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The risk of developing common complex diseases, such as type 2 
diabetes and obesity, involves multiple genetic and environmental  
factors. Genome-wide association studies (GWAS) have been successful 
in identifying common genetic variants associated with these complex 
human diseases. A suggested approach for finding additional genetic 
components is to focus on low-frequency and rare variants1. In parallel, 
approaches to disentangle the underlying molecular mechanisms for 
identified disease loci are also needed. As the majority of the common  
genetic variants that are associated with complex traits map to non-
coding regions and may thus alter gene regulation, the use of gene 

expression data integrated with sequence variation—eQTL studies— 
is a commonly applied approach using various cell2–5 and tissue 
samples6–8. More recently, we and others have been able to collect 
multiple cells and/or tissues from the same individuals9–12, showing 
the degree of tissue dependency of cis-regulatory effects11,13. Tissue 
dependency seems to be an important feature of disease susceptibility  
variants that regulate gene expression11,14, promoting the use of mul-
tiple disease-targeted cell types in future large-scale eQTL studies. 
However, despite success in mapping common cis-regulatory vari-
ants in these studies8,15,16, trans variants have been more difficult to 
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map, mainly due to small effect sizes, emphasizing the need for well- 
powered studies and thorough replication efforts in multiple tissues.

To this end, we designed the MuTHER project (Multiple Tissue 
Human Expression Resource) to develop a major resource of detailed 
genomic and transcriptome data from three disease-relevant tissues 
(adipose, lymphoblastoid cell lines (LCLs) and skin) originating from 
a cohort of 856 deeply phenotyped twins (one-third monozygotic and 
two-thirds dizygotic from the TwinsUK adult registry). The increased 
sample size compared to our pilot study11 allows us to use the classical 
twin design for systematic dissection of genetic (cis and trans) effects on 
gene expression, providing for the first time (i) estimates of additional 
heritable cis effects unexplained by common SNPs (with minor allele 
frequency (MAF) of >5%) identified in standard cis-eQTL analysis and 
(ii) in-depth characterization of the architecture of trans regulation of 
gene expression highlighted by thorough replication efforts in multiple 
independent data sets. In addition, the large-scale multitissue design 
of our study also allows us to provide the most precise estimates to 
date of, not only gene expression heritability, but also the degree of tis-
sue dependency of eQTL function. The relevance of tissue-dependent 
eQTLs in complex trait susceptibility is further highlighted, as we iden-
tify for hundreds of known GWAS SNPs the candidate causal eQTLs, 
with good correlation of the phenotype to the candidate tissue.

RESULTS
Data structure
In total, 856 female twins (154 monozygotic twin pairs, 232 dizygotic 
twin pairs and 84 singletons) aged 38.7–84.6 years were recruited 
from the TwinsUK resource17, and adipose (subcutaneous fat) and 
skin tissue biopsies, as well as peripheral blood samples (for genera-
tion of LCLs), were collected for subsequent genome-wide expres-
sion profiling. The TwinsUK cohort has previously been shown to 
be comparable to population singletons in terms of disease-related 
and lifestyle characteristics18. Cohort characteristics are presented in 
Supplementary Table 1.

Genetic and non-genetic effects on gene expression
We estimated narrow-sense heritability, h2, for each transcript across 
the three tissues in all available twin pairs using a variance compo-
nent model, adjusting for known technical cofactors19. The average 
h2 estimates of expressed transcripts corresponded to h2

adipose = 0.26, 
h2

LCL = 0.21 and h2
skin = 0.16 (Fig. 1 and Supplementary Table 2). 

The cell type heterogeneity expected in skin probably explains the 
lower estimates in that tissue. We tested how heritability of transcripts 
compares across tissues and found that approximately 50% of the top 
5,000 heritable transcripts in each tissue (corresponding to h2

adipose >  
0.33, h2

LCL > 0.27 and h2
skin > 0.22) are in fact heritable across 2 or 

more tissues (Supplementary Fig. 1a), with similar results obtained 
when we restricted analysis to transcripts expressed in all 3 tissues 
(Supplementary Fig. 1b).

Twin studies also allow calculation of the proportion of pheno-
typic variation attributable to familial non-genetic factors, meaning 
the shared common environment. Notably, we found that as much 
as 32% of expressed LCL transcripts had a common environmental 
component that explained over 30% of the total variance, compared 
to 2% and 8% in adipose and skin tissue, respectively (Fig. 1b). This 
larger shared environmental effect in LCLs most likely reflects the 
impact of additional correlated sample handling steps not applicable 
for tissue biopsies, such as blood sampling, cell isolation, Epstein-Barr 
virus (EBV)-mediated transformation and cell culture procedures, as 
the study subjects visited the clinic in pairs.

