia 0 - 1 1.08 (0.71 - 1.43) 110 

Boreal coniferous forest Europe 0 - 1 0.94 (0.29 - 2.72) 81 

Boreal coniferous forest North America 0 - 1 0.89 (0.48 - 2.26) 72 

Boreal mountain system Asia 0.5 - 0.5 1.01 (0.52 - 2.16) 104 

Boreal mountain system Europe 0.5 - 0.5 1.03 (0.3 - 2.72) 108 

Boreal mountain system North America 0.5 - 0.5 0.87 (0.55 - 2.09) 76 

Subtropical dry forest Africa 1.1 - 1.2 0.7 (0.22 - 2.49) -38 

Subtropical dry forest North America 1.9 0.6 (0.28 - 1.11) -68 

Subtropical dry forest South America 1.9 1.54 (0.67 - 2.81) -18 

Subtropical dry forest Asia 2.8 0.94 (0.25 - 1.37) -67 

Subtropical humid forest Africa 1.2 1.78 (0.25 - 3.87) 52 

Subtropical humid forest Asia 1.2 2.08 (0.43 - 4.07) 77 

Subtropical humid forest North America 1.2 1.62 (0.55 - 2.74) 38 

Subtropical humid forest South America 1.2 1.56 (0.22 - 4.09) 33 

Subtropical mountain system Africa 1.2 0.91 (0.21 - 2.49) -23 

Subtropical mountain system Asia 1.2 1.17 (0.23 - 3.58) 0 

Subtropical mountain system North America 1.2 1.21 (0.09 - 4.49) 3 

Subtropical mountain system South America 1.2 1.01 (0.22 - 1.82) -14 

Temperate continental forest North America 1.6 0.96 (0.61 - 1.92) -38 

Temperate mountain system North America 1.5 0.95 (0.15 - 2.97) -35 

Temperate mountain system South America 1.5 1.53 (0.68 - 2.6) 5 

Temperate oceanic forest Europe 1.1 1.62 (0.84 - 2.95) 50 

Temperate oceanic forest New Zealand 1.5 1.84 (0.8 - 3.14) 26 

Temperate oceanic forest North America 3 1.57 (1.15 - 2.44) -47 

Temperate oceanic forest South America 3 2.15 (0.76 - 2.82) -27 

Tropical dry forest Africa 1.8 1.71 (0.33 - 5.36) -6 

Tropical dry forest Asia 1.8 2.4 (0.77 - 5.01) 31 

Tropical dry forest North America 1.8 2 (0.3 - 5.26) 9 

Tropical dry forest South America 1.8 1.88 (0.17 - 4.99) 3 

Tropical moist forest Asia 1.1 2.93 (0.95 - 5.13) 159 

Tropical moist forest Africa 1.4 2.67 (1.08 - 5.34) 96 

Tropical moist forest North America 2.4 3.4 (0.99 - 5.11) 39 

Tropical moist forest South America 2.4 3.37 (0.59 - 5.61) 38 

Tropical mountain system Asia 1.4 2.63 (0.29 - 4.76) 93 

Tropical mountain system North America 2.1 3.08 (1.27 - 5.25) 49 

Tropical mountain system South America 2.1 3.4 (0.63 - 5.36) 65 

Tropical mountain system Africa 2.6 2.95 (0.4 - 5.51) 14 



 

 

 

Ecozone 

Continent IPCC  

 

Predicted rate  

Average (Min - Max) 

% 

Diff 

Tropical rainforest Asia 1.6 3.64 (1.6 - 5.57) 128 

Tropical rainforest North America 2.8 3.8 (1.43 - 5.45) 37 

Tropical rainforest South America 2.8 4.64 (1.55 - 5.89) 67 

Tropical rainforest Africa 3.6 4.55 (2.28 - 6.16) 27 
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Table S7: Country-level summaries of carbon accumulation rates (MgC ha-1 yr-1) and mitigation 762 

potential from natural forest regrowth (TgCO2 yr-1) under two scenarios for natural forest 763 

regrowth. The first scenario represents a biophysical maximum3 and another based on national 764 

commitments11. The rate column includes rates from pixels that overlap with area of opportunity 765 

pixels in Griscom et al3. We only list countries that are a million hectares or larger. 766 

