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Access to adequate housing is a fundamental human right, essential 
to human security, nutrition and health, and a core objective of the 
United Nations Sustainable Development Goals1,2. Globally, the 
housing need is most acute in Africa, where the population will more 
than double by 2050. However, existing data on housing quality 
across Africa are limited primarily to urban areas and are mostly 
recorded at the national level. Here we quantify changes in housing 
in sub-Saharan Africa from 2000 to 2015 by combining national 
survey data within a geostatistical framework. We show a marked 
transformation of housing in urban and rural sub-Saharan Africa 
between 2000 and 2015, with the prevalence of improved housing 
(with improved water and sanitation, sufficient living area and 
durable construction) doubling from 11% (95% confidence interval, 
10–12%) to 23% (21–25%). However, 53 (50–57) million urban 
Africans (47% (44–50%) of the urban population analysed) were 
living in unimproved housing in 2015. We provide high-resolution, 
standardized estimates of housing conditions across sub-Saharan 
Africa. Our maps provide a baseline for measuring change and a 
mechanism to guide interventions during the era of the Sustainable 
Development Goals.

Access to adequate housing and shelter is a fundamental human 
right, considered central to human wellbeing through the provision 
of facilities that are essential to security, comfort, health and nutrition. 
However, major inequalities persist, and a third of the world’s urban 
population lived in slum conditions in 20141. In response, Sustainable 
Development Goal 11 aims for universal access to adequate, safe and 
affordable housing, and to upgrade slums by 20302. This goal builds 
on Millennium Development Goal 7, which aimed for a substantial 
improvement in the lives of 100 million people who lived in slums by 
20203.

The opportunity and need for better housing is particularly acute 
in Africa, with its rapidly shifting economic and demographic profile. 
The continent’s population is the fastest growing in the world and is 

predicted to increase from 1.2 billion in 2015 to 2.5 billion by 2050 (an 
addition equivalent to the current population of India)4, which will 
necessitate hundreds of millions of new homes. Alongside increased 
housing demand, the existing housing stock is steadily transforming—
for example, thatch roofs are being replaced by corrugated metal roofs, 
and mud walls by concrete and brick walls5. These changes present 
a powerful opportunity to improve human wellbeing, and they also 
demonstrate the urgent need for investment in housing infrastructure 
to ensure that vulnerable populations are not left behind6.

Reliable measurements of house types in Africa are critical for 
tracking changes and targeting interventions, but existing data on 
African housing are limited7. The primary housing indicator for the 
United Nations Millennium Development Goals and Sustainable 
Development Goals is the prevalence of urban slum housing, esti-
mates of which are limited to urban areas only, derived from basic 
extrapolations from national survey data, restricted to specific years 
and not standardized across the continent at any subnational scale8,9. 
Other detailed records of African housing conditions are focused on 
housing costs and finance10. Here we conduct a standardized anal-
ysis using a geospatial framework to quantify the changing profile 
of housing in urban and rural sub-Saharan Africa during the era of 
the Millennium Development Goals. We show that African housing 
underwent a marked change between 2000 and 2015, but unimproved 
housing persists.

To quantify changes in housing across sub-Saharan Africa, we lev-
eraged 62 georeferenced national household surveys, representing 
661,945 unique households in 31 countries (Extended Data Fig. 1). 
We designed a geostatistical regression model to map house construc-
tion materials and overall house type at 5 × 5-km2 resolution across 
sub-Saharan Africa. We categorized house construction materials into 
a binary variable that compared houses built from finished materials 
(for example, parquet, vinyl, tiled, cement or carpet flooring) to those 
built from natural or unfinished materials (for example, earth, sand, 
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Table 1 | Changes in house types across sub-Saharan Africa from 2000 to 2015

Population Number of people
Prevalence (%) of people living in houses built with 

finished materials (95% CI)
Prevalence (%) of people living in improved housing 

(95% CI)

2000 2015 2000 2015 2000 2015

All 562,367,947 842,438,941 31.6 (28.8–33.4) 51.0 (48.5–53.6) 10.9 (9.9–12.0) 23.2 (21.4–24.8)

Urban 61,501,994 113,530,870 80.3 (76.8–82.5) 91.5 (90.6–92.3) 32.3 (29.2–35.4) 53.2 (50.1–56.1)

Rural 500,865,953 728,908,071 25.6 (22.8–27.5) 44.7 (41.9–47.6) 8.2 (7.5–9.1) 18.4 (16.7–19.8)