Large-scale cis eQTL mapping
To map the underlying common, genetic effect of transcript levels, we 
performed global cis eQTL mapping, associating the 23,596 expression 
traits with imputed HapMap 2 genotypes in a linear mixed (polygenic) 
model and then performed a score test taking relatedness into account 
(Supplementary Fig. 2). cis eQTLs were called with a per-tissue false 
discovery rate (FDR) of 1%, which corresponds to P < 5.0 × 10−5 in  
adipose, P < 7.8 × 10−5 in LCLs and P < 3.8 × 10−5 in skin. Across all 
transcripts, we detected an abundance of cis eQTLs per tissue (Nadipose =  
3,529, NLCL = 4,625 and Nskin = 2,796; Supplementary Table 3), with 
14%, 17% and 10% of transcripts with a cis eQTL in adipose, LCL and 
skin tissue, respectively, having more than 1 independent cis eQTL. 
For these transcripts associated with at least one cis variant, the average  
h2 estimates were 0.31, 0.25 and 0.21 in adipose, LCLs and skin, 
respectively. The probability of detecting cis eQTLs of large effect 
size across tissues increased with heritability, as shown by average  
h2 estimates of transcripts associated with a cis variant at P < 5 × 10−8, 
whereas the maximum average h2 seen in adipose tissue was 0.38.

We validated identified cis-regulatory effects by performing repli-
cation studies in independent expression data sets (Supplementary 

Table 4). Using the list of replication P values from the different data 
sets, we first estimated π0, which is the overall proportion of true 
null hypotheses among all tests performed. We could then quantify 
the proportion of significant replicated cis results in each study, π1,  
corresponding to π1 ≡ 1 – π0 (ref. 20) and noted a high replica-
tion rate of cis eQTLs across studies of similar size (π1 = 0.70–0.76)  
(Supplementary Fig. 3).

Most previous efforts to examine tissue dependency of cis-eQTL 
effects have only used a P-value threshold, but this has obvious limita-
tions. Here, we employed several complementary approaches in addi-
tion to the threshold-based approach to address this question. First, 
we assessed tissue dependency by studying shared effects at 1% FDR 
and found substantial tissue independence of cis eQTLs (Table 1).  
For instance, 47% of cis eQTLs identified at 1% FDR in adipose tissue  
were identified in at least one other tissue, and as many as 22% were 
seen across all three tissues at a similar FDR threshold. This degree 
of overlap was further confirmed by estimating the proportion of 
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a bFigure 1 Genetic and non-genetic effect  

of gene expression across multiple tissues.  

(a,b) Estimation of the proportion of variation in 

expressed transcripts in adipose (N = 11,394), 

LCLs (N = 10,631) and skin (N = 11,932)  

that is attributable to genetic (narrow- 

sense heritability, h2) (a) and familial  

non-genetic factors (shared common 

environment, CE) (b). The y axis shows  

the proportion of transcripts at the h2 or  

CE cutoff indicated on the x axis.
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significant results across tissues (π1 = 0.5–0.7; Supplementary Fig. 4).  
As with previous smaller studies9–11,13, tissue-independent cis 
eQTLs had larger effect sizes and were over-represented close to 
transcription start sites (TSSs) compared to tissue-dependent effects 
(Supplementary Fig. 5). In general, cis effects that were located less 
than 200 kb from TSSs explained a larger proportion of the variance 
in expression levels (r2

average adipose = 0.07, r2
average LCL = 0.08 and 

r2
average skin = 0.08) than long-range effects (located >200 kb from 

TSSs) (r2
average adipose = 0.04, r2

average LCL = 0.04 and r2
average skin = 0.04) 

(Supplementary Fig. 6).
We then characterized tissue dependency of regulatory effects in 

more detail using a matched co-twin design, as previously described11, 
comparing the P-value distribution of significant SNP–expression 
probe pairs within and across tissues (Supplementary Fig. 7). We 
found that 56–83% of cis effects were shared across tissues, with adi-
pose and skin sharing more with each other than with LCLs (Table 1). 
eQTLs with statistical significance in multiple tissues might still have 
tissue-dependent biological consequences if they have different effect 
sizes (fold change in expression) across tissues. Thus, we also evaluated 
tissue dependency by contrasting fold changes in expression between 
tissues and estimating the predictive value (r2) of each tissue for the 
other two (Supplementary Fig. 8). After accounting for winner’s curse 
(subtracted unexplained intratissue variance), we estimate that 41–62% 
of cis eQTLs are not only tissue independent but also have a similar 
magnitude of effect in multiple tissues. Considering together data gen-
erated using several complementary approaches, we find evidence that 
>60% of cis eQTLs have statistically significant 
effects in multiple tissues.

Dissection of the contribution of cis 
effects to heritability of gene expression
To estimate the proportion of the heritability  
of each transcript that is driven in cis by 
alleles of high frequency (common SNPs, 
defined here as SNPs with MAF of > 5%), we 
combined the results from our heritability  
and cis-eQTL analyses. As the current  
sample size was not sufficient to obtain reli-
able h2 estimates of less than 0.1, we focused 
on transcripts with h2 of >0.1, which  
corresponds to 10,027 (43%), 10,219 (44%) 

and 7,511 (32%) transcripts in adipose, LCLs and skin, respectively 
(Fig. 1 and Supplementary Table 2).

Overall, when taking all transcripts into account, we found that com-
mon cis SNPs (MAF > 5%) explained on average only 9% (adipose),  
12% (LCLs) and 10% (skin) of the total genetic variance at each locus 
(Fig. 2). Less than a third (27% (adipose), 33% (LCLs) and 21% (skin)) 
of the transcripts were in fact associated with a cis variant at 1% FDR; 
therefore, when focusing on these transcripts only and taking inde-
pendent cis effects into account, the cis component accounted for a 
greater proportion of the genetic variance, namely 25% (adipose), 
31% (LCLs) and 32% (skin) on average. Notably, the effect of com-
mon cis variants increased as heritability increased. If we filtered for 
transcripts that were highly heritable in all tissues (h2 > 0.6 across all 
tissues, N = 24), ~95% of these transcripts were found to be associated 
with a cis variant, and, at 18 of the 24, a single cis SNP explained over 
50% of the genetic variance (Supplementary Table 5).

