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Abstract

Background: The United Nations Framework Convention on Climate Change recognizes carbon (C) fixation in
forests as an important contribution for the reduction of atmospheric pollution in terms of greenhouse gases.
Spatial differentiation of C sequestration in forests either at the national or at the regional scale is therefore needed
for forest planning purposes. Hence, within the framework of the Forest Focus regulation, the aim of this
investigation was to statistically analyse factors influencing the C fixation and to use the corresponding associations
in terms of a predictive mapping approach at the regional scale by example of the German federal state North
Rhine-Westphalia. The results of the methodical scheme outlined in this article should be compared with an
already-published approach applied to the same data which were used in the investigation at hand.

Methods: Site-specific data on C sequestration in humus, forest trees/dead wood and soil from two forest
monitoring networks were intersected with available surface information on topography, soil, climate and forestal
growing areas and districts. Next, the association between the C sequestration and the influence factors were
examined and modelled by linear regression analyses. The resulting regression equations were applied on the
surface data to predicatively map the C sequestration for the entire study area.

Results: The computations yielded an estimation of 146.7 mio t C sequestered in the forests of North Rhine-
Westphalia corresponding to 168.6 t/ha. The calculated values correspond well to according specifications given by
the literature. Furthermore, the results are almost identical to those of another pilot study where a different
statistical methodology was applied on the same database. Nevertheless, the underlying regression models
contribute only a low degree of explanation to the overall variance of the C fixation. This might mainly be due to
data quality aspects and missing influence factors in the analyses.

Discussion: In another study, an alternative approach was introduced to map the spatial differentiation of C
sequestration in North Rhine-Westphalia based on the combination of geostatistics, decision tree analyses and GIS
techniques. As a result, the overall mean of C sequestration amounted for 177 t C/ha which is 8.4 t C/ha higher
than what was calculated in the study at hand and 14 t C/ha below the roughly guessed German-wide mean of
191 t C/ha.

Conclusions: The surface estimations of C pools in living forest trees/dead wood, the humus layer and the mineral
soil enable to map the fixation of the greenhouse gas CO2 in forests at the regional scale. The estimations that
were derived in this study are in good accordance with estimations based on techniques which, in contrast, did
neither allow for spatial differentiation nor for mapping. The presented approach should be validated by
application of other statistical techniques and by use of German wide inventory data. Furthermore, C sequestration
should be modelled according to different climate change scenarios by combining statistical methods and
dynamic modelling.
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Background

According to the International Panel for Climatic

Change most of the observed increase in global average

air temperatures since the last century is most likely

caused by an increase of atmospheric concentrations of

greenhouse gases like carbon dioxide (CO2), methane

(CH4) and nitrous oxide (N2O) [1]. Greenhouse gases

warm the atmosphere by absorbing thermal infrared

radiation that is emitted by the earth’s surface or by the

atmosphere itself. Accordingly, compared with pre-

industrial times the global mean temperature increased

by 0.8°C for land and oceans, and by 1.0°C for land

alone [1]. Temperatures in Europe have increased even

more than the global average (1.0°C and 1.2°C, respec-

tively), especially in the southwest, the northeast and in

mountainous regions [2]. Projections suggest further

temperature increases in Europe between 1.0°C and 5.5°

C by the end of this century, which is also higher than

temperatures expected for the entire world (1.8°C to 4.0°

C) [2]. Furthermore, 11 of the 12 years between 1995

and 2006 were the warmest since the first temperature

measurements performed in 1850. With an increase of

0.13°C (± 0.03°C) per decade in the preceding 50 years

the temperature rise is almost double to that of the last

100 years.

Although it is often difficult to distinguish between

impacts of medium and long-term climate change on

forestry and agriculture and influences related to the

management of forests and crops, there is growing evi-

dence that processes such as changes in phenology [3,4],

length of growing seasons [5,6] and northwards shift of

crops and forest species [7] relate to climate change [1].

Forests contain 77% of the global C pool in vegetation

biomass which underlines their important role in the

global C cycle [8,1]. The flux of C between the atmo-

sphere and the land and oceans is dominated by natural

processes, such as plant photosynthesis. Terrestrial C

sequestration is the process through which atmospheric

CO2 is absorbed by trees, plants and crops through

photosynthesis, and stored as C in stems, branches,

leaves, roots and soils. Thus, forests play a fundamental

role in mitigating climate change because they act as

sinks for CO2. However, they are also very vulnerable to

changes in temperature, precipitation and extreme

weather events which can have destructive impacts (e.g.

tree breakage, droughts, forest fires) resulting in a

reduction of the C sequestration potential of the forest

[2, p. 135]. Additionally, climate change increases the

risk of insect pests and elevation of atmospheric ozone

concentrations [9]. The United Nations Framework

Convention on Climate Change therefore understands C

fixation in forests as an important contribution to the

reduction of greenhouse gases. With an estimated

amount of 2,060 Gt C forests fix far less C than is the

case for oceans (38,000 Gt C). Nevertheless, there is

great potential in terms of the spatial expansion of forest

areas and the shift of suitable forest categories [10]. The

C flux potential of forests (2 Gt C per year) corresponds

to that of the oceans and exceeds that of the atmo-

sphere by 1 Gt C per year [11].

