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ABSTRACT 

The eukaryotic cell is a multi-scale structure with modular organization across at least four 

orders of magnitude1,2. Two central approaches for mapping this structure – protein 

fluorescent imaging and protein biophysical association – each generate extensive datasets 

but of distinct qualities and resolutions that are typically treated separately3,4. Here, we 

integrate immunofluorescent images in the Human Protein Atlas5 with ongoing affinity 

purification experiments from the BioPlex resource6 to create a unified hierarchical map of 

eukaryotic cell architecture. Integration involves configuring each approach to produce a 

general measure of protein distance, then calibrating the two measures using machine 

learning. The evolving map, called the Multi-Scale Integrated Cell (MuSIC 1.0), currently 

resolves 69 subcellular systems of which approximately half are undocumented. Based on 

these findings we perform 134 additional affinity purifications, validating close subunit 

associations for the majority of systems. The map elucidates roles for poorly characterized 

proteins, such as the appearance of FAM120C in chromatin; identifies new protein 

assemblies in ribosomal biogenesis, RNA splicing, nuclear speckles, and ion transport; and 

reveals crosstalk between cytoplasmic and mitochondrial ribosomal proteins. By integration 

across scales, MuSIC substantially increases the mapping resolution obtained from imaging 

while giving protein interactions a spatial dimension, paving the way to incorporate many 

molecular data types in proteome-wide maps of cells.  
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Advances in confocal microscopy and immunofluorescence (IF) imaging have created systematic 

pipelines for mapping the spatial distribution of proteins and other molecules within single 

cells3,7,8. Based on these techniques, the Human Protein Atlas (HPA) has launched an extensive 

effort to map protein subcellular locations using a library of specific fluorescent antibodies 

targeting more than 13,000 human proteins5,9. The use of multiple dyes with separate emission 

spectra enables locations to be determined relative to known landmarks such as the nucleus, 

cytoskeleton and endoplasmic reticulum, with the result that most human proteins can be assigned 

relative positions at sub-micron resolution. 

In parallel, advances in mass spectrometry (MS) have provided a complementary means of 

mapping protein coordinates through their biophysical associations with other proteins4,10. MS is 

now routinely combined with affinity purification (AP-MS)11 or proximity-dependent labeling12–

16 to enumerate physical protein-protein interactions in vitro or in vivo. Combining AP-MS with 

epitope tagging, the BioPlex project has generated a systematic map of physical interactions 

covering approximately 7,500 epitope-tagged human proteins (BioPlex 2.0)6, including 

approximately 56,000 candidate interactions organized into more than 400 multimeric protein 

complexes.  

Given that protein imaging and biophysical association are leading approaches for mapping 

cell structure, with growing data resources and proteome-wide maps, a key question is whether 

and how they should be properly combined. One platform is sometimes used to validate results of 

the other, for example testing whether proteins associated by AP-MS co-localize within IF 

images17. The two platforms provide complementary measures of protein localizations, albeit at 

different physical scales, with IF positioning proteins globally relative to broad cellular landmarks, 

and AP-MS positioning proteins locally relative to other nearby proteins. In either case, such 
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positioning has become increasingly quantitative in recent years, based on the ability of deep 

learning systems to recognize complex patterns in data18–23. Once an IF or AP-MS dataset has been 

analyzed to determine protein positions (or position distributions), a natural next step is to compute 

distances between these distributions, raising the possibility that the two types of protein distance 

might be calibrated and combined within integrated maps of cellular architecture (Fig. 1a).  

Protein position and distance, two ways 

We assembled a matched dataset consisting of IF images from HPA5 and AP-MS data from 

BioPlex6. Both resources are partially based on HEK293 human embryonic kidney cells, leading 

us to 661 proteins with compatible imaging (1,451 images including replicates, Extended Data 

Fig. 1) and biophysical association data (291 proteins affinity-tagged as ‘baits’, the remaining 370 

arising as interacting ‘preys’, Supplementary Table 1). While the number of studied proteins 

could be expanded by pooling additional IF and AP-MS datasets gathered in disparate cell types 

and conditions, we considered the importance of a controlled cellular context in prototyping any 

new approach. Using a deep convolutional neural network trained to recognize patterns in IF 

images18, we embedded each protein as a 1024-dimension feature vector, capturing its spatial 

distribution relative to counter-stained cellular landmarks (Methods). Similarly, the node2vec 

deep neural network20 was used to embed each protein as a second 1024-dimension feature vector 

based on its interaction neighborhood within the AP-MS data, including directly and indirectly 

associated proteins (Methods, Extended Data Fig. 2). 

Next we computed protein-protein distances (cosine distance) for all pairs of proteins, 

separately in the IF and AP-MS high-dimensional embeddings. We found that the closest protein 

pairs measured by one technique were significantly enriched for those measured as close by the 

other, demonstrating that despite their differences, the two measurement types share significant 
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information (Fig. 1b, c). As a means of calibrating the two distance measures, we sampled 

subcellular components of known physical size spread over several orders of magnitude in scale, 

from protein complexes of <20 nm to organelles >1 µm in diameter. The diameter of each 

component strongly correlated with its number of protein subunits documented in the Gene 

Ontology (GO)24,25, suggesting a general means of converting current GO annotations for a protein 

pair to an approximate distance in nanometers (Fig. 1d). Using these approximated distances as 

training examples, we taught a supervised machine learning model (random forest regression, 

Methods) to translate patterns in the concatenated IF and AP-MS features to an integrated measure 

of pairwise protein distance (Fig. 1e). 