These results from multiple tissues indicate that a large proportion 
of the heritability of gene expression remains unexplained by the com-
mon SNPs (MAF > 5%) analyzed in standard cis-eQTL analyses. Thus, 
we asked whether there are other genetic cis effects that account for 
the additional genetic variance in gene expression.

We therefore performed quantitative linkage analysis in the cis 
regions of transcripts with h2 of >0.1 that were associated with a com-
mon cis SNP, using a global regression approach that analyzes the 
data of all expression traits (Nadipose = 2,537, NLCL = 3,157 and Nskin =  
1,493) in a single linear regression. We phased all SNPs in each cis 
region (~2 Mb) and counted the haplotypes with shared identity by 
descent (IBD) for all dizygotic twin pairs. We then estimated the aver-
age heritability at each cis region, using the global regression approach 
based on the Haseman-Elston algorithm, but taking all selected tran-
scripts into account. We noted that, on average, 30% (adipose), 35% 
(LCL) and 36% (skin) of the total genetic variance was explained by 
variants in cis, which was in fact 40% more than if only common 
cis SNPs identified from cis-eQTL analysis were included (Table 2). 
This added genetic component is likely due to low-frequency and/or 
rare cis variants. However, the estimates of its magnitude should be 
considered as a lower bound, as our sample size limited our ability to 
conduct the analyses on a subset of the heritable transcripts.

Integration of cis-eQTL data with disease loci
A major application of eQTL data has been the functional annotation 
of loci identified in GWAS. We investigated the regulatory impact of 
GWAS variants by integrating cis eQTLs (1% FDR; Supplementary 

Table 6) and disease-associated SNPs (National Human Genome 
Research Institute (NHGRI) database, accessed 21 December 2010), 
using regulatory trait concordance (RTC) methodology as previously  

Table 1 Estimated degree of tissue overlap of cis effects (1% FDR) 

Reference tissue Secondary tissue

Approach 1 Approach 2

N (%) Twin 1 π1 Twin 2 π1

Adipose LCL 1,221 (34.6) 0.64 0.56

Skin 1,207 (34.3) 0.79 0.77

LCL and skin 767 (21.8) – –

LCL or skin 1,661 (47.1) – –

LCL Adipose 1,118 (24.2) 0.65 0.63

Skin 978 (21.1) 0.65 0.61

Adipose and skin 728 (15.7) – –

Adipose or skin 1,368 (29.6) – –

Skin Adipose 1,265 (45.2) 0.77 0.83

LCL 1,104 (39.5) 0.64 0.64

Adipose and LCL 790 (28.3) – –

Adipose or LCL 1,579 (56.5) – –

Two approaches were used, including a threshold-based approach (approach 1) and 

a matched co-twin design comparing P-value distributions across tissues, where π1 

represents the proportion of true positives (approach 2).
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described14. RTC scores of ≥0.9 indicate that overlapping eQTL and 
GWAS signals likely tag the same functional variant. In all three 
tissues, we observed an over-representation of high-RTC-scoring  
candidates, which suggests that disease effects are mediated through 
changes to gene expression (Supplementary Fig. 9). Of the total 
number of interval-disease combinations tested in adipose (N = 765),  
LCLs (N = 887) and skin (N = 639), we detected 181 (23.7%), 225 
(25.4%) and 145 (22.7%) signals with RTC of ≥0.9 in each tissue,  
respectively, more than twice the number expected by chance  
(Padipose = 0.0009, PLCL = 0.008 and Pskin = 0.0009). Disease-associated 
eQTL candidates are largely tissue dependent (~60%), in line with the 
estimated proportion of tissue-dependent cis effects (52 of the total 
nonredundant 358 RTC signals were discovered across all 3 tissues; 
Supplementary Table 6).

Our efforts in integrating eQTL data with disease associations 
suggest that the ability to interpret the functionality of GWAS loci is 
highly dependent on the tissue where gene expression is interrogated 
and the tissue’s relevance to the trait of interest. Indeed, we observed 
a significant enrichment of immunity-related GWAS signals among 
high-RTC-scoring cis eQTLs in LCLs (P = 6.6 × 10−5, Fisher’s exact 
test), much more so than in the other two tissues (Padipose = 0.003 
and Pskin = 0.013). Likewise, disease-associated eQTLs detected in 
adipose and skin samples explained associations with biologically 
relevant traits (Supplementary Table 7). For example, in adipose, we 
discovered regulatory effects that potentially explained associations 

with triglyceride concentrations (rs2304130 (ref. 21) on ATP13A1 
and rs439401 (ref. 21) on APOE) or birth weight (rs900400 (ref. 22) 
on TIPARP), whereas, in skin, associations with melanoma (rs910873 
(ref. 23) on ASIP) and skin sensitivity to sun (rs1805007 (ref. 24) on 
DBNDD1) stood out.