Geography 

Mean (min-max) 

aboveground rate, 

MgC ha-1 yr-1 

Mean 

belowground rate,  

MgC ha-1 yr-1 

Mitigation, 

maximum 

scenario, 

TgCO2 yr-1 

Mitigation, 

commitment 

scenario, 

TgCO2 yr-1 

Afghanistan 0.99 (0.85 - 1.09) 0.33 0.1 - 

Albania 1.26 (0.95 - 1.61) 0.67 9.83 - 

Algeria 0.96 (0.36 - 1.52) 0.53 7.78 - 

Angola 2.89 (2.38 - 4.58) 1.34 4.9 - 

Argentina 0.93 (0.2 - 2.94) 0.36 79.65 6.27 

Armenia 0.85 (0.61 - 1.04) 0.39 1.62 - 

Australia 1.03 (0.22 - 3.61) 0.39 149.84 - 

Austria 1.2 (0.85 - 1.49) 0.55 7.58 - 

Azerbaijan 0.85 (0.59 - 1.33) 0.36 4.42 7.28 

Bangladesh 3.34 (2.55 - 3.83) 0.92 0.1 12.87 

Belarus 1.03 (0.81 - 1.24) 0.47 30.37 - 

Belgium 1.65 (1.29 - 2.13) 0.76 3.47 - 

Belize 4.38 (3.18 - 5.03) 1.04 5.64 - 

Benin 4.94 (3.96 - 5.3) 1.83 0.67 13.17 

Bhutan 2.22 (1.46 - 3.81) 0.68 2.32 - 

Bolivia 2.83 (0.8 - 5.55) 0.98 61.46 93.08 

Bosnia and 

Herzegovina 1.22 (1.06 - 1.49) 0.59 11.51 - 

Brazil 3.95 (1.33 - 5.84) 1.2 1830.52 471.77 

Bulgaria 0.93 (0.7 - 1.24) 0.43 18.02 - 

Burundi 4.06 (3.32 - 4.58) 1.08 0.61 40.76 

Cabo Verde 1.32 (1.1 - 1.63) 0.85 1.59 - 

Cambodia 3.69 (2.54 - 4.98) 1.58 51.94 - 

Cameroon 5.01 (3.52 - 6.13) 1.79 47.11 319.26 

Canada 0.96 (0.48 - 2.26) 0.44 38.8 - 

Central African 

Republic 4.77 (3.63 - 5.67) 1.68 10.36 88.23 

Chad 1.36 (1 - 1.52) 0.76 0.32 46.59 

Chile 1.73 (0.68 - 2.81) 0.9 25.89 6.7 

China 1.9 (0.57 - 4.93) 0.48 1062.15 409.73 

Colombia 4.27 (2.24 - 5.52) 1.29 394.38 44.24 

Congo, Rep.  4.9 (3.26 - 5.78) 1.82 74 52.32 

Congo, Dem. Rep. 4.43 (2.03 - 5.78) 1.63 221 403.55 

Costa Rica 3.51 (2.05 - 4.37) 1.07 28.81 22.62 



 

 

Geography 

Mean (min-max) 