As an additional sink for C, soil in the EU contains

around 71 Gt of organic C which is nearly 10% of the C

accumulated in the atmosphere [2]. In Canada’s boreal

forests, as much as 80% of the total C is stored in the

soils as dead organic matter [12,13]. Low temperatures

and insufficient moisture help in reducing the decompo-

sition of dead biomass (mainly leaves, stems, roots of

plants) leading to an accumulation of soil organic matter

(SOM) of which organic C (SOC) is a part of. Plant resi-

dues contain 60% to 90% moisture. The remaining dry

matter consists of C, oxygen (O), hydrogen (H) and

small amounts of sulphur (S), nitrogen (N), phosphorus

(P), potassium (K), calcium (Ca) and magnesium (Mg)

components. These include, in varying proportions and

many intermediate stages, an active organic fraction

including microorganisms (10% to 40%), and resistant or

stable organic matter (40% to 60%), also referred to as

humus. In a given soil ecosystem, the rate of decomposi-

tion and accumulation of SOM is determined by such

soil properties as texture, pH, temperature, moisture,

aeration, clay mineralogy, soil biological activities and

land use. Increasing temperatures will accelerate decay

rates, leading to increased CO2 and CH4 emissions from

soil. SOM in turn influences or modifies many of these

same soil properties [14,15]. Root turnover also consti-

tutes an important addition of humus into the soil, and

consequently, it is important for C sequestration. In for-

ests, most organic matter is added as superficial litter.

However, in grassland ecosystems, up to two thirds of

organic matter is added through the decay of roots [16].

For estimating C stocks or stock change (flux), C in

forest ecosystems can be divided into the following five

storage pools [1]: (1) aboveground biomass including all

living biomass above the soil, i.e. stem, stump, branches,

bark, seeds, foliage (live understory); (2) belowground

biomass, which encompasses all living biomass of coarse

living roots greater than 2 mm diameter; (3) dead wood,

which comprises all non-living woody biomass either

standing, lying on the ground (but not including litter)

or in the soil; (4) litter, which includes the litter, fumic
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and humic layers, and all non-living biomass with a dia-

meter less than 7.5 cm at transect intersection, lying on

the ground; (5) SOC, including all organic material in

soil to a depth of 1 m but excluding the coarse roots of

the aboveground pools.

Additionally, there exist two harvested wood pools

that are also necessary for estimating C flux: harvested

wood products in use and harvested wood products in

landfills [17]. Quantitative information from observa-

tions and modelling of the impacts of climate change on

soil and related feedbacks is very limited. To date,

assessments have relied mainly on local case studies.

Indicators covering all of Europe are not available, and

there is an urgent need for the establishment of appro-

priate monitoring schemes [2, p. 124].

In Europe, Commission Regulation (EC) No 1737/

2006 of 7 November 2006 detailed rules for the imple-

mentation of Regulation (EC) No 2152/2003 of the Eur-

opean Parliament and of the council concerning

monitoring of forests and environmental interactions in

the community. The objective of this Forest Focus regu-

lation was to establish a community scheme for harmo-

nised, broad-based, comprehensive and long-term

monitoring of European forest ecosystems. Amongst

others, the Forest Focus programme addressed the moni-

toring of climate change and C sequestration. As part of

that programme, a project was conducted aiming at the

mapping of C sequestration at the regional scale.

Thereby, the results derived by different methodical

approaches applied to the same data should be com-

pared. This paper is based on this project and deals

with a climate biomonitoring method for mapping the C

storage in humus layer, living forest trees/dead wood

and mineral soil, using available forest monitoring data

collected in North Rhine-Westphalia, one of 16 German

federal states.

In another paper [18] from the abovementioned Forest

Focus project, a combination of geostatistical methods

and decision tree models was applied to map the C sto-

rage throughout North Rhine-Westphalia. The C storage

was thereby estimated for humus, mineral soils and bio-

mass by use of the same forest inventory data and addi-

tional geoinformation on soils, climate and altitude [18].

Whereas spatial autocorrelation could be detected for

the C loads in the humus layers neither the C amounts

in mineral soils nor in living forest trees/dead wood

were spatially autocorrelated. Accordingly, a map on C

sequestration was calculated for the humus layer in

North Rhine-Westphalian forests by ordinary kriging

resulting in a total amount of 19 t C/ha. For mineral

soils and living or dead biomass, decision tree analyses

were applied leading to an amount of 90.7 t C/ha in

soils and 67 t C/ha in living forest trees/dead wood. The

overall mean therefore amounted for 177 t C/ha in

North Rhine-Westphalia which is 14 t C/ha below the

roughly guessed German-wide mean of 191 t C/ha.