Predictions represent all countries in sub-Saharan Africa excluding South Africa, Comoros and desert areas. Houses were considered to be built with finished materials if at least two out of three parts 
of the structure (walls, roof and floor) were made of finished materials rather than natural or unfinished materials (Supplementary Text). Houses were considered to be ‘improved’ if they had all of the 
following characteristics: improved water supply, improved sanitation, three or fewer people per bedroom and house made of finished materials (Supplementary Information). CI, confidence interval.
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dung or palm flooring) (Extended Data Table 1). We based our cate-
gorization of house type on the Millennium Development Goal and 
Sustainable Development Goal definition of slum housing. We consid-
ered ‘unimproved’ housing to have at least one of four characteristics: 
(1) unimproved water supply; (2) unimproved sanitation; (3) more than 
three people per bedroom; and (4) house made of natural or unfinished 
materials (Supplementary Methods). We considered houses that had 
none of these characteristics as ‘improved’.

The independent variables (covariates) used in our model were  
aridity11, urbanicity12, accessibility13, travel friction13, night-time 
lights14 and irrigation15, which are commonly used in Africa-focused 
geostatistical models16; we also included space and time to account for 
autocorrelated residual effects. Our geostatistical model utilizes  
the random Fourier feature approach17 in which a nonlinear, interact-
ing function is defined through high-dimensional feature spaces com-
puted in explicit form in a feature map. The feature map that 
characterizes this relationship φ →X H( : )  induces a measure  
of similarity—the kernel function R× →X Xk( : ) —such that 

φ φ= Hk x x x x( , ) ( ( ) , ( ))i j i j  . Expanding on a previous study17, our fea-
ture map takes the Fourier spectral form ω ω ω| =z x x x( ) [cos( )sin( )]T T T

such that θ ω ω| ≈ ∑ | |σ
=k x x z x z x( , ) ( ) ( )i j N r

M
i r

T
j r1

2

feat
   , with spectral meas-

ure ωr. Rather than assuming a specific spectral distribution ωr, we 
obtain this Lebesgue measure directly from the data18. Given a response 
variable (for example, wall material), we used a beta-binomial likeli-
hood function p([y+, ytotal] | x, ω, φ) = BetaBinomial(z(x|ω), φ) that 
enabled overdispersion in the data while simultaneously accounting 
for sample size variation (from ytotalytotal). We performed regularization 
using dropout19. Approximate posterior confidence intervals were esti-
mated using the weighted likelihood bootstrap20. Fitting was performed 
using ADAM stochastic gradient descent21. Cross-validation was per-
formed to check for model fit and to assess the predictive accuracy of 
the model (Supplementary Text, Extended Data Figs. 2, 9). Population-
weighted prevalences of people living in different house types in urban 
and rural areas were calculated using yearly population data from the 
WorldPop project22 and a static urban–rural definition from the Global 
Urban Footprint project23.

Our analysis revealed a marked transformation of housing in sub- 
Saharan Africa from 2000 to 2015. Across all sub-Saharan countries 
(excluding South Africa, Comoros and desert areas), the prevalence 
of houses that were built with finished materials increased from 32% 

(29–33%) in 2000 to 51% (49–54%) in 2015 (Table 1 and Figs. 1, 2). Our 
analysis suggests a widespread pattern of incremental modifications 
to the roof, then the walls and finally to the floor of houses (Extended 
Data Fig. 3). Overall, the predicted prevalence of improved housing 
(with improved water and sanitation, sufficient living area and durable 
construction) doubled from 11% (10–12%) in 2000 to 23% (21–25%) 
in 2015 (Table 1), with prevalences ranging from 5% (5–6%) in rural 
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Fig. 1 | Changes in housing in sub-Saharan Africa between 2000 and 
2015. a, Prevalence of improved housing across sub-Saharan Africa in 
2000 predicted at 5 × 5-km2 resolution. b, Prevalence of improved housing 
in 2015 predicted at 5 × 5-km2 resolution. c, Absolute difference in the 
prevalence of improved housing in 2000 and 2015. d, Prevalence of houses 
built with finished materials in 2000 predicted at 5 × 5-km2 resolution. 
e, Prevalence of houses built with finished materials in 2015 predicted 
at 5 × 5-km2 resolution. f, Absolute difference in prevalence of houses 
built with finished materials in 2000 and 2015. g, Increase in prevalence 
of improved housing (red line; shading, 95% confidence intervals) and 