aboveground rate, 

MgC ha-1 yr-1 

Mean 

belowground rate,  

MgC ha-1 yr-1 

Mitigation, 

maximum 

scenario, 

TgCO2 yr-1 

Mitigation, 

commitment 

scenario, 

TgCO2 yr-1 

Croatia 1.19 (0.89 - 1.58) 0.6 11.67 - 

Cuba 3.02 (2.19 - 4.48) 0.71 72.96 - 

Czech Republic 1.11 (0.88 - 1.39) 0.51 7.09 - 

Cote d'Ivoire 4.86 (3.22 - 5.75) 1.8 155.2 129.74 

Denmark 1.74 (1.36 - 2.24) 0.8 2.4 - 

Dominican 

Republic 3.2 (1.83 - 4.11) 1.05 36.08 - 

Ecuador 3.53 (2.15 - 4.87) 1.16 85.05 9.38 

El Salvador 2.66 (2.19 - 3.19) 0.93 10.52 14.71 

Equatorial Guinea 4.77 (4.16 - 5.38) 1.77 0.22 - 

Eritrea 1.14 (1.03 - 1.24) 0.31 0 - 

Estonia 1.41 (1.2 - 1.65) 0.65 7.16 - 

Ethiopia 2.62 (0.97 - 4.34) 0.79 73.4 210.65 

Finland 1.31 (0.7 - 1.59) 0.6 0.81 - 

France 1.49 (0.74 - 4.9) 0.68 120.69 98.46 

Gabon 4.72 (3.72 - 5.68) 1.75 12.61 - 

Georgia 1.21 (0.67 - 1.63) 0.4 8.25 0.39 

Germany 1.41 (1.02 - 2.21) 0.65 27.71 - 

Ghana 4.87 (3.34 - 5.78) 1.85 72.74 52.37 

Greece 1.02 (0.58 - 1.44) 0.57 41.86 - 

Guatemala 3.58 (2.03 - 5.05) 1.13 55.35 - 

Guinea 4.6 (2.71 - 5.43) 1.69 12.8 49.18 

Guinea-Bissau 2.8 (2.55 - 3.03) 0.96 1.1 - 

Guyana 4.24 (3.42 - 5.18) 0.91 4.01 - 

Haiti 3.34 (1.93 - 4.37) 1.09 21.49 - 

Honduras 3.02 (1.97 - 4.4) 1.06 57.43 16.49 

Hungary 0.94 (0.83 - 1.18) 0.43 7.52 - 

India 2.12 (0.51 - 4.35) 0.93 392.2 267.19 

Indonesia 4.38 (1.92 - 5.17) 1.59 130.99 686.45 

Iran 0.94 (0.5 - 1.42) 0.2 6.78 - 

Ireland 2.33 (1.77 - 2.89) 1.07 66.11 - 

Israel 0.95 (0.44 - 1.07) 0.39 0.16 - 

Italy 1.13 (0.63 - 1.66) 0.6 53.24 - 

Jamaica 3.47 (2.42 - 4.16) 1.17 5.27 - 

Japan 1.5 (1.16 - 3.18) 0.5 30.89 - 

Jordan 0.54 (0.46 - 0.62) 0.17 0 - 

Kazakhstan 0.8 (0.53 - 0.92) 0.36 5.04 - 

Kenya 2.7 (1.42 - 4.28) 0.74 10.38 72.23 

Korea, Dem. Rep. 1.36 (1.12 - 1.58) 0.62 14.75 - 

Korea, Rep. 1.55 (1.37 - 1.76) 0.39 2.77 54.1 



 

 

Geography 

Mean (min-max) 