A subcellular hierarchy at 20-20,000 nm 

We analyzed this full set of protein distances to identify communities of proteins in close mutual 

proximity, suggesting distinct cellular components. Protein communities were identified at 

multiple resolutions, starting with those that form at the smallest protein-protein distances then 

progressively relaxing the distance threshold (multi-scale community detection26,27, Methods). 

Communities at smaller distances were contained, in full or in part, inside larger communities as 

the threshold was relaxed, yielding a structural hierarchy (Fig. 2a). The sensitivity of community 

detection was tuned for best concordance with two independent datasets not used elsewhere in our 

study: a separate collection of protein interactions reported in the Human Cell Map28 using 

proximity biotinylation, also in HEK293 cells, and patterns of gene co-essentiality observed in the 

Cancer Cell Dependency Map29,30 (Methods). This exercise also provided an end-to-end 

validation of our analysis pipeline (Fig. 1a), as the agreement with the outside datasets was 

significant over a wide range of community detection parameters (Extended Data Fig. 3). The 

final hierarchy, which we call the Multi-Scale Integrated Cell (MuSIC 1.0), contained 69 protein 
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communities representing putative subcellular systems organized by 87 hierarchical containment 

relationships (Fig. 2a, Supplementary Table 2). Sixteen systems were contained in multiple 

larger ones, suggesting these systems have pleiotropic roles or are intermediate subassemblies of 

a larger complex. To elucidate the biological roles of each system, we aligned the MuSIC hierarchy 

to the equivalent literature-curated hierarchy provided by GO (Methods). A total of 46% of 

systems had significant overlap with GO; the remaining 54% did not clearly correspond to a known 

component and were labeled as putative novel (Fig. 2a). Where possible, systems were labeled by 

synthesizing prior literature with our own biological knowledge and reasoning. 

For example, MuSIC identified a community of nine proteins (labeled “Spliceosomal 

snRNP complex family”, Fig. 2b), the majority of which were specific members of the U1 and U2 

small nuclear ribonucleoproteins (snRNPs) or had snRNP-related activities in previous studies31–

33. Co-location of these proteins was supported by IF, which showed a common nucleoplasm signal 

(Fig. 2c) and corresponding close distances in the IF embedding (Fig. 2d). The image distributions 

varied considerably, particularly across nucleoplasm and cytoplasm, such that most but not all 

protein pairs were closely associated. Close proximities of these proteins were reinforced by the 

AP-MS data, however (Fig. 2e, f), based on similar proteome-wide patterns of interaction. The 

combined support from both data types induced this spliceosomal complex to form a specific 

protein community at a resolution of around 150 nm (Fig. 2g, h).  

Added sensitivity, resolution, context 

We next examined the sensitivity with which these same systems could be identified using IF or 

AP-MS only, versus the full dataset. In general, we found that IF tends to robustly identify large 

systems such as organelles and sub-organellar parts that form the upper structure of MuSIC, 

whereas AP-MS robustly identifies smaller subcomponents within IF systems (Fig. 3a, b, 
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Methods). For the majority of systems, the highest robustness was observed when integrating both 

types of data (Fig. 3c, d). For instance, the ability to recover the spliceosomal snRNP complex 

family dropped considerably when using only AP-MS data compared to integrated analysis (Fig. 

2h).  

Further insight came from examining the complete distributions of distances inferred using 

each data type separately (Fig. 3e). Using IF only, the measured protein distances were 

generally >200 nm with a median of approximately 5000 nm – the scale of large intracellular 

assemblies and organelles. Using AP-MS only, the median protein distance was also around 5000 

nm, as expected if most proteins do not physically interact; however, a fraction of pairs were 

assigned extremely short distances of 20-200 nm – the realm of protein interactions and complexes. 

By integrating both data types, MuSIC distance measurements spanned four orders of magnitude 

in physical scale, ranging from roughly 20 to 20,000 nm (Fig. 3e). 

Notably, 30% of AP-MS protein interactions fell within a focused system of <100 proteins 

(Fig. 3f). In each of these cases, such knowledge validates and aids in biological interpretation of 

the protein-protein association. We found that such context also allows rescue of protein 

interactions with support in the raw AP-MS spectra but which were overlooked in previous 

proteome-wide analysis due to the stringent scoring thresholds necessary to control for false 

discoveries. Among protein pairs not reported to interact in the previous BioPlex study6, pairs in 

smaller systems had significantly stronger AP-MS scores than pairs in larger systems (p < 0.0001, 

Fig. 3g), suggesting an untapped trove of bona-fide physical interactions. 