housing built with finished materials (blue line) from 2000 to 2015. Results 
are derived from a geospatial model fitted to 62 surveys that represent 
661,945 households (house construction materials) and 59 surveys that 
represent 629,298 households (house type). Houses were classified as 
improved if they had all of the following characteristics: improved water 
supply, improved sanitation, three or fewer people per bedroom and house 
made of finished materials (Extended Data Table 1 and Supplementary 
Methods). Maps were produced using the raster package (version 2.6-7) in 
R. The images were plotted using the rasterVis package (version 3.4).
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Fig. 2 | National-level changes in housing between 2000 and 2015.  
a, b, Plots show predicted population-weighted mean prevalence of houses 
built with finished materials (a) and improved housing (b). Bars represent 
each country in 2000 (purple) and 2015 (purple and green combined). Houses 
were classified as improved if they had all of the following characteristics: 
improved water supply, improved sanitation, three or fewer people per 
bedroom and house made of finished materials (Extended Data Table 1 and 
Supplementary Methods). CAR, Central African Republic; Congo, Republic 
of the Congo; DRC, Democratic Republic of the Congo.
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Ethiopia to 76% (71–80%) in urban Zimbabwe in 2015 (Supplementary 
Table  1). Between 2000 and 2015, 134 (118–147) million  
Africans in the analysed countries gained access to improved housing. 
However, unacceptable inequalities persist, with 53 (50–57) million 
urban inhabitants (47% (44–50%) of the total urban population of 
sub-Saharan Africa analysed) and 595 (585–607) million rural inhab-
itants (82% (80–83%) of the rural population) living in unimproved 
housing in 2015.

To examine the links between housing and socioeconomic factors, 
we quantified the association between house type and household char-
acteristics in 51 national surveys, representing 588,892 households 
(Supplementary Table 2). For each survey, controlling for cluster-level 
variation, we jointly estimated the odds of improved housing in relation 
to education level of the household head, household wealth and age 
of the household head. We found that the odds of improved housing 
were 80% higher in more educated households (adjusted odds ratio, 
1.80; 95% confidence interval, 1.68–1.93; P < 0.001; Fig. 3a), more 
than double in the wealthiest households (adjusted odds ratio, 2.53; 
95% confidence interval, 2.28–2.82; P < 0.001; Fig. 3b) and 31% higher 
with increased age of the household head (adjusted odds ratio, 1.31; 
95% confidence interval, 1.24–1.39; Extended Data Fig. 4). We also 
observed a higher prevalence of improved housing in urban survey 
clusters than rural survey clusters (Extended Data Fig. 5). Across all 
surveys, a 10% increase in the prevalence of urban clusters (includ-
ing small rural towns that have grown from villages and account for 

much of sub-Saharan Africa’s urban growth) was associated with a 7.5% 
increase in improved housing (Extended Data Fig. 6).

Here we quantified housing conditions across urban and rural 
sub-Saharan Africa during the era of the Millenium Development 
Goals, and provided a detailed baseline measurement for the 
Sustainable Development Goals. By applying a geospatial approach 
to empirical observations, we have built considerably on existing 
measurements of African housing, which are limited to urban areas, 
not standardized at any subnational scale and are derived from more  
simplistic extrapolations from survey data. We show that the preva-
lence of improved housing (defined as housing with improved water 
and sanitation, sufficient living area and durable construction) doubled 
during 2000–2015, but that an unacceptably large proportion of people 
still live in unimproved housing in urban areas.

Our findings are consistent with continent-wide changes to African 
housing being driven by economic growth24. Increasing household 
spending is likely to have led people to invest more in their homes 
and, indeed, we found a clear increase in the prevalence of houses built 
with finished materials since 2000. Furthermore, house types changed 
the most in countries with the highest baseline prevalence of improved 
housing (Extended Data Fig. 7) and house type was clearly associated 
at the household level with education, wealth and age of the household 
head. In urban areas, the changes may also have been driven by a lack 
of traditional materials and the commodification of housing. In the 
future, continued population and urban growth in sub-Saharan Africa 
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Fig. 3 | Association between house type, education and household 
wealth. a, Association between house type and education level. The pooled 
increase in odds of living in an improved house when the household head 
reported having completed more than primary education, compared to 
having primary education or less, is shown by the diamond and dashed 
red vertical line. The solid blue vertical line represents the null value (no 
difference between groups). Odds ratios (OR) are adjusted for wealth 
index, age of the household head and geographical cluster. Error bars 