From the estimation of primary production and C sink

in forests of the 25 member states of the European

Union could be concluded that any ‘individual method

is prone to so much uncertainty that several, preferably

independent, methods need to be used to estimate a

regional C budget’ [19]. The objective of this paper

therefore is to apply an alternative methodology to vali-

date the calculated results as described by [18]. The

methodology relies on a combination of linear regres-

sion analysis and geostatistical methods commonly

referred to as regression kriging [20,21]. The approach

had already been successfully applied to map the C

sequestration in mineral soils of forests in the southwest

of Germany [22-24].

Materials and methods

Data

The methodology described below was applied to the

same data already used by [18]. The data were derived

from two forest inventory programs: The forest inven-

tory Landeswaldinventur (LWI) relies on a 1 × 1-km

sampling raster across forested areas within North

Rhine-Westphalia (Figure 1 left). The aim of the LWI is

to assess the state and the temporal development of the

stock of wood in forests down to the local scale. The

LWI was performed once in 1998 providing data on the

C loads in living forest trees/dead wood. The nationwide

soil inventory Bodenzustandserhebung (BZE) was car-

ried through first from 1989 to 1991 following the sam-

pling raster of the UN ECE ICP Forests Level I

programme with a spatial resolution of 4 × 4 km (Figure

1 right). A second BZE campaign was initiated in 2006

(BZE II). The aim of this programme is to quantify the

physical, chemical and biological properties of forest

soils throughout Germany and to link this information

to data on crown thinning of forest trees. In this way,

the reasons of forest decline are to be assessed. The

BZE provides information on the C storage in the

humus layer and the mineral soil.

Next to the site-specific BZE and LWI inventory data,

digital surface maps on potentially influencing environ-

mental factors like soil properties, land use and climate

were included in the statistical analyses and the regiona-

lisation of the C sequestration. The spatial extent of

woodlands was derived from the official German topo-

graphic cartographic information system ATKIS.

Detailed information on soil properties were taken from

a soil map with a spatial resolution of 1:50,000 (Bk 50):

These include data on soil types and texture, soil pro-

ductivity, depth of upper soil layer, effective root zone,

available field capacity, cation exchange capacity, water

conductivity and soil wetness. To account for the
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possible influence of climatic variables, raster data in a

resolution of 1 × 1 km were provided by the German

Weather Service (Deutscher Wetterdienst–DWD). The

data included information on temperature estimates

averaged annually and for the vegetation period (May to

September) for the climate normal period 1961 to 1990.

Accordingly, sums for global radiation, sunshine dura-

tion and precipitation were provided for the same time

windows.

Since topography can be assumed to have significant

impact on the C sequestration, different topographical

indices were derived from a digital elevation model with

a resolution of 30 × 30 m. The indices were calculated

according to the approach introduced by [23] and

adopted in the framework of the Forest Focus Pro-

gramme for the calculation of C pools in the forests in

the federal state Baden-Württemberg [24]. The follow-

ing variables were derived by the elevation data: slope

(between 0° and 90°), slope length factor (according to

the Universal Soil loss equation [25]), slope position

index (relative position within a slope for defined

radiuses–here 500, 750 and 1,000 m), stream power

index (characterised the degree of soil erosion due to

down flowing water), topographic wetness index (depict-

ing patterns of potential soil moisture), topographic

position index (difference in topography within defined

radiuses–here 500, 750 and 1,000 m), horizontal curva-

ture (change of exposition per distance unit) and vertical

curvature (change of slope per distance unit). All indices

were calculated with help of ArcView GIS 3.3 including

Spatial Analyst and other extensions (DEM Analysis

Tool, TOPOCROP, Topographic Position Index).

Methodology: GIS-mapping by use of regression kriging

The methodology that was applied to map the C storage

in North Rhine-Westphalian forests is referred to as

regression kriging (RK) (Figure 2). RK is a spatial inter-

polation technique that combines (linear) regression

analysis with geostatistics. Geostatistical procedures are

based on the theory of regionalised variables [26].

Accordingly, spatial measurements are seen as the rea-

lisation of a random function whose mean may either

be constant (stationary process) or varying across the

study area. In RK, this varying mean is accounted for in

terms of surface maps available for the entire study area.

These surface maps are calculated by at first analysing

the association between the variable of interest (available

for different locations) and a set of chosen potential

influence factors (available for the entire study region)

via linear regression analysis. Then, the derived regres-

sion functions are applied on available surface data to

map the variable of interest throughout the study area.

Figure 1 depicts the way RK was used to map the C

storage in the humus layer, in the mineral soil and in

the living forest trees/dead wood. At first, the punctual

data on the C storage were intersected with the available

raster data on the predicting variables in a geographic

information system (GIS). Next, stepwise multivariate

Figure 1 Forest inventory data used to spatially predict the C sequestration in forests of North Rhine-Westphalia.