Exploration of newly identified systems 

Of the 661 proteins common to the IF and AP-MS datasets, 370 had not yet been affinity tagged 

as the central baits of an AP-MS experiment – rather, they had appeared in the list of preys isolated 
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by another affinity-tagged protein. Therefore, as an immediate means of validating candidate 

systems in MuSIC, we created affinity tags for 134 former preys and performed AP-MS, resulting 

in the identification of 339 physical interactions (Supplementary Table 1). We found that 44/69 

MuSIC systems were specifically enriched for the new interactions (64%, FDR < 0.1, Fig. 4a), 

including 23 “putative” novel systems. Conversely, 195 (58%) of new interactions fell into MuSIC 

systems of <100 proteins, placing these into specific subcellular contexts (Extended Data Fig. 4). 

 Among the novel systems validated by the additional interaction data was an assembly of 

seven proteins (Fig. 4b-f), which we named ‘Pre-ribosomal RNA (pre-rRNA) processing complex 

1’ based on synthesizing information about known protein activities34,35 (NVL, RPL13A) with 

results from human high-throughput genetic screens36 (KRI1, NOC2L) and orthology to budding 

yeast37 (REXO4, Fig. 4e). The close association of these proteins was based on IF similarity 

(predominantly nucleolar localizations, Fig. 4b, c) and common AP-MS interaction 

neighborhoods (Fig. 4d), although, notably, none of the protein pairs had been reported to directly 

interact in BioPlex (Fig. 4f). Our new affinity purifications targeted five of these proteins as baits, 

recovering direct interactions for the majority of protein pairs in the system (11/21, Fig. 4f). We 

noted that the recovery of interactions was specific to that system (52.4% interactions recovered), 

in comparison to interactions with proteins in closely related systems (23.6%) or elsewhere in 

MuSIC (0.5%, Extended Data Fig. 5). 

 A second example was a system of seven proteins featuring abundant crosstalk between 

canonical subunits of the cytoplasmic and mitochondrial ribosomes (Fig. 4g-k). All showed 

cytoplasmic staining, explaining their close IF distances (Fig. 4g-h, staining is dim for MRPS9, 

MRPS14 and MRPS31 compared to their predominant mitochondrial locations). The IF similarity 

was further supported by AP-MS neighborhood similarity, although majority of the protein pairs 
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had not yet been reported to physically interact (Fig. 4i-k). In the new affinity pull-downs, we 

tagged four of these proteins as baits (two cytoribosomal, two mitoribosomal), identifying five 

direct within-system physical interactions, four interconnecting cytoplasmic and mitochondrial 

factors (Fig. 4k). Such crosstalk has not been previously reported but may play a role in 

mitoribosome biogenesis, a poorly understood process38. Based on these findings, we named this 

system ‘Mito-cyto ribosomal cluster’.  

 A number of systems captured novel protein associations apart from those we had targeted 

with the new AP-MS data. One example (Fig. 4l-o) was a system of six proteins, of which DMAP1, 

MORF4L1, and JAZF1 were histone acetyltransferases39,40, SATB1 had been shown to interact 

with histone acetyltransferases41, SRRM1 had been implicated in chromatin remodeling42, and 

FAM120C had no previously assigned function (Fig. 4o). The specific association of these proteins 

was supported by their close measured distances in both IF (nucleoplasm and nuclear speckles, 

Fig. 4l, m) and AP-MS data (Fig. 4n). We thus named this system ‘Chromatin regulation complex 

1’ based on the previously documented protein functions (Fig. 4o). The close associations of 

FAM120C, a candidate disease protein in autism spectrum disorder43, with proteins involved in 

regulation of chromatin suggests a novel function for this protein, consistent with the previous 

identification of other chromatin factors in autism44.  

Discussion 

In classical image analysis of cells, the locations of proteins are identified in reference to a small 

panel of known markers for organelles. Here, MuSIC moves away from this closed library of 

organellar locations to an open platform in which both existing and new structures are identified 

de novo from structure in data. Numerous synergies between the IF and AP-MS data support the 
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identification of 69 hierarchically-organized protein systems, many of which are robustly 

identified only when integrating both data modalities (Fig. 3d).  

What about when the data disagree? While nearly a third of AP-MS interactions fall within 

the same focused system of <100 proteins, more than two thirds do not (Fig. 3f). For example, 

PPP6R1, a phosphatase, and NPAS1, a helix-loop-helix transcription factor, interact directly by 

AP-MS but were placed in different organelles in MuSIC related to their distinct image locations 

(PPP6R1, Cytoplasm; NPAS1, Nucleus; Extended Data Fig. 6a). In general, such discrepancies 

may indicate rare physical association of the proteins in a common compartment despite their more 

abundant locations in distinct others, as might be expected from pleiotropic roles or stages of 

protein maturation45. Alternatively, the divergent measurements may be explained by temporal 

dynamics, by which the two proteins interact transiently or periodically (e.g. cell cycle, circadian 

rhythms). Discrepancies may also derive from the fact that IF detects endogenous proteins whereas 

AP-MS detects over-expressed tagged proteins. Barring the above explanations, one can always 

suspect errors in data, e.g., cases in which the physical interaction represents spurious or non-

specific binding. Some disagreement between IF and AP-MS can clearly be tolerated by the 

system, such as MuSIC’s correct assignment of GEMIN7 and SNRNP7 into the U1 small nuclear 

ribonucleoprotein particle32,46 (U1 snRNP, Fig. 2a), despite only partial overlap in the image 

distributions of the two proteins (Extended Data Fig. 6b). In this case, correct assignment was 

facilitated by the direct association of these proteins by AP-MS.  