show 95% confidence intervals. b, Association between house type and 
household wealth. The pooled increase in odds of living in an improved 
house among households in the upper 75% wealth quartile compared 
to all other households is shown. Odds ratios are adjusted for education 
level, age of the household head and geographical cluster. Data are from 
48 Demographic and Health Surveys, two Malaria Indicator Surveys 
and one AIDS Indicator Survey, conducted between 1996 and 2015 
(Supplementary Table 2).
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may help to sustain housing demand and incremental housing changes. 
In turn, ‘healthy urbanization’ has been recognized as important for 
maintaining economic productivity and growth24.

Our study has important implications for international goals, which 
have sought to address housing inequalities by achieving a substantial 
improvement in the lives of 100 million people living in slums by 20203 
and universal access to adequate, safe and affordable housing by 20302. 
We show a considerable reduction in the prevalence of urban unim-
proved housing across sub-Saharan Africa from 68% (65–71%) in 2000 
to 47% (44–50%) in 2015, similar to the equivalent estimates from the 
United Nations of 65% in 2000 and 55% in 201425. However, nearly 
half of Africa’s urban population still lives in unimproved conditions, 
which is partly explained by widespread unimproved sanitation—the 
most common housing deprivation in 75% (52 out of 69) of surveys 
analysed (Extended Data Fig. 8). These findings highlight the urgent 
need for governments to improve water and sanitation infrastructure 
as households continue to spend individually on their homes.

Housing is a central pillar of human security and wellbeing and 
is increasingly vital in the context of Africa’s urbanization and pop-
ulation growth. For example, house design is integral to Sustainable 
Development Goal 3 through a myriad of associated health outcomes,  
including mental health, respiratory disease, soil-transmitted  
helminths, diarrhoeal disease, leishmaniasis and malaria26–28. As towns 
and cities in sub-Saharan Africa grow, rapid development of luxury 
housing in major urban centres is occurring alongside the expansion of 
informal settlements that lack basic infrastructure. In addition, formal 
housing investment typically lags behind urbanization and the conti-
nent’s major urban growth is concentrated in smaller urban centres 
that have limited capacity to organize construction6. Addressing the 
housing needs of a growing population is key for sustainable urban 
development and the health and wellbeing of millions of Africans29, 
and will facilitate faster attainment of the Sustainable Development 
Goals. Our maps provide a critical mechanism to guide intervention 
and the measurement of change.

Online content
Any methods, additional references, Nature Research reporting summaries, source 
data, statements of data availability and associated accession codes are available at 
https://doi.org/10.1038/s41586-019-1050-5.
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METhOdS
Data reporting. No statistical methods were used to predetermine sample size. 
The experiments were not randomized and the investigators were not blinded to 
allocation during experiments and outcome assessment.
Data sources. Data were sourced from Demographic and Health Surveys (DHS), 
Malaria Indicator Surveys (MIS) and AIDS Indicator Surveys (AIS), which are 
cross-sectional surveys designed to collect nationally representative health and 
sociodemographic data, typically at 3–5-year intervals30,31. Surveys are adminis-
tered using a stratified two-stage cluster design in which primary sampling units 
are randomly selected from census data and households are randomly selected 
within primary sampling units from an updated enumeration list. Raw DHS 
datasets were downloaded from www.dhsprogram.com and data were directly 
categorized into the household-level variables included in the analysis, using the 
definitions below.
Definition of house type. We explored two aspects of housing: (1) house construc-
tion materials; and (2) overall house type (Extended Data Table 1). DHS and MIS 
record the main materials used for the roof, walls and/or floor32 and categorize 
these as ‘natural’, ‘rudimentary’ or ‘finished’ (for example, finished floor materi-
als include parquet, vinyl, ceramic tiles, cement and carpet, whereas natural or 
rudimentary floor materials include earth, sand, dung, wood planks, palm and 
bamboo33). We classified houses as ‘built from finished materials’ if at least two 
out of three of the materials for the walls, roof and floor were finished and as 
‘built from natural or unfinished materials’ if this criterion was not met. We based 
our categorization of house type on the definition of slum housing3 of the United 
Nations Millennium Development Goals and Sustainable Development Goals. 
‘Unimproved’ houses were considered to have at least one of four characteristics: 
(1) unimproved water supply (as defined by the World Health Organization Joint 
Monitoring Programme (WHO JMP)34 (Supplementary Table 3)); (2) unimproved 
sanitation (as defined by WHO JMP34); (3) more than three people per bedroom; 
and (4) house made of natural or unfinished material. Houses that had none of 
these characteristics were considered as ‘improved’. Following the United Nations 
protocol, we excluded a fifth characteristic of unimproved housing from our defi-
nition (insecurity of tenure) due to the lack of internationally comparable data3.
Predicting changes in housing from 2000 to 2015. We included in the analysis 
all georeferenced surveys (that is, latitude and longitude were available for each 
geographical cluster) with data on water supply, sanitation facilities, number of 
household members, number of bedrooms and main material of the roof, walls 
and floor (Extended Data Fig. 1 and Supplementary Table 4). We designed a geo-
statistical regression model to map (1) main material of the roof, walls and floor; 
and (2) overall house type at 5 × 5-km2 resolution across sub-Saharan Africa. The 
independent variables (covariates) used in our model were aridity index11, degree 
of urbanicity12, accessibility to large cities13, travel friction surface13, night-time 
lights14 and irrigation15. These independent variables were chosen as close proxies 
for factors that affect house type, such as poverty, development, urbanization, 
transport access and population density. We also included spatial coordinates and 
time, to account for spatio-temporally autocorrelated residual effects. Our geosta-
tistical model utilizes the random Fourier feature approach17 for which a nonlinear, 
interacting function is defined through high-dimensional feature spaces computed 
in explicit form through a feature map. This approach approximates a kernel  
function through an explicit rather than implicit map. The feature map associates 
a kernel function R× →X Xk : , which is defined on an input domain 