Trans regulation of gene expression across tissues
Although low-frequency and/or rare cis variants seem to contrib-
ute significantly to the total heritable cis effect, a large proportion of 
the total heritability (>60%) of gene expression is still unexplained, 
indicating that the effects of trans-regulatory variants on gene expres-
sion are likely to be critical to interindividual differences in gene 
expression. We thus proceeded to explore the trans-regulatory land-
scape across tissues. Given the large number of tests performed and 
the relatively small effect sizes of trans eQTLs, we chose the GWAS 
threshold of P < 5 × 10−8 (corresponding to an FDR of less than 10%) 
to select possible candidates for further investigation, including rep-
lication analysis in independent samples. At P < 5 × 10−8, we found 
639, 557 and 609 trans eQTLs in adipose, LCLs and skin, respectively 
(Supplementary Table 8). The relative proportion of trans eQTLs 
per tissue is the inverse of that seen in the cis-eQTL analysis, perhaps 
reflecting the different external environments present for complex 
tissues versus cultured cells. In contrast to the cis results, nearly all 
trans eQTLs seemed to be tissue dependent, had relatively small effect 
sizes and were associated with transcripts with lower average h2 values 
(h2

adipose = 0.19, h2
LCL = 0.18 and h2

skin = 0.13).
Notably, many trans SNPs at P < 5 × 10−8 were associated with 

multiple transcripts, suggesting that they are multigene regulators. In 
adipose tissue, 48 SNPs accounted for 169 (32%) of the trans eQTLs, 
and, in LCLs and skin tissue, 48 SNPs accounted for 121 (21%) and 44 
SNPs for 164 (27%) of the trans eQTLs, respectively. These multigene 
regulators (defined here as trans SNPs associated with at least two 
distinct transcripts at P < 5 × 10−8) consistently showed enrichment 
for additional trans associations with low P values beneath the 5 × 

10−8 threshold (Fig. 3a), indicating that trans 
SNPs may regulate additional genes below our 
P-value threshold. In contrast, the P-value 
distribution across all measured transcripts 
in the other two tissues approximated the  
distribution expected under a null hypoth-
esis of no enrichment in trans associations 
(Fig. 3). To quantify the genome-wide effect 
of these trans SNPs, we again used π1 for esti-
mation of the proportion of true positives in 

Table 2 Proportion of the heritability explained by cis effects

Tissue N transcripts Average h2 h2
cis h2

cis /h2 h2
SNP h2

SNP/h2 h2
SNP/h2

cis

Adipose 2,537 0.40 0.12 0.30 0.072 0.18 0.60

LCL 3,157 0.34 0.12 0.35 0.095 0.28 0.79

Skin 1,497 0.36 0.13 0.36 0.094 0.26 0.72

h2
cis corresponds to the average heritability estimate at the cis regions, and h2

SNP  

corresponds to the average heritability estimate at the cis regions that is due to  

common SNPs.
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Figure 3 Trans variants regulating expression of 

multiple transcripts. (a) P-value distributions  

(x axis) of genome-wide associations (count N, 

y axis) between two potential adipose multigene 

regulators (rs1752223 on chromosome 1 (top) 

and rs7595947 on chromosome 2 (bottom)) 

and transcript levels in adipose (left), LCLs 

(middle) and skin (right). (b) Plots showing 

the median trans π1 value (π1 calculated from 

the P-value distribution of a trans SNP versus 

all probes) at increasing levels of trans-SNP 

significance in adipose (left), LCLs (middle) and 

skin (right). The top trans SNP for each probe 

was included, and trans SNPs were divided into 

nonoverlapping bins on the basis of the P value 

of the top trans association. The median π1 value  

(y axis) is plotted against the –log P value  

(x axis) of the lower limit of each bin.
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the distribution of P values from each trans SNP versus all transcripts 
and compared it with similar calculations for trans SNPs associated 
with only one transcript at P < 5 × 10−8 (single-gene regulators). We 
found that multigene regulators were enriched for greater numbers 
of true positives compared to single-gene regulators (Supplementary 

Fig. 10 and Supplementary Table 9). We further investigated π1  
values at trans SNPs beyond our threshold of P < 5 × 10−8 and found 
that the median π1 increased with increasing significance of the top 
association per trans SNP (Fig. 3b). As trans SNPs with more signifi-
cant association should be enriched for true positives, this confirms 
that a general property of true trans SNPs might be regulation of 
multiple transcripts.

We then sought to study the genome-wide regulatory behavior of 
our LCL trans SNPs (P < 5 × 10−8), using the calculated π1 values 
in our replication cohorts (The Avon Longitudinal Study of Parents 
and their Children (ALSPAC) and Oxford-TwinsUK (Oxford)) 
(Supplementary Table 4). In total, 314 trans SNPs with π1 of ≥0.10 
in the MuTHER discovery cohort were tested, of which 61 (19%) and 
43 (14%) also had π1 estimates of ≥0.10 in the ALSPAC and Oxford 
LCL replication cohorts, respectively. When comparing not only the 
π1 values in the replication cohorts but also the top 1,000 associated 
transcripts to the bottom 1,000 associated transcripts for each of the 
61 and 43 trans SNPs in the ALSPAC and Oxford replications studies,  
respectively, we found a highly significant enrichment for lower  
P values in the top 1,000 transcripts (Mann-Whitney; PALSPAC = 2.6 × 
10−6 and POxford = 3.8 × 10−5). This indicates that, not only genome-
wide regulatory behavior, but also the ranking of associated genes for 
a subset of trans SNPs is consistent across studies, but larger sample 
sizes are needed to confirm the observed effect of gene regulation.

