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Abstract 

Classifier systems are machine learning systems incotporating a genetic al­

gorithm as the learning mechanism. Although they respond to inputs that neural 

networks can respond to, their internal structure, representation fonnalisms, and 

learning mechanisms differ marlcedly from those employed by neural network re­

searchers in the same sorts of domains. As a result, one might conclude that these 

two types of machine learning fonnalisms are intrinsically different. This is one 

of two papers that, taken together, prove instead that classifier systems and neural 

networks are equivalent. In this paper, half of the equivalence is demonstrated 

through the description of a transfonnation procedure that will map classifier 

systems into neural networks that are isomotphic in behavior. Several alterations 

on the commonly-used paradigms employed by neural networlc researchers are 

required in order to make the transfonnation worlc. These alterations are noted 

and their appropriateness is discussed. The paper concludes with a discussion of 

the practical import of these results, and with comments on their extensibility. 

1 Introd uction 

Classifier systems are machine learning systems that have been developed since the 

1970s by 10hn Holland and, more recently, by other members of the genetic algorithm 

research community as well l . Classifier systems are varieties of genetic algorithms 

- algorithms for optimization and learning. Genetic algorithms employ techniques 

inspired by the process of biological evolution in order to "evolve" better and better 

IThis paper has benefited from discussions with Wayne Mesard, Rich Sutton, Ron Williams, Stewart 

Wilson, Craig Shaefer, David Montana, Gil Syswerda and other members of BARGAIN, the Boston Area 

Research Group in Genetic Algorithms and Inductive Networks. 
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individuals that are taken to be solutions to problems such as optimizing a function, 

traversing a maze, etc. (For an explanation of genetic algorithms, the reader is 

referred to [Goldberg 1989].) Classifier systems receive messages from an external 

source as inputs and organize themselves using a genetic algorithm so that they will 

"learn" to produce responses for internal use and for interaction with the external 

source. 

This paper is one of two papers exploring the question of the fonnal relationship 

between classifier systems and neural networks. As normally employed, the two sorts 

of algorithms are probably distinct, although a procedure for translating the operation 

of neural networks into isomorphic classifier systems is given in [Belew and Gherrity 

1988]. The technique Belew and Gherrity use does not include the conversion of the 

neural network learning procedure into the classifier system framework, and it appears 

that the technique will not support such a conversion. Thus, one might conjecture that 

the two sorts of machine learning systems employ learning techniques that cannot be 

reconciled, although if there were a subsumption relationship, Belew and Gherrity's 

result suggests that the set of classifier systems might be a superset of the set of 

neural networks. 

The reverse conclusion is suggested by consideration of the inputs that each sort 

of learning algorithm processes. When viewed as "black boxes", both mechanisms 

for learning receive inputs, carry out self-modifying procedures, and produce outputs. 

The class of inputs that are traditionally processed by classifier systems - the class 

of bit strings of a fixed length - is a subset of the class of inputs that have been 

traditionally processed by neural networks. Thus, it appears that classifier systems 

operate on a subset of the inputs that neural networks can process, when viewed as 

mechanisms that can modify their behavior. 

In fact, both these impressions are correct. One can translate classifier systems 

into neural networks, preserving their learning behavior, and one can translate neural 

networks into classifier systems, again preserving learning behavior. In order to do 

so, however, some specializations of each sort of algorithm must be made. This 

paper deals with the translation from classifier systems to neural networks and with 

those specializations of neural networks that are required in order for the translation 

to take place. The reverse translation uses quite different techniques, and is treated 

in [Davis 1989]. 

The following sections contain a description of classifier systems, a description of 

the transformation operator, discussions of the extensibility of the proof, comments 

on some issues raised in the course of the proof, and conclusions. 