While the imaging field is accustomed to thinking about physical sizes and distances 

between cellular objects, the idea that protein interactions can be calibrated to measure physical 

distance is, to our knowledge, new to this study. The estimates here suggest that protein networks 

can measure sizes of cellular components down to about 20 nm (Fig. 2a). In contrast, the minimum 
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size resolution learned for IF imaging, at approximately 200 nm (Fig. 3e), is in good agreement 

with conventional estimates47. This type of integrated analysis, with distance calibration, allows 

discovery of biological structure across a wide range of physical scales, including those scales that 

fall between the windows of resolution for each individual assay. It will be interesting to explore 

the size resolutions of other omics technologies, many of which might be calibrated to measure 

molecular distances and, in turn, contribute to integrated maps of the multi-scale cell. 
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METHODS 

Data sources 

IF images interrogating protein locations in the HEK293 cell line were downloaded from the HPA 

Cell Atlas5,18,19. Physical protein interactions detected by AP-MS in the HEK293T cell line were 

downloaded from the BioPlex 2.0 protein interaction database6. We focused our study on the 

intersection of these IF and AP-MS datasets, i.e. selecting images of immunofluorescent proteins 

that had been affinity-tagged as baits or detected as preys in BioPlex. Each image had four 

channels, one for the protein of interest, and three for reference markers including nucleus, 

microtubules and endoplasmic reticulum. Images involving antibodies that targeted more than one 

protein, or which lacked annotated cellular localizations, were removed. The final imaging dataset 

contained 1,451 images covering 661 proteins and 726 antibodies, corresponding to a range of 2-

6 images per protein (Extended Data Fig. 1). The final AP-MS dataset covered this same set of 

661 proteins with 281 direct protein-protein interactions among the 661 proteins; we also retained 

the entire BioPlex 2.0 network of 10,961 proteins and 56,553 protein interactions, which provides 

significant information about the extended network neighborhoods of the 661 proteins (used in 

data embedding, see below). 

Data embeddings 

Three different image embedding methods (DenseNet, SLF, Paired Cell Inpainting) were 

compared for their ability to enrich for the 281 BioPlex protein-protein interactions among the 661 

proteins (Extended Data Fig. 7a). DenseNet: For each image, a 1024-dimension feature 

embedding was generated from a DenseNet-121 model48 optimized for annotating HPA images as 

previously described18. This method uses the protein channel and all three reference channels. 

SLF: Subcellular location features (SLF) were extracted at a per-cell level following the procedure 
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described previously19,49,50. Here we used the same set of 719 features as in the previous SLF 

study19, capturing the relative relationship between the immunostained protein and the two major 

HPA cellular landmarks, nucleus and microtubules. Paired Cell Inpainting: The Paired Cell 

Inpainting51 unsupervised method uses a deep neural network to extract a 384-dimension feature 

vector for each protein, which was downloaded directly from 

http://hershey.csb.utoronto.ca/paired_cell_inpainting_features. For the SLF and Paired Cell 

Inpainting embeddings, per-image features were obtained by averaging the features of the cells 

within an image; the DenseNet embedding is already provided at the image level. We chose the 

DenseNet embedded features due to their ability to best enrich for physical protein interactions 

(Extended Data Fig. 7a). 

 For AP-MS data, three different embedding methods (node2vec, RWR, node properties) 

were compared for their ability to enrich for the 281 protein pairs with highest cosine similarity 

calculated in the IF images using the DenseNet embedding (Extended Data Fig. 7b; the number 

281 was selected to match the number of protein-protein interactions used above for the reciprocal 

analysis). All three embedding methods input a protein-protein interaction network, in which 

nodes represent proteins and edges represent measured protein-protein interactions drawn from all 

available BioPlex AP-MS data (n = 10,961 nodes, m = 56,553 edges, see above). Node2vec: This 

method uses a deep neural network to learn feature representations of the network neighborhood 

surrounding each node20. A 1024-dimension feature embedding for each protein was obtained by 

applying node2vec with parameters p = 2, q = 1. RWR: Random walk with restart (RWR) is carried 

out according to equation: 

𝑄!"1 = (1− 𝛼)𝑄0 + 𝛼𝑄!𝐴 (1) 
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α tunes the distance that a protein signal diffuses within the protein-protein interaction network, 

here set to α = 0.6, which was determined to be the optimal setting in a previous human protein 

network study52. 𝑄0 is an n ⨉ n identity matrix, and A is the column-normalized adjacency matrix 

representation of the network53. The embedding of each node was taken as the corresponding row 

of Qt if eqn. (1) converged or after 30 iterations. Node properties: Each protein embedding was 

represented by a short feature vector formulated from the following graph-theoretic properties: (i) 

degree, (ii) clustering coefficient, (iii) closeness centrality, (iv) normalized betweenness centrality, 

(v) eigenvector centrality, (vi) stress centrality, (vii) bridging centrality, and (viii) information 

centrality, following definitions from a previous study54. Node2vec embeddings were chosen 

based on superior performance in enriching for protein pairs with similar image embeddings 

(Extended Data Fig. 7b). 