We also performed replication studies of each trans association 
identified at P < 5 × 10−8 in independent data sets (Supplementary 

Table 4) and noted that the replication rate of trans associations 
was markedly lower compared to that of cis effects (Table 3 and 
Supplementary Fig. 3), with π1 estimates ranging from 0.0002 to 0.13 
compared to π1 of 0.34 to 0.76 for replication of cis effects. However, 
using a P-value cutoff of <0.05 and taking direction of effect into 
account, we found up to threefold enrichment of replicated trans 
eQTLs (Table 3 and Supplementary Table 10). Taken together, 
these data show that trans-regulatory effects of gene expression are 
highly complex, with small effect sizes indicating that sample sizes 
are required to be larger than previously expected.

DISCUSSION
We undertook a large-scale genetic association study of human 
gene expression traits in multiple disease-targeted tissue samples  
(subcutaneous fat, LCLs and whole skin) derived from 856 mono- 
and dizygotic female twins, as part of the MuTHER project. This 
is the first study performed to date using the twin design for the 
dissection of genetic and non-genetic components underlying 

population differences in tissue-independent and tissue-dependent  
expression profiles.

A study using family data sets aiming to partition the heritability 
of gene expression into cis and trans components recently estimated 
that 37% of the heritability in blood and 24% in adipose tissue are 
in fact due to cis regulation16. Here, we confirm these estimates but 
decompose the cis component further using IBD estimates in our 
dizygotic subjects. We found that 30–36% of heritability is due to 
cis components but that up to 40% of the heritable cis effect or 12% 
of total heritability is missed when only considering common SNPs 
from cis-eQTL mapping. However, as our analyses were conducted on 
heritable transcripts in each tissue for which we observed a significant 
cis association from the cis-eQTL mapping approach, the estimate 
of the contribution of undetected regulatory effects to cis genetic 
variance is most likely an underestimate. Although we acknowledge 
that common SNPs may in some instances tag low-frequency vari-
ants25,26, we expect that a subset of the missing cis heritability still 
will be accounted for by low-frequency and rare variants, support-
ing the development of large-scale exome and genome resequencing 
initiatives for complex trait mapping. The missing cis heritability also 
has implications for GWAS signals in cases where the effect of the 
lead SNP is mediated via a cis eQTL; if a known GWAS variant is an 
eQTL and therefore affects disease risk by modulating expression of 
a gene, then any additional rare variant modulating expression of the 
same gene in the same tissue should also affect the same trait. This 
leads us to predict that, on average, an additional 40% or more of 
signal remains to be discovered at cis-eQTL GWAS loci (of which we 
identify 358 in this study). These estimates are based on calculations 
within each tissue and thus do not represent tissue-independent cis 
heritability. In agreement with a previous study27, we do not find an 
enrichment of genetic correlations unequal to zero (data not shown), 
which is expected given the high degree of tissue independence of cis 
effects seen in our cis-eQTL mapping approach. However, as our sam-
ple size is limited, measurement error in genetic covariance cannot be 
ruled out. The finding that the majority (>60%) of the genetic effect of 
expression traits is regulated by components other than those acting 
in cis indicates the need for studies of the trans-regulatory landscape. 
Trans-regulatory variants are known to have small effect sizes and 
thus have previously been difficult to map, given limited sample sizes 
and lack of appropriate replication studies4. However, the recent find-
ings of disease-related trans variants regulating the expression of mul-
tiple genes are promising28,29. A dilemma with genome-wide eQTL 
analysis is that only a small proportion of the variants survive multiple 
testing corrections and that, by restricting analysis to signals solely on 
the basis of arbitrary cutoffs, many true hits are likely to be missed. 
This can be circumvented by analytical methods, such as studying the 
global effect of trans variants using the proportion of true positives 
(π1), as presented here. By applying this approach and with thorough 
replication, we found evidence of multiple trans variants acting as 

Table 3 Replication in independent cohorts of cis and trans associations

Tissue Cohort N

Trans hits tested/total  

hits at P < 5 × 10−8 P < 0.05a π1

Cis hits tested/total  

hits at 1% FDR P < 0.05a π1

Adipose  

(subcutaneous)

deCODE 585 586/639 25/586 (4.3%) 0.10 N/A N/A N/A

Adipose  

(subcutaneous)

MGH 701 514/639 27/514 (5.3%) 0.096 2,980/3,332 1,751/2,980 (59%) 0.79

LCLs ALSPAC 931 544/557 33/544 (6.1%) 0.13 6,181/6,289 4,154/6,181 (67%) 0.76

LCLs Oxford (TwinsUK) 331 361/557 23/361 (6.4%) 0.13 4,608/6,289 2,745/4,608 (60%) 0.75

Skin (fibroblasts) GenCORD 68 442/609 15/442 (3.4%) 0.00024 2,241/3,416 455/2,241 (20%) 0.34