2 Classifier Systems 

A classifier system operates in the context of an environment that sends messages to 

the system and provides it with reinforcement based on the behavior it displays. A 

classifier system has two components - a message list and a population of rule-like 

entities called classifiers. Each message on the message list is composed of bits, and 
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each has a pointer to its source (messages may be generated by the environment or 

by a classifier.) Each classifier in the population of classifiers has three components: 

a match string made up of the characters 0,1, and # (for "don't care"); a message 

made up of the characters 0 and 1; and a strength. The top-level description of a 

classifier system is that it contains a population of production rules that attempt to 

match some condition on the message list (thus "classifying" some input) and post 

their message to the message list, thus potentially affecting the envirorunent or other 

classifiers. Reinforcement from the environment is used by the classifier system to 

modify the strengths of its classifiers. Periodically, a genetic algorithm is invoked 

to create new classifiers, which replace certain members of the classifier set. (For 

an explanation of classifier systems, their potential as machine learning systems, and 

their formal properties, the reader is referred to [Holland et al 1986].) 

Let us specify these processing stages more precisely. A classifier system operates 

by cycling through a fixed list of procedures. In order, these procedures are: 

Message List Processing. 1. Clear the message list. 2. Post the envirorunental 

messages to the message list. 3. Post messages to the message list from classifiers 

in the post set of the previous cycle. 4. Implement envirorunental reinforcement by 

analyzing the messages on the message list and altering the strength of classifiers in 

the post set of the previous cycle. 

Form the Bid Set. 1. Determine which classifiers match a message in the 

message list. A classifier matches a message if each bit in its match field matches its 

corresponding message bit. A 0 matches a 0, a 1 matches a I, and a # matches either 

bit. The set of all matching classifiers forms the current bid set. 2. Implement bid 

taxes by subtracting a portion of the strength of each classifier c in the bid set. Add 

the strength taken from c to the strength of the classifier or classifiers that posted 

messages matched by c in the prior step. 

Form the Post Set. 1. If the bid set is larger than the maximum post set size, 

choose classifiers stochastically to post from the bid set, weighting them in proportion 

to the magnitude of their bid taxes. The set of classifiers chosen is the post set. 

Reproduction Reproduction generally does not occur on every cycle. When it 

does occur, these steps are carried out: 1. Create n children from parents. Use 

crossover and/or mutation, chOOSing parents stochastically but favoring the strongest 

ones. (Crossover and mutation are two of the operators used in genetic algorithms.) 

2. Set the strength of each child to equal the average of the strength of that child's 

parents. (Note: this is one of many ways to set the strength of a new classifier. 

The transformation will work in analogous ways for each of them.) 3. Remove n 

members of the classifier population and add the n new children to the classifier 

population. 

3 Mapping Classifiers Into Classifier Networks 

The mapping operator that I shall describe maps each classifier into a classifier 

network. Each classifier network has links to environmental input units, links to 
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other classifier networks, and match, post, and message units. The weights on the 

links leading to a match node and leaving a post node are related to the fields in 

the match and message lists in the classifier. An additional link is added to provide 

a bias term for the match node. (Note: it is assumed here that the environment 

posts at most one message per cycle. Modifications to the transfonnation operator to 

accommodate multiple environmental messages are described in the final comments 

of this paper.) 

Given a classifier system CS with n classifiers, each matching and sending mes­

sages of length m, we can construct an isomorphic neural network composed of n 

classifier networks in the following way. For each classifier c in CS, we construct its 

corresponding classifier network, composed of n match nodes, I post node, and m 

message nodes. One match node (the environmental match node) has links to inputs 

from the environment. Each of the other match nodes is linked to the message and 

post node of another classifier network. The reader is referred to Figure 2 for an 

example of such a transformation. 

Each match node in a classifier network has m + 1 incoming links. The weights 

on the first m links are derived by applying the following transformation to the m 

elements of c's match field: 0 is associated with weight -1, 1 is associated with 

weight 1, and # is associated with weight O. The weight . of the final link is set to 

m + 1 - l, where l is the number of links with weight = 1. Thus, a classifier with 

match field (1 0 # 0 1) would have an associated network with weights on the links 

leading to its match nodes of 1, -1, 0, -I, 1, and 4. A classifier with match field (1 

0#) would have weights of 1, -I, 0, and 3. 