Data integration 

Protein annotations from the Cellular Component branch of the Gene Ontology (GO)25 were used 

to formulate a training set of approximate protein pairwise distances. GO was downloaded on 

25.9.2018 from http://geneontology.org. Annotations based on HPA images were removed from 

GO to avoid circularity. Among the 661 proteins under study, 602 had specific GO annotations 

(i.e. other than the cellular_component root term) which were used to supervise the calibration of 

distance from embedded features. The relative GO similarity (converse of distance) for a protein 

pair p1 and p2 was calculated according to a previously proposed metric55 as: 

𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑝1, 𝑝2) 	= 	−𝑙𝑜𝑔10
|$(&1,&2)|

)
 (2) 

where |T(p1, p2)| is the number of proteins in the smallest term to which p1 and p2 are both annotated 

and N is the total number of proteins with specific annotations in GO.  
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 Random forest regression56 implemented in the Python scikit-learn package57 was used to 

learn the approximate GO similarity, scaled to [0, 1], between a pair of proteins. The training 

features included the complete image and AP-MS embeddings of each protein in the pair as well 

as a panel of similarity measurements (cosine, Pearson, Spearman, Kendall, Manhattan, and 

Euclidean) of the protein pair in the image and AP-MS embeddings respectively. Because every 

protein had multiple images (ranging from two to six, see Data sources above), six different 

groups of image-to-protein mappings were randomly generated while requiring each image for a 

protein to be mapped at least once. We trained random forest regression with five-fold cross 

validation for each group. The final similarity of each protein pair (henceforth called the integrated 

protein-protein similarity network) was obtained by averaging the random forest predictions from 

the six groups. As a negative control, a 1024-dimension random vector sampled from a normal 

distribution was generated for each image embedding and each AP-MS embedding (Fig. 1e). 

Pan-resolution community detection 

The integrated protein-protein similarity network was analyzed to detect distinct communities of 

similar proteins using the Clique eXtracted Ontology algorithm27 (CliXO v1.0, 

https://github.com/fanzheng10/CliXO-1.0). CliXO finds the maximal cliques in a weighted 

network while progressively decreasing the threshold on edge weights. Lower thresholds yield 

cliques that may contain, in full or in part, cliques identified at higher thresholds, resulting in a 

hierarchy of communities interrelated by community containment relations. CliXO has four 

parameters that control the depth (α), width (β), modularity (m) and modularity significance (z) of 

the community hierarchy (Extended Data Fig. 3a). We swept through 500 different combinations 

of these four parameters to obtain a pool of hierarchies. All communities, representing putative 

cellular systems, were required to have at least four proteins to further ensure quality and validity.  
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To select an optimal hierarchy, each hierarchy was evaluated based on its concordance with 

two independent datasets, the Human Cell Map28 and the Cancer Cell Dependency Map (v18Q2)29, 

which were not used elsewhere in this study (Extended Data Fig. 3b, c). From the Human Cell 

Map, 178 protein-protein interactions detected in HEK293 cells with high-confidence (FDR ≤ 

0.01) were obtained, covering 293 proteins in MuSIC. From the Cancer Cell Dependency Map 

(DepMap)29, we selected 9,030 protein pairs, covering 629 proteins in MuSIC, for which the 

CRISPR gene disruptions of the two proteins led to significantly correlated fitness profiles across 

the panel of 436 DepMap cell lines (so-called “co-essential” proteins). For each hierarchy, we 

recorded the number of Human Cell Map protein-protein interactions (x) or DepMap co-essential 

protein pairs (y) that were covered by systems that were significantly enriched (FDR ≤ 0.1) for 

those interactions (Extended Data Fig. 3b, c). The hierarchy having the highest number (x ⨉ y) 

was selected for further study; among the several ties, we selected the hierarchy with the least 

number of systems (i.e. guided by the principle of parsimony).  