R∈ . . ∈X x x{ , , }d
d

1  such that φ φ= Hk x x x x( , ) ( ( ), ( ))i j i j  where φ →X H:  is the 
feature map that associates kernel k with an embedding of the input space  
into a reproducing kernel Hilbert space H. On the basis of a previous  
study17, our feature map takes the form ω ω ω| =z x x x( ) [cos( )sin( )]T T T  such that 

θ ω ω| ≈ ∑ | |σ
=k x x z x z x( , ) ( ) ( )i j N i r
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 with a given spectral measure ωr. Rather 

than assuming a spectral distribution in which ωr is associated with a given kernel 
(for example, Student’s t for the Matérn kernel), we obtained this distribution 
(empirical Lebesgue measure) directly from the data18. Given a response variable 
(for example, wall type), we used a beta-binomial likelihood function 

ω φ ω φ| = |p y x z x( , , ) BetaBinomial( ( ), )  to perform inference, allowing for over-
dispersion and sample size effects in the data. We performed regularization using 
dropout19. Dropout was chosen over standard ℓ ℓ,1 2 penalties owing to ease of 
implementation, parameter tuning and superior cross-validation performance. 
We included length scale parameters for each covariate dimension by shrinking 
or expanding the empirical measure ω. These unconstrained length scale param-
eters were passed through a reticulated linear function to ensure positivity and 
sparse covariate selection (known as automatic relevance determination). Fitting 
was performed using ADAM stochastic gradient descent21 with GPU TensorFlow. 
Validation was carried out to check for appropriate model fit and to assess the 
predictive accuracy of the model. The predictive performance of the model at the 
pixel level and administrative division level 1 was assessed via out-of-sample  
validation. The dropout hyperparameter was selected by random search.  