MGH, Massachusetts General Hospital. N/A, data not available
aConsistent direction.
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multigene regulators, predominantly in a tissue-dependent manner, 
similar to our previously reported example of the KLF14 locus in 
adipose tissue29. For instance, the rs7595947 SNP on chromosome 2 
was associated with 27 transcripts in the MuTHER adipose samples 
and was successfully replicated in independent cohorts. In skin, the 
rs1215608 trans SNP located within the NUAK1 gene, defined as a 
multigene regulator and associated with three genes (FMO6P, PPM1F 
and LECT1) in the MuTHER discovery sample, was successfully rep-
licated in the fibroblast cohort. Notably, the rs1215608 SNP is also a 
cis-acting SNP that regulates NUAK1 expression. The NUAK1 gene 
was recently identified as a key player in cellular senescence and cel-
lular ploidy, mechanisms that are known to be important in aging30. 
These examples underscore the potential in using full-transcriptome 
architecture to understand biology. However, as shown here by the 
relatively low replication rate of trans SNPs, the dissection of trans 
effects and their characteristics, such as tissue dependency, are indeed 
challenging, as they are highly complex and require larger sample sizes 
to be discovered than was previously expected.

In conclusion, we present unique twin data using thousands of 
eQTLs in multiple tissues, extending understanding of the architec-
ture and regulation of gene expression in multiple ways. We highlight 
the importance of studying low-frequency and rare regulatory vari-
ants in complex traits by detecting and mapping missing heritability of 
gene expression beyond the common cis variants. We also show that a 
substantial proportion of gene expression heritability is trans to struc-
tural genes and identify several replicating trans variants that seem to 
act predominantly in a tissue-restricted manner and are potentially 
regulators of many genes.

URLs. MuTHER Resource, http://www.muther.ac.uk/; ArrayExpress, 
http://www.ebi.ac.uk/arrayexpress/; Genevar database, http://www.
sanger.ac.uk/resources/software/genevar/.

METHODS
Methods and any associated references are available in the online 
version of the paper.

Accession codes. Microarray data have been deposited in the 
ArrayExpress archive under accession E-TABM-1140, and the full data 
set of MuTHER cis eQTLs is available through the Genevar database.

Note: Supplementary information is available in the online version of the paper.
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ONLINE METHODS
Sample collection. The study included 856 female individuals of European 
descent recruited from the TwinsUK Adult twin registry17 (Supplementary 

Table 1). Punch biopsies (8 mm) were taken from a photo-protected area 
adjacent and inferior to the umbilicus. Subcutaneous adipose tissue was dis-
sected from each biopsy, weighed and immediately stored in liquid nitro-
gen. Similarly, the remaining skin tissue was weighed and stored in liquid 
nitrogen. Peripheral blood samples were collected, and LCLs were generated 
through EBV-mediated transformation of the B-lymphocyte component by 
the European Collection of Cell Cultures agency. The project was approved by 
the local ethics committees of all institutions involved, and all samples were 
collected after obtaining written and signed informed consent.

RNA extraction. RNA was extracted from homogenized adipose and skin 
samples and lysed LCLs using TRIzol Reagent (Invitrogen) according to the 
protocol provided by the manufacturer. RNA quality was assessed with the 
Agilent 2100 BioAnalyzer (Agilent Technologies), and concentrations were 
determined using the NanoDropND-1000 (NanoDrop Technologies).

Expression profiling. Expression profiling of the samples, each with either 
two or three technical replicates, was performed using Illumina Human  
HT-12 V3 BeadChips (Illumina), including 48,804 probes with 200 ng of total 
RNA processed according to the protocol supplied by Illumina. All samples 
were randomized before array hybridization, and replicates were hybridized 
on different BeadChips. Raw data were imported to Illumina BeadStudio 
software, and probes with less than three beads present were excluded.  
Log2-transformed expression signals were normalized separately per tissue, 
with quantile normalization of the replicates of each individual followed by 
quantile normalization across all individuals, as previously described11. We 
acknowledge that quantile normalization does not adjust for shared covariance 
due to technical factors that may influence subsequent analysis, but previous 
efforts5 indicate that the impact on the result seems to be minor. After quality 
control, expression profiles were obtained for 825 (adipose and LCL) and 705 
(skin) individuals. Illumina probe annotations were cross-checked by mapping 
probe sequences to the NCBI Build 36 genome with MAQ31. Only uniquely 
mapping probes with no mismatches and either an Ensembl or RefSeq ID were 
kept for analysis. Probes mapping to genes of uncertain function (LOC sym-
bols) and those encompassing a common SNP (1000 Genomes Project release 
June 2010) were further excluded, leaving 23,596 probes for the analysis.

Genotyping and genotype imputation. Genotyping of the TwinsUK data set 
(N = ~6,000) was performed with a combination of Illumina HumanHap300, 
HumanHap610Q, 1M-Duo and 1.2MDuo 1M chips. Intensity data for each 
of the arrays were pooled separately (with 1M-Duo and 1.2MDuo 1M data 
pooled together), and genotypes were called with the Illuminus32 calling  
algorithm, setting the threshold at a maximum posterior probability of 0.95, 
as previously described29.

Imputation was performed using the IMPUTE software package (v2)26 
using two reference panels: P0 (HapMap 2, release 22, combined Utah resi-
dents of Northern and Western European ancestry (CEU), Yoruba from 
Ibadan, Nigeria (YRI) and Asian (ASN) panels) and P1 (610k+, including 
the combined HumanHap610k and 1M arrays). After imputation, SNPs were 
filtered for MAF of >5% and IMPUTE info value of >0.8, resulting in a total 
of 2,029,988 SNPs available for testing.