The hierarchical structure was further matured by assigning additional hierarchical parent-

child containment relations between pairs of systems having a containment index ≥0.75 and 

removing redundant systems having Jaccard index ≥0.9 with parent systems. The containment and 

Jaccard indexes between two systems S1 and S2 were calculated based on the following formulae: 

𝐶𝑜𝑛𝑡𝑎𝑖𝑛𝑚𝑒𝑛𝑡(𝑆1, 𝑆2) 	= |𝑆1 ∩ 𝑆2|	/	𝑚𝑖𝑛(|𝑆1|, |𝑆2|)   (3) 

									𝐽𝑎𝑐𝑐𝑎𝑟𝑑(𝑆1, 𝑆2) = |𝑆1 ∩ 𝑆2|	/	|𝑆1 ∪ 𝑆2|	              (4) 

with |S| representing the number of proteins in a system. Redundant systems having only one 

protein difference from a parent system were also removed. When removing a system, the 

integrity of the hierarchical structure was maintained by adding containment relations from all 

children of that system to all of its parents. 
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We also analyzed the integrated protein-protein similarity network using Louvain 

clustering26,58 (https://github.com/vtraag/louvain-igraph, v0.6.1) which partitions network nodes 

into a set of distinct clusters. We ran Louvain 1,000 times and selected the partition that maximized 

the global modularity, as output by the algorithm. The partition used for the main MuSIC model 

included just two clusters, which were strongly enriched for proteins with known subcellular 

locations in the cytoplasm versus nucleus, respectively (Fig. 2a). These clusters were added as 

parent systems of the top-layer systems found by CliXO (described above). In particular, a CliXO 

system was added as a child of a Louvain system if at least 50% of its proteins were in the Louvain 

system(s). A similar process was employed to construct the jackknifed hierarchies in the 

robustness analysis (Fig. 3a-c, see Dependence of systems on data types below). For systems 

highlighted in main figures (Figs. 2a, 4a), we introduced a further quality control step in which 

we manually inspected the corresponding IF images and raw AP-MS spectra. This process 

prompted us to remove the protein RPL6 from the system “Mito-cyto ribosomal cluster” out of 

concerns for antibody correctness.  

 To label MuSIC systems as “known” or “putative” (Fig. 2a), MuSIC was aligned to the 

Cellular Component branch of GO, filtered for the proteins under study. A system 𝑆 was 

considered “known” if there existed a GO term 𝑇 that was significantly enriched (FDR ≤ 0.001, 

hypergeometric statistic) for proteins in 𝑆 with 𝐽𝑎𝑐𝑐𝑎𝑟𝑑(𝑆, 𝑇) 	≥ 	0.4, or if 𝐽𝑎𝑐𝑐𝑎𝑟𝑑(𝑆, 𝑇) = 1, 

representing perfect agreement regardless of significance.   

Calibration to physical distance 

The following calibration function was obtained using linear regression on the list of subcellular 

compartments with known physical sizes (Fig. 1d): 

𝑙𝑜𝑔10𝐷*+(𝑝1, 𝑝2) 	= 	−3.946 × 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝑝1, 𝑝2) + 4.317  (5) 
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where Dnm(p1, p2) is the physical distance in nm between proteins p1 and p2, and Similarity(p1, p2) 

is calculated using eqn. (2) based on the number of proteins annotated to the compartment. The 

physical size of each MuSIC system (Fig. 2a) was calibrated based on the similarity threshold at 

which the system was found. 

Dependence of systems on data types 

To investigate the relative contributions of IF and AP-MS data in system formation, we evaluated 

the robustness of each system under perturbations to the integrated protein-protein similarity 

network (Figs. 2h, 3a-c). To assess the dependence of each system on imaging data, we created 

an alternative network using IF features only, with AP-MS features randomized (see Data 

integration above). Subsequently, 10% of the edges in this protein network were randomly 

removed, and community detection was performed to construct a hierarchy using the same 

parameters as MuSIC (see Pan-resolution community detection above). This randomization 

procedure was repeated 300 times to obtain a pool of perturbed hierarchies, similar to statistical 

jackknifing59. The “percentage recovery” of a MuSIC system SMuSIC in a perturbed hierarchy HP 

was calculated as: 

%	𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑦	(𝑆,-./0 , 𝐻1) 	= 	100	 × 𝐽𝑎𝑐𝑐𝑎𝑟𝑑(𝑆,-./0 , 𝑆1)  (6) 

where SP is the perturbed system best enriching for SMuSIC in HP (Fig. 2h). SMuSIC was considered 

to be “recovered” by HP if the enrichment of SMuSIC in SP was significant (FDR ≤ 0.001, 

hypergeometric statistic) and % recovery(SMuSIC, HP) ≥ 40%, or if % recovery(SMuSIC, HP) = 100%, 

representing perfect agreement regardless of significance. The image robustness score for SMuSIC 

(Fig. 3a) was the fraction of all perturbed hierarchies that recovered SMuSIC. 

To assess the dependence of each system on AP-MS data, a reciprocal procedure was 

performed by generating an alternative integrated protein-protein similarity network using AP-MS 
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features only, with imaging features randomized (Fig. 3b). As a benchmark, we also computed the 

robustness of the full MuSIC model using the original integrated protein-protein similarity network 

without IF or AP-MS feature randomization (Fig. 3c), using the same jackknifing procedure 

described above. 

Global system validation using new AP-MS data 

We constructed stable HEK293T cell lines for 134 bait proteins (Supplementary Table 1) with 

C-terminal FLAG-HA-tags based on the human ORFeome v8.1 (http://horfdb.dfci.harvard.edu/)60 

as previously described6,61,62. Cell pellets were lysed using 50 mM Tris-HCl pH 7.5, 300 mM 

NaCl, 0.5% (v/v) NP40 buffer, and cell debris were removed with centrifugation and filtration. 