The robustness of this hyperparameter was double-checked by implementing auto-
matic selection of the hyperparameter through concrete dropout35. Confidence 
intervals and uncertainty were estimated using the weighted likelihood bootstrap, 
a method that generates samples from an approximate Bayesian posterior of a 
parametric model20. In brief, this approach involved repeated fitting of the model 
while weighting the likelihood with uniform Dirichlet weights—that is, ω|p y x( , ) w 
where …~w nDirichlet(1, 1, , ). We performed this procedure 100 times to obtain 
100 realizations of the model and subsequent surfaces. Population-weighted prev-
alences of people living in different house types in urban and rural areas were 
calculated using yearly population data from the WorldPop project22 and using a 
static urban-rural definition from the Global Urban Footprint project23.
Model performance. The predictive performance of both the improved housing 
and finished materials models at pixel level was assessed through out-of-sample 
validation. In this validation scheme, the full dataset was randomly partitioned 
such that 75% of the dataset was used to fit the model and the remaining 25% was 
used to test the model predictive performance. This scheme was repeated 10 times 
and the scores were averaged. The mean squared error36 and the correlation coef-
ficient were used to evaluate model performance. We evaluated the model at both 
the pixel level and the aggregate survey level. The latter was included to give an 
indication of how well the model predicts the survey as a whole. The predictive 
scores (Supplementary Table 6 and Extended Data Fig. 9) indicate excellent model 
performance, comparable to those from widely used, established models16. In addi-
tion, as pixel-level estimates we performed additional cross-validation analyses in 
which entire administrative divisions of data were held out. This allowed us to com-
pare our predictions with those from surveys at a resolution at which the surveys 
are reliable. The results from this validation support the conclusions from our pri-
mary analysis (Supplementary Table 7). Confidence intervals were evaluated by the 
widely used continuous ranked probability score, a score that generalizes the mean 
absolute error to probability distributions36. The continuous ranked probability 
scores show suitable credible intervals with most scores clustering towards zero.
Household-level association between house type and socioeconomic factors. 
Binary variables for education, wealth and age of the household head were created 
at the household level. National surveys record the highest level of education of 
the household head and we compared more than primary education with primary 
education or less. DHS and MIS household wealth index scores are developed 
using principal component analyses that typically include variables that describe 
durable asset ownership, access to utilities and infrastructure and house con-
struction materials37. To enable estimation of the association between house type 
and wealth, we constructed a new asset-based wealth index for each survey that 
excluded variables related to house construction. For each household survey, we 
applied inclusion criteria27 of (1) fewer than 10% missing values; and (2) frequency 
values between 5% and 95% for the following set of assets: (a) car; (b) motorboat; 
(c) scooter; (d) cart; (e) bicycle; (f) television; (g) refrigerator; (h) radio; (i) watch; 
(j) mobile telephone; (k) landline telephone; and (l) electrification of the household. 
We tested several dimensionality reduction algorithms, with the goal of condensing 
these twelve assets into a single dimensional index. We tested ISOMAP38, kernel 
principal component analysis (PCA)39, t-distributed stochastic neighbour embed-
ding40 and linear PCA41. We found minimal differences between algorithms and 
therefore opted for linear PCA. Using the first principal component, we created a 
binary wealth variable comparing households belonging to the upper 75th wealth 
quartile with all other households.

We examined the association between house type and education level of the 
household head, household wealth and age of the household head in 51 cross- 
sectional household surveys, representing 588,892 households. For each  
survey, we jointly estimated the odds of improved housing in relation to whether 
the household head completed at least primary education, whether a household 
belonged to the upper 75% wealth quartile and whether the household head was 
aged over 55 years (which is approximately the upper 75% age quartile). We per-
formed conditional logistic regression to allow these associations to be estimated 
within geographical cluster in order to eliminate confounding due to inter-cluster 
variation in urbanicity, regional wealth, climate and other survey design factors. 
Individual survey odds ratios were combined to determine a summary odds ratio 
for all surveys using random effects meta-analysis. Individual and summary odds 
ratios were displayed in forest plots.
Reporting summary. Further information on research design is available in 
the Nature Research Reporting Summary linked to this paper.
Code availability. Analysis code is available via codeshare: https://codeshare.
io/2pm4Px.

Data availability
All data are available to download free of charge by registered users from the DHS 
Program. Registration is available at https://dhsprogram.com/data/new-user- 
registration.cfm and data may be downloaded at https://dhsprogram.com/data/
dataset_admin/download-manager.cfm. Full instructions to access the datasets 
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are available at https://dhsprogram.com/data/Using-DataSets-for-Analysis.cfm. 
The housing maps are available for visualization and/or download at https:// 
map.ox.ac.uk/research-project/housing_in_africa/.
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Extended Data Fig. 1 | Availability of national survey data for the 
period 1990–2016 for the variables that are required to determine 
house construction materials and house type in sub-Saharan Africa. 