Schröder and Pesch Environmental Sciences Europe 2011, 23:31

http://www.enveurope.com/content/23/1/31

Page 4 of 16



linear regression analysis was applied to determine and

model the association between the target and predicting

variables using SPSS 15.0. The resulting regression

equations were then applied on the predicting variables

to calculate state wide regression maps. Since the resi-

duals of the regression model stand for the errors of the

spatially varying random function they were investigated

with regard to spatial autocorrelation. In geostatistics,

such is most commonly examined and modelled by use

of variogram analysis, in this case with help of the Arc-

GIS 9.3 extension Geostatistical Analyst. Accordingly,

the mean squared differences of all pairs of residual

values (semi-variances) were calculated for so called

bins of a variogram map to derive an experimental

semi-variogram. Variogram models were fitted to the

experimental semi-variograms in terms of the least-

Figure 2 Methodological concept to predictively map C sequestration in North Rhine-Westphalian forests.
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squares method. The variogram model can be described

by three parameters: range, sill and nugget effect. The

range equals the maximum separation distance for

which a distinct increase of semi-variogram values, and

therefore spatial autocorrelation, can be observed. The

sill corresponds to the semi-variance assigned to the

range. Spatial variability within the first lag can be

caused by measurement errors and other confounding

factors resulting in high semi-variances. The magnitude

of the nugget effect can be expressed by the ratio of

nugget and sill (nugget/sill ratio). In case of a nugget/sill

ratio of 1, meaning a pure nugget effect, no spatial auto-

correlation exists. Provided the residuals show spatial

autocorrelation patterns they may be mapped with help

of ordinary kriging and then added to the corresponding

regression map.

Multivariate regression analyses comprised the follow-

ing working steps [27]: Setting the framework for the

regression model, estimation of the regression function,

verification of the regression function and coefficients as

well as verification of the underlying assumptions of the

regression model. The statistical significance of the

regression function was determined using F statistics, all

regression coefficients were verified by t tests separately.

The necessary assumptions of the regression model

were investigated by performing the following steps:

Checking for linear dependency between target and pre-

dicting variables with help of partial diagramsa; investi-

gating homoscedasticity and autocorrelation patterns of

the residuals by visually plotting the residuals against

the target variable; investigation of normality of the resi-

duals by means of histogram plots; checking for co-line-

arities between the predictors using Pearson correlation

analysis.

Since linear regression analysis assumes metrical

scaled target and predicting variables, only numerical

data could be included in the analyses. For some catego-

rical data like land use type, the category of interest (e.g.

coniferous forest) was extracted in terms of a binary

variable (existent = 1 or non-existent = 0). Three ordin-

ally scaled variables ecological wetness rank (three rank

numbers), classified mean soil number (five rank num-

bers) and upper soil texture rank (nine rank numbers)

were handled as metrically scaled values.

Results
Regarding the underlying assumptions of regression ana-

lysis, the dependencies between the C storage in the

humus layer, in the mineral soil and in the biomass on

the one hand and the predicting variables on the other

hand, all showed linear dependencies. Accordingly, the

multivariate regression analyses resulted in the following

three equations which were all proven to be statistically

significant (F statistics; a = 0.05). The same holds true

for all regression coefficients in terms of the t tests

results (a = 0.05; the corresponding p values are given

in brackets following the different predictors). Further-

more, the linear dependency between the C storage and

all predicting variables were investigated visually by par-

tial diagrams. In all cases, no severe deviations were

detected from linear dependency. For each C storage

regression, one partial diagram each is depicted as an

example (Figure 3).

1. C sequestration in the humus layer

YH = 2.78+0.3×A−0.56×B−0.001×C+0.1×D−0.19×E−0.4×F−0.21×G−0.1×H

with: A = occurrence of deciduous forest (p = 0.001);

B = vertical curvature [degree per metre] (p < 0.001); C

= annual precipitation [millimetres] (p = 0.003); D =

upper soil texture rank (p < 0.001); E = ecological wet-

ness rank (p = 0.001); F = slope position index (p =

0.023), radius 500 m; G = occurrence of coniferous for-

est (p = 0.027); H = annual mean temperature [°C] (p <

0.039).

The linear regression model explains 19.5% of the var-

iance of the dependent variable (R2 = 0.195). The

depicted regression coefficients may not enable to assess

the relevance of the predictors in the regression model

because of their dependency on the range of the values

of the corresponding predicting variable. Hence, they

were standardised by multiplying each regression coeffi-

cients with the ratio of the standard deviation of the

corresponding predicting variable and the variable of

interest. Accordingly, the upper soil texture rank shows

the strongest association to the C storage in the humus

layer (b = 0.22) followed by annual precipitation (b =

0.18) and the incidence of deciduous forests (b = 0.17).

Negative dependencies can be observed for vertical cur-

vature (b = -0.15), ecological wetness rank (b = -0.15),

mean annual temperature (b = -0.14), the incidence of

coniferous forests (b = -0.11) and the slope position

index (b = -0.10).