Mouse monoclonal anti-HA agarose resins (Sigma-Aldrich, clone HA-7), immobilized and pre-

washed, were incubated with cell lysates at 4 ℃ for 4 hours. After removing supernatant, 

precipitates were washed four times with lysis buffer and two times with PBS (pH 7.2). Elution 

was performed in two steps by adding 250 µg/mL HA peptide in PBS at 37°C followed by TCA 

precipitation. Eluted samples were analyzed by LC-MS using Q-Exactive mass spectrometers 

(Thermo Fisher). Each bait protein was analyzed with biological duplicates for the affinity 

purification step and technical duplicates for the LC-MS step, yielding four replicates in total. 

MS/MS spectra were analyzed using the Sequest algorithm63 to match peptide sequences from the 

Uniprot database40 supplemented by signatures for green fluorescent protein (negative control), 

the FLAG-HA-tag, and common contaminants. Identified peptides and proteins were further 

filtered using the target-decoy method64 to control FDR. High confidence protein interactions were 

identified using the ComPASS algorithm65,66 on merged technical duplicates, followed by 

ComPASS-Plus analysis62. 
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To examine per-system enrichment for the new AP-MS data in MuSIC, the assignment of 

proteins to systems was shuffled while keeping the overall hierarchy structure and number of 

proteins per system the same, resulting in 1,000 random hierarchies. For each system, we 

calculated the empirical p-value67 for the number of new AP-MS interactions among the “system-

specific” protein pairs, defined as protein pairs in that system but not in children of that system. P-

values were corrected using Benjamini-Hochberg multiple test correction to obtain an FDR for 

per-system enrichment (Fig. 4a). 

Statistical analyses 

All statistical tests were performed using SciPy68 with Benjamini-Hochberg multiple test 

correction as appropriate. Statistics involving comparison between two groups of data to assess 

differences in data distributions were calculated using either a Mann-Whitney U test, when 

samples were not paired (Figs. 2-4), or a Wilcoxon signed-rank test for paired samples (Fig. 1e). 

Statistics for assessing the enrichment of proteins or protein pairs were calculated using 

hypergeometric tests (Extended Data Fig. 3) unless stated otherwise. 

Data Availability 

A web portal is available at http://nrnb.org/music with links to all major resources used for this 

study. These include the MuSIC systems map; the IF (HPA) and AP-MS data (BioPlex 2.0) on 

which the map is based; and data for the AP-MS pulldown experiments performed as follow-up. 

The follow-up AP-MS data have also been included as part of the larger compendium of protein 

interactions to be included in the next version of the BioPlex resource (BioPlex 3.0, manuscript in 

review). 
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Code Availability 

Links to code for performing feature embedding and multi-scale community detection are 

available at http://nrnb.org/music. 
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FIGURES 

 

Fig. 1 | Fusing protein distances from immunofluorescence and affinity purification. a, 

Workflow. b, c, Protein pairs ranked by similarity in AP-MS data enrich for the most similar 

protein pairs in IF data (b), and vice versa (c). d, Calibrating size of subcellular components against 

the number of proteins assigned to the corresponding GO terms across four logs of physical scale. 

e, Performance of data-driven model in recovering protein-protein distances estimated using GO 

(red, Pearson r). Error bars show standard deviation in cross validation. Equivalent calculation for 

random feature sets (gray). ****, p < 0.0001. 

 

 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 22, 2020. ; https://doi.org/10.1101/2020.06.21.163709doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.21.163709


30 

 

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted June 22, 2020. ; https://doi.org/10.1101/2020.06.21.163709doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.21.163709


31 

Fig. 2 | The Multi-scale Integrated Cell. a, MuSIC hierarchy, with nodes representing systems 

and arrows indicating containment of one system by another. Pie chart shows number of known 

(gold) or putative novel (purple) systems. b, Position of spliceosomal snRNP complex family. c, 

Immunostained spliceosomal snRNP complex proteins (green) or cytoskeleton (red). d, 

Corresponding IF protein-protein distances shown as z-scores (red), calibrated to all distances in 

IF data (gray). Results also shown as a network, with links for z ≤ −2, intensity showing magnitude 

of z. e, MS1 features identified during LC-MS analysis of a selected pull-down. Features 

corresponding to SNRNP70 (bait, cyan) and SNRPC (prey, yellow) are highlighted. f, Histogram 

and network as in (d), showing AP-MS rather than IF data. g, Integrated distances learned by 

MuSIC for spliceosomal snRNP complex proteins. h, Robustness analysis showing percent 

recovery of system when perturbing the input data; results accumulated over 300 resamplings 

(Methods). ****, p < 0.0001. 
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Fig. 3 | Different data, different scales of information. a-c, MuSIC hierarchy colored with 

system robustness using IF only (a), AP-MS only (b), or integrated data (full MuSIC, c). d, 