The weights on the links to each message node in the classifier network are set 

to equal the corresponding element of the classifier's message field. Thus, if the 

message field of the classifier were (0 1 0), the weights on the links leading to the 

three message nodes in the corresponding classifier network would be 0, I, and O. 

The weights on all other links in the classifier network are set to 1. 

Each node in a classifier network uses a threshold function to determine its acti­

vation level. Match nodes have thresholds = m + .9. All other nodes have thresholds 

= .9. If a node's threshold is exceeded, the node's activation level is set to 1. If not, 

it is set to O. 

Each classifier network has an associated quantity called strength that may be 

altered when the network is run, during the processing cycle described below. 

A cycle of processing of a classifier system CS maps onto the following cycle of 

processing in a set of classifier networks: 

Message List Processing. 1. Compute the activation level of each message 

node in CS. 2. If the environment supplies reinforcement on this cycle, divide that 

reinforcement by the number of post nodes that are currently active, plus 1 if the 

environment posted a message on the preceding cycle, and add the quotient to the 

strength of each active post node's classifier network. 3. If there is a message on this 

cycle from the environment, map it onto the first m environment nodes so that each 

node associated with a 0 is off and each node associated with a 1 is on. Tum the final 

environmental node on. If there is no environmental message, turn all environmental 
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nodes off. 

Form the Bid Set. 1. Compute the activation level of each match node in 

each classifier network. 2. Compute the activation level of each bid node in each 

classifier network (the set of classifier networks with an active bid node is the bid 

set). 3. Subtract a fixed proportion of the strength of each classifier network cn in 

the bid set. Add this amount to the strength of those networks connected to an active 

match node in cn. (Strength given to the environment passes out of the system.) 

Form the Post Set. 1. If the bid set is larger than the maximum post set size, 

choose networks stochastically to post from the bid set, weighting them in proportion 

to the magnitude of their bid taxes. The set of networks chosen is the post set. (This 

might be viewed as a stochastic n-winners-take-all procedure). 

Reproduction. If this is a cycle on which reproduction would occur in the 

classifier system, carry out its analog in the neural network in the following way. 

1. Create n children from parents. Use crossover and/or mutation, choosing parents 

stochastically but favoring the strongest ones. The ternary alphabet composed of -I, 

I, and 0 is used instead of the classifier alphabet of 0, 1, and #. After each operator 

is applied, the final member of the match list is set to m + 1 - l. 2. Write over the 

weights on the match links and the message links of n classifier networks to match 

the weights in the children. Choose networks to be re-weighted stochastically, so that 

the weakest ones are most likely to be chosen. Set the strength of each re-weighted 

classifier network to be the average of the strengths of its parents. 

It is simple to show that a classifier network match node will match a message 

in just those cases in which its associated classifier matched a message. There are 

three cases to consider. If the original match character was a #, then it matched any 

message bit. The corresponding link weight is set to 0, so the state of the node it 

comes from will not affect the activation of the match node it goes to. If the original 

match character was a 1, then its message bit had to be a 1 for the message to be 

matched. The corresponding link weight is set to 1, and we see by inspection of the 

weight on the final link, the match node threshold, and the fact that no other type 

of link has a positive weight, that every link with weight I must be connected to an 

active node for the match node to be activated. Finally, the link weight corresponding 

to a 0 is set to -1. If any of these links is connected to a node that is active, then the 

effect is that of turning off a node connected to a link with weight 1, and we have 

just seen that this will cause the match node to be inactive. 