aboveground rate, 

MgC ha-1 yr-1 

Mean 

belowground rate,  

MgC ha-1 yr-1 

Mitigation, 

maximum 

scenario, 

TgCO2 yr-1 

Mitigation, 

commitment 

scenario, 

TgCO2 yr-1 

Kyrgyzstan 0.71 (0.55 - 0.89) 0.33 0.33 - 

Laos 3.63 (2.72 - 4.34) 1.14 45.35 144.44 

Latvia 1.31 (1.03 - 1.6) 0.6 9.2 - 

Lebanon 1.04 (0.8 - 1.31) 0.56 0.8 0.59 

Liberia 5.1 (4.29 - 5.66) 1.89 5.36 27.14 

Libya 0.79 (0.37 - 1.23) 0.36 0.16 - 

Lithuania 1.2 (0.94 - 1.53) 0.55 8.45 - 

Madagascar 3.03 (1.65 - 4.09) 0.81 17.45 62.48 

Malawi 2.7 (2.31 - 3.55) 0.55 0.6 60.57 

Malaysia 4.59 (3.68 - 5.57) 1.7 1.85 - 

Mexico 2.69 (0.28 - 5.23) 0.84 450.82 151.92 

Moldova 0.85 (0.71 - 0.98) 0.39 2.32 0.98 

Mongolia 0.89 (0.77 - 1.05) 0.41 6.67 3.78 

Montenegro 1.28 (1.05 - 1.66) 0.64 4.63 - 

Morocco 0.95 (0.29 - 1.67) 0.53 4.71 - 

Mozambique 2.97 (1.92 - 4.27) 1.12 0.45 16.53 

Myanmar 3.13 (1.41 - 4.9) 0.92 226 - 

Nepal 2.02 (1.28 - 3.18) 0.61 18.2 7.88 

Netherlands 1.69 (1.53 - 1.89) 0.78 6.63 0.85 

New Zealand 2.48 (1.01 - 3.08) 0.69 26.58 6.93 

Nicaragua 3.07 (2.1 - 4.21) 0.95 76.98 43.99 

Nigeria 5.28 (4.02 - 5.9) 1.95 112.63 842.32 

Norway 1.19 (0.93 - 1.63) 0.54 0.03 7.88 

Pakistan 1.04 (0.58 - 1.38) 0.34 2.39 11.63 

Panama 4.03 (3.05 - 5) 1.16 48.53 20.58 

Papua New Guinea 3.94 (2.54 - 4.88) 1.42 8.53 - 

Paraguay 2.14 (0.56 - 4) 0.67 111.09 - 

Peru 3.97 (1.93 - 5.36) 1.26 37.89 66.35 

Philippines 4.29 (2.87 - 5.19) 1.43 153.44 - 

Poland 1.14 (0.86 - 1.87) 0.53 26.12 - 

Portugal 1.33 (0.77 - 2.84) 0.72 31.06 - 

Romania 0.95 (0.71 - 1.37) 0.44 24.99 - 

Russian Federation 1.01 (0.59 - 1.56) 0.47 298.94 - 

Rwanda 4.38 (4.16 - 4.55) 1.18 0 43.91 

Senegal 2.65 (1.96 - 2.9) 0.53 0.02 - 

Serbia 1.02 (0.82 - 1.32) 0.47 15.17 - 

Sierra Leone 4.52 (3.47 - 5.1) 1.61 1.72 - 

Slovakia 0.99 (0.86 - 1.39) 0.46 3.98 - 

Slovenia 1.34 (1.03 - 1.6) 0.62 2.9 - 

Solomon Islands 3.66 (2.89 - 4.21) 1.35 0.03 - 



 

 

Geography 

Mean (min-max) 

aboveground rate, 

MgC ha-1 yr-1 

Mean 

belowground rate,  

MgC ha-1 yr-1 

Mitigation, 

maximum 

scenario, 

TgCO2 yr-1 

Mitigation, 

commitment 

scenario, 

TgCO2 yr-1 

Somalia 1.81 (1.21 - 2.49) 0.59 4.5 - 

South Africa 1.63 (0.46 - 3.81) 0.56 6.97 - 

South Sudan 2.07 (1.49 - 2.32) 1.1 0.08 - 

Spain 1.04 (0.4 - 2.94) 0.55 79.16 - 

Sri Lanka 3.86 (2.44 - 4.44) 1.34 3.17 3.24 

Suriname 4.22 (3.64 - 4.91) 0.85 1.29 - 

Sweden 1.22 (0.67 - 2.3) 0.56 0.37 - 

Switzerland 1.31 (0.78 - 1.57) 0.6 3.2 - 

Syria 0.98 (0.32 - 1.34) 0.49 0.88 - 

Tajikistan 0.89 (0.72 - 1) 0.41 0.1 - 

Tanzania 2.11 (1.32 - 4.39) 0.82 48.73 - 

Thailand 3.81 (2.45 - 5.53) 1.52 213.82 - 

The Former 

Yugoslav Republic 

of Macedonia 0.97 (0.65 - 1.26) 0.49 6.1 - 

Timor-Leste 3.32 (2.24 - 3.82) 1.19 6.54 - 

Togo 4.59 (3.71 - 5.53) 1.6 10.55 - 

Tunisia 0.91 (0.34 - 1.27) 0.5 1.06 - 

Turkey 0.9 (0.42 - 1.62) 0.51 119.38 - 

Uganda 3.5 (1.48 - 4.74) 1.19 4.33 53.97 

Ukraine 0.96 (0.78 - 1.52) 0.44 51.16 56.76 

United Kingdom 1.93 (1.34 - 2.78) 0.89 100.08 18.95 

United States 1.15 (0.16 - 4.32) 0.43 321.16 109.86 

Uruguay 1.55 (0.82 - 2.42) 0.3 0 - 

Uzbekistan 0.83 (0.65 - 0.93) 0.38 0.02 - 

Vanuatu 3.53 (2.71 - 4.04) 1.3 2.1 - 

Venezuela 3.6 (1.63 - 5.14) 1.08 186.46 - 

Vietnam 3.32 (2.39 - 4.71) 0.9 110.73 292.96 

Zambia 2.42 (1.24 - 2.83) 0.5 2.59 1.43 

Zimbabwe 1.4 (1.27 - 1.52) 0.79 0.06 - 
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Metadata 966 