Due to proven heteroscedasticity in the residual plots

the regression analysis was performed with the lognor-

mally transformed data of the C sequestration in the

humus layer (Figure 4). The residuals then sufficiently

approximated a normal distribution as can be seen by

visual inspection of the histograms (Figure 5).

As can be seen in Table 1 the chosen predicting vari-

ables partly show significant correlations. Nevertheless,

most of these correlations are extremely low. There are

only two variable pairs that show higher correlation

than r = 0.5 (between mean annual temperature and

annual precipitation sum: r = -0.71 and the occurrence

of deciduous and coniferous forests). Since these corre-

lations were still only moderate/moderately high, the

corresponding variables were kept in the regression
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model. Apart from these two correlations the assump-

tion of collinearity between the predicting variables

could be accepted.

2. C sequestration in the mineral soil

YM = 24.32 + 8.83 × A + 6.89 × B + 0.03 × C + 0.04 × D − 9.72 × E

with A = topographic wetness index (p < 0.001); B =

thickness of upper soil texture rank [decimetre] (p =

0.005); C = elevation [metre] (p < 0.013); D = cation

exchange capacity [moles per square metre] (p = 0.042);

E = slope position index, radius 750 m (p = 0.0499).

The linear regression model explains 9.2% of the var-

iance of the dependent variable (R2 = 0.092). For the C

storage in mineral soil, the topographic wetness index

shows the highest standardised regression coefficient (b

= 0.28) followed by the thickness of the upper soil tex-

ture rank (b = 0.15), elevation (b = 0.14), cation

Figure 3 Examples of partial diagrams for the regression of the C storage. In humus (exemplified by the upper soil texture rank–A), in the
mineral soil (topographical wetness index–B) and in forest trees/dead wood (available field capacity–C).
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exchange capacity (b = 0.09) and the slope position

index (b = -0.09).

For the C sequestration in the mineral soil, the resi-

duals of the regression model did not indicate hetero-

scedasticity (Figure 6) and were accepted to be normally

distributed (as indicated in Figure 7). The regression

analysis was therefore performed for the original values.

Here, too, the chosen predicting variables show signifi-

cant but mostly very low correlations (highest for the

association between elevation and the topographical

wetness index: r = -0.55). The regression model was

accepted to be used for the mapping of the C storage in

mineral soil for the forests of North Rhine-Westphalia.

3. C sequestration in the living forest trees/dead wood

YD = 4.66+0.000017×A+0.002×B−0.09×C−0.001×D+0.07×E−0.02×F−0.07×G

with A = annual sum global radiation [watts per

square meter] (p < 0.001); B = available field capacity

[millimetre] (p < 0.001); C = classified mean soil num-

ber (p < 0.001); D = saturated hydraulic conductivity

[centimeters per day] (p < 0.001); E = occurrence of

coniferous forest (p < 0.001); F = effective root depth

[decimetre] (p = 0.001); G = slope position index, radius

500 m (p = 0.027).

The linear regression model explains 2.4% of the var-

iance of the dependent variable (R2 = 0.024). Compared

Figure 4 Residualplot for C storage in humus before (a) and after (b) lognormal transformation.

Figure 5 Histogram of the lognormally transformed data of the C sequestration in the humus layer.
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Table 1 Coefficients of correlation (Pearson) for relevant predictors for C storage

A Deciduous
forest

Coniferous
forest

Vertical
curvature

Annual
precipitation

Upper soil
texture
rank

Ecological
wetness
rank

Annual mean
temperature

Slope
position
index

Deciduous
forest

Cp 1

n 498

Coniferous
forest

Cp -0.568 1

n 498 498

Vertical
curvature

Cp -0.070 0.011 1

n 497 497 497

Annual
precipitation

Cp -0.237 0.228 -0.028 1

n 498 498 497 498

Upper soil
texture rank

Cp 0.021 -0.018 0.045 -0.389 1

n 497 497 496 497 497

Ecological
wetness rank

Cp -0.035 0.060 -0.054 0.326 -0.117 1

n 497 497 496 497 497 497

Annual mean
temperature

Cp 0.235 -0.318 0.037 -0.708 0.445 -0.371 1

n 498 498 497 498 497 497 498

Slope position
index

Cp 0.049 -0.046 0.232 0.062 -0.034 0.015 0.004 1

n 496 496 496 496 495 495 496 497

B Topographic
Wetness Index

Thickness of
upper soil
texture

Elevation Cation
exchange
capacity

Slope
position
index

Topographic
Wetness Index

Cp 1

n 497

Thickness of
upper soil
texture

Cp 0.492 1

n 497 498

Elevation Cp -0.565 -0.497 1

n 497 497 497

Cation
exchange
capacity

Cp -0.128 -0.090 0.110 1

n 496 497 496 497

Slope position
index

Cp -0.161 -0.209 0.146 0.077 1

n 494 494 494 493 495

C Annual sum
global

radiation

Available field
capacity

Classified
mean soil
number

Saturated
hydraulic

conductivity

coniferous
forest

Effective root
depth

Slope position
index

Annual sum
global radiation

Cp 1

n 8,779

Available field
capacity

Cp -0.028 1

n 8,762 8,771
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to the predicting variable for the C storage in the humus