Given this correspondence in matching behavior, one can verify that a set of 

classifier networks associated with a classifier system has the following properties: 

During each cycle of processing of the classifier system, a classifier is in the bid set 

in just those cases in which its associated networlc has an active bid node. Assuming 

that both systems use the same randomizing technique, initialized in the same way, 

the classifier is in the post set in just those cases when the network is in the post 

set. Finally, the parents that are chosen for reproduction are the transform as of those 

chosen in the classifier system, and the children produced are the transformations of 

the classifier system parents. The two systems are isomorphic in operation, assuming 

that they use the same random number generator. 
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CLASSIFIER NETWORK 1 CLASSIFIER NETWORK 2 

strength = 49.3 strength = 21.95 

2 

Figure 1: Result of mapping a classifier system 

witH two classifiers into a neural network. 
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Classifier 1 has match field (0 1 #), message field (1 1 0), 

and strength 49 .3. Classifier 2 has match field (1 1 #), 

message field (0 1 1), and strength 21.95. 
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4 Concluding Comments 

The transfonnation procedure described above will map a classifier system into a 

neural network that operates in the same way. There are several points raised by the 

techniques used to accomplish the mapping. In closing, let us consider four of them. 

First, there is some excess complexity in the classifier networks as they are shown 

here. In fact, one could eliminate all non-environmental match nodes and their 

links, since one can determine whenever a classifier network is reweigh ted whether it 

matches the message of each other classifier network in the system. If so, one could 

introduce a link directly from the post node of the other classifier networlc to the post 

node of the new networlc. The match nodes to the environment are necessary, as 

long as one cannot predict what messages the environment will post. Message nodes 

are necessary as long as messages must be sent out to the environment. If not, they 

and their incoming links could be eliminated as well. These simplifications have not 

been introduced here because the extensions discussed next require the complexity 

of the current architecture. 

Second, on the genetic algorithm side, the classifier system considered here is an 

extremely simple one. There are many extensions and refinements that have been 

used by classifier system researchers. I believe that such refinements can be handled 

by expanded mapping procedures and by modifications of the architecture of the 

classifier networks. To give an indication of the way such modifications would go, 

let us consider two sample cases. The first is the case of an environment that may 

produce multiple messages on each cycle. To handle multiple messages, an additional 

link must be added to each environmental match node with weight set to the match 

node's threshold. This link will latch the match node. An additional match node 

with links to the environment nodes must be added, and a latched counting node 

must be attached to it. Given these two architectural modifications, the cycle is 

modified as follows: During the message matching cycle, a series of subcycles is 

carried out, one for each message posted by the environment. In each subcycle, an 

environmental message is input and each environmental match node computes its 

activation. The environmental match nodes are latched., so that each will be active 

if it matched any environmental message. The count nodes will record how many 

were matched by each classifier network. When bid strength'is paid from a classifier 

network to the posters of messages that it matched, the divisor is the number of 

environmental messages matched as recorded by the count node, plus the number 

of other messages matched. Finally, when new weights are written onto a classifier 

network's links, they are written onto the match node connected to the count node 

as well. A second sort of complication is that of pass-through bits - bits that 

are passed from a message that is matched to the message that is posted. This 

sort of mechanism can be implemented in an obvious fashion by complicating the 

structure of the classifier networlc. Similar complications are produced by considering 

multiple-message matching, negation, messages to effectors, and so forth. It is an 

open question whether all such cases can be handled by modifying the architecture 

and the mapping operator, but I have not yet found one that cannot be so handled. 
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Third, the classifier networks do not use the sigmoid activation functions that sup­

port hill-c~bing techniques such as back-propagation. Further, they are recurrent 

networks rather than strict feed-forwanl networks. Thus, one might wonder whether 

the fact that one can carry out such transformations should affect the behavior of 

researchers in the field. This point is one that is taken up at greater length in the 

companion paper. My conclusion there is that several of the techniques imported into 

the neural network domain by the mapping appear to improve the performance of neu­

ral networks. These include tracking strength in order to guide the learning process, 

using genetic operators to modify the network makeup. and using population-level 

measurements in order to determine what aspects of a network to use in reproduction. 

The reader is referred to [Montana and Davis 1989] for an example of the benefits 

to be gained by employing these techniques. 

Finally, one might wonder what the import of this proof is intended to be. In 

my view, this proof and the companion proof suggest some exciting ways in which 

one can hybridize the learning techniques of each field. One such approach and its 

successful application to a real-world problem is characterized in [Montana and Davis 

1989]. 
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