 967 

Database structure 968 

 969 

The dataset includes three levels: full citation information (Table M1), variables specific 970 

to sites (Table M2), and stand (“plot”)-level carbon and biomass data with associated covariates 971 

(Table M3). Individual measurements are nested within plots, where plots are defined as stands 972 

with unique qualities (e.g., a single age, land use or combination) Plots are nested within sites. 973 

Sites are defined by having a unique latitude and longitude, though the specificity of geolocation 974 

varied across studies with some reporting highly precise locations for each stand and others giving 975 

a single geolocation for a larger region.  976 

We followed a few general rules for data extraction. If multiple publications described the 977 

same geolocation, we coded all data with a single site to avoid pseudoreplication. If a range was 978 

given for a variable, we calculated the average, but excluded data with large ranges, such as a 979 

forest age that spanned more than 10 years or a geolocation that spanned more than a degree 980 

latitude or longitude. Finally, for graphical data we used WebPlotDigitizer89 to extract the 981 

variables. 982 

Note that we make available our full dataset, which includes some variables that we did 983 

not include in our final analysis but may be useful for future work. For some fields, data are 984 

missing, because studies did not provide all details (e.g., type of prior disturbance). 985 

 986 

  987 



 

 

Table M1: Explanation of variables in literature dataset. 988 

 989 

Column name Description 

study.id unique numeric identifier for each publication 

citations.author last name of first author 

citations.year year of publication 

citations.journal citation information including journal, volume and page number 

citations.title full title from publication 

 990 

Table M2: Explanation of variables in site datasheet. 991 

 992 

Column name Description 

site.id unique numeric identifier for each geolocation 

study.id unique numeric identifier for each publication 

site.sitename text description of site name 

site.state sub-national jurisdiction such as state, province etc., if given 

site.country country name 

lat_dec latitude in decimal degrees 

long_dec longitude in decimal degrees 

other reference other publications or resources used to fill out site information 

elevation height above sea level in meters, if given 

AMT annual mean temperature in degrees Celsius, if given 

AMP annual mean precipitation in millimeters, if given 

soil.classification soil order converted to US system of nomenclature, if given 

 993 
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Table M3: Explanation of variables in measurement datasheet. 995 

 996 

Column name Description 

measurement.id unique identifier for each carbon/biomass measurement 

plot.id unique identifier for distinct spatial unit(s) within a site, e.g., if a study 

reported a single mean aboveground biomass measure for 12 year old 

stands, this would receive a single plot.id whereas if separate measures 

are given for a 12 year old stand that was previously pasture versus a 12 

year old stand that was previously cropped then each of those would a 

distinct plot.id. 

site.id unique numeric identifier for each geolocation 

study.id unique numeric identifier for each publication 

refor.type 

 

reforestation type or reference condition; SNR = spontaneous natural 

regeneration (or “natural forest regrowth”), TMC = intensive tree 

monocrop (reference), C = cropland (reference), PA = pasture (reference) 

species name of dominant species, if given 

prior 

 

type of most recent disturbance, if given; C = crop; SC = shifting 

cultivation/fallow; H = clearcut harvest of land in forest use; F = fire; D 

= non-fire disturbance such as landslide or hurricane; PA = pasture; M = 

mining; TMC = tree monocrop (e.g., banana or rubber plantation) 

stand.age 

 

age of forest stand; crop and pasture = 0, otherwise age is as given in 

study; age range is between 0 and 100 years 

date year data were collected, if given 

n number of plots (e.g. distinct spatial units) per measurement 

sub_n number of subplots per plot, e.g., soil samples pooled for a single measure 

plot.size largest plot dimension in m2 (e.g., plot size used to measure largest 

diameter trees) 