Heritability analysis. The classical twin design was applied, comparing the 
similarity of mono- and dizygotic twins using the ACE model, which parti-
tions the variance into additive genetic (A), common environment (variance 
due to environmental effects shared within twin pairs; C) and unique envi-
ronment (environmental effects not shared within twin pairs; E). As all twin 
pairs included in the study visited the clinic in pairs and because monozygotic 
twins share 100% of their genes, any differences arising between them in these 
circumstances are unique (E). The correlation observed between monozygotic 
twins thus provides an estimate of A + C. In contrast, dizygotic twins have a 
common shared environment but share on average only 50% of their genes, such 
that the correlation between dizygotic twins is a direct estimate of 0.5 A + C.  
Consequently, twice the difference between mono- and dizygotic twins gives the 

genetic additive effect (A), and the common environment (E) is the monozy-
gotic correlation minus the estimate of the genetic effect (A). A standard  
linear mixed model was used to estimate these variance components, as pre-
viously described19. The following covariates were included in the model:  
(i) age and experimental batch in adipose and LCL analysis and (ii) age, experi-
mental batch and sample processing in the skin analysis. All available complete 
twin pairs were included, corresponding to 143 monozygotic and 214 dizygotic 
pairs with adipose profiles, 138 monozygotic and 221 dizygotic pairs with LCL 
profiles and 108 monozygotic and 162 dizygotic pairs with skin profiles.

eQTL analysis. Associations of expression levels with probabilities of imputed 
genotypes were tested in samples of related individuals using a two-step 
mixed model–based score test developed by Aulchenko et al.33 and Chen and 
Abecasis34 and implemented in the GenABEL/ProbABEL packages35,36. Briefly, 
the approach is an approximation of a full linear mixed model, where the first 
step includes a mixed model containing all terms but those involving SNPs 
fitted by maximum likelihood (fixed effects as well as the kinship matrix are 
based on genomic data). Fixed effects included age and experimental batch in 
the adipose and LCL analysis, and age, batch and sample processing were used 
in the skin analysis. This step was performed using GenABEL software35 with 
the polygenic() function. The resulting object contains the inverse variance– 
covariance matrix of the estimates and expression trait residuals, which are 
used in the second step together with posterior genotypic probabilities to 
perform a score test in ProbABEL36 using the –mmscore option. In total, 
776 adipose, 777 LCL and 667 skin samples had both expression profiles and 
imputed genotypes and were included in the analysis. Cis analysis was limited 
to SNPs located within 1 Mb of either side of the transcription start or end 
site or within the gene body. FDR for the cis analysis was calculated from the 
complete list of P values, using the qvalue package20 implemented in R2.11 
(ref. 37). To characterize likely independent regulatory effects, the identified 
cis eQTLs were mapped to recombination hotspot intervals38. For each gene, 
the most significant SNP per hotspot interval was selected, and additional 
linkage disequilibrium filtering was performed (for each remaining SNP pair 
with D′ > 0.5 and r2 > 0.1, the least significant SNP was ignored).

Trans analysis was limited to SNPs located on a different chromosome than 
the tested transcript. After quality control filtering, analysis of the trans eQTLs 
revealed 52 probes with extreme outlier effects, which were filtered from  
further trans analysis. Transcripts associated with a trans SNP at P < 5 × 10−8 
were used for calculations of transcript-wise FDR from the complete list of  
P values, using the qvalue package20 implemented in R2.11 (ref. 37).

The score test is known to slightly underestimate additive effect sizes34; 
therefore, the top association per probe was validated with a linear mixed-
effects model in R, using the lmer() function in the lme4 package39, fitted 
by maximum likelihood (Supplementary Fig. 2). The linear mixed-effects 
model was adjusted for both fixed (age, experimental batch effect and sample 
processing effect (skin tissue only)) and random effects (family relationship 
and zygosity). A likelihood ratio test was applied to assess the significance of 
the SNP effect. The P value of the SNP effect in each model was calculated from 
the χ-squared distribution with 1 degree of freedom, using −2log(likelihood 
ratio) as the test statistic.

eQTL analysis using a matched co-twin design. eQTL analysis was performed 
separately for each tissue, as previously described11. Within each tissue, twins 
from the same pair were separated by ID into two samples that were analyzed 
independently. Related individuals (sister pairs) within a twin set were also 
removed. This separation resulted in the following sample sizes for adipose, 
LCLs and skin, respectively: twin 1 (390, 340 and 337) and twin 2 (384, 338 
and 328). For each of the twin-by-tissue sets, associations between genotypes 
and normalized expression values were conducted using Spearman rank corre-
lation (SRC). Age and experimental batch were included as cofactors in the 
adipose and LCL analysis, and age, batch and sample processing were included 
in the skin analysis. We considered a window of <1 Mb from the TSS for testing 
SNPs in cis. cis eQTLs were filtered at a nominal SRC P value of <2.5 × 10−6,  
which corresponds to a 10−3 permutation threshold11. We contrasted the 
eQTLs (same SNP-probe combinations) and expression fold changes (differ-
ence in mean expression of homozygous genotype classes) between twin sets 
of the same tissue and then performed comparison between tissues from the 
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same twins (for example, twin 1 LCL versus twin 2 LCL, twin 1 LCL versus 
twin 1 adipose and twin 1 LCL versus twin 1 skin).