layer and the mineral soil the standardised regression

coefficients are overall lower: Available field capacity (b

= 0.11), global radiation (b = -0.10), the classified mean

soil number (b = -0.09), saturated hydraulic conductivity

(b = -0.07), incidence of coniferous forest (b = 0.04),

effective root depth (b = -0.06), slope position index (b

= -0.02).

As for the C storage in the humus layer, signs of het-

eroscedasticity could be detected in the residual plot

(Figure 8). The regression analysis was therefore per-

formed with the lognormally transformed data. Still the

residuals showed a slight skew to the left (Figure 9) but

approximated a normal distribution sufficiently.

The Pearson correlations between all chosen predic-

tors are depicted in Table 1. As can be seen, only in one

case a correlation of above 0.5 exists (between the avail-

able field capacity and the effective root depth; r =

-0.737). The other correlations are mostly non

significant and very low. The regression model was

therefore accepted for the mapping.

Only for the residuals of regression model for the C

sequestration in the humus layer spatial autocorrelation

could be detected (nugget to sill ratio = 0.76). Therefore

ordinary kriging was applied to calculate a residual map

for the study area.

To map the C storage in humus layer, mineral soil

and biomass, the corresponding regression equations

were applied on the predicting variables in ArcView GIS

3.3. Regarding the C storage in the humus layer the

regression map was added to the calculated residual

map. Finally, all three maps were summed up to one

predictive map of the C storage in forests of North

Rhine-Westphalia (Figure 10). Regarding the amount of

stored C and the spatial differentiation the following can

be observed: For the humus layer, 17.5 mio t C were

calculated for North Rhine-Westphalia, corresponding

to ca. 20.3 t C/ha. From the map in Figure 10 (upper

Table 1 Coefficients of correlation (Pearson) for relevant predictors for C storage (Continued)

Classified mean
soil number

Cp -0.043 0.347 1

n 8,762 8,771 8,771

Saturated
hydraulic
conductivity

Cp 0.122 -0.281 -0.270 1

n 8,740 8,745 8,745 8,748

coniferous
forest

Cp -0.004 0.078 0.081 -0.038 1

n 8,751 8,742 8,742 8,728 8,758

Effective root
depth

Cp 0.008 0.737 0.150 -0.355 -0.002 1

n 8,762 8,771 8,771 8,745 8,742 8,771

Slope position
index

Cp 0.017 -0.011 0.005 -0.028 -0.015 -0.004 1

n 8,779 8,771 8,771 8,748 8,758 8,771 8,788

In humus (A), in mineral soil (B) and in living forest trees/dead wood (C).

Figure 6 Residualplot for C storage in the mineral soil.
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left) it can be seen that high C sequestration were esti-

mated for the ‘Sauerland’, a natural landscape unit

located in the low mountain ranges with a high coverage

of forests, and the ‘Westfälische Bucht’, the most south-

ern part of the northern lowlands. For the mineral soil,

81.5 mio t C were predicted (93.7 t C/ha) with highest

values in the eastern and northeastern part of the ‘West-

fälische Bucht’ (Figure 10, middle left). The spatial pat-

terns of the C storage in living trees/dead wood depict

highest values in the low mountain ranges of North

Rhine-Westphalia (’Bergisches Land’, ‘Sauerland’,

‘Weserbergland’–Figure 10, lower left). The analyses

furthermore revealed that ca. 47.5 mio t C are stored in

the biomass with relative values of 93.7 t C/ha. In sum-

mary 147 mio t C were predicted for the forests with

help of regression kriging (54.7 t/ha; Figure 10, right).

Discussion

Comparing the results of the methodical approach pre-

sented in this article with those derived by a methodol-

ogy applied to the same data [18], some differences can

be observed: The C pools in the humus layer and in the

mineral soil thereby only exhibit small differences (1

and 2.7 t/ha less corresponding to 1.3% and 2.8%,

respectively). The difference in terms of the C sequestra-

tion in living trees/dead wood is higher (12.3 t/ha higher

corresponding to 22.5%). The reason for this might be

that in the study mentioned above [18] additional cate-

gorical data was included in the decision tree analyses.

The categorical data were chosen as the most significant

splitting variables to subdivide the data sets for the C

storage in the humus layer (categorical splitting variable:

humus type), in living trees/dead wood (categorical

Figure 7 Histogram of the C sequestration in the mineral soil.

Figure 8 Residual plot C storage in forest trees/dead wood before (a) and after lognormal transformation (b).
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Figure 9 Histogram of the lognormally transformed data of the C sequestration. In the living forest trees/dead wood.