variables.name 

 

name of carbon pool; variables include aboveground_biomass/carbon; 

understory_biomass/carbon; litter_biomass/carbon;  

deadwood_biomass/carbon; belowground_biomass/carbon; soil organic 

carbon (SOC)/percent soil organic matter (SOM_per)/percent soil 

organic carbon (soil_perC); or combinations of above if study did not 

parse data by pool, see “Definitions of Pools”  

mean_ha value of biomass or carbon estimate per hectare in Mg/ha 

covar_1 type of covariate (see “Definitions of Pools”) 

coV1_value value of covariate 1 

covar_2 type of covariate (see “Definitions of Pools”) 

coV2_value value of covariate 2 

covar_3 type of covariate (see “Definitions of Pools”) 

coV3_value value of covariate 3 

density number of individual trees per hectare, if given 



 

 

Column name Description 

sand.silt.clay 

 

soil texture, if given; sand%:silt%:clay% or text description (e.g., clay, 

sandy clay, sandy clay loam, loamy sand, silty clay, silt loam) 

pH pH, if given 

allometry 

 

direct harvest = direct harvest of all biomass at a site; site-specific harvest 

= based on trees harvested at the site; species-specific = based on species; 

forest-type-specific = based on similar forest in the region; biome-

specific = based on general equations for a biome (e.g., 90) 

 997 

Definitions of Pools 998 

 999 

1. Aboveground_biomass/carbon refers to aboveground tree biomass excluding understory 1000 

biomass/carbon. If the two pools are combined, we note the presence of the latter by adding 1001 

“+ understory_biomass/carbon” to the variables.name column. A minimum diameter at 1002 

breast height (min_dbh, covariate 1) is typically listed with this measurement with a “0” 1003 

indicating all trees were sampled. Alternatively, studies sometimes measured only trees 1004 

above a certain height, in which case we note minimum height (min_height, covariate 1). 1005 

Note that aboveground_biomass_woody indicates only stem and branch biomass, not 1006 

foliage. 1007 

 1008 

2. Understory_biomass/carbon typically refers to herbaceous biomass, shrubs, lianas, and/ 1009 

trees saplings shorter than breast height. Possible covariates (covariate 1) include 1010 

maximum height (max_height) or maximum dbh (max_dbh) measured.  1011 

 1012 

3. Belowground_biomass/carbon refers to root biomass. We did not include studies that only 1013 

quantified fine root biomass. Possible covariates (covariate 1) include minimum root 1014 

diameter measured (root_diameter_min) or maximum depth of sampling (max_depth). If a 1015 

study only quantified roots up to a specific size, we noted this in root_diameter_max 1016 



 

 

(covariate 2). We extracted but did not include in our analyses, data quantifying root 1017 

biomass where there was no estimate of aboveground biomass.  1018 

 1019 

4. Soil biomass/carbon was reported as soil organic carbon density (SOC), percent soil 1020 

organic matter (SOM_per), or soil organic carbon concentration (soil_perC), depending on 1021 

the study. If a study reported soil organic carbon concentration, we also included 1022 

bulk_density (covariate 3) where it was given. For all soil measures, we noted the 1023 

maximum depth (max_depth, covariate 1) and minimum depth (min_depth, covariate 2) of 1024 

measurement and analyzed data as the sum of all shallower soil profiles.  1025 

 1026 

5. Litter_biomass/carbon refers to litter and CWD_biomass/carbon refers to coarse woody 1027 

debris. We parsed data where possible according to IPCC guidelines91, where coarse 1028 

woody debris includes wood lying on the surface, dead roots and stumps larger than or 1029 

equal to 10cm. Litter includes all non-living biomass that is distinguishable from mineral 1030 

soil, typically 2mm or greater and less than 10cm.  1031 

 1032 

  1033 



 

 

Studies included in database 1034 

 1035 

The references list first author, year, title and citation information for all studies (N = 257) in the 1036 

larger database (N = 13033 measurements). We included data from peer-reviewed publications or 1037 

datasets from respected institutions with asterisks denoting the latter.  1038 

  1039 

Aide (2000) Forest regeneration in a chronosequence of tropical abandoned pastures: Implications 1040 
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