Global regression. To estimate the proportion of the genetic variance that is 
due to cis effects, we performed quantitative linkage analysis for the subset of 
transcripts that had h2 > 0.1 and associated with a common cis SNP at 1% FDR. 
IBD sharing between every pair of dizygotic twins was calculated by phasing 
all the SNPs in every cis region (~2 Mb) using MERLIN 1.1.2 (ref. 40) and then 
counting haplotypes identical in both twins (IBD = 0, both haplotypes differ-
ent; IBD = 1, one identical haplotype; IBD = 2, both haplotypes identical). IBD 
sharing in cis for all the probes tested for linkage was calculated.

To estimate the average heritability at cis regions, a modification of the 
Haseman-Elston regression method was used that analyzes the data of several 
traits in a single linear regression16. Briefly, ygi represents the expression for 
gene g and individual i, normalized to have mean 0 and variance 1 across all 
the individuals. Ygij = (Ygi × Ygj) is a measure of phenotypic similarity between 
twins i and j in gene g, and πgij is the IBD sharing between the dizygotic pair 
(i and j) at gene g calculated as described above. Ygij was regressed on the 
IBD sharing πgij over all genes and all dizygotic twin pairs. The coefficient 
of this regression is an estimate of the average variance explained in cis. The 
quotient of this value with the average of total heritability for the same set of 
transcripts represents a measure of the proportion of the heritability that is 
explained by variants in cis. Next, each gene’s expression value was corrected 
by cis-eQTL effects and calculated as the residual of the linear regression of 
the original gene expression level on the independent cis eQTL for each gene. 
The global regression procedure was then repeated but, in this case, using the 
gene expression values corrected by the common cis-eQTL effects. The coef-
ficient of this regression represents the estimate of the average gene expression 
variance explained by variants not discovered in our eQTL analysis, which are 
most likely rare variants. By subtracting this value from the total heritability 
in cis, we obtained an estimate of the genetic variance at the cis regions that is 
due to common SNPs. All three tissues were analyzed separately, and linear 
regressions were adjusted using R version 2.13.0 (ref. 37).

Replication cohorts. Characteristics of the replication cohorts are presented 
in Supplementary Table 4. The deCODE replication sample consisted 
of 585 subcutaneous adipose samples from healthy Icelandic individuals,  
as previously described8.

The MGH replication sample consisted of 701 subcutaneous adipose  
samples from obese individuals undergoing Roux-en Y gastric bypass surgery 
at Massachusetts General Hospital, as previously described10.

The Oxford replication sample consisted of 331 LCLs independently 
derived from the TwinsUK Adult twin registry and thus does not overlap 
with MuTHER samples, as recently described41.

The ALSPAC replication sample consisted of 931 LCLs derived from 
The Avon Longitudinal Study of Parents and their Children (ALSPAC)42. 
Expression profiling of the samples, each with two technical replicates, was 
performed using Illumina Human HT-12 V3 BeadChips (IlluminaInc) and 
processed as for the MuTHER samples. ALSPAC individuals were genotyped 
using the Illumina HumanHap550 genome-wide SNP genotyping platform. 
Markers with <1% MAF or >5% missing genotypes or that failed an exact test 
of Hardy-Weinberg equilibrium (P < 5 × 10−7) were excluded from further 
analysis. Any individuals who did not cluster with the CEU individuals in MDS 
analysis or who had >3% missing data, minimal or excessive heterozygosity 

(>33% or <31%, respectively), evidence of cryptic relatedness (>10% IBD) or 
incorrect gender assignment were also excluded. After data cleaning, 315,807 
SNPs were left. Imputation was carried out using MACH 1.0.16 (Markov chain 
haplotyping)43, using Centre d’Etude du Polymorphisme Humain (CEPH) 
individuals from phase 2 of the HapMap project as a reference set. Associations 
between SNP genotypes and normalized expression values were conducted 
using a linear model.

The GenCORD replication sample consisted of 68 primary fibroblasts 
derived from the umbilical cord of newborns of Western European ancestry  
who were born at the maternity ward of the University of Geneva Hospital, 
with pregnancies being full term or near full term (38–41 weeks),  
as previously described9.

Integration of eQTL data with GWAS hits. The likelihood of a shared func-
tional effect between a GWAS SNP (NHGRI database, accessed 21 December 
2010) and an eQTL was assessed by quantifying the change in the statistical 
significance of the eQTL after correcting for the effect of the GWAS SNP, as 
previously described14. ProbABEL association analysis of eQTL genotype with 
residuals from standard linear regression of the ‘corrected-for’ SNP against 
normalized expression was performed again. The linkage disequilibrium 
structure in each hotspot interval was individually accounted for by ranking 
(RankGWAS SNP) impact on the eQTL (quantified by the adjusted association 
P value after correction) of the GWAS SNP correction to that of correcting for 
all other SNPs in the same interval. By taking into account the total number of 
SNPs in the interval (N SNPs), this ranking across different genes and intervals 
can then be compared. For this purpose, we define the RTC score as RTC = 
(N SNPs – RankGWAS SNP)/N SNPs, ranging from 0 to 1, with values closer 
to 1 indicating causal regulatory effects.
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