Figure 10 C storage in humus, mineral soil, biomass (left) and in forests of North Rhine-Westphalia (right).
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splitting variable: forestral growth districts) and in the

mineral soil (categorical splitting variable: soil type) into

subclasses.

The primary basis for the results of this study rely on

three regression equations enabling to predict the C sto-

rage to different degrees, reaching from 19.5% explained

variance for the humus layer to 2.4% for the living forest

trees/dead wood. This is in contrast to a comparative

study [22-24] which used the same type of analyses and

similar data to predict C sequestration within several

topographically unique units and the entire federal state

of Baden-Württemberg. Like in the study at hand, data

on climate (sun duration, temperature, precipitation)

and soil were used. The latter contained parameters

which were not available in this study, such as the ratio

of different tree species within administrative forest

units, the age of the forest stands and the type of soil

treatment (e.g. liming activities). Like here, different

topographical indices were calculated from a digital ele-

vation map with a resolution of 25 × 25 km2. The

resulting regression models were able to explain 45.4%

(mineral soil) and 64% (humus layer) of the variance of

the C sequestration [24]. The reason the performance of

our models were not as good might be caused by the

insufficient availability of adequate data and/or factors

that were not accounted for in the analysis. Another

reason might be the data quality of both target and pre-

dictor variables: The C storage in living forest trees and

dead wood for example is estimated by multiplication of

the volume of adequately large trees and the tree speci-

fic density [28]. Fifty percent of the resulting dry wood

mass then is set as the value for the C sequestration, C

in roots, leaves and needles as well as in the shrub layers

are not included. One other possibility for the low

degree of explained variance might have to do with tem-

poral criteria and spatial scale effects: The climatic data

were annually averaged for a time period of 30 years

(1960 to 1990) which might be too long to account for

the C sequestration. Furthermore, the climatic variables

were provided in terms of 1 × 1-km2 raster data that

were intersected with the punctual measurements on

the C pools. These maps had been calculated by apply-

ing interpolation techniques on measurement data

resulting in spatial generalisation effects. Similar holds

true for the soil parameters that were taken from a vec-

tor map with a resolution of 1:50,000. This resolution

might be too low in order to assess influences of soil

characteristics (e.g. effective root zone, available field

capacity, cation exchange capacity) on the C sequestra-

tion measured at the sites of the LWI and BZE.

Compared to other national and international studies,

the results at hand mostly show similar tendencies.

According to [29] an average C storage of 96, 7 t/ha can

be expected for the mineral soil and the humus layer in

North Rhine-Westphalia which is 17.8% lower than

what was calculated in the investigation at hand. Schef-

fer [14] estimated about 183 mio t C to be stored in the

forests of North Rhine-Westphalia. The difference of 36

mio t C may be due to the fact that [14] summed up

information on the C storage in the root mass (14.6 t/

ha), the herbaceous layer (1.1 t/ha) and the remains of

the timber harvest (76.8 t/ha) together with the C sto-

rage of the living forest trees. C storage, 16.9 t/ha (15

mio t), was calculated for the humus layer which lies 2.4

t/ha lower than estimated by lognormal kriging based

on forest inventory data. For the mineral soil, they esti-

mated 93.7 t C/ha which is 3 t/ha higher than in the

study at hand. Baritz and Strich [30] calculated a mean

C content in the humus layer of 20.7 t C/ha for Ger-

many which is slightly above the concentration calcu-

lated for the forests of North Rhine-Westphalia. In the

same study a C average of 87.9 t C/ha was calculated

for the mineral soil down to a depth of 0.9 m which is

very close to the 81.5 mio t C calculated in this study.

For the latter, the mineral soil layer was defined to a

depth of 2 m. [31] claim that the C storage in mineral

soils can highly differ due to different bedrocks: soils

with calcareous bedrocks show the highest C contents

(115 t/ha) whereas pseudogleys influenced by stagnant

water show the lowest values (47 t/ha). Wirth et al. [32]

found that the forests of Thuringia fix 27.7 ± 8.1 t C/ha

in the humus layer. The according C sequestration was

calculated for both deciduous (11.3 t/ha) and coniferous

(34.0 t/ha) forests.

Conclusions

This article demonstrates that the methodology pre-

sented enables mapping the C pools in living forest

trees/dead wood, the humus layer and the mineral soil.

The spatial estimations outlined are in good accordance

with statistical detailed estimations based on the same

data but on another mapping technique [18] on the one

hand and with rough estimations techniques on the

other hand which, in contrast, did allow neither for spa-

tial differentiation nor for mapping. The presented

approach should be validated by use of German wide

inventory data. Furthermore, C sequestration should be

modelled according to different climate change scenar-

ios by combining statistical methods and the dynamic

modelling tools like WASMOD [33].