a, Availability of surveys for the determination of house construction 
materials. b, Availability of surveys for the determination of house type. 
Maps were produced using ArcGIS.
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Extended Data Fig. 2 | The continuous ranked probability scores for 
the models of house type and house construction material. Continuous 
ranked probability scores (CRPS) are shown for the house type model 
(left; mean = 0.11) and the house construction material model (right; 

mean = 0.08). Both distributions indicate well-calibrated confidence 
intervals with clustering towards zero; that is, a low error with regards to 
the distribution of the prediction.
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Extended Data Fig. 3 | Prevalence of main roof, wall and floor material 
of houses in sub-Saharan Africa in 2000 and 2015. a, Prevalence of 
houses built with finished (versus natural or unfinished) roof material in 
2000 predicted at 5 × 5-km2 resolution. b, Prevalence of houses built with 
finished (versus natural or unfinished) roof material in 2015 predicted at 
5 × 5-km2 resolution. c, Prevalence of houses built with finished (versus 
natural or unfinished) wall material in 2000 predicted at 5 × 5-km2 
resolution. d, Prevalence of houses built with finished (versus natural or 
unfinished) wall material in 2015 predicted at 5 × 5-km2 resolution.  

e, Prevalence of houses built with finished (versus natural or unfinished) 
floor material in 2000 predicted at 5 × 5-km2 resolution. f, Prevalence of 
houses built with finished (versus natural or unfinished) floor material 
in 2015 predicted at 5 × 5-km2 resolution. Results are derived from a 
geospatial model fitted to 66 surveys for roof material, 96 surveys for floor 
material and 62 surveys for wall material. Maps were produced using the 
raster package (v.2.6-7) in R. The images were plotted using the rasterVis 
package (v.3.4).
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Extended Data Fig. 4 | Association between house type and age of the 
household head. The pooled increase in odds of living in an improved 
house when the age of the household head is over 55 years, compared to 
55 years or less, is shown to the right of the vertical line representing the 
null value (no difference between groups). Odds ratios are adjusted for 

wealth index, education level of the household head and geographical 
cluster. Error bars show 95% confidence intervals. Data are from 48 DHS, 
2 MIS and 1 AIS conducted between 1996 and 2015 (Supplementary 
Table 2).
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Extended Data Fig. 5 | Prevalence of improved housing in rural and urban survey clusters. Data are from 59 national household surveys from 
31 countries in sub-Saharan Africa conducted between 1994 and 2015.
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Extended Data Fig. 6 | Prevalence of house types in relation to survey-level prevalence of urban clusters. Left, house construction materials (adjusted 
R2 = 0.46, P < 0.001). Right, house type (adjusted R2 = 0.35, P < 0.001). Points represent each national survey included in the analysis.
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Extended Data Fig. 7 | Changes in housing in sub-Saharan Africa from 2000 to 2015 relative to the 2000 baseline. Points represent countries 
stratified by urban (blue) and rural (red) areas.
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Extended Data Fig. 8 | Number of households per survey that lack the 
characteristics of improved houses. Characteristics shown are improved 
water source (blue), improved sanitation facilities (red), sufficient living 
area (purple) and finished house construction materials (brown). Data are 

from 1 AIS, 15 MIS and 53 DHS that had data on all four of these variables, 
conducted between 1993 and 2015. Out of a total of 69 surveys, households 
most frequently lacked improved sanitation facilities (52 surveys; 75%) 
and finished materials (16 surveys; 23%).
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Extended Data Fig. 9 | Observed versus predicted prevalence of improved housing aggregated to district level (administrative division 1 level).  
Fit predictions for both observed and predicted prevalence were aggregated to the district level and plotted.
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Extended data Table 1 | definition of house type variables

*Main material of the wall, roof and floor are recorded in national surveys (for example, DHS) and pre-categorized by the local investigators as ‘natural’, ‘rudimentary’ or ‘finished’ (Supplementary Text 
and Supplementary Table 5).
†Water supply and sanitation facilities were classified using World Health Organization Joint Monitoring Programme criteria (Supplementary Table 3).
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Behavioural & social sciences study design
All studies must disclose on these points even when the disclosure is negative.

Study description A geostatistical analysis was done to quantify changes in housing in sub-Saharan Africa from 2000 to 2015. Further analyses were done to 
explore the relationship between housing and socioeconomic factors.

Research sample Data from the Demographic and Health Survey program were analyzed. We included all available surveys from https://dhsprogram.com/ 
with data on housing variables and that were georeferenced, a total of 62 national household surveys representing 661,945 unique 
households in 31 countries.

Sampling strategy All available surveys and data points were included in the analysis.

Data collection We performed a secondary analysis of survey data.

Timing The data analysed were from a series of national household surveys conducted over several decades.

Data exclusions No data were excluded from the analysis.

Non-participation n/a

Randomization n/a

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Clinical data

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging
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