Number of systems for which the highest robustness was obtained with IF, AP-MS, or both data 

types (root system excluded). e, Distribution of protein-protein distances learned using only IF 

(red), only AP-MS (blue), or integrated analysis (purple). f, Cumulative fraction of BioPlex protein 

interactions within MuSIC systems (red) versus random protein pairs (gray, 1000 randomizations). 

g, Distribution of AP-MS raw z-scores for protein pairs not labeled as interacting by BioPlex. P-

values calculated against general systems ≥100 proteins. ****: p < 0.0001. 
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Fig. 4 | Validation of MuSIC systems using new AP-MS pull-downs. a, MuSIC hierarchy with 

system color showing enrichment for new AP-MS interactions at indicated false discovery rate 

(FDR, blue gradient, Methods). Orange boxes indicate systems highlighted in text. b, IF images 

showing similar nucleolar signals among proteins in the pre-rRNA processing complex 1. c, d, 

Corresponding distributions of protein-protein distance z-scores for IF (c, red) or AP-MS (d, blue), 

calibrated to all such distances, respectively (gray). e, Spring embedding of proteins in parent 

systems (grey box) of pre-rRNA processing complex 1 (purple triangle) based on pairwise 

distances learned by MuSIC. Proteins colored according to known functions. f, Validated physical 

interactions in pre-rRNA processing complex 1. g-k, Similar analyses for mito-cyto ribosomal 

cluster. l-o, Similar analyses for chromatin regulation complex 1. Image colors represent 

immunostained protein (green), cytoskeleton (red), or nucleus (blue). ****, p < 0.0001. 
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EXTENDED DATA 

 

 

Extended Data Fig. 1 | Antibody count and quality. a, Histogram showing the distribution in 

number of antibodies per protein over the proteins included in this study. b, Histogram showing 

the distribution in antibody quality scores over the antibodies used in this study. c, IF images for 

three pairs of antibodies targeting the same protein, respectively. Colors represent immunostained 

protein (green), cytoskeleton (red), or nucleus (blue). The images show high reproducibility even 

when different antibodies for the same target protein are used. 
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Extended Data Fig. 2 | Non-interacting protein pairs nonetheless assigned high similarity in 

the AP-MS embedding. The node2vec network embedding20 can determine that two proteins have 

high similarity even if these proteins have not yet been recorded to have direct physical interaction. 

a, Network showing all proteins that physically interact with EIF3D and EIF3B (red) in BioPlex 

2.0. EIF3D and EIF3B do not physically interact, but the cosine similarity of their embedded 

node2vec features, which consider the first interaction neighborhood (shown) and beyond (not 

shown), is 0.95. The maximum cosine similarity is 1. b, Network showing all proteins that 

physically interact with SNRPC and SNRPB2 (red) in BioPlex 2.0. SNRPC and SNRPB2 do not 

physically interact, but the cosine similarity of their embedded features is 0.93. In many cases 

where two proteins have high node2vec similarity, but do not directly interact, we found that 

neither protein had yet been tagged as bait for an affinity purification experiment. As the direct 

interaction has not yet been interrogated, the node2vec embedding serves to fill gaps in existing 

data. None of the proteins highlighted in red were tagged as bait proteins in BioPlex 2.0. 
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Extended Data Fig. 3 | Selection of parameters for community detection. a, CliXO community 

detection has several parameters (breadth, x-axis; depth, y-axis; minimum modularity, red circle 

backslash) that affect the sensitivity with which communities are identified and thus the size of the 

hierarchy. b, c, Dotplots in which each dot is a hierarchy generated with a particular set of 

parameters. The selection for MuSIC is highlighted in red. This selection was among several that 

were optimal, based on enrichment for protein-protein interactions in Human Cell Map (b) and co-

essentialities from DepMap (c). Examples of other parameters are shown in blue. 
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Extended Data Fig. 4 | Cumulative fraction of new AP-MS interactions in MuSIC. Related 

to Fig. 3f.  
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Extended Data Fig. 5 | Classification of newly identified physical interactions for proteins in 

the pre-rRNA processing complex 1. The specific recovery of interactions within that same 

system is shown (dark blue bar), in comparison to interactions with other proteins organized under 

the same parent systems in the MuSIC hierarchy (ribosome, ribonucleoprotein biogenesis complex 

family, light blue bar) or with proteins organized elsewhere in MuSIC (gray bar). 
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Extended Data Fig. 6 | Examples of proteins with strong AP-MS protein interactions that 

have very different IF localization patterns. a, PPP6R1 and NPAS1. b, GEMIN7 and 

SNRNP70. Colors represent immunostained protein (green) and cytoskeleton (red). 
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Extended Data Fig. 7 | Comparison of different data embedding methods. a, Ability of 

different image embedding methods (colored curves) to generate image-image similarities (cosine 

similarity) in agreement with the set of all 281 protein-protein interactions in BioPlex. b, Ability 

of different AP-MS embedding methods to generate protein-protein similarities (cosine similarity) 

in agreement with protein pairwise similarities computed from HPA images (considering the top 

281 protein pairs by image cosine similarity). Embedding methods are described in Methods. 
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