The developed methodology refers to the Forest Focus

demand for using biomonitoring methods for the identi-

fication, assessment and documentation of climate

change impacts on the biosphere [34]. Biomonitoring is

expected to provide politicians with information, docu-

ments and a basis for decision support to assess climate

change impacts and it is possible to develop new and to

evaluate the effectiveness of existing adaptive measures
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[35]. The term Climate Biomonitoring was recom-

mended for biomonitoring methods that are able to

indicate climate change effects, and thus, are indispensa-

ble for the early detection of changes in the biosphere.

Climate biomonitoring preferably makes use of already

existing monitoring systems and data collections [35].

From the estimation of primary production and C sink

in forests of the 25 member states of the European

Union, it could be concluded that independent methods

should to be used to estimate regional C budgets. Confi-

dence concerning the accuracy of such budgets should

be given by convergence across methods. ‘Ideally, several

precise estimates obtained from independent methods

should converge’ [19] and performance of the models

should be enhanced by accounting for factors that con-

trol regional variation in growth.

From this investigation, it can be concluded that the

values for the statistically based predictions of the C sto-

rage in the humus layer, in the mineral soil and in the

living forest trees/dead wood as calculated in this inves-

tigation are comparable to those published by [18] and

as described above based on literature research. Further-

more, the presented approach enabled to map the C

fixation objectively and transparently using available

monitoring data and statistical methods. The application

of statistics allows the assessment of the reliability of the

predicted C contents and their spatial distribution.

When assessing the future changes in forest SOC stocks

two antagonistic effects of temperature rise have to be

considered. Higher temperatures tend to result in a

decrease of C fixation by speeding decomposition,

whereas increases in litter input due to increasing net

primary production and changing age-class structure

will slow the loss of SOC. Smith et al. [36] assessed soil

C change in European forests by applying the

Rothamsted C model [37] on a 10 × 10’ grid using cli-

mate data from four climate models on emission scenar-

ios defined by the [1]. Mean SOC stocks to 30 cm depth

were derived for each grid cell from the European Soils

Bureau 1-km2 soils database [38], and data on changes

in land use and technology were considered as well.

They showed that under some conditions, C in forest

soils will increase slightly (0.1 to 4.6 Gt) in Europe from

1990 to 2080. Whilst for one scenario, forest SOC

stocks are predicted to decrease by 0.3 Gt. For cropland

soils, there was an increase of SOC of 1 to 7 t C/ha,

whereas for grassland soils SOC rises by 3 to 6 t C/ha

[39]. Different national and Europe-wide studies on

recent changes in soil C stocks give an inconsistent

impression. Whereas [40] claim UK and Europe, as a

whole, to be a net CO2 sink, [41] observed a mean loss

of SOC of 0.6% per year. Other sampling studies in Eur-

ope have shown contrasting results, too, with some

showing loss of SOC (Flemish cropland [42]), and others

showing no loss of SOC (Danish cropland [43]; Austrian

soils [44].

Besides local case studies covering only small parts of

the environment or computer models using digital soil

maps and leading to spatially coarse maps on SOC dis-

tribution [36,39,45,46], the calculations presented here

mediate between these two spatial approaches. Never-

theless, the statistical evaluation of these results reveals

that much of the overall variability of the C contents

remains unexplained.

Due to advances in forest management practices,

increased nitrogen deposition, and reduced acidification

by air pollution (sulphur dioxide) and also increasing

temperatures and atmospheric CO2 concentrations, the

majority of forests in Europe are growing faster now

than in the early twentieth century [2]. Projected climate

change will result in a substantial shift in vegetation dis-

tribution and will affect distribution and the timing of

both pests and pollinators, as well [47,48]. On the other

hand, projected temperature increase will cause forest

decline by droughts [49,50] and increase the danger of

forest fires leading to a larger area being burned, more

ignitions and longer fire seasons [51-54]. These aspects

have also taken into account when assessing the future

capability C sequestration of forests.

Further, the projected climate change will accelerate

the release of CO2 from the soil, contributing to higher

concentrations in the atmosphere [40,41]. Mitigation

measures to reduce the detrimental effect of higher tem-

peratures combined with lower soil moisture on the

amount of SOC are changes in land cover and adapta-

tion of land-management practices to increase net pri-

mary production and reduce losses of aboveground

biomass from decomposition [36,39,40,55]. Under given

climatic conditions, grassland and forests tend to have

higher stocks of organic C than arable land and are seen

as net sinks for C [56]. Adaptive measures on agricul-

tural land use are changes in farming practices, such as

a reduction in tilling or retaining crop residues after

harvesting. The recent environmental conditions in

combination with the type of silviculture that has been

developed over the past 50 years can efficiently seques-

ter C on timescales of decades. However, using wood as

biofuel and hence shorter rotations in forestry could

cancel out the benefits of C storage over the past five

decades [57].

Endnotes
aWith partial diagrams the association between the tar-

get variable and a specific predicting variable is investi-

gated without including the effect of the other

predicting variables on the target variable.
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